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Witness Generation for JSON Schema Patterns

Christoph Köhnen1

Abstract: JSON Schema is a schema language for the popular data exchange format JSON. This paper
introduces an approach to convert regular expressions, which appear in ECMA-262 syntax in JSON
Schema, into an alternative syntax, such that they may be compiled to finite-state automata. Specifically,
we address the challenge that the ECMA-262 pattern syntax uses anchor symbols to mark the beginning
and end of a word, which is not compatible with available libraries for automata manipulation. This
is a step towards generating witnesses, i.e., JSON instances which are valid w.r.t. the given JSON
Schema specification. We implement an algorithm proposed by Dominik Freydenberger to convert
regular expressions into brics syntax. We show that we successfully address over 97% of the unique
patterns found in a collection of thousands of JSON Schema specifications collected from GitHub.

1 Introduction

JSON Schema is a language for describing collections of JSON instances, where JSON
is a widely adopted format for data exchange. This article describes a student Bachelor
thesis project which targets a key problem in generating a witness for a given JSON Schema
specification (short schema), which is a JSON instance valid w.r.t. this given schema. Witness
generation has several important applications, such as checking schema containment [At22],
a challenge also researched in [Ha21] for type-checking data science pipelines.

For example, consider the JSON Schema specification in Figure 1. Any witness must be
of type object, as required in line 1. If the object has a property (line 2) whose name
matches the pattern ^(sur)?name$ (line 3), so "surname" or "name", then its value must
be a string (line 4) matching the regular expression in line 5 with at least three characters
(line 6). As this example illustrates, JSON Schema patterns can describe property keys (via
patternProperties) or string-typed values (via the keyword pattern).

JSON Schema patterns are encoded in ECMA-262 syntax2 and are actively used in practice:
In analyzing a corpus of approx. 80K open source JSON Schema documents [Ba21], we
found that 21% of the schemas contain patterns. Our approach cannot handle lookahead
and lookbehind as well as the word boundaries \b and \B. The former one matches between
a word and a non-word character without consuming one. But this concerns less than 3% of
the unique patterns found in this corpus. We further found that the bulk of patterns actually
describes regular languages. Some patterns in ECMA-262 can exceed the expressiveness of
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regular languages, due to backreferences [FS19]. We consider such occurrences as normal
characters.

Translating the remaining patterns into finite-state-automata [HU79], we can generate string
witnesses for patterns, simply by traversing a path from the initial state to some accepting
state. From product automata, we can generate string witnesses that adhere to several
constraints, e.g., matching several patterns as well as minimum and maximum lengths.

1 { "type": "object",
2 "patternProperties": {
3 "^(sur)?name$": {
4 "type": "string",
5 "pattern": "^[A-Z][a-z]*$",
6 "minLength": 3 }}}

Fig. 1: A JSON Schema specification.

Our Java implementation of a tool for JSON
Schema witness generation [At22] uses the au-
tomaton library brics [Mø17] for creating au-
tomata from regular expressions, as well as
for computing automaton operations. However,
brics relies on the syntax for regular expres-
sions accustomed from computer science text-
books [HU79], assuming expressions to be
bounded. Thus, the expression bc* matches "b" and "bc", but not "abcd". Yet in ECMA-262
syntax, the equivalent regular expression would have to be explicitly bounded as ^bc*$.

Contributions. (1) We implement a novel algorithm to convert patterns from ECMA-262 to
brics syntax. The conversion was suggested to us by Dominik Freydenberger. (2) We have
integrated our implementation in a tool for JSON Schema witness generation [At22]. (3) We
further present an empirical study on the applicability of our approach to patterns as they
appear in tens of thousands of real-world schemas crawled from GitHub and provide a fully
automated reproduction package of it. We can show that for 97% of the unique patterns
found in this corpus, we can successfully apply our rewriting.

Structure. Section 2 introduces preliminaries and presents the conversion of regular
expressions in ECMA-262 syntax to brics syntax. Section 3 presents and discusses our
empirical evaluation. Section 4 reviews related work. Section 5 concludes.

2 Patterns and Witness Generation

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ::= 𝑏𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 | 𝑜𝑏 𝑗𝑒𝑐𝑡 | 𝑎𝑟𝑟𝑎𝑦 ;
𝑏𝑎𝑠𝑖𝑐𝑉𝑎𝑙𝑢𝑒 ::= null | true | false | 𝑥 | 𝑠 ;

𝑜𝑏 𝑗𝑒𝑐𝑡 ::= {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛} ;
𝑎𝑟𝑟𝑎𝑦 ::= [𝐽1, . . . , 𝐽𝑛] ;

Fig. 2: JSON grammar, adapted from [At22].

Preliminaries. The JavaScript Object Notation
(JSON) is a data format where a JSON document
(or JSON expression) has a syntax which is
defined by the grammar in Figure 2, where 𝑛 ≥ 0,
𝑥 is a number, 𝑠 is a string, 𝐽1, . . . , 𝐽𝑛 are JSON
expressions, and all 𝑘𝑖 are pairwise different key
strings. JSON Schema also uses JSON syntax. A

formal semantics is defined in [At22; Pe16]. Specifically, we are interested in the keywords
patternProperties and pattern, as illustrated in Figure 1.
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𝑒𝑥𝑝𝑟 ::= (𝑒𝑥𝑝𝑟 alt)? 𝑠𝑒𝑞 ;
𝑠𝑒𝑞 ::= (𝑐ℎ𝑎𝑟 | 𝑔𝑟𝑜𝑢𝑝 | 𝑞𝐸𝑥𝑝𝑟)∗ ;

𝑞𝐸𝑥𝑝𝑟 ::= (𝑐ℎ𝑎𝑟 | 𝑔𝑟𝑜𝑢𝑝) 𝑞𝑢𝑎𝑛𝑡 ;

Fig. 3: JSON Schema pattern grammar.

Approach. We denote a regular expression extracted
from a JSON Schema document as JSON Schema
pattern (or short pattern). Since such a pattern follows
the ECMA-262 syntax it can be defined by the grammar in
Figure 3 with the following tokens: alt is the alternation

symbol |, group one of the alternatives (expr), (?:expr), (?<str>expr), (?!expr), (?=expr),
(?<!expr), (?<=expr), char a character (or its unicode representation), a character class
(like [abc], [a-z], [abcA-Z] or [ˆa-z]) or an anchor symbol (ˆ or $), str a sequence of
characters and quant a simple (+, * or ?) or range quantifier ({m}, {m,n} or {m,}, 𝑛 ≥ 𝑚 ≥ 0).

The speciality of the ECMA-262 language is the use of the anchor symbols ˆ for the beginning
of a word and $ for the end. The expression ^abc$ in ECMA-262 syntax matches the string
"abc" and nothing else while abc matches any string with "abc" inside, for example
"012abcdef. To generate a string which matches a given regular expression in ECMA-262
syntax it can be helpful to create a finite-state automaton, since every regular language can
be defined by such an automaton. The Java library dk.brics [Mø17] supports the creation of
finite-state automata with regular expressions as well as the common operations of automata
like concatenation, union, intersection or negation. Matching operations are also supported.
Regular expressions are defined in the class dk.brics.automaton.RegExp.

A regular expression in brics syntax consists of the tokens listed in Figure 3, the symbols
@ for any string and # for the empty language, but without anchor symbols, non- and
named-capturing grouping and lookahead/-behind. It follows the same grammar with the
exception that grouping only stands for simple grouping. Lookahead and lookbehind exceed
the power of regular expressions. Freydenberger and Schmid worked that out in [FS19].

We now introduce an algorithm3 to convert patterns from ECMA-262 to brics syntax, i.e.
removes the anchor symbols, which works for nearly all patterns found in the corpus of
JSON files from open-source projects on GitHub [Ba21]. To get rid of ˆ resp. $we define the
functions h and nh (short for hat and nohat) resp. d and nd (short for dollar and nodollar).
h and nh compute regular expressions which do not use a symbol for the beginning of the
word, h(𝛼) matches the same language as the part of 𝛼, where ˆ is used, nh(𝛼) the same
language as the part of 𝛼, where ˆ is not used. d and nd compute regular expressions which
do not use symbols for the beginning or end of the word, d(𝛽) matches the same language
as the part of 𝛽, where $ is used, nd(𝛽) the same language as the part of 𝛽, where $ is not
used. First we define a special predicate.

Definition 2.1 Let𝛼 be a regular expression in ECMA-262 syntax. The predicate nullable(𝛼)
is true if and only if the empty word is contained in the language defined by 𝛼.

Examples for nullable patterns are (^a$)*, (a|b?) or ^$ which only accepts the empty word.
Now we can define functions to compute the anchor and non-anchor parts of a pattern.

3 Idea, algorithm, and replacement rules by Dr. Dominik D. Freydenberger (not published).
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Tab. 1: Rules to compute the values h(𝛼), nh(𝛼), d(𝛼) and nd(𝛼) for a regular expression 𝛼 recursively.

𝛼 h(𝛼) nh(𝛼) d(𝛼) nd(𝛼)

𝛼 ∈ {(), @, #} ∪ CHAR # 𝛼 # 𝛼

ˆ () # # ˆ

$ # $ () #

𝛼1 | 𝛼2 h(𝛼1) | h(𝛼2) nh(𝛼1) | nh(𝛼2) d(𝛼1) | d(𝛼2) nd(𝛼1) | nd(𝛼2)
�̃�+ h(�̃�) · nh(�̃�)∗ nh(�̃�)+ nd(�̃�)∗ · d(�̃�) nd(�̃�)+
�̃�∗ h(�̃�) · nh(�̃�)∗ nh(�̃�)∗ nd(�̃�)∗ · d(�̃�) nd(�̃�)∗
�̃�? h(�̃�) nh(�̃�)? d(�̃�) nd(�̃�)?
𝛼1𝛼2 h(𝛼1) · nh(𝛼2) | hn𝛼1 (𝛼2) nh(𝛼1) · nh(𝛼2) dn𝛼2 (𝛼1) | nd(𝛼1) · d(𝛼2) nd(𝛼1) · nd(𝛼2)
�̃�{𝑚} h(�̃�{𝑚,𝑚} ) nh(�̃�{𝑚,𝑚} ) d(�̃�{𝑚,𝑚} ) nd(�̃�{𝑚,𝑚} )
�̃�{𝑚,𝑛} (𝑚 < 2, 𝑛 > 0) h(�̃�) · nh(�̃�){0,𝑛−1} nh(�̃�){𝑚,𝑛} nd(�̃�){0,𝑛−1} · d(�̃�) nd(�̃�){𝑚,𝑛}

�̃�{𝑚,} (𝑚 < 2) h(�̃�) · nh(�̃�)∗ nh(�̃�){𝑚,} nd(�̃�)∗ · d(�̃�) nd(�̃�){𝑚,}

�̃�{𝑚,𝑛} (𝑚 ≥ 2, 𝑛 > 0) h(�̃� · �̃� · �̃�{𝑚−2,𝑛−2} ) nh(�̃�){𝑚,𝑛} d(�̃�{𝑚−2,𝑛−2} · �̃� · �̃�) nd(�̃�){𝑚,𝑛}

�̃�{𝑚,} (𝑚 ≥ 2) h(�̃� · �̃� · �̃�{𝑚−2,} ) nh(�̃�){𝑚,} d(�̃�{𝑚−2,} · �̃� · �̃�) nd(�̃�){𝑚,}

Definition 2.2 Denote the set of all regular expressions by REGEXP and the set of all non-
anchor character symbols and classes by CHAR. Let 𝛼 be a regular expression in ECMA-262
syntax. Define the functions h, nh : REGEXP→ REGEXP as follows. Let �̃�, 𝛼1, 𝛼2 be regular
expressions in ECMA-262 syntax and hn𝛼1

(𝛼2) be h(𝛼2) if nullable(𝛼1) and # otherwise.
Compute h(𝛼) and nh(𝛼) by applying recursively the rules from Table 1. Analoguously, for
a regular expression 𝛽 in ECMA-262 syntax which does not use a symbol for the beginning of
the word define the functions d, nd : REGEXP→ REGEXP as follows. Let 𝛽, 𝛽1, 𝛽2 be regular
expressions in ECMA-262 syntax which does not use a symbol for the beginning of the
word and dn

𝛽2
(𝛽1) be d(𝛽1) if nullable(𝛽2) and # otherwise. Compute d(𝛽) and nd(𝛽) by

applying recursively the rules from Table 1.

The rules in Table 1 are complete for all possible patterns in ECMA-262 syntax not containing
word boundaries, lookahead or lookbehind since these features can match inside a pattern
without consuming a character. Finally, we can formulate the algorithm.

Algorithm 1 Algorithm to convert a regular expression from ECMA-262 to brics syntax.
Input: regular expression 𝛼 in ECMA-262 syntax without word boundaries, lookahead or lookbehind

1: 𝛽← h(𝛼) | @ · nh(𝛼) with h(𝛼) and nh(𝛼) computed using Definition 2.2.
2: 𝛾 ← d(𝛽) | nd(𝛽) · @ with d(𝛽) and nd(𝛽) computed using Definition 2.2.

Output: regular expression 𝛾 in brics syntax

Example 2.3 For 𝛼 = (ˆa$ | b)? in ECMA-262 syntax we apply Algorithm 1. First, we remove
ˆ by applying the rules from Table 1. We obtain

h(𝛼) = h((ˆa$ | b)?) = h(ˆa$ | b) = h(ˆa$) | h(b)︸︷︷︸
=#

= h(ˆ)︸︷︷︸
=()

· nh(a$)︸ ︷︷ ︸
=a$

| h(a$)︸︷︷︸
=#

= a$,

nh(𝛼) = nh((ˆa$ | b)?) = nh(ˆa$ | b)? = (nh(ˆa$) | nh(b))? = (# | b)? = b?
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since nh(ˆa$) = nh(ˆ) · nh(a$) = # · nh(a$) = #, ˆa is nullable and by using the shortcuts
h(�̃�) = # if �̃� does not contain a ˆ, # | �̃� = �̃� | # = �̃� and () · �̃� = �̃�. We get 𝛽 = a$ | @ · b?.
Then we remove $ analoguously by applying the rules from Table 1 and obtain

d(𝛽) = d(a$) | d(@ · b?) = d(a$) | # = d(a) | nd(a) · d($) = # | a · () = a,
nd(𝛽) = nd(a) · nd($) | nd(@) · nd(b)? = a · # | @ · b? = # | @ · b? = @ · b?

since $ is nullable and by using the shortcuts d(𝛽) = # if 𝛽 does not contain a $,
# | 𝛽 = 𝛽 | # = 𝛽 and 𝛽 · () = 𝛽. The last step gives us the result 𝛾 = a | @ · b? · @, which is a
regular expression in brics syntax that defines the same language as 𝛼 in ECMA-262 syntax.

3 Evaluation and Discussion

JSON Schema patterns do not only occur with a clause "pattern": regExp but also as a
pattern definition of a property name as mentioned in Section 2. Occurrences of both types are
considered in the evaluation together. The numbers are based on a dataset of schemas found
in open-source projects on GitHub [Ba21]. This corpus consists of 82,094 files. 17,747 of
these files contain at least one pattern. This is 21.62%, so more than one fifth. Hence the goal
to translate each JSON Schema pattern in an automaton-compatible syntax is relevant. After
collecting all these patterns and eliminating duplicates we obtained 3,232 unique patterns.
Our reproduction package is available at https://doi.org/10.5281/zenodo.7586341.

The implementation handles non- and named-capturing groups as capturing groups. In
Table 2 we consider the numbers for syntactically invalid patterns and patterns for which
we do not support a conversion. The former ones are 0.4% of the unique patterns and are
mostly due to unescaped slashes, which are not allowed in ECMA-262. The latter ones are
patterns containing word boundaries or lookaround, that is lookahead or lookbehind. These
kind of patterns occurs in 2.44% of the unique patterns. These are the only possible cases
for patterns which the algorithm cannot convert to brics syntax. For all the other ones,
which is over 97% of the unique patterns, the procedure is successful.

In Table 3 we consider numbers for these brics-manageable patterns, where over 84% of
them contain at least one anchor symbol, i.e. ˆ or $. However, in nearly all of these patterns
the anchors are not inside the regular expression, which means that ˆ resp. $ stands at the
beginning resp. end of the expression. Only 0.67% of the brics-manageable patterns have
anchors inside. If a pattern contains a non-nullable part before a starting or after an ending
marker this pattern is unsatisfiable, i.e. it accepts the empty language. Fortunately, such
patterns are scarce. Also nullable patterns, that are patterns which match the empty word
(see Definition 2.1), are rare, they amount to less than 6% of the unique patterns.

As we can see in the experimental results, there are less than 3% of the unique patterns for
which our approach fails. These are due to invalid patterns, word boundaries and lookaround.
However, these kinds of patterns are also not supported by the former approach in [Ha21].
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Tab. 2: Patterns extracted from the corpus.

Total %

Unique patterns 3,232 100.00
Invalid patterns 13 0.40
Not supported patterns 79 2.44
Manageable in brics 3,140 97.15

Tab. 3: Patterns manageable in brics.

Total %

Patterns with anchors 2,648 84.33
Anchors inside 21 0.67
Patterns without anchors 492 15.67
Nullable patterns (Def. 2.1) 183 5.83

4 Related Work

Our implementation is integrated in a tool which can generate witnesses for JSON Schema
documents [At22]. This tool can be used to check schema containment. An earlier approach
to containment checking (not based on witness generation) is presented in [Ha21] . It also
relies on an external automaton library, the Python greenery library 4, which also uses a
non-anchored syntax. Habib et al. unanchor the patterns from the schemas and unescape
the anchor symbols before using greenery especially for computing intersections of two
regular expressions. These steps are only executed on the string representation of the regular
expression, without parsing its structure. Thus, there are instances when the approach by
Habib et al. fails to preserve pattern semantics, e.g. for patterns containing anchors inside
and not at its beginning or end – different from our well-principled approach.

5 Conclusion

We have successfully integrated our syntax conversion in a tool for JSON Schema witness
generation. The experiments in [At22] reveal that the generation of automata from complex
patterns in JSON Schema can cause severe performance problems. This motivates a range
of follow-up research, for instance, caching of reoccurring patterns, or a lazy computation
of automata for the purpose of witness generation.

Acknowledgments. This article describes the results of a bachelor thesis project at the University of Passau,
supervised by Stefanie Scherzinger. I thank Dominik Freydenberger for suggesting the conversion algorithm.
I further thank the authors of [At22], specifically Lyes Attouche, Mohamed Amine-Baazizi, Dario Colazzo,
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