
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Improving GPU Matrix Multiplication by Leveraging Bit
Level Granularity and Compression

Johannes Fett1, Christian Schwarz1 Urs Kober1 Dirk Habich1 Wolfgang Lehner1

Abstract: In this paper, we introduce BEAM as a novel approach to perform GPU based matrix
multiplication on compressed elements. BEAM allows flexible handling of bit sizes for both input
and output elements. First evaluations show promising speedups compared to an uncompressed
state-of-the-art matrix multiplication algorithm provided by Nvidia.

Keywords: GPU; Matrix multiplication

1 Introduction

GPUs are becoming increasingly more popular for data analytics and compute workloads
with increasing memory demands. GPUs share the constraint of having a significantly
smaller memory capacity compared to CPUs with DRAM. One approach to mitigate this
issue is to use compression. Our focus is to explore how to perform calculations on already
compressed data.

In this work, we introduce BEAM (bitwise efficient matrix multiplication), a novel concept
to directly compute on compressed elements in GPU memory. Instead of using native
data types, we offer bit level granularity for unsigned integer based matrix multiplications.
BEAM calculates directly on compressed data on a bit level granularity. Different problems
that arise from bit level computation on GPU are discussed and strategies to deal with them
introduced and evaluated. This paper focuses on unsigned integer based matrix multiplication
to demonstrate that even in unfavourable compute bound use cases, compression can still be
beneficial. In Section 2 preliminaries about compression on GPU and GPU architecture are
introduced. Section 3 focuses on a detailed description of BEAM and strategies dealing
with overflows and calculation of output bit sizes. Section 4 deals with related work and
section 5 summarises the contribution.
1 TU Dresden, Database Research Group, Nöthnitzer Str. 46, 01187 Dresden, Germany {johannes.fett|christian.

schwarz5|urs.kober|dirk.habich|wolfgang.lehner}@tu-dresden.de

cba doi:10.18420/BTW2023-49

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 763

mailto:{johannes.fett|christian.schwarz5|urs.kober|dirk.habich|wolfgang.lehner}@tu-dresden.de
mailto:{johannes.fett|christian.schwarz5|urs.kober|dirk.habich|wolfgang.lehner}@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-49

2 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

2 Preliminaries

2.1 GPU Architecture

A Nvidia GPU consists of a large number of arithmetical logical units called CUDA cores.
Groups of 64 CUDA cores form a functional block called streaming multiprocessor. A
streaming multi processor also shares register memory and shared memory across all its
cores. A shared L2 Cache and VRAM (global memory) is accessible by all streaming
multiprocessors through a shared memory bus system. The total amount of global memory
is up to 80 GB for current GPU generations. Shared memory per streaming multi processor
ranges from 48 KiB to 64 KiB depending on the GPU generation. The programming Model
of a GPU is called single instruction multiple threads. A large number of threads is spawned
to perform a computation (kernel). A group of threads is called a block. The total amount
of threads is partitioned into a number of blocks. Each block is assigned to streaming
multiprocessor. Most instructions are performed in groups of 32 threads at once, which is
called a warp.

2.2 Compression on GPU

Typically, integer calculations work on an element level granularity. With BEAM we
introduce the ability to calculate elements on a flexible bit level granularity. Specifically,
we demonstrate a matrix multiplication on compressed elements. Different approaches to
integer data compression have been covered by [Da17]. By combining different compression
algorithms, an improved compression rate can be achieved. However, in our experiments
we assume that all elements are compressed by zero suppression.

3 BEAM

BEAM allows flexible matrix multiplications by allowing elements on a bit level granularity
instead of typical byte based data types. In case of using zero suppression, empty bits can
be removed from Integer based data types. Test data is generated accordingly to conduct
experiments on different bit sizes of elements ranging from 1 to 64 bit per element. The
input bit size is static across the elements within a matrix to avoid the need for a prefix sum
to access data elements. The supported data format is only unsigned Integers between 1 and
64 bit size.

3.1 Output Bit Strategies

The desired output bit size can vary depending on different strategies. If statistical information
of a matrix is known, there might be a lower possible output bit size that fits all elements. If

764 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 3

Strategy Description Acronym
Same as input output bits same as input bits sai

Ceil to Power of Two output bits is the smallest power of two c2p2
greater or equal to the input bits

Max Value largest required output value, maximum 64 bit maxv

Tab. 1: An overview of different strategies for calculating the output bit size.

Strategy Description Acronym
Overflow default CUDA behavior: wrap around zero and cycle through the value

range
ovf

Saturate Stay at the largest possible value. This behavior mimics sat
the common Sigmoid activation function from machine learning appli-
cations

Tab. 2: An overview of different strategies for dealing with overflows

Memory layout Description
Canonical Layout (naive) One matrix element uses 64 bits in memory.

Tight types A bit level element is packed into a single next largest native datatype
Padded Slabs (slabs) As many complete matrix elements as possible are placed into one

64 bit slab
Tight Packing (nogaps) Memory is viewed as a contiguous bitstream

Tab. 3: Memory representations for matrix multiplication.

there is no available information, defining a maximum needed bit size to avoid an overflow
is a safer approach.

3.2 Overflow Behavior

In the case the calculated element in the output matrix causes an overflow, our approach
offers two different strategies to deal with overflows. Saturate will pin the result at the max
value of the value range in case of an overflow. This is realized by a builtin GPU intrinsic.
Overflow is the default CUDA behavior that will lead to values cycling through the value
range in case of an overflow.

3.3 Matrix Memory Representation

Because the input (and output) bit length of elements is not fixed to powers of two, using the
native C integer types is inefficient. Therefore we experiment with different memory layouts
to increase the performance. The matrices are stored row-major, without loss of generality.

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 765

4 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Fig. 1: Squarestride Matrix Multiplication example

For an overview of memory representations see Table 3. Slabs tries to fit as many bit level
elements as possible into one 64 bit element. While this simplifies handling the memory it
also leads to internal fragmentation. For example, 8 different 8 bit elements can fit without
fragmentation into one 64 bit element. However, in case of 25 bits per element, only two
will fit and consume 50 bits of space. The remaining 14 bits remain empty and lead to
fragmentation. To avoid fragmentation the nogaps approach has been developed. In this
case a contiguous bitstream is used to store all compressed elements. To allow simpler
computations, end-of-row padding is introduced to the next 64 bit multiple.

3.4 Algorithms

This section contains an overview of all evaluated matrix multiplication approaches.

Squarestride Every thread block is responsible for exactly one sub-block of the output
matrix and for every one of its threads for exactly one element within it (black outlined 3x3
box in the image 1). Both, this sub-block and the currently required sub-blocks for the left
and right matrix, are kept in shared memory to reduce redundant reads from global memory.
This sub-block based computation works such that sub-blocks are loaded one by one going
inwards. Start by loading both red outlined sub-blocks and do partial computation, then
continue to load both green sub-blocks. This pattern repeats until all results values have

766 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 5

been calculated. If the matrix is not a multiple of the sub-block dimensions, the excess
values are assumed 0, such that they stay neutral to the computation. This avoids additional
bounds checks.

Flex out Because access and computation logic calculation is in some cases significantly
more complex if support for variable number of output bits (unequal to the input bits) is
added, both version are provided for fair comparison. The more flexible version is suffixed
with flex out.

Baseline Guide This kernel uses the squarestride strategy and the naive memory layout.
This is the approach described in the Nvidia programming guide matrix multiplication
example 2 [Nv].

Tight Types Tight types is using the squarestride strategy. Input bitsize is rounded up
to the next native datatype. For example a 31 bit element would be packed into one 32 bit
integer.

Squarestride and Slabs This kernel uses the squarestride strategy and the slabs memory
layout. The slabs memory layout is used in the shared memory sub-blocks as well. In this
case one thread no longer handles one element of the output matrix but one slab. Because
that would make the sub-blocks rectangular by the increased number of vertical slabs
required, each thread handles as many rows as there are elements in one slab.

Squarestride Nogaps and Shared Memory Slabs This kernel uses the squarestride
strategy and the nogaps memory layout. It is very similiar to the squarestride kernel with the
difference of using the noslabs memory layout in global memory. For faster computations,
the slabs memory layout is still used in shared memory. This also avoids stitching together
an element from two slabs during the computation within the individual sub-blocks.

Squarestride Flex Out This kernel is a version of matrix mul squarestride that supports
a variable number of output bits. To achieve this, the number of elements stored in each
shared memory slab is reduced to the number of elements in an output slabs. Note that the
bit size within the shared memory is still only following the input bit count. Flex out means,
that different output strategies are covered by the same kernel.

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 767

6 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

GPU GPU Generation CMake CUDA NVCC G++
RTX 8000 Quadro Turing 3.25.1 11.5 11.5.119 9.3.0-17

Tab. 4: An overview of used build and compilation tools as used in the evaluation.

Squarestride Nogaps Shared Memory Slabs Flex Out This kernel is a version of matrix
mul squarestride nogaps that supports a variable number of output bits. This is achieved
using the same adaption as described by flex out. Slabs are being held in shared memory.

4 Evaluation

In this section, all of BEAMS algorithms are compared against the state-of-the-art Nvidia
matrix multiplication. While all approaches receive the same input data, Nvidias approach
works on an element level granularity with naive memory layout mentioned in 3. To allow a
fair comparison, a variant of Nvidias matrix multiplication algorithm has been created that
supports the saturated overflow behavior 2. As a rising trend, both general data sizes and
machine learning models are growing in size. Thus, we evaluate both a small 64 MiB matrix
multiplication and a larger 1 GiB matrix. Each data element is generated with varying bit
size ranging from 1 to 64 bit. Bit sizes smaller than 64 bit use zero suppression to create
a compressed data element. The Nvidia approach uses each element as 64 bit element.
All experiments run with 3 repetitions. The average run time of all three is used in the
evaluation. All experiments run on CUDA Cores and no tensor cores are used. Cublas is not
used as frame of reference, as it does not support 64 bit Integer Operations. As BEAM is
designed for Integer calculations, comparing against Cublas would be unfair.

4.1 Implementation

All experiments have been implemented in CUDA and C++. As build system Cmake is
used. The Code builds with Clang and Nvcc. The experiments have been performed on an
nvcc based binary.

4.2 Experimental setup

All experiments have been conducted on a Nvidia RTX 8000 GPU. For an overview of
the system see Table 4. The GPU offers 48 GB GDDR6 Memory with a total theoretical
maximum bandwith of 672 GB/s.

768 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 7

0 16 32 48 64

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
tim

e
[s

]
maxv_ovf

0 16 32 48 64

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

c2p2_ovf

0 16 32 48 64

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

sai_ovf

0 16 32 48 64
bits

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

tim
e

[s
]

maxv_sat

0 16 32 48 64
bits

0.1

0.15

0.2

0.25

0.3

c2p2_sat

0 16 32 48 64
bits

0.1

0.15

0.2

0.25

0.3

sai_sat

approach
nvidia_guide
tight_types
best_compressed

Compressed Matrix multiplication 64 MiB

Fig. 2: 64 MiB Matrix multiplication. Compressed bitwise algorithms compared against Nvidia Matrix
Guide and tight types approach. The best performing compressed algorithm is picked per point.

4.3 Results

Figure 2 shows an overview of different experiments on a 64 MiB data set. The grid of
images is based on the chosen output bits approach in X direction as described in Table 1.
The Y axis of the grid shows both different overflow approaches as shown in Table 2. Three
different approaches are shown in each graph. Tight types and Nvidia guide have been
explained in Section 3.4.. Best compressed is the best performing compressed algorithm
per bit from a pool of all mentioned algorithms in Section 3.4.

In case of saturated overflow behavior, Nvidia’s Matrix algorithm shows the best performance.
Tight types performs better than best compressed across all three different bit output strategies.
For saturated overflow behavior on 64 MiB Matrices, Nvidia’s approach is the best. However,
this changes if the overflow behavior is allowing overflows instead of saturating. In cases
where the matrix multiplication will not overflow because the output data size is sufficiently
large, the best compressed approach outperforms both, the Nvidia approach and tight types
massively.

The size of data sets is constantly growing for machine learning and data management. To
accommodate this trend, another experiment has been conducted on matrices with the size
of 1 GiB. The experiment follows the same approach as the 64 MiB one. The results are

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 769

8 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

0 16 32 48 64

1

2

3

4

5

6
tim

e
[s

]
maxv_ovf

0 16 32 48 64

1

2

3

4

5

6

c2p2_ovf

0 16 32 48 64

1

2

3

4

5

6

sai_ovf

0 16 32 48 64
bits

4

4.5

5

5.5

6

tim
e

[s
]

maxv_sat

0 16 32 48 64
bits

4

5

6

7

8

9

10

c2p2_sat

0 16 32 48 64
bits

4

6

8

10

12

sai_sat

approach
nvidia_guide
tight_types
best_compressed

Compressed Matrix multiplication 1 Gib

Fig. 3: 1 GiB Matrix multiplication. Compressed bitwise algorithms compared against Nvidia Matrix
Guide and tight types approach

shown in Figure 3. In case of overflow behavior allows overflow, an increased speedup
compared to the 64 MiB experiment can be achieved.

Saturated 1 GiB For saturated overflow behavior the result is vastly different and the
Nvidia approach is the overall worst performing one. For the bit range of 33 to 64, tight
types mirrors the Nvidia guide behavior, while best compressed outperforms both of them.
The reason for this behavior is that tight types is only able to put one compressed element
into one natively supported data type. Thus, a 33 bit unsigned integer leads to a 64 bit
unsigned integer in case of tight types. Below 33 bits, tight types offers a speedup of about
1.4x compared to Nvidia’s approach. For both output bit behaviors ceil two power two and
same as input combined with saturated overflow behavior, tight types is the best solution
for elements ranging from 1 to 32 bit size. In case of maximum value output behavior, the
compressed approach offers a small speedup between 1 und 7 bits input bit size. In case
of 64 bit, no compression occurs, which leads to similar results for all three approaches.
For very low bit sizes, best compressed performs increasingly worse due to being more
compute intense on a rising number of elements.

Overflow allowed 1 GiB Changing the overflow behavior to allow overflows, reduces the
compute intensity of the algorithm. Instead of using an intrinsic to check for overflow and
handling it with branching within the kernel, this approach is default GPU behavior and

770 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

Ein Kurztitel 9

0 16 32 48 64

1000

2000

3000

4000

5000

6000

7000

tim
e

[s
]

maxv_ovf

0 16 32 48 64

1000

2000

3000

4000

5000

6000

7000

c2p2_ovf

0 16 32 48 64
bits

4000

5000

6000

7000

8000

9000

10000

tim
e

[s
]

maxv_sat

0 16 32 48 64
bits

5000

10000

15000

20000

25000

c2p2_sat

approach
slab_16
slab_8
nogaps_16
nogaps_8

Compressed Matrix multiplication 1 GiB

Fig. 4: 1 GiB Matrix multiplication. Comparison of different compressed computation algorithms

does not need any extra branches. Best compressed performs best across all input bit sizes
with no exception. For larger output sizes in case of maximum value as chosen output bit
strategy, best compressed performs slower than the other output bit strategies.

Comparison of different compression approaches Figure 4 shows 4 different compression
algorithms, that are compared in detail. As the output bit strategy same as input is very
similar to ceil to power two, it has been omitted from the graphs. Slabs is fitting into one
element while ogaps features a contiguous bitstream. The missing data points indicate, that
some CUDA configurations demand more shared memory than available. Overall the slabs
approach outperforms nogaps with few exceptions. Within a block threads are 2 dimensional.
Slab 16 for example uses 16 threads in two dimensions, which results in 256 total threads.
Slab 8 only uses 8 threads per dimension, resulting in 64 total threads per block.

5 Related work

Shabag et. al have designed a compression framework integer based gpu computing [Sh22]
called tile-based lightweight integer compression. It is based on storing compressed data
in global memory and decompresses the data in shared memory. After computations, the
data needs to be re-compressed and written back to global memory. The key difference
to BEAM is, that BEAM does not need to decompress data before using it. However our

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and
Compression 771

10 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

approach is limited to zero suppression, while Shabag et. al combine a number of different
compression schemes to achieve higher compression rates. Also, their approach is focused
on database operators and does not support matrix operations. Fang et. al have proposed
compression for CPU GPU co-processing for databases [FHL10]. In this scenario, PCI-E
becomes a major bottleneck, which can be improved by transferring compressed data.

6 Conclusion and summary

Our approach allows GPU matrix multiplication on a bit level granularity instead of the
usual data element level granularity. It has been evaluated on different overflow strategies
and output bit strategies. BEAM outperforms Nvidia slightly in case of a 64 MiB matrix
and massively on a larger 1 GiB matrix. On average our approach offers a good speedup
compared to the state-of-the-art approach. We look forward to further extend our bitwise
GPU computation approach to other domains.

References

[Da17] Damme, P.; Habich, D.; Hildebrandt, J.; Lehner, W.: Insights into the comparative
evaluation of lightweight data compression algorithms. Algorithms 1/1oranN,
1mappingdependingontheimplementation, 2017.

[FHL10] Fang, W.; He, B.; Luo, Q.: Database compression on graphics processors.
Proceedings of the VLDB Endowment 3/1-2, pp. 670–680, 2010.

[Nv] Nvidia Matrix Multiplication Guide, https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html#shared-memory.

[Sh22] Shanbhag, A.; Yogatama, B. W.; Yu, X.; Madden, S.: Tile-based Lightweight In-
teger Compression in GPU. In: Proceedings of the 2022 International Conference
on Management of Data. Pp. 1390–1403, 2022.

772 Johannes Fett, Christian Schwarz, Urs Kober, Dirk Habich, Wolfgang Lehner

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

