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Abstract: The digital data volumes produced worldwide per year are ever-increasing. Estimates show
that by 2025, we will have reached 175 zettabytes of globally created digital data. Despite today’s
advancements in storage devices, current database management systems cannot cope with these
amounts of data. More than the recent improvements in storage technologies are needed to meet the
ever-accelerating growth of generated data. This problem is further exaggerated when considering that
current storage technologies such as HDD and tape require replacement every few years. To combat
this deficiency, deoxyribonucleic acid (DNA) offers a novel durable (millennia scale), extremely dense,
and energy-efficient storage medium. However, current DNA systems lack support for random access
and more expressive query support beyond key-value lookups. In this paper, we present DNAContainer,
a novel storage architecture on DNA that spans an ample virtual address space on objects, enabling
random access to DNA at a large scale while adhering to required biochemical constraints. The
interface of DNAContainer also facilitates the implementation of common external data structures,
such as arrays and lists that store data in blocks of fixed size.
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1 Introduction

Current database management systems rely on solid state disks (SSDs), magnetic hard disk
drives (HDDs), and tapes as their primary persistent memory devices [Bo16]. However, due
to the dramatic increase in data produced daily, these devices will no longer cope with the
amount of data soon. As stated in [Li20a], the increase in capacity of current data storage
devices is already behind that of the data created. In addition, these traditional storage devices
are rather expensive [Ma20] and require continuous replacement every few years due to
their low durability [Bo16]. To address these severe problems, deoxyribonucleic acid (DNA)
has recently been considered for managing persistent data. DNA is an extremely dense
biomaterial holding up to 455 exabytes per gram, and thus at least six orders of magnitude
denser than current devices [Bo16]. DNA endures several centuries and consumes around
eight orders of magnitude less energy than traditional storage devices [Li20a, Zh16, Al12].
Despite these apparent advantages, current technologies for reading and writing DNA
induce a high latency (from hours to days). However, around 80% of generated digital
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information worldwide is considered cold [Ap19, QSH22], i.e., the data is not accessed
frequently, making DNA storage a potential candidate for the management of cold data. In
addition, the cost of reading and writing DNA have declined dramatically over the past
years [Li22].

Among the severe drawbacks to using DNA as storage are its unsatisfying direct access
ability and its poor interface for reading and writing dedicated objects. Similar to blocks
on traditional devices, DNA consists of oligonucleotides (oligos) that are contiguous
subsequences, generally of fixed size. Furthermore, an oligo consists of a payload between
a pair of DNA addresses, the so-called primer pair. The primers are addresses used for
random access via Polymerase Chain Reaction (PCR) [Or18]. Due to strict biochemical
restrictions on primers, only a few hundred primers exist in a DNA library, leading to a very
small address space. However, there is a second approach to direct accessing oligos that
uses microarrays with barcodes that are unique prefixes of the payloads. Then, the available
address space grows up to several million [El22].

In this paper, we primarily address the second drawback that current DNA storage systems
do not provide a coherent interface to write and read random data objects. The reason is
that DNA does not offer a natural linear address space as it is known from disks and tapes.
Instead, there is only a key-value approach that maps a data object identifier (DOI) directly
to a barcode or primer. To access a requested data object, its DOI has to be translated into
the DNA address before performing the actual read operation. A so-called routing table
can manage the mappings on a traditional storage device. Furthermore, an insertion of a
new object first generates a new barcode (or primer) and updates the routing table before
storing the actual object on DNA. This direct approach of current DNA storage systems to
accessing data on DNA has serious drawbacks. For example, the generation of barcodes is
non-trivial because they have to be sufficiently different from the others.

In this paper, we introduce DNAContainer, a novel DNA storage architecture that offers
a virtual address space of objects on DNA, including put and get operations, addresses
translation, and rerouting of invalid addresses. Our system reads objects from DNA
via microarrays that allow using the ample available address space. As a special case,
DNAContainer also offers the same interface as block storage when the objects are defined
as fixed-sized blocks. Furthermore, a block storage facilitates the direct implementation of
essential external data structures like arrays and lists on DNA, hiding the actual complexity
of a DNA device. For example, DNAContainer internally checks if the generated addresses
are too similar by utilizing locality-sensitive hashing (LSH) and approximating the Jaccard
similarity of two DNA sequences [IM98, Br97, Bu01, Be15]. In addition, DNAContainer
supports error correction mechanisms such as Reed Solomon [RS60] to address the inherent
problem of error-prone reading from and writing to DNA. Users of DNAContainer do not
have to deal with these problems anymore and instead use the common interface of storage
systems as it is known from other devices.
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The remainder of the paper is structured as follows. The following Sect. 2 discusses recent
works and studies on DNA systems and virtual address spaces. Section 3 introduces notation
and terminology commonly used in the context of DNA storage. Section 4 provides the
design and implementation of DNAContainer and its components. It further shows how
to generate DNA addresses and payloads that adhere to certain biochemical constraints.
In Sect. 5, we detail the implementation of basic data structures like array and list on
DNAContainer. Section 6 presents experimental results of a simulation with DNAContainer
managing millions of oligos. Finally, Sect. 7 concludes the paper.

2 Related Work

In the following we first discuss related work on DNA storage systems. Thereafter, we put
our focus on approaches with virtual address spaces.

The approach in [Ap19] encodes relational data objects (records) interleaved with meta-
information as oligos. The meta information contains, e.g., the table name of the record and
its primary key. Reading oligos is achieved by utilizing primers and PCR. Since only a few
primers are available due to the biochemical restrictions, i.e., the address space is small,
the same primer is used to address multiple records. For example, to read a specific record
from DNA, a pre-known primer is used to fetch all oligos tagged with that primer. The
encoded meta-information is further used to return the desired record, e.g., by its primary
key. Moreover, the meta-information encoded within each oligo significantly decreases the
information density per oligo, and the realized storage capacity is around ≈ 16.5%.

In [Or18], 35 different files were placed in a separate DNA pool each, resulting in 200MB
of information. Since PCR utilized random access, this physical separation of files was
necessary to overcome the imposed restrictions on the limited available primers. Additionally,
there are 35 physical addresses, each of which resembles a physical location of a single tube
with one file, which significantly decreases information density over all tubes.

Fountain codes were used in [EZ17] to encode 2.15MB of data plus 7% redundancy. Similar
to our previous work [El22], fountain codes provide a direct way to tune redundancy and
are very practical for DNA encoding. Nevertheless, the work in [EZ17] utilizes PCR for
retrieving data and does not support random access at a large scale.

So far, PCR is still the standard technology to read data from a DNA pool. In [Li20b], an
alternative technology called DORIS is proposed to overcome PCR limitations yielding a
larger address space at around 12, 000 available addresses. However, even 12, 000 addresses
are not sufficient to exploit the massive storage capacity of DNA.

The random access approach presented in [Ba20] encodes data physically encapsulated in
impervious silica capsules that are surface-labeled with selected DNA sequences called
barcodes. These barcode labels re-emit light when excited. Hence, each file is labeled with
specific barcodes and is detected by special optical channels. For example, the file “bird"can
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be detected with the barcode “can fly” and so on. However, only labeled files can be detected.
Additionally, special equipment, such as optical channels, is needed.

According to [CNS19, Xu21], most recent studies do not support random access to their DNA
storage system. These systems require a 5 to 3, 000-fold physical and logical redundancy to
reduce errors, substantially reducing storage density. In addition, many DNA systems fail to
encode information such that the resulting DNA is sufficiently stable for long-time archival.
In particular, many DNA systems fail to restore the original data objects after reading
the DNA [Wa19]. Furthermore, we are unaware of a system with virtual address space to
access a data object. Instead, a user has to provide a primer for reading a data object. These
primers must be managed on a traditional storage device. More complex queries beyond
simple key-value queries are not supported on data collections. In particular, data structures
like lists and arrays are not supported in any system, making data management difficult.
Moreover, we use barcodes to exploit the large available address space [El22], whereas most
current systems still rely on PCR and primers, and thus only support a small address space.

There is a plethora of work related to virtual address spaces in computer systems. For
example, a few object-oriented database systems like O2 [De90] have used an address
transformation table to convert unique object addresses visible to the user into internal
addresses. In addition, a flash disk also offers a similar mapping known as the flash translation
layer (FTL) to implement wear leveling [MFL14]. However, the designs of these approaches
do not consider the unique features of DNA storage and thus are not directly applicable.

A common problem of today’s storage technologies is successfully restoring archived
data after several decades of writing the data to storage devices [AJ20]. For example, as
mentioned above, current storage technologies such as flash memory rely on FTL, which
requires storing meta-information about the corrupted memory cells to keep the device
functioning. Current DNA systems manage the used primers (or barcodes) on a traditional
storage device and face a similar problem. That is, if the used primers and barcodes
are lost, the data on DNA cannot be restored. However, for DNA, storing the required
meta-information also on DNA might solve this problem. DNA is an omnipresent material,
and its principal building structure has never changed over millions of years and is expected
to be ubiquitous for millions of years in the future.

3 Preliminaries

DNA is a long molecule found in all known living organisms. It carries the genetic code,
such as instructions, functions, and reproduction in living organisms, including some viruses.
Moreover, DNA is composed of smaller units called nucleotides. A nucleotide contains one
of the following nucleobases: Adenine (A), Thymine (T), Cytosine (C), or Guanine (G). These
nucleotides’ specific combination and order make up living organisms’ different instructions
and functions. Finally, DNA is composed of two polynucleotide strands of the same length
that loop and twist around each other to form a double-helix. Each nucleotide of one chain
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pairs and forms hydrogen bonds with the corresponding nucleotide from the other strand.
According to the canonical Watson-Crick pairing [Sp59], A binds to T and G to C. Hence, we
say A is complementary to T, C is complementary to G, and vice versa.

In the following subsections, we will introduce key terms, such as DNA pool and hybridization,
typically used in the DNA storage context.

3.1 DNA Pool and Library

A DNA pool is a collection of one or more double-stranded DNA fragments held in-vitro,
i.e., outside of a living organism, in a single container or test tube. Typically, one container
refers to a single pool, whereas multiple pools represent a library. Nevertheless, a single
pool can also be referred to as a library.

3.2 Encoding and Decoding

The term encoding is used to describe the process of transforming binary data to DNA, i.e.,
instead of bits, the information is represented by nucleotides. On the other hand, decoding
describes the transformation of nucleotides back to the original binary representation.

3.3 Denaturation and Hybridization

Double-stranded DNA is generally stable under physiological conditions, meaning the bonds
forming the double-helix will remain bonded [Ch99, YPFK06]. However, as illustrated in
Fig. 1, raising the surrounding temperature, e.g., in a laboratory, will cause the strands to
separate as single-stranded DNA (ss-DNA). This process is called denaturation. Therefore,
lowering the temperature will allow the ss-DNA to bind together as double-stranded DNA
(ds-DNA), which is called hybridization.

3.4 DNA Synthesizing and Sequencing

DNA synthesis is writing DNA by linking and joining nucleotides together, forming a
single-stranded sequence. Today’s technologies allow near-perfect DNA synthesis for over
thousands of DNA fragments in parallel. However, a small error can already lead to a
significant decrease in product quality and redundancy is introduced to avoid these errors.
Thus, modern sequencing machines [KC14] read the same sequence multiple times. Both
synthesizing and sequencing costs have been declining dramatically over the past years,
and sequencing productivity has already outpaced Moore’s law by 2008 [Ap19]. However,
sequencing machines are designed for reading an entire DNA and not for random access so
far.
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Fig. 1: DNA denaturation and hybridization.

3.5 Reading DNA with a Microarray

A microarray consists of a small surface (in the size of today’s HDD) usually made of glass.
It contains DNA sites to which DNA sequences can be immobilized or printed [Ku01].
The array can fetch a DNA sequence by printing its complementary sequence to one of its
sites. These printed DNA sequences are often called barcodes or probes, but we simply
call them DNA addresses. For example, a microarray with 20 printed DNA addresses
can simultaneously fetch 20 oligos from an oligo pool. This procedure is done as follows.
First, the oligo pool’s temperature is raised, denaturing the contained DNA. Next, the
denatured oligos are placed onto the microarray. Then, the temperature is lowered to allow
the single-stranded oligos to hybridize to their complementary sites on the array. Finally, the
array is washed, removing all the remaining oligos that did not hybridize, i.e., bind to any
of the array’s sites. The obtained bonded oligos are sequenced, and the data is transferred
to a computer for further analysis. Note that a microarray can fetch a sequence 𝑠, even if
only a complementary subsequence of 𝑠 is printed to the array. Today’s microarrays can
contain up to several million sites [Bu13], allowing access to millions of DNA sequences
simultaneously.

3.6 DNA Constraints

As described above, sequencing and synthesizing DNA is error-prone. For example, it is
well-known that DNA sequences with a too high or low number of G’s and C’s causes a high
error probability in the sequencing process [Sc20]. Hence, to reduce errors, our generated
DNA codes must adhere to the following constraints:
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1. The number of G’s and C’s (GC content) should be around 50%.

2. Consecutive repeats of the same nucleotide (Homopolymer) should be avoided.

3. Mutual overlaps of DNA addresses should be avoided.

4. Mutual overlaps of the oligos should be avoided.

The first and second constraints considerably reduce sequencing and synthesizing errors
[Sc20]. Constraint (3) ensures that the microarray treats every DNA address uniquely.
Finally, constraint (4) guarantees that a DNA oligo does not carry a DNA address as a
payload.

4 The Design of DNAContainer

This section describes the architecture and functionality of DNAContainer. DNAContainer
provides an interface for writing binary data to and reading it back from DNA into the
memory of a computer system. It manages a DNA pool consisting of oligos of the same
length 𝐿𝑜𝑙𝑖𝑔𝑜, similar to a block on common storage devices. Each oligo is composed of an
address and a payload. Addresses are of the same length 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠, and payloads are then
of length 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝐿𝑜𝑙𝑖𝑔𝑜 − 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . Current DNA synthesis and sequencing costs are
typically lower for shorter oligos (𝐿𝑜𝑙𝑖𝑔𝑜 ≤ 250) than for longer ones [HMG19, GMM16].
Thus, the size of an oligo is substantially smaller than a typical block size. Figure 2 provides
an example of an oligo of 𝐿𝑜𝑙𝑖𝑔𝑜 = 18, 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 6, and 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 12.

A C A TG G T G A TCGTACT A C

PayloadDNA Address

Oligo

Fig. 2: The composition of an oligo in DNAContainer.

Suppose a large data object like a block has to be written to DNA, exceeding the size of an
oligo. In that case, DNAContainer splits the data object into multiple segments, each of
which fits into an oligo’s payload. To read the data object back from DNA, DNAContainer
first computes all DNA addresses of the relevant oligos. Then, a microarray retrieves the
corresponding oligos, and finally, the oligos are assembled and decoded such that the object
(block) is in memory again.

In the following, we give an overview of the functionality of DNAContainer, which can
manage a set of objects in a linear address space. If objects refer to fixed-size blocks,
DNAContainer offers the standard interface of block-based storage. In contrast to traditional
devices, however, objects are not required to be of the same length. Rather than using block,
we prefer using the generic term objects instead.
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Each data object written to the DNA storage is tagged with a unique integer number
Id obtained from a linear virtual address space. Furthermore, the Id is translated to a
DNA address and vice-versa (see Sect. 4.1), creating an unambiguous mapping Id ↔ DNA

address. The Id is a virtual address visible to the user, while the associated DNA address
refers to the root oligo of the object. In particular, a user can read the associated data
object from DNA by simply using the virtual address. Similar to bad blocks on disks, this
mapping ensures that virtual addresses are usable, which is not valid for the underlying DNA
addresses. This process is further explained in Sect. 4.1.2. Furthermore, the data object, i.e.,

DNAContainer Interface

get (Id) register (n)put (object)

Payload 
Encoder/Decoder

Oligo Pool Routing Table

DNA 
Constraints

put (Id, object)

Address Routing

Address
Translation

Address Encoding

Fig. 3: Overview of DNAContainer and its components.

the information in an oligo’s payload, can be encoded with different methods that we mention
in more detail in Sect. 4.2. Even if the payload’s encoder returns a payload that does not
adhere to the constraints in Sect. 3.6, DNAContainer implements additional optimizations
such that it fulfills the required constraints, which are discussed in Sect. 4.3. Figure 3
provides an overview of DNAContainter and its components. To sum up, DNAContainer is
composed of the following main components: address translation to map an Id to a DNA
address and vice-versa, address routing to map a DNA address to a new valid DNA address,
the payload encoder, the payload decoder, and the DNA pool where the data is stored.

Our interface provides an abstraction layer to the methods mentioned above. In particular, to
write a data object to DNA, we use the function put, the function get to read a data object
from DNA, and register to pre-register an Id that can be used to write a data object at
some point in the future, using that Id. The following discusses each of these functions in
more detail.
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register. As mentioned above, our DNA system assigns each data object a unique Id. The
function register returns a unique Id that is not assigned a data object yet. In other words,
this Id is reserved for a future data object that can be stored later. Note that the returned Id
is not yet mapped to a DNA address and is only done once an actual data object is to be
stored in the DNA storage. We implement the function register(n) that returns 𝑛 newly
registered consecutive Id numbers.

put. This function represents the write operation on DNA. It is used to store a data object
in the DNA storage. We implement two variants of put. The first variant takes a data object,
stores it in the DNA storage, and returns a newly registered unique Id. This newly registered
Id is calculated by calling register(1). The second variant takes an Id that was previously
registered along with a data object and stores this data object in the DNA storage given
the Id. We can extract the data object from the DNA storage for both variants by calling
get(Id). The call put(Id, 𝑑) can be used to replace the currently stored data object at Id
with 𝑑. This is done by rerouting the virtual address Id (see Sect. 4.1.2), and the oligos of
the old data object are not physically removed by default. However, to physically remove a
data object from DNAContainer, the corresponding oligos can be fetched using get and
discarded. Hence, the used addresses of physically removed objects can be reused.

get. This operation represents the read operation from DNA. By providing an Id to the
function, get(Id) returns the data object associated with that Id. Hence, get is the inverse
of put. For example, the following equality 𝑑 = get(put(𝑑)) holds for any data object 𝑑.

4.1 Address translation

DNAContainer provides its interface based on the virtual address space on integers. The
put operation writes a data object into the DNA storage by generating a new Id, which is
translated to a DNA address. The data object is encoded to the payload, and the oligo is
formed by annealing the DNA address and the obtained payload. The following sections
detail the encoding of data objects as payloads and the translation of Ids to DNA addresses.

4.1.1 Address Encoding

We utilize the method described in [Go13] to encode an Id to a DNA address. First, the
Id is converted to a string of bytes by mapping every digit in base 10 to a byte character.
Next, the string is compressed with a static Huffman code of base three. Then, each of the
obtained Huffman digits is mapped to a nucleotide, forming a DNA sequence. The obtained
DNA sequence could be longer than 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠; thus, we set 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 to be sufficiently large.
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Note that this method is reversible, i.e., following each mentioned step backward leads to
the Id used.

Furthermore, the obtained DNA sequence could be shorter than 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 or even violate
the constraints mentioned in Sect. 3.6. In that case, we apply the optimizations explained in
Sect. 4.3. The optimizations always return a DNA address of length 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . However, if
the sequence after optimizations does not adhere to the required constraints, we route the
used Id to a new Id, which is explained in the following section.

4.1.2 Address Routing

Suppose a DNA address obtained after encoding and optimizations fails to fulfill the given
constraints in Sect. 3.6. In that case, the used Id is mapped (routed) to a new Id as shown in
Algorithm 1. Let us refer to the Id as 𝐼𝑑, the new Id as 𝐼𝑑𝑅, and the mapping 𝐼𝑑 ↦→ 𝐼𝑑𝑅

as the routing table. As depicted in Fig. 3, the address translation manages the routing
table 𝐼𝑑 ↦→ 𝐼𝑑𝑅, which is stored on a traditional storage device. The routing table must be
read before accessing the DNA storage. The new 𝐼𝑑𝑅 is encoded with the same method
mentioned in the section above.

Algorithm 1: Routing 𝐼𝑑 to 𝐼𝑑𝑅

Input: 𝐼𝑑
Output: 𝐼𝑑𝑅

1 𝐼𝑑𝑅 := 𝐼𝑑

2 𝑎𝑑𝑑𝑟 := asDnaAddress(𝐼𝑑𝑅)
3 while not constraints.adhere(𝑎𝑑𝑑𝑟) do
4 𝐼𝑑𝑅 := 𝐼𝑑𝑅 + 1
5 𝑎𝑑𝑑𝑟 := asDnaAddress(𝐼𝑑𝑅)
6 routingTable.put(𝐼𝑑 ↦→ 𝐼𝑑𝑅)
7 return 𝐼𝑑𝑅

As shown in Algorithm 1, the routing finishes once a new 𝐼𝑑𝑅 that fulfills the constraints is
found. Note that 𝐼𝑑 and 𝐼𝑑𝑅 could be equal if the Id already adheres to the constraints. The
algorithm iterates over the integers 𝐼𝑑𝑅 = 𝐼𝑑, 𝐼𝑑 + 1, 𝐼𝑑 + 2, . . . , translating each to a DNA
address, only stopping once it finds 𝐼𝑑𝑅 of which the DNA address fulfills all the required
constraints.

4.2 Payload Encoding

There are several approaches to how to encode a data object as DNA. We refer to the data
object as a stream of bytes, which can be mapped to DNA nucleotides. For example, a
straightforward method is to map every two consecutive bits to a respective DNA nucleotide,

782 Alex El-Shaikh, Bernhard Seeger



DNAContainer 11

e.g., 00 ↦→ A, 01 ↦→ C, 10 ↦→ T, and 11 ↦→ G. In that case, a data object consisting of long
runs of zeros or ones would get mapped to homopolymers, violating the required constraints
in Sect. 3.6. More sophisticated methods [Go13, EZ17, Do20, El22] have been proposed,
providing DNA codes that adhere to some or all the required constraints regardless of
the input byte stream. For DNAContainer, any method encoding the data object to DNA
nucleotides can be used because we apply optimizations (see Sect. 4.3) to return payloads
that adhere to all of the mentioned constraints. However, by utilizing a fountain code [EZ17]
to encode the payload, we already obtain DNA codes that obey the constraints (1) and (2)
and include error correction, which leaves optimizing for the remaining constraint (4).

Ids, n

Ido Payload

Ido

Ido

Ids

Ids+ 1

annealing header
to payload

partitioning

Lpayload Lpayload Lpayload

Oligos of
length Loligo

...

Ids+ n - 2

Lpayload

Fig. 4: Partitioning long oligos in DNAContainer.

Furthermore, if the given data object is too large, meaning that the payload is longer
than 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 , then the payload is partitioned among multiple oligos. This procedure is
illustrated in Fig. 4 and is explained in the following. Let us assume that 𝐼𝑑𝑜 is the registered
Id used to store the data object. First, we need to calculate the number of oligos 𝑛 to which
the long payload is split. Next, we register 𝑛 − 1 consecutive Ids, referred to as 𝐼𝑑𝑠 + 𝑖 for
𝑖 = 0, . . . , 𝑛 − 2. Then, we anneal 𝐼𝑑𝑠 and 𝑛 to the left end of the long payload. We will
refer to these two numbers as the payload’s header, marked in red in Fig. 4. Note that we
map the integers to DNA by representing them in base four and finally map each base four
digit to a corresponding nucleotide. Therefore, the occupied space of the payload’s header
is always the same. After that, we split the payload (payload plus header) into partitions
𝑝𝑖 , 𝑖 = 0, . . . , 𝑛 − 1 of the size 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . Finally, we need to address the obtained partitions.
The first partition 𝑝0 is addressed by 𝐼𝑑𝑜, and each following partition 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1
is addressed with 𝐼𝑑𝑠 + 𝑖 − 1 as shown in Fig. 4. This method only works if the length
of the payload plus its header are divisible by 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . In the other case, the last split
partition 𝑝𝑛−1 would be smaller than 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . To solve this issue, we add specific padding
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to 𝑝𝑛−1, resulting in all obtained oligos having the same length. Note that the function put
implements the partitioning procedure and returns 𝐼𝑑𝑜 for the given data object.

To further optimize the oligos (after partitioning), we initially split a long payload into
smaller payloads, each shorter than 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 , and further add specific padding to each of
them. This added padding is used to adjust the GC content and is further explained in the
following section.

To decode the obtained oligos, i.e., to read the encoded data object, we read the first oligo
given by 𝐼𝑑𝑜. Next, we decode 𝐼𝑑𝑠 and 𝑛 from the obtained payload to obtain the next virtual
addresses 𝐼𝑑𝑠 + 𝑖, 𝑖 = 0, . . . , 𝑛 − 2. Finally, we read the corresponding oligos, assemble the
payloads, and decode the data object.

4.3 Optimizing DNA Sequences

This section details the optimizations applied for DNA addresses and payloads. We implement
two optimization steps. The first adds specific padding to a given DNA sequence, correcting
its GC content closer to 50%. The second generates a number of permutations of the DNA
sequence, selecting the one that adheres to all the constraints in Sect. 3.6.

4.3.1 Padding

If a DNA sequence is too short and the GC content is not 50%, we append additional
nucleotides until the desired length is reached. For padding, we use 11 pre-computed DNA
sequences 𝑠𝑖 , 𝑖 = 0, . . . , 10 where 𝑠𝑖 has a GC content of 𝑖

10 . To add padding to a given DNA
sequence 𝑎, we append nucleotides from the padding sequence 𝑠𝑖 that best corrects the GC
content of 𝑎 to 50%. To mark the position at which the padding starts, we first append a
specific delimiter sequence that is not contained as a subsequence in any 𝑠𝑖 . Let us illustrate
this with an example. Suppose 𝑎 = (TCATT) with a GC content of 20%, and the target
length of 𝑎 is 𝑡 = 12. Let the delimiter be 𝑑 = (GT). The sequence 𝑎 after appending the
delimiter sequence is 𝑎𝑑 = (TCATTGT) with a GC content of ≈ 28.5%. There are 5 remaining
nucleotides to add from one of the pre-computed padding sequences. Since 𝑎𝑑 has a GC
content lower than 50%, we need to add padding information with a GC content higher than
50% to obtain a sequence with an overall GC content of nearly 50%. We evaluate the index 𝑖

of the ideal padding sequence 𝑠𝑖 as:

𝑖 =

⌊
10 · max

{
0,

𝑡
2 − |𝑞 |{G,C}
𝑡 − |𝑞 |

}⌋
(1)

The expression |𝑞 | returns the number of nucleotides in 𝑞, and |𝑞 |{G,C} returns the number
of nucleotides in 𝑞 that are either a G or a C. Plugging in 𝑡 = 12 and 𝑞 = 𝑎𝑑 in Eq. (1),
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we obtain the padding sequence’s index 𝑖 = 7. Let us assume 𝑝7 was pre-computed as
𝑝7 = (TGCGGCTCCA). Hence, to reach 𝑡 = 12, we append the first 5 nucleotides from 𝑝7 to 𝑠𝑑
resulting in (TCATTGTTGCGG) with a GC content of 50%.

The obtained DNA sequence after padding is likely to fulfill the constraint (1) in Sect. 3.6
but could still violate the remaining constraints. To adhere to all constraints, we further
optimize the sequence after padding by permutations, which is explained in the following
section.

4.3.2 Permutation

The DNA sequence obtained after padding could still contain homopolymers and have
mutual overlaps with, e.g., other DNA addresses or payloads. To fulfill the remaining
constraints (2), (3), and (4), we generate 𝑚 permutations of the given DNA sequence,
selecting the permutation that fulfills the constraints. We use the classical Fisher-Yates
method [Du64] to compute a permutation. This method generates 𝑘 − 1 index pairs to be
swapped, where 𝑘 is the length of the sequence. This method requires sampling random
numbers from a random numbers generator (RNG) that requires a seed for initialization.
Two RNG instances initialized with the same seed produce the same random numbers in the
same order. To calculate the seed of a DNA sequence 𝑞, we evaluate:

𝑠𝑒𝑒𝑑 (𝑞) = |𝑞 |{A} · |𝑞 |{C} · |𝑞 |{T} · |𝑞 |{G} (2)

where |𝑞 |{𝑏} counts the number of 𝑏 ∈ {A, C, T, G} in 𝑞. Note that 𝑠𝑒𝑒𝑑 (𝑞) is invariant
of permutation, i.e., the seed of 𝑞 and all its permutations is the same. Hence, we can
reverse a permuted sequence to its original by knowing the seed. Finally, to compute the
𝑚 permutations of 𝑞, we initialize 𝑚 RNGs with 𝑠𝑒𝑒𝑑 (𝑞) + 𝑖, 0 ≤ 𝑖 < 𝑚 that are used to
permute 𝑞. Additionally, we append the offset 𝑖 to each permuted sequence. Therefore, to
reverse a permuted sequence, first, we decode and remove the encoded offset 𝑖 from the
DNA sequence to obtain the permuted DNA sequence 𝑞 without offset. Next, we initialize
an RNG with 𝑠𝑒𝑒𝑑 (𝑞) + 𝑖. Finally, using this initialized RNG, we swap the 𝑘 − 1 generated
index pairs in reverse, i.e., starting from the (𝑘 − 1)-th index pair to the first index pair.

After permutation, the obtained permuted sequence has its GC content corrected and is
not likely to contain any homopolymers. Constraints (3) and (4) are further checked by
approximating the Jaccard distance between two DNA sequences using LSH according
to [El22]. The Jaccard distance is a metric between 0 and 1. A Jaccard distance of 0
means that the given two DNA sequences are as similar as possible, and a Jaccard distance
of 1 is the maximum dissimilarity two DNA sequences can have. Hence, we select the
permuted sequence that simultaneously contains no homopolymers and maximizes the
Jaccard distance to the other DNA sequences.

This optimization is applied to both DNA addresses and payloads. If a DNA address after
padding and permutation still does not fulfill all constraints (1), (2), (3), and (4), we route its
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corresponding 𝐼𝑑 to a new 𝐼𝑑𝑅 as detailed above in Sect. 4.1.2. If a payload does not fulfill
the constraints, even after optimizations, we have the following options: (i) increase the
number of permutations 𝑚, and (ii) incorporate the constraints into the payload’s encoder
and do not apply any optimizations to payloads. The first option to increase the number of
permutations 𝑚 is straightforward. More permutations increase the probability of finding
a permuted DNA sequence that adheres to the constraints. The second option shifts the
problem of generating payloads that adhere to certain constraints to the payload’s encoder
and is illustrated to work by utilizing fountain codes in [El22].

5 Implementing Data Structures on DNAContainer

Data structures provide useful abstractions and are necessary for efficient data access [Co22].
It is the basis for implementing efficient algorithms and even allows the integration of index
structures directly on DNA. Hence, we implement three basic data structures: (i) Reference,
(ii) Array, and (iii) List on DNAContainer, showcasing its usability.

5.1 Reference

This data structure (or data type) is implemented by the function put. In particular, by
calling put(𝑑), the data object 𝑑 is written to DNAContainer, returning a unique 𝐼𝑑. We
call this 𝐼𝑑 the reference to 𝑑. Therefore, essentially, every data object in DNAContainer is
stored by a reference.

5.2 Array

Arrays are a well-known construct that current programming languages implement and
data management algorithms rely on. We implement the array construct on DNAContainer,
enabling concurrent access to its elements using only one 𝐼𝑑. Let 𝐼𝑑𝑜 refer to an 𝑚-elements
array. We further assume that every element of this array is encoded to DNA, e.g., by a
fountain code. To write this array to DNAContainer, we generate 𝑚 consecutive Ids by
calling register(𝑚). Each of these Ids is used as a reference to an array’s element. Let us
refer to these Ids as 𝐼𝑑𝑎, 𝐼𝑑𝑎 + 1, . . . 𝐼𝑑𝑎 + 𝑚 − 1, and to the 𝑖-th element of the array as 𝑒𝑖
where the first element is 𝑒0 and the last is 𝑒𝑚−1. As illustrated in Fig. 5, we utilize the put
function with which we store each array’s element calling put(𝐼𝑑𝑎 + 𝑖, 𝑒𝑖). Note that by
calling put, the element could be partitioned to multiple oligos as explained in Sect. 4.2.
Furthermore, 𝐼𝑑𝑜 is used to store 𝐼𝑑𝑎 and 𝑚 as payload information.

To read an element of the array, we first call get(𝐼𝑑𝑜) to obtain the payload encoding
𝐼𝑑𝑎 and 𝑚. After that, we can access any index 𝑖 of the array by calling 𝑔𝑒𝑡 (𝐼𝑑𝑎 + 𝑖),
𝑖 = 0, . . . , 𝑚 − 1, returning the element 𝑒𝑖 of the array. Moreover, we can read the entire
array in parallel by calling get on each index of the array simultaneously.
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Fig. 5: Implementation of the array construct on DNAContainer.

5.3 List

Like an array, a list is a collection of elements where we assume the elements are mapped
to DNA. However, unlike arrays, lists do not have a fixed size. DNAContainer implements
a list as a chain of elements where each element points to the next one. Let us illustrate
the implementation on DNAContainer by the example given in Fig. 6. 𝐼𝑑𝑜 is the Id used to
reference the list of elements 𝑒0 and 𝑒1 marked as blue. The first element 𝑒0 is stored in
DNAContainer along with a newly registered 𝐼𝑑1 by calling put(𝐼𝑑𝑜, {𝐼𝑑1, 𝑒0})where 𝐼𝑑1
is used to reference the next element of the list. Hence, element 𝑒1 is stored in DNAContainer
along with the next newly registered 𝐼𝑑2 and is referenced by 𝐼𝑑1 by put(𝐼𝑑1, {𝐼𝑑2, 𝑒1}).
Since we invoke a put operation every time we append an element to the list, each element
could be partitioned as detailed in Sect. 4.2. We repeat this procedure for every element
appended to the list. For example, adding a third element 𝑒2 to the list is done by storing 𝑒2
along with a newly registered 𝐼𝑑3 and referenced by 𝐼𝑑2. This is a crucial difference to an
array, where the array structure does not support adding elements after referencing the array.
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put(Id1, {Id2, e1})

Id2

Fig. 6: Implementation of the list construct on DNAContainer.

To read an element from the list, we first call get(𝐼𝑑𝑜) to obtain the payload encoding 𝐼𝑑1
and 𝑒0. After that, we could return the first element 𝑒0. Otherwise, we iterate through the
list by sequentially calling get(𝐼𝑑𝑖), 𝑖 = 1, . . . until we obtain the desired element.

6 Experiments

We implemented DNAContainer in Java and tested it by simulating several million
put and get operations. All the experiments were run on a computer with 256 logical
cores (1.5 − 2.25 GHz each) and 1 TB of RAM. We used the data set from the Open-
Sky Network in (https://opensky-network.org/datasets/publication-data/climbing-aircraft-
dataset/trajs/A321_valid.csv.xz), a relational table containing the tracking information of
aircraft. We inserted the first 100, 000 lines (records) into DNAContainer (without error
correcting codes), varying the address and payload sizes, resulting in millions of oligos.

As shown in Fig. 7a, the obtained oligos’ and DNA addresses’ GC content is at ≈ 50%,
adhering to the first constraint in Sect. 3.6. Furthermore, the average longest homopolymer’s
length is between 3 and 4, fulfilling the second required constraint as depicted in Fig. 7b.
Moreover, to check the remaining constraints (3) and (4), we used LSH according to [El22]
and set 𝑘 = 5 for the Jaccard similarity. Hence, our DNA addresses and oligos do not
significantly overlap and fulfill the remaining constraints as shown in Fig. 7c.

788 Alex El-Shaikh, Bernhard Seeger

https://opensky-network.org/datasets/publication-data/climbing-aircraft-dataset/trajs/A321_valid.csv.xz
https://opensky-network.org/datasets/publication-data/climbing-aircraft-dataset/trajs/A321_valid.csv.xz


DNAContainer 17

100 120 140
Lpayload

0.0

0.1

0.2

0.3

0.4

0.5

G
C

 c
on

te
nt

DNA sequence
address
oligo

(a) The GC content.

100 120 140
Lpayload

0

1

2

3

4

5

H
om

op
ol

ym
er

 le
ng

th

DNA sequence
address
oligo

(b) The longest homopolymer length.

100 120 140
Lpayload

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

di
st

an
ce

DNA sequence
address
oligo

(c) The distance of every address and oligo to the other
addresses and oligos calculated by LSH, respectively.

Fig. 7: GC content, the longest homopolymer length, and the mutual Jaccard distance of oligos and
addresses.

The DNA optimization parameters are set as follows. For padding, we inserted ≈ 16% of
the payload’s size as padding information to each payload. Furthermore, we used 𝑚 = 16
permutations for DNA addresses and payloads. After optimization, 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ranged in
100, 120 and 140, and 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 in 60, and 80. Note that by increasing the number of
permutations, we could, e.g., reduce the mutual overlaps of the oligos. However, setting
the permutations count to 𝑚 = 16 was sufficient to obtain DNA without significant mutual
overlaps. We repeated this experiment and turned off the permutations (𝑚 = 0), resulting in
longer homopolymers, and the largest difference was that the mutual overlaps increased
significantly. In particular, the average mutual Jaccard distance of the DNA addresses
dropped from ≈ 1.0 to ≈ 0.5, and the average mutual Jaccard distance of the oligos dropped
from ≈ 1.0 to ≈ 0.75.

DNAContainer: An object-based storage architecture on DNA 789



18 Alex El-Shaikh, Bernhard Seeger

100 120 140
Lpayload

0.0

0.2

0.4

0.6

0.8

Bi
t r

at
e

Bit rate of oligos

Laddress
60
80

(a) The bit rate of oligos.

100 120 140
Lpayload

1.20

1.25

1.30

1.35

Bi
t r

at
e

Bit rate of payloads

(b) The bit rate of payloads.

Fig. 8: The bit rate of oligos and payloads by varying the payload size.

Figure 8a depicts the bit rate of oligos, i.e., the information density for each oligo. The
bit rate is calculated as the total number of digital bits divided by the total number of
nucleotides. As expected, the bit rate for oligos with an address size of 80 is lower than that
of 60 because the address does not encode any information. Fig. 8b presents the bit rate of
payloads instead of oligos, i.e., ignoring the DNA address. The bit rate also increases by
increasing the payload’s size because more information can fit into the same number of
oligos as depicted in Fig. 9a and Fig. 9b. Thus, by increasing the payload’s size, we obtain
fewer oligos encoding the same information. A bit rate of 2.0 bits/nucleotide being optimal,
our system encodes the information to payloads at around 1.3 bits/nucleotide, which is
a ≈ 65% capacity utilization of payloads. Since a payload of length 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 optimally
encodes two bits for every nucleotide and a single byte contains 8 bits, then the maximum
capacity in bytes is calculated as:

maximum capacity (bytes) = 2 ·
𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑

8
(3)

For example, by setting 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 140, the payload could encode up to 35 bytes. Plugging
in our system’s capacity utilization of 65% yields ≈ 23 bytes per payload. We repeated the
same experiment above, stored the records in arrays and lists, and obtained similar results.
We also tested turning on the Reed Solomon error correcting code, where the parameters are
set such that up to 4 nucleotide erasures are corrected. The resulting capacity utilization was
slightly lower at ≈ 59%. Despite that, DNAContainer manages to out-compete many recent
DNA systems by supporting large-scale random access capabilities while maintaining a
relatively high bit rate [Xu21, Do20, CNS19, Xu21].
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Fig. 9: The number of oligos representing a single data object and the number of all oligos representing
all the data objects.

Finally, to test the scalability of our approach, we translated 100 million addresses, i.e., we
mapped 100 million Ids to corresponding DNA addresses (see Sect. 4.1) with 𝐿𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 80,
adhering to every constraint in Sect. 3.6. As shown above, our payloads with 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 140
reach a bit rate of 1.3, i.e., carry 23 bytes of information. Therefore, we could store up to
23 · 108 bytes or 2.3 GB of information using these addresses, storing more information
than the recently proposed DNA systems while providing sophisticated random access
capabilities [Xu21]. Furthermore, only ≈ 4000 addresses were considered invalid of the
generated 100 million addresses, and more addresses could be computed.

To store more information, e.g., in the terabyte range and beyond, in DNAContainer, more
addresses must be generated, or a larger payload must be used. Current DNA synthesis
technologies support synthesizing relatively short DNA sequences, whereas longer sequences
are costly or not supported yet [HA19]. Additionally, we approximate the DNA overlaps
using LSH, which requires extensive memory amounts. The computation time for generating
the mentioned 100 million addresses took ≈ 32.5 hours with our computer, of which most of
the time was spent on synchronizing checking constraint (3) for each generated permutation
in parallel. Hence, the computation times could be significantly higher with a computer
equipped with less memory or fewer processing cores.

Nevertheless, sequencing and especially synthesis technologies are constantly evolving.
Certain synthesis technologies are developed, allowing the synthesis of several thousand
nucleotides [Pi19]. For example, if we choose 𝐿𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 5, 000 and use 1014 addresses,
then the theoretical storage capacity of DNAContainer is ≈ 11.5 EB, which could be
extended further by using more addresses or larger payloads.
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7 Conclusion

This paper presents DNAContainer, an interface for DNA storage similar to a traditional
storage device. DNAContainer offers an abstraction layer by providing simple put and
get operations instead of synthesizing and sequencing DNA. Furthermore, we implement
the common data structures array and list on DNAContainer, making data management
more accessible. DNAContainer uses a virtual address space mapped to physical DNA
addresses, facilitating random access to the data objects using traditional methods. Moreover,
DNAContainer is aware of the required biochemical constraints. In particular, it encodes data
objects as DNA oligonucleotides that are stable for long archival times and enables randomly
accessing the data with the used virtual addresses. We tested our approach by simulating
the insertion of several thousand data objects into DNAContainer, proving its scalability of
managing up to millions of oligonucleotides addressed by millions of addresses.

In our future work, we will study multiple extensions of DNAContainer. In particular, we
are interested in supporting more advanced index structures supporting expressive filter
queries like range queries on DNA. Furthermore, we are designing a prototype of a physical
DNA storage system where DNAContainer will be the primary interface.
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