
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

MLProvCodeGen: A Tool for Provenance Data Input and
Capture of Customizable Machine Learning Scripts

Tarek Al Mustafa13, Birgitta König-Ries123, Sheeba Samuel123

Abstract: Over the last decade Machine learning (ML) has dramatically changed the application of
and research in computer science. With growing complexity, it becomes increasingly complicated to
assure the transparency and reproducibility of advanced ML systems from raw data to deployment. In
this paper, we describe an approach to supply users with an interface to specify a variety of parameters
that together provide complete provenance information and automatically generate executable ML
code from this information. We introduce MLProvCodeGen (Machine Learning Provenance Code
Generator), a JupyterLab extension to generate custom code for ML experiments from user-defined
metadata. ML workflows can be generated with different data settings, model parameters, methods,
and training parameters and reproduce results in Jupyter Notebooks. We evaluated our approach with
two ML applications, image and multiclass classification, and conducted a user evaluation.
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1 Introduction

Machine Learning (ML) is the dominating data science approach today. ML solves various
problems in many sectors. It also benefits the scientific community by supporting scientific
workflows [De19] and database systems [Ma20; Va17]. ML workflows include steps to
obtain results for given problems from raw data. These steps range from data preprocessing
to deployment. Though they are common for every ML workflow, the specifics of the
implementation, metadata of the entire experiment, and history of data points and sources
used, differ for each ML model. Reproducibility of ML experiments, an increasingly
important issue [Ba16; Hu18; SK21], can be enhanced by capturing this information
as provenance data. We propose a method that allows users to generate code for ML
pipelines by filling in templates with pre-defined parameters and variables. These templates
incorporate all information needed for provenance tracking. We argue that this reduces the
complexity of creating ML models while enhancing reproducibility. The main contributions
of this work are: (1) define the minimum requirements to reproduce chosen ML workflows.
(2) use these minimum requirements as a data model to build a template based system
to automatically generate ML code in Jupyter notebooks4 with multiple, user-chosen
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parameters. (3) automatically capture and display provenance data from the generated
notebooks to allow one-to-one reproductions by (4) inputting captured data into the system.

2 Related Work

Provenance Data and Reproducibility. Provenance plays a key role in reproducibility
[Mi16]. Prospective provenance describes the specifications and steps that must be followed
to generate a data product [Fr08]. Retrospective provenance captures what happened during
the execution of a computational task. It is important that both provenance data types are
captured and documented [De15; HDB17]. In our previous work, we investigated more
factors that influence the reproducibility of ML experiments [SLK20].
Provenance Data Models and Ontologies. Provenance data models specify the format of
metadata and which data points are represented. The W3C PROV family of specifications
[MBC13] includes The PROV Data Model (PROV-DM) [Be13] and The Provenance On-
tology (PROV-O) [Le13], an encoding of PROV-DM into OWL2 Web Ontology Language.
Our previous work, the REPRODUCE-ME Ontology [SK17; SK18a], extends PROV-O
and includes the provenance-plan (P-PLAN)5 vocabulary to describe all computational and
non-computational steps and data of scientific experiments in a machine-readable way.
Provenance Capture Systems. There have been a number of applications of these specifica-
tions and ontologies that may adopt or adjust existing data models. Other significant works
include PROV-ML defined in [So19], which uses W3C PROV and ML-Schema to specify a
provenance data model for complex tasks in the computational science and engineering
domains and multiple systems that aim to capture provenance data automatically from either
ML scripts [Na20; Sc17], model outputs [Ma17], computational notebooks [SK18b; SK20],
specific workflow steps like data cleaning [PML20], or whole systems [Sc18].
MLOps. Systems applying DevOps practices to ML [Ta20] include AutoML6, MLflow
[Za18], and ModelDB [Hi04]. They support ML development and deployment, including
workflow management, data engineering, provenance management, and reproducibility.
These systems target complex, custom-made ML products requiring contributions by several
experts including data scientists and developers. In contrast, our work focuses on customizing
predefined ML pipelines by lay users without the need for ML expertise.
Code Generation and Templates. Automatic code generation can increase productivity and
consistency in ML scripts. Code generation tools can assist the development of automatic
programming tools to improve programming productivity [LCB20]. However, supporting
automatic code generation with multiple parameters raises complexity exponentially. Train-
Generator provides and generates custom template code for ML7. It offers multiple options
for preprocessing, model setup, training, and visualization. We build upon this system by
developing a framework that can generate code for multiple ML tasks, generating executable
notebooks, and integrating provenance data capture and visualization.

5 http://vocab.linkeddata.es/p-plan/version/13032014/

6 https://cloud.google.com/automl/docs

7 https://traingenerator.streamlit.app/
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3 MLProvCodeGen

In this section, we introduce MLProvCodeGen, a JupyterLab extension that explores how to
support the reproducibility of ML experiments by combining template based code generation
and provenance data capture, input, and visualization into one system. We implemented two
example use cases: Image Classification and Multiclass Classification on tabular data, each
with its set of customizable parameters. MLProvCodeGen was designed such that it can be
extended to others. MLProvCodeGen is available online.8
Fig. 1 shows the system architecture consisting of a frontend plugin to capture information,
and a backend plugin to process that information and generate notebooks from it.

Fig. 1: System Architecture of MLProvCodeGen

Frontend. The frontend plugin provides a user interface as shown in Fig. 2. Users can open

Fig. 2: Excerpt from Image Classification Input Elements in the User Interface

the extension by clicking the MLProvCodeGen button in the other section of JupyterLab’s
home interface. At the bottom, users can submit their selected parameters to the system’s
backend. The user interface also allows users to input a provenance file from an experiment
generated by MLProvCodeGen in the past in order to reproduce it.
Backend. The backend’s main goal is to generate a notebook for either Image Classification
or Multiclass Classification from user inputs. Each use case has a set of templates associated

8 https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?urlpath=lab
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with it from which code can be generated. Therefore, the backend first selects a set of
templates based on the specified use case, and then links variables from the user inputs
to the templates. Since Jupyter Notebooks consist of cells, each cell is generated from a
distinct template. Templates contain placeholder variables that are filled by the backend.
For example, the template contains a placeholder called 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and the backend extracts
a 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 variable from the user inputs using 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑠[′𝑒𝑛𝑡𝑖𝑡𝑦′] [′𝑒𝑥 :
𝐷𝑎𝑡𝑎𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎′] [′𝑒𝑥 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑖𝑑′] that is called 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and has a value [𝑒𝑥 :
𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑖𝑑]. When the templates are rendered, the value 𝑒𝑥 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑖𝑑 is written into the
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 placeholder and the output is appended to a notebook file. This way, a notebook file
that was empty at the start is filled with rendered outputs from templates for all markdown
and code cells. We use Jinja9 as our templating language.
Notebooks. The notebooks are structured as follows: At the top is a markdown cell containing
information about the ML task itself. The code cells below contain the installation command
for the requirements and packages needed to run the notebook. Import statements are added
directly after and provenance data capture is initialized. The remaining cells follow the
structure of an ML pipeline. Each notebook has a cell for data ingestion, data preparation,
data segregation, the model, training, and evaluation. At the bottom of each notebook are
cells to generate a provenance graph, generate a provenance data file in JSON format, and
cells to view the provenance data file and graph.

experiment_info creation_date, file_size, modification_date, task_type, title
hardware_info CPU, GPUs, Operating_System, RAM
packages All Python packages used in the notebook + the package version used
notebook prov:type, creation_date, file_format, name, kernel, programming_language,

programming_language_version
data_ingestion start_time, end_time, execution_time, data_format, dataset_id,

dataset_classes, feature_dimensions, dataset_description, root_location,
training_samples, testing_samples, validation_samples

data_preparation start_time, end_time, execution_time, number_of_operations, operations
data_segregation start_time, end_time, execution_time, training_split, testing_split, valida-

tion_split
model_parameters start_time, end_time, execution_time, gpu_enable, pretrained,

save_checkpoint, model_name, model_description, activation_function,
output_neurons, loss_function, optimizer, optimizer_learning_rate

model_training start_time, end_time, execution_time, random_seed, resulting_model_seed,
batch_size, epochs, print_progress

model_evaluation start_time, end_time, execution_time, evaluation_metrics(accuracy, loss,
AUC, Confusion Matrix, F1, MAE, MSE)

Tab. 1: Provenance Data Model of MLProvCodeGen

Provenance Data Capture. All provenance information captured for notebooks generated
by MLProvCodeGen is listed in Tab. 1. We capture provenance data using the prov10 Python
package. This allows us to specify entities, agents, and activities according to PROV-DM

9 https://jinja.palletsprojects.com/en/3.1.x/

10 https://pypi.org/project/prov/
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specifications and build p-plans and collections adjacent to PROV-O. If a specific function
was used to capture that information, MLProvCodeGen generates an activity describing it.
Each code cell is an entity, has an activity that describes the execution of that cell, and a
second entity that describes the data generated by the execution of that cell. Cell entities are
ordered by specifying how a given cell was influenced by the ones executed before it. At
the end of the notebook, the captured provenance data is saved to a JSON file and used to
generate a provenance graph as seen in Fig. 3 and Fig. 4. A major downside of using the
prov package is that the provenance capture has to be hard coded into the notebook at the
time of notebook generation. This means that changes made by users after that point are
only saved if users write them into the provenance data package themselves.

Fig. 3: Excerpt from a generated provenance JSON file in MLProvCodeGen

Fig. 4: Captured Evaluation Data in the Provenance Graph

Provenance Data Input. Any provenance data file generated by MLProvCodeGen can be
uploaded to the system in the user interface to generate an identical reproduction of the
code described by the provenance data. Uploaded files are processed by the backend in the
exact same way as data input by users through the input elements in the user interface.
Extensibility. Due to the modular nature of MLProvCodeGen, users should have the ability
to add new ML experiments to it. We have published step-by-step instructions in the online
documentation. The different steps include: From an existing notebook (1) Write code
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generation templates according to the notebook’s cells, (2) add provenance capture code to
the templates following the data model and prior examples, (3) add new input elements to
the user interface in line with the variables used in the templates, and (4) connect frontend
and backend through a server call for the new ML experiment. Further evaluation would be
necessary to assess the difficulty of extending MLProvCodeGen.

4 Preliminary Evaluation

We conducted a user evaluation to measure MLProvCodeGen’s user experience by combining
an online survey via LimeSurvey11 and a virtual installation of our program via Binder12.
12 entrants successfully completed the survey. All questions and completed answers
are available online13. Our goal was to test the appropriateness and general usability of
MLProvCodeGen for users from the computer science domain who may or may not be
familiar with ML experiments, data provenance, and reproducibility. We asked users to
self assess their level of proficiency with these terms, to complete hands-on user tasks,
and consequently rate their experience using a variety of metrics. Of the 12 participants,
eight answered the question regarding their professional background. All had a background
in computer science or a related field. Prior knowledge about both machine learning and
reproducibility was very mixed with all values from “poor” to “excellent” selected.
The key conclusions of the online survey are: (1) The explanations and instructions given
are adequate to use MLProvCodeGen without outside help. (2) The user interface is intuitive
and easy to use. (3) The generated notebooks have comprehensible structure and, depending
on the users expertise, the code is coherent and understandable. (4) The provenance graph
displays the provenance data as intended. However, for users without domain expertise, the
graph is difficult to interpret. Due to its size, it is also challenging to find specific data points.
Therefore, the provenance graph leaves room for improvement.

5 Conclusions and Future Work

In this paper, we presented MLProvCodeGen, a tool to support the reproducibility of machine
learning experiments by combining template based code generation and provenance data
capture, input, and visualization into one system. We evaluated our system by implementing
two use case ML tasks, image classification and multiclass classification, and conducted a
user evaluation. Future work on MLProvCodeGen includes improvements to the provenance
graph, provenance data export, and adding more examples such as clustering. All source
code, further information, explanations, a tutorial, the documented user evaluation, and an
installation of MLProvCodeGen on a virtual machine are available online.14
11 https://www.limesurvey.org/

12 https://mybinder.org/, available at https://mybinder.org/v2/gh/fusion-jena/MLProvCodeGen/main?
urlpath=lab

13 https://github.com/fusion-jena/MLProvCodeGen/tree/main/EvaluationResults

14 https://github.com/fusion-jena/MLProvCodeGen
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