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WannaDB: Ad-hoc SQL Queries over Text Collections

Just tell it what you want, what you really, really want

Benjamin Hittasch!->:3 Jan-Micha Bodensohn,? Liane Vogel,-> Matthias Urban? and
Carsten Binnig?3

Abstract: In this paper, we propose a new system called WannaDB that allows users to interactively
perform structured explorations of text collections in an ad-hoc manner. Extracting structured data
from text is a classical problem where a plenitude of approaches and even industry-scale systems
already exist. However, these approaches lack in the ability to support the ad-hoc exploration of texts
using structured queries. The main idea of WannaDB is to include user interaction to support ad-hoc
SQL queries over text collections using a new two-phased approach. First, a superset of information
nuggets from the texts is extracted using existing extractors such as named entity recognizers. Then,
the extractions are interactively matched to a structured table definition as requested by the user based
on embeddings. In our evaluation, we show that WannaDB is thus able to extract structured data from
a broad range of (real-world) text collections in high quality without the need to design extraction
pipelines upfront.

Keywords: interactive text exploration; text to table; matching embeddings

1 Introduction

A question like “What were the days with a COVID-19 incidence rate higher than 750 in
Germany?” can be answered with a simple SQL query if the relevant information is present
in a database. Yet, in case there are only written (i.e., textual) reports available such as those
published by governmental organizations like the RKI in Germany;* the situation is much
more complex: answering such queries over collections of textual documents that each
contain only a part of the information needed requires that first the relevant attributes are
extracted from each document, before they are stored in a structured form (i.e., a spreadsheet
or a database table) in order to make them available for structured queries.

One could now argue that extracting structured data from text is a classical problem for
which there is a plethora of approaches and where even several industry-scale systems
already exist: for example, DeepDive [Sal6] that was acquired by Apple or System-T
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SELECT report_date WHERE incidence_rate > 500;

SELECT region, AVG(incidence_rate) GROUP BY region HAVING AVG(incidence_rate) > 500;

SELECT AVG(vaccinated_twice) WHERE report_date > 21-01-01 AND report_date < 21-02-01;

Fig. 1: Exemplary ad-hoc information needs phrased as SQL-like queries in WannaDB. Two classes of
ad-hoc queries are supported: Queries that extract facts from individual documents (e.g., first query)
as well as queries that involve aggregation and grouping (e.g., the latter two queries).

[Le20a] from IBM are such systems that have developed rather versatile tool suites to
extract structured facts from textual sources. However, these systems require a team of
highly-skilled engineers that compile extraction pipelines, which often includes training
particular machine learning models, and then populate a structured database from the given
text collection. And even more importantly, the resulting extraction pipelines are typically
static and can only be used to extract a pre-defined (i.e., fixed) set of attributes and tables
for a certain text collection. This prevents exploratory scenarios where users can ask ad-hoc
queries regardless of whether a pipeline has been set up to extract the attribute or not.

Hence, being able to ad-hoc execute SQL-like queries over a text collection without the
need to manually compose extraction pipelines would be a major step forward compared to
existing approaches for structured data extraction from text. Use cases with needs for such
ad-hoc structured querying of unstructured text can be found in various domains beyond the
example mentioned before, e.g., data scientists together with medical doctors looking for
new insights through medical reports or data journalists examining hundreds of documents
as part of their investigations. Structured queries provide a higher expressiveness (e.g.,
aggregation and filtering operations), and more rigorousness in the calculation of the results
compared to the usage of natural language queries in classical question answering systems.

Contributions. In this paper, we hence propose WannaDB, a system that can execute
SQL-like queries on text collections in an ad-hoc manner. Examples for queries that
WannaDB supports can be found in Figure 1. Overall, WannaDB supports two classes
of queries: (1) Ad-hoc Fact Queries: queries that extract facts from text documents to
construct table rows. This also involves applying filter predicates and projection operations,
as shown by the first query in Figure 1. (2) Ad-hoc Aggregate Queries: queries that in
addition involve aggregations and grouping over multiple documents as shown by the
two other queries in Figure 1, which come with additional challenges like named entity
disambiguation/cross-document co-reference resolution that we discuss later in this paper.
WannaDB can therefore directly produce tables stating information that is not explicitly
mentioned in the documents and hence not discoverable by pure extraction or search
approaches. To enable such ad-hoc SQL queries over a given text collection, WannaDB
implements a novel extraction and querying pipeline that builds on two key ideas:

The first key idea of WannaDB is that, different from existing approaches which aim to
extract information for a specific (i.e., fixed) information need from a given text collection,
WannaDB instead implements a holistic extraction approach that aims to extract a wide
spectrum of information from a given text collection (called information nuggets in the
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sequel). For this holistic extraction, WannaDB implements a framework approach and
relies on a set of different general-purpose extraction methods, such as approaches for
named-entity recognition. Moreover, during extraction, WannaDB computes embeddings
for all the information nuggets, taking several signals such as the textual mentions itself,
and the position in the text into account.

As a second key idea, to answer ad-hoc queries on top of the extracted information
nuggets, WannaDB implements a novel interactive matching approach that aims to map
the information nuggets to the information needs specified by the user in form of an SQL
query: embeddings of the extracted information nuggets together with the embeddings of
the query attributes are used to decide which information nuggets qualify for answering
the query. For this matching, WannaDB requests feedback from the user whether certain
information nuggets are the correct values for the required query attributes. The system
carefully selects these requests to minimize the amount of required feedback. The query
attributes can be of a much finer granularity than the labels of the extraction approaches
used in the first stage (e.g., airline instead of ORG) and WannaDB can even distinguish
between similar attributes with just a small semantic difference (e.g., the amounts of people
vaccinated once and twice).

While other approaches that can extract tables from text such as learned sequence-to-
sequence models [WZL22] often suffer from a phenomenon called hallucination (i.e., they
generate values that are not in the actual source document), our approach can guarantee
that the contents of the produced result tables always originate from the queried documents.
Moreover, compared to learned question answering approaches, WannaDB can perform
numerical reasoning on the data without the need to rely on the limited mathematical
abilities [He21] of a language model.

In order to evaluate the abilities of WannaDB, we conduct a wide range of experiments on
text collections from different domains ranging from aviation reports over daily COVID-19
situation reports to multiple text collections created from Wikipedia that cover different
categories (Nobel laureates, countries, and skyscrapers). We show that WannaDB not only
outperforms other baselines that can be used for ad-hoc query answering on text collections,
but is also competitive with approaches that are trained or refined on domain-specific data.
Moreover, our evaluation shows that typically only a few interactions per query attribute
are sufficient to answer a query over hundreds or thousands of source documents. Overall,
answering an SQL query over text documents with WannaDB (by providing minimal
interactive feedback) only takes a few minutes, compared to hours and hours of manually
extracting information or refining an extraction pipeline without WannaDB. Finally, to make
the results reproducible, we will make our source code and the data sets used for evaluation
available at https://1link.tuda.systems/wannadb.

Outline. Next, we describe the functions of WannaDB in an exemplary usage scenario,
before we explain the different components in Section 3. In Section 4, the algorithms behind
the interactive components are discussed in further depth, followed by a short overview of
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the current limitations in Section 5. We provide an evaluation of WannaDB in Section 6 and
an overview of existing and related work in Section 7, before we conclude in Section 8.

2 Exemplary Usage

In this exemplary usage scenario, we aim to show how WannaDB can be used to satisfy
an information need based on a text collection. Imagine, e.g., a data journalist who just
obtained a large collection of airline incident reports and is now looking for noticeable
events, like a high rate of incidents for a certain carrier or airport. They use WannaDB for
that purpose. The data journalist starts by loading the collection of text files into WannaDB
for processing and triggers the pre-processing of the files, a process that needs to be done
only a single time for each text collection.

Next, the data journalist enters an SQL-like query as a starting point for their exploration
(e.g., SELECT airline, airport, COUNT(*) GROUP BY airline, airport). As there is no
pre-existing table yet, the FROM-part of a typical SQL query can be omitted, simplifying
the query syntax. After entering the query, WannaDB presents a list of possible matches for
each required attribute (e.g., airline) found in texts of the collection, as shown in Figure 2.
Not all the found matches will be correct right away, therefore WannaDB relies on some user
input to adjust the results. The data journalist confirms a few of the correctly found matches,
corrects wrong matches by choosing the relevant extraction or marks if the required attribute
does not occur in a given text (see Figure 2). Meanwhile, WannaDB continuously updates
the list of all guessed matches during this interactive phase, leveraging the feedback. The
user interface allows to quickly identify entries that stand out and get an impression of the
quality already achieved. Once the data journalist is satisfied with the quality of the matches,
they continue with the next attribute of their query.

§ ASET - o x Bl AsET - o X

file Document Base Preprocessing Matching Statistics File Document Base Preprocessing Matching ~ Statistics
Matching Attribute ‘airline’: Matching Attribute ‘airline’:
Below you see a list of guessed matches for you to confirm or fix. Continue With Next Attribute On March 5, 2015, at 1102 eastern standard time, Delta Air Lines flight 1086, a

Boeing MD-88, N9@9DL, was landing on runway 13 at LaGuardia Airport (LGA), New
York, New York, when it departed the left side of the runway, contacted the

0.21 | flight was operated by Liberty Helicopters Inc. (Libe | v Q airport perimeter fence, and came to rest with the airplane’s nose on an
embankment next to Flushing Bay. The 2 pilots, 3 flight attendants, and 98 of
0.21 | ental perait issued by EINENEINNSINEINE——S |  Q the 127 passengers were not injured; the other 29 passengers received minor
injuries. The airplane was substantially damaged. Flight 1086 was a regularly
scheduled passenger flight from Hartsfield-Jackson Atlanta International
©.21 | 00, N41BE, operated by Aviation Charter, Inc., crashe | v Q Airport, Atlanta, Georgia, operating under the provisions of 14 Code of Federal
Regulations Part 121. An instrument flight rules flight plan had been filed.
0.2 | o Aero-Trans Corp (dba EEEHATAJASTORAEICATISAIER), 0 | v Q Instrument meteorological conditions prevailed at the time of the accident.
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Running RankingBasedMatcher. Running RankingBasedMatcher.

Fig. 2: Graphical user interface of WannaDB, more details can be found in our SIGMOD’22 demo
[HBB22]. Left: potential matches over and under the threshold are shown, the user is asked to either
confirm or fix them. Right: Inspect a document and fix by selecting the correct match.
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After all attributes are processed, WannaDB will execute the query on the resulting table. If
the query contains grouping operations, the data journalist might be asked again for some
interactive feedback (e.g., to confirm that Lufthansa and LH refer to the same airline, but
LHS does not). WannaDB will again try to transfer this feedback to other rows. In the end,
the data journalist will receive an answer to their query and can export the resulting table to
a spreadsheet, an SQLite table, or a Pandas Dataframe for further investigation. If they have
further queries to submit to WannaDB, the interactive matching process only needs to be
repeated for new attributes, as WannaDB leverages existing results from previous queries.

3 System Overview & Architecture

In this section, we describe the architecture of WannaDB. It consists of two stages: an
offline stage to extract information nuggets (i.e. short information-bearing text snippets),
followed by the interactive stage to answer the query by table extraction and if required
interactive filtering or grouping. The overall workflow is visualized in Figure 3. Here, we
give an overview of both stages and the relevant components of WannaDB. More details of
the table extraction as well as grouping and filtering, which are the main contributions of
WannaDB, are described in Section 4.

1) Offline Extraction: Extract all nuggets that might be relevant (once per document, independent of information need)
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—

2) Online Interactive Query Execution: Create and fill table to satisfy information need (repeat/refine as desired)

What are PETSETI with multiple » SELECT PEENENNY, COUNT(%) as c, WHERE > » A,
incidents in the [EISRINIEIN’ 2012-01-01 GROUP BY HAVING € > 1

I a) User: Express information need as SQL-like query ‘ | b) Target Structure Deduction ‘
Doc # airline m Doc # airline -
= c airline
2 Chicago 2 Hac .
» [ R W .
3 3 no match T SECEER
X ; (00 mateh) R e ]
a @ muripe a
rounds of
feedback
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Fig. 3: Architecture & exemplary usage: The offline extraction phase obtains information nuggets from
the documents. The online phase then infers the required structure from a query, matches between the
extracted information nuggets and the user’s schema, performs the grouping and executes the query.
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3.1 Stage 1: Offline Extraction

In the first stage we employ off-the-shelf information extractors to extract a superset of
potentially relevant information nuggets (e.g., named entities) from the given text collection.
This step is independent of user queries and can thus be executed offline to prepare the
text collection for ad-hoc exploration by the user. The extractors process the collection
document-by-document to generate the corresponding extractions. Clearly, a limiting factor
of WannaDB is which kinds of information nuggets can be extracted in the extraction stage,
since only this information can be used for the subsequent matching stage. As a default, we
use named entity recognizers from Stanza [Qi20] and spaCy [Ho20]. In general, WannaDB
can be used with any extractor that produces label-mention pairs; i.e. a textual mention of
an information nugget in the text (e.g., American Airlines) together with a natural language
descriptor representing its semantic type called label (e.g., Company). Moreover, additional
information about the extraction (e.g., its position in the document and the surrounding
sentence) is also stored and used for computing the embeddings, as we describe below.

After extraction, the information nuggets are pre-processed to derive their actual data values
(i.e., a canonical representation, e.g., for timestamps) from their mentions. For this we also
rely on state-of-the-art systems for normalization [Mal4]. The nuggets are then represented
based on the following signals: (1) label — the entity type determined by the information
extractor (e.g. Company); (2) mention — the textual representation of the entity in the text
(e.g., Lufthansa), (3) context — the sentence in which the mention appears, (4) position — the
position of the mention in the document. Each information nugget representation comprises
embeddings for the individual signals (1-4). We compute semantic representations for the
natural language signals using FastText [Mi18] (1), Sentence-BERT [RG19] (2) and BERT
[De19] (3) and normalize the position by dividing it by the document length.

3.2 Stage 2: Interactive Query Execution

At runtime, a user issues queries and interacts with the system. WannaDB infers the table
structure required to answer a query, and employs a novel interactive matching stage to map
the information nuggets extracted in the first stage to the required query attributes.

Interactive Table Extraction. The first step of the interactive query execution of WannaDB
is the interactive table extraction from the text documents. In this step, a table with
attributes is filled by WannaDB to answer a given user query. The required table structure
is automatically inferred from the user’s SQL query. WannaDB checks which attributes
are mentioned explicitly as attributes to return, and as part of aggregation operations, or
implicitly in filter predicates or group-by statements. Then, WannaDB starts to fill the table
with the derived schema by executing the interactive table extraction algorithm.

5We map the named entity recognizers’ labels like ORG to suitable natural language expressions according to the
descriptions in their specification.
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In the interactive table extraction, the user interacts with WannaDB in order to fill the
required attributes of the result table with the information nuggets extracted before. To find
matching nuggets, WannaDB first computes embeddings for the target attributes similar to
the ones computed for the information nuggets in the offline phase.

A classical approach to determine a mapping between information nuggets and attributes of
the user table would be to train a machine learning model in a supervised fashion to classify
to which attribute the extracted information nugget should be mapped to. However, learning
such a classification model would require a substantial set of labeled training data for each
attribute and thus prevent ad-hoc queries. Instead, our approach leverages embeddings to
quantify the intuitive semantic closeness between information nuggets and the attributes of
the user table. For the attributes of the target table, only the attribute names are available to
derive an embedding, while for the extracted nuggets we can make use of more information
as we described above.

WannaDB therefore employs a novel interactive matching strategy that incorporates user
feedback and operates in the joint embedding space of nuggets and target attributes. This
strategy works in an attribute-by-attribute fashion and collects user feedback (e.g., confirming
or correcting a possible match). WannaDB uses distances between possible and confirmed
matches to populate the remaining cells. This process is steered by carefully selecting
potential matches that are presented to the user for feedback to reach a high matching quality
with as little feedback as possible.

Interactive Filtering & Grouping. After the interactive table extraction step, WannaDB
executes the interactive filtering and grouping stage for answering a user query. Remember,
WannaDB has the aim to work on text collections from domains without pre-existing
resources like refined language models or custom knowledge bases. Grouping and filtering
the extracted table thus is challenging, since it is filled with mentions from the text directly,
hence applying these operations might lead to faulty query results if entities are not correctly
resolved: e.g., the table might contain entries such as Deutsche Lufthansa and German
Lufthansa Airline which both refer to the same entity. Applying GROUP BY or a WHERE directly
on such an extracted table would return multiple lines (i.e., one for each different mention
even though they refer to the same entity). WannaDB therefore again uses interaction to
perform those operations on the level of embeddings instead of string representations, as
will be described in detail in the next section.

4 Interactive Query Execution

WannaDB introduces novel embedding-based algorithms for interactive table extraction as
well as filtering and grouping. In this section, we describe these algorithms in further detail
(see Figure 4 for a pseudo-code representation).
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4.1 Interactive Table Extraction

In the interactive table extraction stage, WannaDB populates the attributes of the table one by
one. To fill the cells of a certain attribute, WannaDB aims to select one matching information
nugget from each of the documents. To do so, WannaDB associates each information nugget
with a cached distance that corresponds to the certainty with which it believes that the nugget
matches the attribute. For each document, WannaDB considers the information nugget
with the lowest cached distance as the document’s currently guessed match. Furthermore,
WannaDB uses a distance threshold for each attribute to decide when a cell should be left
empty instead. The details of how this threshold is calculated and interactively adapted are
explained in Section 4.2. The overall procedure of the table extraction is shown in Figure 4.

In the beginning, each nugget’s cached distance is initialized as the cosine distance between
the nugget’s label embedding (e.g., Organization) and the embedding of the attribute name
(e.g., Airline) (Figure 4, line 2-3). After initialization, the interactive feedback phase starts.
WannaDB presents a ranked list of documents with their currently guessed matches to the
user for feedback (see Figure 2) and will continuously update the list after every given
feedback. This allows the user to quickly identify (incorrect) entries that stand out and to
get an impression of the quality already achieved. The ranked list is centered around the
threshold and thus hopefully shows both correct guesses with a low certainty, and incorrect
guesses, where WannaDB would profit most from feedback.

The user can then provide feedback for any of these guesses (line 7): they may either
confirm the guess, select another information nugget from the document, or state that the
document does not contain a matching information nugget. In case their feedback results
in a confirmed match, this matching information nugget is used to update the cached
distances of all other remaining information nuggets (line 13-16). To compute the distance
between two information nuggets, WannaDB calculates the mean of the cosine distances
between their individual signal embeddings. The distance updates ensure that a nugget’s
cached distance is always the distance to the closest confirmed match. Considering distances
between information nuggets allows WannaDB to capitalize on more signals like the textual
mentions (e.g., American Airlines) of other matching information nuggets.

Next, WannaDB updates the documents’ currently guessed matches by selecting the
information nuggets with the lowest cached distances (line 21). Finally, WannaDB then
adjusts the threshold accordingly (see Section 4.2 for more details). Moreover, the user can
at any time decide to terminate the interactive feedback phase and continue with the next
attribute. All remaining documents’ cells without explicitly confirmed matches will then be
populated with their currently guessed matches (line 24-28) if there is at least one with a
distance that is low enough (i.e., below the threshold).
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41
42
43
44

45
46
47

for attribute in query.attributes: # Process each attribute separately
for nugget in all_nuggets:
nugget.distance = compute_distance(attribute, nugget) # Compute initial distances

while interactive_feedback_phase: # Interactively get user feedback
ranked_list = make_ranked_list(threshold, documents)
feedback = get_user_feedback(ranked_list)
match feedback:
# Positive feedback (confirmation or manually correction):
case ConfirmNugget(document, confirmed_nugget):
# Mark this particular cell as manual confirmed...
set_match(document, confirmed_nugget)
# ... and update distances for all nuggets based on user feedback
for nugget in all_nuggets:
new_distance = compute_distance(nugget, confirmed_nugget)
nugget.distance = min(new_distance, nugget.distance)
# Negative feedback:
case NoMatchInDocument (document):
# Direct effect only on the given document. ..
leave_empty(document)
update_guessed_matches(documents)
adjust_threshold(feedback) # ... but both feedback types can have effects indirectly
< through threshold adjustment on other document's rows, too

for document in documents: # Only consider values up to a given maximum distance
if current_guess(document).distance < threshold:
set_match(document, current_guess(document)) # compute final result table
else:
leave_empty(document)

def adjust_threshold(feedback): # Feedback can be further exploited in certain cases
match feedback:
case ConfirmNugget(document, confirmed_nugget):
if confirmed_nugget.distance > threshold:
increase_threshold(confirmed_nugget)
case NoMatchInDocument(document) :
if current_guess(document).distance < threshold:
decrease_threshold(document)

def decrease_threshold(document): # Consider fewer matches as valid (especially those
< above last marking as incorrect that are currently accepted nevertheless)

nuggets = ranked_list.between(threshold, document)

min_dist = min(n.distance for n in nuggets)

threshold = min(min_dist, threshold)

def increase_threshold(confirmed_nugget): # Consider more matches as valid (especially
— those below last confirmation that are currently discarded because of the threshold)
nuggets = ranked_list.between(confirmed_nugget, threshold)
max_dist = max(n.distance for n in nuggets)
threshold = max(max_dist, threshold)

Fig. 4: Pseudo-Code representation of our interactive algorithm for table extraction, including threshold
adjustment.
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4.2 Threshold Adjustment

WannaDB uses a threshold for two purposes: (a) to decide when it is better to leave a cell
empty than to use a very unlikely guess (mostly because the desired value is not mentioned
in the document) and (b) to select guesses to present to the user where feedback will have
as much effect as possible. This threshold is automatically tuned during the runtime of
WannaDB to fit the data at hand. Given the approximate query setting WannaDB is built
for, we decided to use a common threshold for all regions forming in the embedding space
instead of individually tuning it, to keep the number of interaction cycles low.

The adjustment of the threshold is shown in Figure 4 (line 30-47). The general idea is to
incorporate the additional knowledge gained from the user confirming a nugget even though
it was above the threshold or correcting an entry below the threshold. This feedback action
will only affect a certain nugget directly, but other similarly well fitting nuggets from other
documents might still be accepted or discarded wrongly because of the threshold, which is
therefore carefully adapted after feedback actions: If the user confirms a nugget from the
ranked list that is above the threshold, all nuggets between the threshold and this nugget
should be considered as a good guess. In the case that any of the nuggets is still above the
threshold after the calculation of the new distances, the threshold is adapted accordingly. In
contrast, if the user states that for a nugget with a distance below the threshold there is no
match in the document, the threshold is decreased to also exclude other matches that are
in the list above the nugget if necessary. The threshold is only adapted in these two cases,
where implicit hints about the quality assessment by the user can be incorporated.

4.3 Interactive Filtering & Grouping

In the following, we explain how interactive grouping is supported in WannaDB to tackle
the problem of different surface forms for the same entries. Filtering works similarly, but
we omit the details due to space limitations.

To resolve entities correctly, the interactive grouping algorithm is based on agglomerative
clustering using the distances between the information nugget embeddings for an attribute.
Entries with the same string representation are merged without interaction. For the remaining
ones, the different signals from the extraction phase are utilized. WannaDB presents all
distinct members of two clusters that should potentially be merged to the user and asks them
to confirm whether these all describe the same entity. If that is the case, the clusters are
merged and the distances are recalculated. To minimize the amount of necessary interactions
with the user, WannaDB does not always ask for the pair of clusters with the lowest distance,
but chooses a pair with a higher distance, using a step size that is adapted based on the last
interactions. If the user confirms the equivalence of the candidates, not only that pair but
also those with a substantially lower distances are merged. If the entries of the merging
candidates are marked as different, WannaDB continues to search for a better threshold for
the distance between clusters using a binary search pattern.



WannaDB: Ad-hoc SQL Queries over Text Collections 167

5 Current Limitations of WannaDB

In order to build a system that can quickly compute query results on various domains, we
introduce two limitations: First, WannaDB currently can only answer single-table queries on
top of document collections; i.e., we extract one table per document collection where each
row of the table corresponds to one document. However, this is not a severe limitation, since
the extracted table can be seen as the materialized result of a join. WannaDB will extract a
wide table (e.g., containing information about an incident itself but also the airlines and
airports involved)—but only with the attributes that are required for a given query.

Second, the results produced by WannaDB are always approximate. While WannaDB can
achieve a high F1-score for all attributes (as we will show below), query results might be
incomplete (i.e., values of attributes might be missing) or the extracted values might be
dirty (e.g., a group-by statement might result in two instead of one group due to a not fully
correct clustering). However, we believe that the query results of WannaDB are still of
high value to users, providing them with a trend and allowing them to decide if something
interesting is contained in the document collection in a short time.

6 Experimental Evaluation

In this evaluation, we aim to show the abilities of WannaDB on text collections from
different domains. We will demonstrate the end-to-end performance, compare our table
filling approach to non-interactive and learned models, and evaluate the effects of interaction,
and the scalability of WannaDB. To the best of our knowledge, there is no system working
like WannaDB yet. Therefore, we cannot compare our results end-to-end with existing
systems. As the whole task of running SQL queries over text collections is quite complex,
there is no simple baseline for comparison either. However, we evaluate the components of
our approach individually, and show that WannaDB performs better compared to various
baselines. We perform our evaluation on three data sets from very different domains. Each
of them consists of a document collection as well as a ground-truth extraction of structured
data that we can use to evaluate the results of executing ad-hoc queries with WannaDB.

Aviation. The first data set is based on aviation accident reports published by the United
States National Transportation Safety Board (NTSB)¢ Each report documents a severe
aviation accident and provides details like the prevailing circumstances, probable causes,
conclusions, and recommendations. For the experiments, we use the executive summaries
that the NTSB publishes with each report. As a ground-truth, we compiled a list of twelve
attributes based on frequently occurring facts from the summaries. We then manually created
annotations that capture where the summaries mention the attributes’ values. The final
data set comprises 100 annotated documents and a table which provides the ground-truth
structured data for all attributes.

Shttps://www.ntsb.gov/investigations/AccidentReports/Pages/Reports.aspx?mode=Aviation
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COVID19. The second data set is based on the German RKI’s daily reports outlining the
situation of the Covid-19 pandemic in Germany” We again used the summaries of the
full documents, which contain information like the number of new laboratory-confirmed
Covid-19 cases or the number of Covid-19 patients in intensive care. We compiled a list of
seven all-numeric attributes, which is in particular challenging compared to string-valued
attributes, since these are harder to separate into different attributes in the embedding space.
As a ground-truth for the experiments, we manually annotated the occurrences of all these
seven attributes again in 100 reports.

T-REx: Countries, Nobel & Skyscrapers. In addition to the data sets before that we
explicitly created for evaluating WannaDB, we adapted the T-REx data set [El118] that was
also used in other papers. The original data set consists of 11 million Wikidata triples
aligned with 3.09 million Wikipedia abstracts. We extracted three subsets based on article
categories from different domains: Countries consists of 187 documents with three annotated
attributes, Nobel challenges to extract four attributes (date of birth and death, field of work
and country) for 209 Nobel Prize laureates, and Skyscrapers is by far the largest data set
with 2683 documents containing annotations for three attributes. All these data sets are quite
sparse, since most of the time only a subset of the attributes is contained in a document.
Therefore, this data set is valuable to test how well WannaDB can work when information
in documents is missing.

Metrics. As a main metric, we report the F1 score in most experiments (values between
0 and 1, higher is better) as an aggregated value that incorporates both the precision (i.e.,
the correctness of the table cell values) of our approach and its recall (i.e., the extent to
which table cells are filled as expected). The F1 scores we report are calculated based on
the ground truth and predictions in the filled tables. We thereby consider cells (i.e., an
attribute value) as true positives when they are correctly filled with information from the
text corresponding to that row, and as true negatives when they are correctly left empty,
in case the required information is not present in the corresponding text. False positive
predictions occur, when a cell is filled incorrectly. False negatives occur when a cell is left
empty that should have been filled with data from the text, and also for incorrectly filled
cells, as the correct nugget has not been found.

6.1 Exp. 1 - End-to-end Queries

To provide an indication of how WannaDB works end-to-end, we perform a qualitative
analysis on queries involving aggregation and grouping over multiple documents before we
later-on show quantitative results for WannaDB. For the experiments, we assume that a user
always provides correct feedback for WannaDB to execute the matching of extractions to
query attributes. However, we do not expect optimal feedback, i.e., the simulated feedback
actions are not chosen in a way to maximize speed of convergence. We report the results after

"https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
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using 20 simulated user interactions (i.e., 20 times confirming an extraction or choosing an
alternative one as a match for a query attribute). We discuss the interaction effort that is
needed for WannaDB to perform extractions in a separate experiment.

Figure 5 shows the first five rows of the query results for two aggregation queries executed
on the T-REx Nobel and the T-REx Countries data sets. Additionally, precision and recall, as
well as a numeric score of the correctness of the clusters, can be seen. While WannaDB
delivered the correct values for the group-by operation, the aggregation (COUNT) deviates
slightly from the ground-truth. The reason is that for some documents, WannaDB could
not extract the requested information. As such, the results of WannaDB can be seen as
an approximation of the true query result that can be used for quickly gaining (initial)
insights into text collections. Moreover, it is important to note that existing extraction
baselines—that in contrast to WannaDB do not support ad-hoc queries—also do not provide
perfect extractions (as we show in the following experiments).

AREREIEIENER | country  count (correct) T-REx country: IESEERERE count (correct)
H3lZad country American 88 (84) SELECT ,| Africa 33 (34)
o soier 9 10 o s [ewope 19 20
SORT BY count Swiss 5(4) SORT BY count Asia 12 (74)

p: 1.0000 |Japan 3 p: 0.7500 | South America 11 (73)

R: 0.5714 Germany 2(3) R: 1.0000 North America 4 (5)

MJI:  0.4775 MJI:  0.5004

Fig. 5: End-to-end results for two queries executed on T-REx data sets. The tables show the first five
rows of the resulting table (one attribute column filled by WannaDB plus aggregation results). The
bracketed values indicate the ground truth values. Additionally, precision (P) and recall (R) computed
at cluster level, and mean Jaccard Index (MJI) averaged over all clusters are reported.

6.2 Exp. 2 — Interactive Table Extraction

In the second experiment, we quantitatively evaluate how well WannaDB can fill a table
specified by a user’s query with information from the texts. For this, we focus on the quality
of the interactive table extraction, which is the most important step for WannaDB to provide
high-quality query results; i.e., if the table extraction is not able to provide high accuracy,
grouping and filtering will also not be able to provide high accuracy. For showing the
quality of WannaDB, we run the experiments in this section on all three data sets (Aviation,
COVID19 and T-REx).

Baselines. To put the results of WannaDB into perspective, we compare it to two baselines
based on BART [Le20b]. BART is a state-of-the-art pre-trained transformer model, with
a high capacity to learn text-based tasks with minimal overhead of fine-tuning. Its robust
architecture outperformed older transformers, especially on tasks like question answering.
We use the openly available bart-large model from the Huggingface [Wo19] library and
formulate information extraction for individual query attributes as a sequence-to-sequence
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Fig. 6: Text-to-Table Results

task (i.e., the input is a text document and the output is the structured data extracted from
the text). For fine-tuning BART for the information extraction task on a particular data set
(i.e., transforming a text into a table) we use the following procedure: We split each data set
into 75% that we use as train set for fine-tuning, 15% as validation set and 10% as a holdout
test set. We then fine-tune one BART model on each data set for 50 epochs with a learning
rate of le — 5 and batch size of 2, which yielded the best performance in our experiments.
Moreover, we select the best checkpoint from the 50 epochs based on the validation set
for evaluation. Important to note here is that the resulting fine-tuned BART models are an
upper baseline for WannaDB, as they are trained supervised on the annotated data and all
possible query attributes; i.e., with this baseline we do not test the ad-hoc scenario that we
envision for WannaDB, but instead assume that all query attributes are known in advance.

For comparing WannaDB to a baseline that supports ad-hoc queries on a new (unseen) text
collection, we use a second variant that is also based on BART but not pre-trained on the
particular data set and query attributes. For this baseline, we instead use a BART model®
that is already fine-tuned for extracting structured information from the SQuAD 2.0 data
set [RJL18]2° For the experiment, we use this fine-tuned model on an unseen data set and
extract attributes that the model has not seen during fine-tuning.

WannaDB vs. Baselines. The results of WannaDB in comparison with the two BART
models are shown in Figure 6a. For WannaDB, we report the median over 20 randomized
runs, and again use 20 simulated user interactions per attribute. As baselines, we use the
two variants of BART discussed before.® BART models fine-tuned per data set (red bars)

8Used Checkpoint: phiyodr/bart-large-finetuned-squad?2 from Huggingface [Wo19]

9In particular the fine-tuning task is QA on text collections which can be used to extract query attributes.

0The results of WannaDB and the second BART model that is used out-of-the-box are calculated on the whole
data sets, whereas the results of the first BART model that is fine-tuned for the given data set are computed only
on the 10% holdout test sets.
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are able to achieve high F1 scores on the data and query attributes they were trained on,
outperforming WannaDB on all data sets. Nevertheless, this approach is relying on the
availability of annotated training data, which prevents ad-hoc queries. In comparison to the
BART model that is used without fine-tuning on a given data set and set of query attributes
(yellow bar), WannaDB achieves substantially better results. Especially for the Aviation and
COVID19 data sets, WannaDB clearly outperforms this BART baseline. On the T-REx data
sets, WannaDB provides competitive or better performance depending on the subset of data.
We assume that BART’s performance on the T-REx data is influenced by the fact that both
the SQuAD data set it was fine-tuned on and the T-REx data set are based on Wikipedia.

Generalization of BART. As we have seen, while fine-tuning a BART model per data
set yields the best performance, the BART model that is not fine-tuned for a data set
provides inferior performance up to a point that it cannot extract any attributes correctly.
To understand the generalization capabilities of BART in more depth and see if this is a
systematic problem of BART, we now systematically use BART on data sets it has not been
fine-tuned for. To be more precise, Figure 6b shows the results of two fine-tuned BART
models: one fine-tuned on the Aviation data set and then used on the 7-REx Countries
data set and another model that we used vice versa; i.e., we applied both of them to the
respective other data set, for which they have not been fine-tuned. The model fine-tuned on
the Aviation data (reaching an F1 score of 91.95% tested in-domain on the Aviation data)
only achieves 21.23% when tested on the 7-REx Countries data set. At the same time, the
model fine-tuned on the 7-REx Countries data set (reaching an F1 score of 0.6633 on the
in-domain test set) fails completely for extracting information correctly from the unseen
aviation data domain with an F1-score of 0.0. This shows that a fine-tuned BART model
is a valid approach to information extraction when annotated data is available and a fixed
set of attributes is queried, but the resulting models are not able to generalize ad-hoc to
other domains. In contrast, the results of WannaDB show that it can generalize well across
data sets even without any particular training per data set and that the interactive approach
provides an advantage over using generic embeddings or transformers directly.

Detailed Analysis of WannaDB. As a last point, we now zoom into the performance of
WannaDB and analyze the results for all data sets on a per-attribute level to show that
WannaDB can provide stable high performance and not just high performance for some
query attributes. We used a combination of two different named entity recognizers! Stanza
[Qi20] and SpaCy'? [Ho20] followed by our interactive matching approach.

Figure 7 shows that WannaDB can provide high accuracy and recall (measured by the
combining F1 score, blue bars, right axis) for a wide spectrum of attributes from the three
different data sets used in our evaluation. However, for some attributes the table is filled
with a much lower quality than for others or not at all (e.g., for weather conditions). One

UWannaDB allows using multiple extractors at the same time, even if they produce overlapping nuggets. As
default configuration for WannaDB and our experiments, we employ a combination of two robust general
purpose extractors that are designed to work for a broad variety of domains. However, any other (combination of)
extractors could be used in WannaDB as well.

2Using the en_core_web_lg model
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reason can be that the currently employed information extractors are not able to extract the
necessary information nuggets from the text (yellow bars). In particular, aircraft_damage
and weather_condition are examples, where not only a large heterogeneity of mentions can
be found but also very domain-specific terminology is used. Another reason for low table
filling quality can be that the attributes occur in only a small fraction of the documents, as
in the case of the attribute owned_by (which only occurs in 6% of the documents).
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Fig. 7: = Fraction of values that could be extracted successfully and m table filling results per attribute
of the Aviation, COVID19 and T-REXx data sets (in this order). WannaDB produces high scores for the
majority of attributes, more than half are 0.7 or above.

In conclusion, WannaDB has the advantage over fine-tuned BART models, that it neither
requires annotated training data, nor several hours of training time in order to work on
unseen text collections. Furthermore, it does not suffer from the problem of hallucination
[Ma20] that transformer-like models regularly experience, since they aim to also generate
values for attributes even if no information nugget is present in the text. WannaDB instead
generates an empty value in that case.

6.3 Exp. 3 - Effects of Interaction

In the previous experiments, we assumed a fixed amount of user interaction. In the third part
of our evaluation, we instead investigate how the amount of interactive feedback given affects
the table filling performance of WannaDB. We therefore simulate the interactive matching
process with different interaction limits (i.e., the number of interactions per extracted query
attribute). The resulting F1 scores can be seen in Figure 8.
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As we can see, for some attributes, WannaDB achieves very high F1 scores with only
one interaction with the user (e.g., for event date or aircraft registration number in the
Aviation data set). These are attributes where the entity type of the extracted information
nugget is very similar to the attribute name or the pattern of the extracted information
nugget is rather unique. For example, the extraction has the named entity tag DATE which
is similar to event date. For other attributes though, the performance of WannaDB strongly
depends on the amount of interactive feedback. However, important is that WannaDB can
typically provide high quality with only a few interactions. For most attributes, the first
5 — 10 interactions massively improve the Fl-score to achieve gains of up to 0.5. This
overall confirms the interactive matching procedures we presented in Section 4 and the
algorithm to select the right threshold. Yet, as we can additionally see, for a few attributes
(e.g., weather condition), even many interactions cannot further improve the F1 scores. As
we showed in the last experiment, the reason is that none of the extractors used in WannaDB
can provide the information nugget for this attribute. Thus, as a future direction we want to
combine WannaDB with a much broader set of existing extraction approaches beyond the
named entity recognizers which we currently use, such as approaches for open information
extraction.

6.4 Exp. 4 — Scalability

In our final experiment, we aim to assess the scalability of WannaDB to large text collections.
Since WannaDB is an interactive system, the response times experienced by users are the
most important performance metric. Across all used data sets, we measure that WannaDB
takes on average 0.43 seconds to process a single user interaction!? This latency includes all
computations between two user interactions; i.e., updating the cached distances and guessed
matches as well as presenting the next set of candidate matches to the user for feedback. In
general, we find that the interaction latency scales linearly with the number of nuggets. To
measure the offline extraction phase, which has to be executed only once per text collection,
we report the runtime on our largest data set 7-REx Skyscrapers, which comprises 2, 683
documents. Running our default extraction phase takes about 48 minutes and produces
102,467 nuggets. Comparing runtimes across data sets, we again find that the extraction
runtime scales linearly with the number of generated nuggets.

In summary, it can be seen that WannaDB can scale to extensive text collections with
thousands of documents and more than 100, 000 information nuggets by finishing the offline
phase in a reasonable time and providing response times that allow for an interactive usage
of the system [LH14].

3We executed this and all other of our experiments on a consumer desktop machine (CPU: AMD Ryzen 9 3900X;
RAM: 32GB @3000MHz; GPU: NVIDIA GeForce RTX 2070 SUPER with 8GB VRAM).
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Fig. 8: F1 scores of WannaDB for the different attributes of the Aviation, COVID19 and T-REx data
sets for different amounts of feedback iterations per attribute (1-40). For most attributes, already a
small amount of interactions drastically improves the quality, and more interactions lead to continuous
improvements.

7 Related Work

Running SQL queries on text collections is a new task, and to the best of our knowledge,
there is no other system yet working in the same way as WannaDB. However, some parts of
the task resemble existing tasks and for some components of our approach there is previous
work. Therefore, in this section, we give an overview of the related work of different areas,
including knowledge base population and schema matching based on embeddings.

Information Extraction Systems. Existing approaches to answer queries over text collec-
tions heavily rely on manual labor, requiring users either to read through vast amounts of
texts and extract relevant information manually, or to build specific extraction pipelines.
One category of information extraction systems focuses on the task of knowledge base
population, where a graph-structured knowledge base is constructed or expanded based
on knowledge from natural language texts. Extractive approaches like DeepDive [Sal6],
SystemT [Ch10], DefIE [BTN15], and QKBFly [Ng17] build upon (open) information
extractors like ClausIE [CG13] and also perform the adaption, cleaning, and combination
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stages of the knowledge base building process. Most of these approaches require high manual
efforts to design extraction pipelines for each knowledge base and domain specifically.
Google Squared could be used to create fact-tables similar to the ones we propose from
web contents, but was unfortunately discontinued without publications about the underlying
techniques. Closest to our work are recent approaches for query-driven on-the-fly knowledge
base construction, such as QKBFly. Yet, QKBFly extracts general subject-predicate-object
triples and does not populate a user-defined table as WannaDB does. The vision of INODE
[Am21] is to provide an end-to-end data exploration system that is also able to include
information from natural language texts. For this task, the knowledge base population
approach LILLIE [Sm22] extracts triples from text domain-independently. However, the
system has not been thoroughly evaluated for generalization to unseen domains. Recent
approaches use transformer models to tackle information extraction tasks like relation
extraction [EU21, CN21, Ng20] in an end-to-end fashion to avoid the errors accumulating
in pipeline-based approaches. However, transformer-based methods are costly to train and
suffer from issues like hallucination [Ma20]. A more explainable approach to information
extraction is introduced by [Ko22, Re21] with a framework for learning text classifiers with
a human-in-the-loop. Recently, [Sa22] introduced an interactive system that allows users to
specify templates that are then used to perform zero-shot information extraction.

Text-To-Table. The idea of automatically transforming a text into a table was also approached
by [WZL22] as text-to-table task, which inversely tackles the well studied table-to-text
problem. Yet, their work is not directly comparable, since they assume that each text fills
one or more entire tables, while we assume that a text collection fills one table in which
each text corresponds to a row.

Template Filling & Named Entity Recognition. The goal of slot or template filling is
similar to our objective [GS96], yet in contrast to our approach, most template filling
approaches are specifically crafted for a fixed set of slots. A common approach to extract
a fixed set of attributes from a text is to learn a named entity recognizer specifically for
the desired entity types (e.g., [SJ19]). Named entity recognizers extract a set of entity
types like organizations, locations, or products from natural language texts. However,
the training requires a substantial amount of annotated data, and the learned system will
not generalize to entity types not present in the training data. Some approaches (e.g.,
[Ch15, Wel9, Kh17]) attempt to avoid this problem by using active learning, which allows
the learning algorithm to query the user, for example by selecting training instances that
the user then labels by hand. Another strategy is distantly-supervised or weakly-supervised
named entity recognition (e.g., [Fr17, Li20]). In contrast to our system, these approaches
train named entity recognizers specifically for the desired set of entity types, whereas we
use the output of conventional named entity recognizers to populate the user-provided
attributes. Together with the interactive matching, this allows WannaDB to generalize to
unseen domains without the costly training of domain-specific named entity recognizers.

Other Matching Tasks. Approaches for schema matching (e.g., [Hi20, He20]), are related
to WannaDB, too, since we frame the mapping between the information extractors’ output



176 Benjamin Hittasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, Carsten
Binnig

and the user-provided list of attributes as a matching problem, but try to find correspondences
between attributes and possible values, and not between columns or even full tables. Another
recent approach focuses on matching texts to structured data, in particular also matching
texts to table rows [ASP21]. Yet, this task differs from the matching task in WannaDB, as it
assumes the tables are given, whereas in WannaDB a table is filled through the matching.

Entity Disambiguation & Cross Document Co-Reference Resolution. The surface form
of an entity in a text is often not sufficient to uniquely identify it. Yet, knowing whether
two mentions of the same type describe the same entity is relevant for correct grouping in
our case, but also existing tasks like entity linking/knowledge base alignment. For the latter
there are three main challenges (see [Dr10]): name variations (e.g., different mention forms,
abbreviations, alternate spellings, and aliases), entity ambiguity (same written form for
different entities), and absence (i.e., the text mentions a previously unknown entity). The last
one is not relevant for our use-case, since we do not rely on a given KB but build tables only
based on the current text collection. We can concentrate on the problem of ambiguity, i.e.,
decide, whether two nuggets that were matched as different rows of the same attribute are in
fact the same or represent different concepts. The field of computing equivalence classes
of textual mentions for the same entity is called cross-document co-reference resolution
(CCR). It was, e.g., tackled by [DW15, KCP18, Ca21], but these existing approaches often
concentrate only on entities from certain domains or of certain types (like events).

Prior Results of WannaDB. A first version of the matching component of WannaDB
including an initial evaluation on two real-world data sets was published at [HBB21]. In
this paper, we pick up the vision of the whole application cycle presented at [Ha21]. As
such, we present the integration of the table extraction procedure of WannaDB into a
full system. Moreover, compared to the original submission, we also developed a new
interactive matching procedure where we leverage the human ability to quickly find patterns
by presenting multiple guessed matches at once, which allows users to quickly correct wrong
matches. Multiple ways to give feedback (confirm, fix, or mark that there is no match in the
document) further enhance quality and flexibility of matching. A demo of the interactive
GUI for this matching process was presented at [HBB22].

8 Conclusions

In this paper, we presented WannaDB, a novel tool to explore the contents of unstructured
data (text) using SQL-like queries in an ad-hoc fashion and without the need to manually
design extraction pipelines upfront. It builds on embeddings and a novel interactive query
execution strategy and consists of components to infer the required table structure from
the query, extract and organize the required information from the text, group results on the
embedding level and execute the query. Our evaluation shows that the individual components
of WannaDB can achieve similar performance to models trained on large data sets for partial
or related tasks, and gives an impression of the end-to-end quality that makes WannaDB
suitable for many exploratory use cases.
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