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Explainable Data Matching: Selecting Representative Pairs
with Active Learning Pair-Selection Strategies

Lukas Laskowski, Florian Sold1

Abstract: In both research and enterprise, dirty data poses numerous challenges. Many data cleaning
pipelines include a data deduplication step that detects and removes entries within a given dataset which
refer to the same real-world entity. Throughout the development of such deduplication techniques,
data scientists have to make sense of the large result sets that their matching solutions generate to
quickly identify changes in behavior or to discover opportunities for improvements. We propose an
approach that aims to select a small subset of pairs from the result set of a data matching solution
which is representative of the matching solution’s overall behavior. To evaluate our approach, we
show that the performance of a matching solution trained on pairs selected according to our strategy
outperforms a randomly selected subset of pairs.
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1 Explainable Data Matching

Improving data matching systems is an iterative process: Insights on matching behavior
derived from the set of output labels of the matching solution serve as the basis for
improvements in the next iteration. To accelerate this optimization process, we have
developed a data matching benchmark platform, called Frost [Gr22]. Frost combines
existing benchmarks, established quality metrics, cost and effort measures for evaluating
and comparing data matching solutions. Furthermore, the platform includes techniques
which enable the systematic exploration of matching results. However, as real-world datasets
can contain millions of records, it is unrealistic to examine all pairs within a result set.
Consequently, there is the need to summarize data matching results such that only a
representative subset of the most meaningful pairs remains. Based upon a matching result
set of size 𝑚 generated with a data matcher on a dataset of size 𝑛, we aim to select a subset
of well-distinguishable pairs of size 𝑘 with 𝑘 ≪ 𝑚 that are representative of a matching
solution’s behavior.

To achieve this goal, we leverage instance selection strategies from the field of active
learning, a semi-supervised learning method, where the initial seeded training dataset is
very small or empty. Therefore, to sufficiently train the data matching classifier, more label
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candidates are iteratively selected and, after a manual labeling process, added to the training
dataset. Since manual labeling is costly, a variety of pair selection approaches exist that aim
to achieve a target matching quality in as few iterations as possible. Our goal to select a
subset of pairs which summarize the matching classifier as good as possible is similar to
the pair-selection task in active learning. Nevertheless, we differ in how the pair-selection
algorithm is applied since our use case works upon a fully labelled result set and therefore
lacks the iterative procedure.

Within the field of active learning for data matching, Christen et al. [CCR20] recently
proposed an iterative pair-selection strategy based upon their novel informativeness measure,
which outperforms prior works. Hence, we base our non-iterative pair-selection approach
upon the informativeness measure by Christen et al. With an informativeness score for each
pair, we choose the representative subset as the set of pairs with the highest score.

In the following sections, we first introduce related work to explainable data matching
(Section 2) and then introduce our proposed approach (Section 3). Next, in Section 4, we
show the effectiveness of this strategy by experimentally analyzing its behavior. Finally, we
conclude and discuss next steps (Section 5).

2 Related Work

Explaining data matching decisions is generally a challenging task. Especially with complex
machine learning or deep learning models like DITTO [Li21], results are difficult to
interpret but often superior to those achieved with approaches based upon simple classifiers
or rule-based approaches. Without specific tools, it is close to impossible to understand how
a certain black-box matcher assigns labels, as the underlying model can be very complex.
Additionally, result sets are large and make it difficult to select pair instances for further
analysis. While explanation techniques already exist in the machine learning community,
Thirumuruganathan et al. found that these techniques do not suit the needs of data matching
scientists and propose a variety of research opportunities [TOT19].

Baraldi et al. [Ba21] propose, with their Landmark explanation framework, a new framework
for local pair-specific explanations specifically tailored towards data matching. Landmark
introduces two main innovations: First, it generates per pair two explanations by fixing either
record (called landmark) and perturbing the other record (called varying entity). Second, it
produces an artificial entity by attribute-wise concatenating both entities. The MOJITO
framework [Di19] analyzes the influence of individual attributes on the matching decision.
Their results show that black-box entity matching models might rely on untrustworthy
attributes. Hence, they conclude that quality metrics are not sufficient to quantify real-world
performance of a data matching model, but rather emphasize the need for explanations.

Nevertheless, surprisingly little work has been done so far towards matching solution-
agnostic filtering or selection of representative (or summarized) result subsets. Explanation
frameworks like Landmark can then be executed upon pairs within a representative subset.
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3 Informativeness-based Selection of Pairs

To explain the behavior of a matcher, we present an approach that selects pairs out of the
result set labeled by a matching solution. As described in Section 1, we base our selection
strategy upon the informativeness measure developed by Christen et al. [CCR20].

informativeness(𝑢, 𝑅) = (1 − 𝛼) ∗ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑢, 𝑅) + 𝛼 ∗ 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑢, 𝑅)

The informativeness-score for 𝑢 in respect to the result set 𝑅 is the weighted average of the
uncertainty and the entropy. The balancing factor is given as 𝛼 and set to 𝛼 = 0.5.

To each labeled pair within 𝑅, we assign a similarity vector 𝑢, which consists of the pair-wise
similarity for each attribute of the two records 𝑟1, 𝑟2 with (𝑟1, 𝑟2) ∈ 𝑅. To calculate the
informativeness, we use an additional similarity measure between a pair of pair vectors 𝑢, 𝑣,
in our case cosine similarity, called 𝑠𝑖𝑚(𝑢, 𝑣) that we assume to already exist. For a pair 𝑢,
we define the set 𝑅𝑆 as all pairs from the result set that were assigned the same label as 𝑢
and as 𝑅𝑂 those assigned the opposite label. An environment 𝑆 of supporting pairs for a
pair 𝑢 is bounded by the closest instance classified contrary to the target pair, and defined as:

𝑆(𝑢, 𝑅) = {𝑣 ∈ 𝑅𝑆 |𝑠𝑖𝑚(𝑢, 𝑣) > 𝑚𝑎𝑥{𝑠𝑖𝑚(𝑢, 𝑤) |𝑤 ∈ 𝑅𝑂}}

uncertainty(𝑢, 𝑅) = 1
1 + |𝑅 ∩ 𝑆(𝑢, 𝑅) |

Uncertainty quantifies how certain a label assignment is. In case only very few similar pairs
reside within the environment 𝑆 around a target pair, the label assigned to it is uncertain.
Hence, its uncertainty score will be higher. Compared to a pair with plenty of confirmations,
a pair with high uncertainty might be especially valuable and representative of the matching
classifier’s behavior.

entropy(𝑢, 𝑅) = −[
∑

𝑣∈𝑅𝑆𝐸
𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | − 1

∗ 𝑙𝑜𝑔(
∑

𝑣∈𝑅𝑆𝐸
𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | − 1

)

+
∑

𝑣∈𝑅𝑂𝐸
𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | ∗ 𝑙𝑜𝑔(

∑
𝑣∈𝑅𝑂𝐸

𝑢 ∗ 𝑠𝑖𝑚(𝑢, 𝑣)
|𝑅 | )]

The entropy value represents how diverse the environment around a certain pair 𝑢 is. It can
only yield a high value in case both summands are high negative values. Again, this can
only be true in case we have both very similar pairs of the same and the opposite class.
Pairs that fulfill this requirement are considered to have high entropy, as they help to form
the decision boundary and are therefore, again, representative of the classifier’s behavior.
Compared to the active learning setting, our approach does not work iteratively, and we do
have already all pair labels available (as assigned by the matching solution). Therefore, we
would need to consider all pairs for entropy calculation, which in return would lead to a
very similar entropy value for all pairs. Hence, we restrict the pairs considered for entropy
calculation to those pairs whose similarity to the target pair 𝑢 is higher than the entropy
environment limit 𝑒. We define the environment boundary 𝑒 relative to the S-Environment
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Fig. 1: Evaluation Process. This figure shows the two phases of our evaluation approach: “Matching
Phase” and “Learning Phase”.

as 𝑒(𝑢, 𝑅) = 𝑆(𝑢, 𝑅) ∗ 𝑙 with 𝑙 ∈ [0, 1] and set to 𝑙 = 0.4. The set 𝑅𝑆𝐸 includes all pairs of
the same class as 𝑢 and a similarity larger than 𝑒(𝑢, 𝑅) to 𝑢. Similarly, we define the set
𝑅𝑂𝐸 with pairs of opposite class. Since the entropy base metric requires a similarity value
for all pairs of pairs, the proposed approach has a runtime complexity of 𝑂 (𝑛4) with 𝑛 as
the amount of records in the base dataset.

Under the assumption that machine learning models benefit similarly from a representative
pair subsets as humans do, we select the top 𝑘 pairs by informativeness measure as the
representative subset. Hence, this particular subset summarizes the matching behavior of
the matching solution better than any other equally sized subset could. In case one chooses
𝑘 small enough, the selected pairs now serve as a basis for a human analysis.

4 Evaluation

We evaluate our approach by training a matching solution only upon the ground truth labels
of pairs within the representative subset, and then comparing its quality using F1-Score
against two baselines. Figure 1 outlines the overall evaluation-process: We first produce
results for informativeness-calculation by predicting labels on unseen testing data, which
serve as the basis for the informativeness score (“Matching Phase”). During the subsequent
“Learning Phase”, we select the 𝑘 pairs with the highest informativeness score as our subset
of pairs. These pairs and their respective ground truth label are then used to train the same
(but untrained) classification model. Afterwards, we predict and evaluate against the full
gold standard.

We perform experiments using the matching solution “Cyber-Punk” which is one of the
winning concepts of the SIGMOD programming contest in 20212. As the dataset, we used
“SIGMOD AltoSight Z4”, which contains mainly textual data about SD cards. Besides our
informativeness selection strategy, we compare up with two naïve baseline subsets:

2 https://dbgroup.ing.unimore.it/sigmod21contest/index.shtml
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Fig. 2: Retraining on Selected Pairs. Comparing the results for the presented selection strategies
on multiple subset sizes on dataset Z4 using the “Cyber-Punk” matcher. We use subset sizes of
𝑘 ∈ {100, 500, 1000, 5000, 10000}.

• Averaged Random (fully sampled): For this strategy, we sample randomly 𝑘 different
pairs out of the set of pairs. In practice, this resembles a human who scrolls through
the entire result set with no further filters or selections available.

• Averaged Random (same split): In most datasets, the majority of pairs are easy to
label as non-matches. Therefore, the previous strategy predominantly selects such
pairs and only few (if any) duplicate pairs. In contrast, this strategy samples 𝑘 pairs
with the same proportion of duplicates and non-duplicates (according to the ground
truth annotation) as can be found in the selected subset. Although we sample randomly,
this subset implicitly comes with a substantial advantage as its proportions are based
upon the informativeness-based subset with respect to the ground truth annotation.

As shown in Figure 2 the informativeness-based selection strategy indeed outperforms the
completely randomly sampled selection strategy at any subset size. This observation is
reasonable, as likely many trivial non-matches were sampled into the subset. Consequently,
a smaller subset size 𝑘 causes a larger difference between the two solutions: At a subset size
of 100, the informativeness-based strategy ( 𝑓1 = 0.03) has a 15x higher F1-Score compared
to the randomly based selection strategy ( 𝑓1 = 0.002). With more pairs in the subset, we see
a similar effect. For instance, the informativeness-based strategy ( 𝑓1 = 0.986) has a subset
size of 5,000 an F1-Score which is 11.6x higher than the randomly based selection strategy
( 𝑓1 = 0.085). Even in comparison to the random sampling of same split, our approach
achieves the highest scores on small subsets and matches on subsets of size 𝑘 ≥ 5000.

Since our use-case is mainly targeted towards subsets of size 1000 or less that a human can
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grasp or look through, and we do significantly outperform both sampling approaches in this
area, our approach does indeed work as anticipated. This shows that a subset selected using
the informativeness score includes pairs that bear more information compared to random
sampling – and therefore offers insights into the behavior of a matching solution.

5 Conclusion and Outlook

We set out to select a representative subset of pairs out of a potentially very large result
set. Our results do indeed indicate that the informativeness-based subset outperforms
random selection by far. More importantly, these results now serve as a baseline for further
improvements towards reducing the overall runtime or developing novel approaches.

Beyond our current results, we see further research opportunities in this area. For example,
our existent evaluation can be underlined with additional test settings including multiple
datasets as well as a diverse set of matching solutions from various domains. Furthermore,
one could further extend this approach by indicating for each selected pair how many similar
non-selected pairs exist in the result set. In case these pairs were accessible to a data scientist,
he could better make sense of this particular pair’s properties.
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