
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 11

WebTensor: Towards high-performance raster data
analysis in the browser

Lucas Fabian Naumann12

Abstract: We present WebTensor, a chunked tensor implementation for WebAssembly (Wasm)
compiled from a self-written C++ library and designed to efficiently analyze raster data directly
in the browser. WebTensor allows loading (chunked) data from various backends, manipulating
it by aggregations and forwarding computed results in a zero-copy manner to JavaScript so that
they can be further processed or visualized. We demonstrate the performance of WebTensor by
benchmarking data access and aggregation operations and compare it against a JavaScript version
compiled from the same C++ code.

Keywords: WebAssembly; Raster Data; Tensor Processing; Visual Analytics

1 Introduction
With climate change research becoming increasingly important in the last years, so are raster
datasets used in it, for example, from the Copernicus project3 or the MOSAiC expedition4.
Analysis of raster data is often done using visual analytics, a method where domain experts
analyze the data with interactive visualization and exploration tools [Cu19]. Easy and
platform-independent access to such tools could be realized by a browser application that is
able to load the desired datasets and process them. However, such applications were not
feasible in the past, as processing the data in the browser with JavaScript would be too
inefficient due to performance limitations of the language, and doing the processing on the
server side instead would introduce a too large overhead regarding requesting and receiving
data [LH14]. This infeasibility changed when WebAssembly (Wasm), a binary instruction
format for a virtual machine, was launched in 2017 [Ha17]. With being supported by most
browser engines and achieving a performance comparable to those of languages like C++
[Ja19], it is suited for high-performance data analysis in the browser.
So far, only a few data processing tools utilizing Wasm have been proposed, like the
embeddable SQL database DuckDB-Wasm [Ko22] or a Wasm backend for TensorFlow.js5.
None of those tools is suitable for analyzing raster datasets. Existing tensor implementations
for browsers like TensorFlow.js focus on machine learning and thus lack features needed for
analysis tasks. For example, tensors should be chunked to perform aggregations needed for
the analysis efficiently and, as the data typically originates from a multitude of different
sensors, data of varying backends, types and layouts should be processable in a single tensor.
1 Technische Universität Dresden, lucas_fabian.naumann@mailbox.tu-dresden.de
2 German Aerospace Center, Institute of Data Science
3 https://copernicus.eu
4 https://mosaic-expedition.org
5 https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html

cba doi:10.18420/BTW2023-75

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1083

mailto:lucas_fabian.naumann@mailbox.tu-dresden.de
https://copernicus.eu
https://mosaic-expedition.org
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-75


12 Lucas Fabian Naumann

Fig. 1: Memory layouts for a three-dimensional tensor: (I) row-major order, (II) column-major order
(row-/column-major order indicate data along the last/first dimension to be contiguous).

In this paper, we present WebTensor, a chunked tensor implementation for Wasm
designed for raster data analysis and intended to serve as a backend for JavaScript
programs. Furthermore, we evaluate the performance of WebTensor on various data
access and aggregation operations and compare the results against an equivalent tensor
implementation in JavaScript.

2 Background
Tensor Data Processing Multidimensional data is often represented as a datacube, which,
in its most basic form, is a tensor. In order to store multidimensional data, it is mapped onto
the one-dimensional index space of storage devices (cf. Figure 1). The resulting memory
layout has a significant impact on I/O performance. Due to the performance implications of
data locality, multidimensional data is commonly chunked to reduce latency when the data
access pattern might change over time6. Analyzing such data requires two kinds of queries:
data accesses and aggregations. Data is accessed either at a single index of the tensor or
along index ranges per dimension. The latter one is commonly called dicing or, if the index
is static for one dimension, slicing. Aggregation reduces data along selected dimensions by
applying a numeric operation. Consider, for example, a four-dimensional tensor with three
spatial and one temporal dimension. Aggregating over the temporal dimension by taking a
minimum, results in a three-dimensional tensor containing the minimum value over time at
all spatial locations.
WebAssembly & Compilation Toolchain In the past, JavaScript has been the only
programming language natively supported in browsers. Consequently, developing applica-
tions for the web required its usage, restricting the feasibility of computationally intensive
applications because of its limited performance [Ha17]. In order to overcome this issue,
Wasm, a binary instruction format for a virtual machine usable in browsers, was introduced
as a compilation target for high-level languages like C++ [Ha17]. Jangda et al. showed that
Wasm is not only faster than JavaScript but even comparable to code executed natively on
x86 [Ja19]. Currently, the Wasm heap is limited to 4 GiB in size as a 32-bit addressing space
model is used [Ha17]. Furthermore, the interaction between JavaScript and Wasm is
one-sided since the Wasm heap can be accessed by JavaScript but accessing JavaScript
memory by Wasm is not possible.

6 https://www.unidata.ucar.edu/blogs/developer/en//entry/chunking_data_why_it_matters

1084 Lucas Fabian Naumann

https://www.unidata.ucar.edu/blogs/developer/en//entry/chunking_data_why_it_matters


WebTensor: Towards high-performance raster data analysis in the browser 13

WebTensor Browser

Reading API

Backend

Loading API


User

Tensor API


Object Store

Local Filesystem

Dedicated Server

Fig. 2: Architecture of WebTensor (orange: JavaScript components, blue: Wasm components).

There are two major toolchains for compiling C++ code to Wasm: Cheerp7 (commercial)
and Emscripten8 (non-commercial, open source), with Emscripten achieving a better
performance as reported by Yan et al. [Ya21]. Once installed, the Emscripten compiler
frontend em++ can be used as a drop-in replacement for regular C++ compilers. For the
compilation process, Emscripten uses Clang and LLVM. Additionally to compiling to
Wasm, Emscripten allows to compile C++ to JavaScript.

3 Raster Data Analysis in the Browser
Figure 2 depicts an overview of WebTensor and subsequent components (JavaScript
components in orange, Wasm components in blue). We compiled WebTensor from a
self-written C++ library to Wasm using Emscripten. JavaScript programs can interact
with it by utilizing three APIs, which were initially written in C++ and then compiled to
Wasm and bound to JavaScript methods using Embind9. These APIs enable WebTensor
to be used straightforwardly in JavaScript programs and allow arbitrary post-processing
or visualization of tensor data, making it a flexible tool for various applications.

3.1 WebTensor
Memory Layout To maximize spatial data access locality, WebTensor stores raw data
in a binary buffer with data of fixed-sized rectangular chunks lying contiguously in it. For
accessing the values corresponding to the bytes stored in this buffer, the tensor stores chunk
objects, each one having pointers to one of those contiguous blocks and additional metadata,
e.g., the chunk type, the value type of the data and the internal memory layout (cf. Figure 3).
This decoupling of raw data and metadata has additionally the advantage that different
chunk types (e.g., dense and sparse chunks), varying data types (e.g., float and int) and
arbitrary internal memory layouts (e.g., row- and column-major) can be freely combined in
a single tensor.

Data Access As the user should not have to care about the internal memory layout of
WebTensor, accessing its data is done by specifying indices regarding its dimensions,
which are then transformed into offsets within the binary buffer. Such a transformation
requires using the chunks as only these contain necessary metadata, like the type of the
stored values. Since all chunks have a fixed shape, the one containing a user-provided index
can easily be obtained and, with that, also an offset to the first element in it. In a second
step, the metadata of the chunk can be used to determine the offset from its beginning.

7 https://leaningtech.com/cheerp
8 https://emscripten.org
9 https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html

WebTensor : Towards high-performance raster data analysis in the browser 1085

https://leaningtech.com/cheerp
https://emscripten.org
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html


14 Lucas Fabian Naumann

1 2 5.0 7.0

3 4 6.0 8.0

(a) Two-dimensional data.

- dense chunk
- int
- row-major


- dense chunk
- float
- column-major

1 2 3 4 5.0 6.0 7.0 8.0

(b) Buffer-Chunk structure of WebTensor.

Fig. 3: Chunked data representation in WebTensor (orange and blue color mark different chunks).

Features WebTensor provides methods for accessing data at single indices as well as for
dicing and slicing operations. Slicing and dicing operations thereby only return a view to
existing data, which offers the same functionalities as a tensor regarding data access and
aggregations and can be materialized to a new independent tensor at a later stage. Regarding
aggregates, the computation of basic statistics, i.e., minimum, maximum, mean and standard
deviation, on arbitrary dimensions is supported. Furthermore, it is possible to rechunk a
tensor, thereby changing the in-memory order of its data, and thus favor access patterns and
aggregations over specific dimensions.

3.2 APIs

Loading The Loading API enables JavaScript programs to load data from various
backends to WebTensor. For this, parts of Apache Arrow10 (compiled to Wasm) are
used to process data in the Arrow IPC and Parquet format. Since Wasm programs cannot
access JavaScript memory, data should be loaded directly from the backend onto the
Wasm heap to avoid unnecessary copies. Currently, WebTensor offers loading data in
this way from a dedicated server using a WebSocket connection and the IPC format for
serialization. Loading data in the Parquet format from object stores or the local file system
is also possible, but at the moment, only by loading the data first in JavaScript and then
copying it to Wasm using the API, thus having an increased overhead.

Tensor This API binds the slicing, dicing and materializing, as well as the aggregate
functions of WebTensor to JavaScript methods using Emscriptens Embind. Hence, it
enables the manipulation of tensor data and the construction of new views and tensors from
the JavaScript side.

Reading Using this API, WebTensor data can be accessed from JavaScript programs,
where further processing or visualization (e.g., with the library D311) is possible. Accessing
the data is done by first obtaining its begin and end addresses in the corresponding chunks, as
well as information about the chunk types, data types and memory layouts. Then, zero-copy,
typed views of the data on the Wasm heap are created with this information and returned to
the JavaScript side through the API.

10 https://arrow.apache.org
11 https://d3js.org/

1086 Lucas Fabian Naumann

https://arrow.apache.org
https://d3js.org/


WebTensor: Towards high-performance raster data analysis in the browser 15

Dice
Shape

Wasm
[ms]

js
[ms]

[400, 20, 20, 20] 11.01 27.41
[20, 20, 20, 20] 1.34 2.78
[20, 30, 72, 72] 1.00 1.55
[20, 30, 20, 72] 0.94 1.49

Tab. 1: Runtimes for dicing varying shapes.

Aggregated
Dimensions

Wasm
[ms]

js
[ms]

time, alt, lat, lon 444.4 2439.0
time, alt, lat 1136.4 2439.0
time, alt 980.4 2777.8
time 574.7 3030.3

Tab. 2: Runtimes for aggregating the minimum
over varying dimensions.

4 Experimental Evaluation
Setup & Methodology We compare WebTensor against a JavaScript baseline imple-
mentation, compiled from the same C++ code using Emscripten, for various data access
and aggregation operations. As baseline to compare against, we use a compiler-generated
JavaScript implementation as it has been shown to consistently outperform equivalent
manual implementations [Ya21]. We executed all benchmarks with benchmark.js12 on a
machine with an Intel i5-6440HQ CPU @2.6 GHz and 32 GiB RAM using a Firefox browser
(version 107.0). As noted before by Yan et al., the specified optimization options for the
compilation of the Wasm and JavaScript code sometimes show unexpected behaviour,
e.g., building with -O1 results in more efficient code than with -O3 [Ya21]. We used, in all
cases, the -Os optimization flag, as it led to consistently good performance results.

Dataset For our evaluation, we use a space weather dataset provided by the German
Aerospace Center. This dataset has four dimensions: time, altitude (alt), longitude (lon)
and latitude (lat), along with multiple variables. The data is organized in row-major order,
i.e., the values for varying latitudes lie contiguously in memory. With about 13 GB, the
dataset is too large to be processed at once in Wasm with its 32-bit addressing space
model. It is planned to support processing datasets larger than 4 GiB by implementing a
lazy loading strategy for dataset chunks and replacing the least recently used one when no
further memory is available. However, this has not been implemented yet. To still show
the performance of WebTensor, we restrict ourselves to a data size of 250 MB by only
regarding a [400,30,72,72]-shaped region of the dataset and one of its 32-bit floating point
variables. The original dataset is not chunked, but for the benchmarks, we rechunk the data
into 12 chunks of shape [100,30,40,40] (all dense chunks, with row-major order and floats
as value type) having a size of approximately 21 MB.

Benchmarks First, we measured the access times for single indices. For this, we generated
100 random indices, measured their mean access times individually, and afterwards, took
the mean over the 100 values received in this way. The resulting mean access time amounts
to 1.35 · 10−2 ms for Wasm and 1.63 · 10−2 ms for JavaScript, with a standard error of
0.1% for both.
12 https://benchmarkjs.com

WebTensor : Towards high-performance raster data analysis in the browser 1087

https://benchmarkjs.com


16 Lucas Fabian Naumann

After the access of single values, we evaluated the performance of dicing operations. We
did this by specifying four fixed dice shapes and, in a similar fashion as before, randomly
generated 100 concrete dices (with varying start and end points) for each of those shapes,
measured their mean runtimes individually and then computed the mean of the resulting
100 values. The received runtimes are shown in Table 1, the standard error is omitted in the
table as it amounted to less than 0.16% for all shapes and is thus neglectable.
Lastly, we measured the execution times of aggregation operations. Table 2 shows the
execution times for aggregating the minimum over the tensor dimensions specified by the
“Aggregated Dimensions” column of the table. Again, the standard error is with at most 1.6%
neglectable and not shown. The results for computing the maximum, mean and standard
deviation are similar, hence we omit them here due to lack of space.

Discussion The Wasm version of WebTensor always achieves better results than its
JavaScript counterpart. For point data access, Wasm outperforms JavaScript by 21%,
and for dicing and aggregating, it is, on average, faster by 92% and 294%, respectively. The
performances differ thereby not by a constant factor but vary. Furthermore, while the results
for the Wasm and JavaScript columns in Table 1 are expected due to data locality and the
number of operations to be performed, this is only the case for the Wasm values in Table 2
and not for the ones of JavaScript. As the number of aggregated dimensions in Table 2
decreases from top to bottom, so does the number of operations needed to aggregate over
them. Thus, the runtimes are expected to decrease too, besides when aggregating over all
dimensions, as in this case, the data to be considered lies contiguously in memory, allowing
optimizations. This expected behaviour can be observed for Wasm. Regarding JavaScript,
however, equal runtimes were obtained when aggregating over all four dimensions as when
only considering time, altitude and latitude. For fewer dimensions, the runtimes increased
even further. Currently, no satisfying explanation for this discrepancy could be found, but
as the same observation was made in multiple repetitions of the benchmarks, it should be
subjected to further studies in the future.

5 Summary & Next Steps
We presented WebTensor, a chunked tensor implementation for Wasm capable of
efficient raster data analysis in the browser. Our initial experimental results indicate that a
Wasm-based tensor implementation can significantly outperform comparable JavaScript
implementations on raster data access and aggregation operations. As a next step, we plan
to extend WebTensor such that larger datasets and more complex data analysis tasks
become possible. More specifically, we plan to implement lazy loading of chunks from the
backend such that complete datasets can be analyzed, as well as loading data from other
backends without making unnecessary copies. Additionally, we intend to implement more
aggregation operations (e.g., resampling, computing histograms) and a data cube layer on
top of WebTensor to provide more metadata information (e.g., physical coordinates of
tensor indices).

1088 Lucas Fabian Naumann



WebTensor: Towards high-performance raster data analysis in the browser 17

Bibliography
[Cu19] Cui, Wenqiang: Visual Analytics: A Comprehensive Overview. IEEE Access, 7, 2019.

[Ha17] Haas, Andreas; Rossberg, Andreas; Schuff, Derek L.; Titzer, Ben L.; Holman, Michael;
Gohman, Dan; Wagner, Luke; Zakai, Alon; Bastien, JF: Bringing the Web up to Speed with
WebAssembly. SIGPLAN Not., 52(6), 2017.

[Ja19] Jangda, Abhinav; Powers, Bobby; Guha, Arjun; Berger, Emery D.: Mind the Gap: Analyzing
the Performance of WebAssembly vs. Native Code. CoRR, abs/1901.09056, 2019.

[Ko22] Kohn, André; Moritz, Dominik; Raasveldt, Mark; Mühleisen, Hannes; Neumann, Thomas:
DuckDB-Wasm: Fast Analytical Processing for the Web. Proc. VLDB Endow., 15(12), 2022.

[LH14] Liu, Zhicheng; Heer, Jeffrey: The Effects of Interactive Latency on Exploratory Visual
Analysis. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2014.

[Ya21] Yan, Yutian; Tu, Tengfei; Zhao, Lĳian; Zhou, Yuchen; Wang, Weihang: Understanding the
Performance of Webassembly Applications. In: Proceedings of the IMC’21. 2021.

WebTensor : Towards high-performance raster data analysis in the browser 1089


