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Abstract: The advent of hybrid CPU-GPU architectures has significantly increased
the number of raw FLOP/s. However, it is not obvious how these can be put to use
when processing Big Data. In this paper, we present an approach for designing Big
Data simulations for hybrid architectures, which is based on a hierarchal application
of design patterns in parallel programming. We provide a detailed account of the
step by step approach that results in efficient utilization of processing and memory
resources, while simultaneously improving developer productivity. Finally, we present
our vision of automated tools that will further simplify the development of efficient
parallel implementations for Big Data processing on hybrid architectures.

1 Introduction

Recent advances in experimental and and computational natural sciences have led to an

unprecedented increase in data processing requirements. In domains such as biology, new

insights into processes such as regulation of gene transcription, metabolism, signal trans-

duction, and protein-protein interaction, have led to new models that require more complex

computations on larger datasets for realistic simulations. Similarly, in geophysics, the in-

creasing amounts of seismic data being captured due to a large number of sensors placed

in seismically active regions; and a multitude of innovations in other fields have resulted

in the generation of very large datasets that are used by simulations in order to produce

accurate predictions. Such simulations not only require powerful processing resources,

but demand novel and effective ways of managing very large amounts of data.

Algorithms used in such simulations can be broadly categorized based on whether they

exhibit regular or irregular data access patterns. This paper focuses solely on algorithms

with regular data access patterns that result in decomposable input domains. The current

generation of hardware architectures provides performance high enough to satisfy compute

requirements for such simulations. However, processing very large data sets does not just
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require compute performance. It requires that the simulations be able to efficiently manage

large amounts of data subject to the limited main memory and cache sizes. This situation

is further complicated in hybrid architectures where the system consists of both CPUs and

accelerators such as GPUs, whose massively parallel architecture is particularly suited to

data parallel applications. In such cases, each processor type has an associated memory

hierarchy different from the other. Even though such hybrid architectures contribute a high

number of FLOP/s, managing high data volumes becomes quite challenging.

In this paper we propose an approach to effectively manage the processing of very large

data sets on shared-memory hybrid architectures with CPUs and GPUs. We argue that a

hierarchical and methodical application of patterns for parallel programming [KMMS10]

can be used to maximize system performance, and provide a means to efficiently manage

very large data sets. Moreover, we present an approach – complimented by our vision –

that helps improve developer productivity; thereby reducing the overall cost of develop-

ment for hybrid architectures.

The paper is organized as follows: Section 2 describes the pattern-based design approach

for efficient resource utilization in hybrid architectures. Each subsection elaborates on a

different level of hierarchy and how it can be applied. This is followed by a discussion

on the applicability and limitations of the approach in Section 3. Section 4 describes the

novel Architecture-based Algorithm Decomposition Approach proposed in this paper. This

is followed by a discussion on how tools can assist in increasing developer productivity

by automatically discerning parallel design patterns and exposing potential parallelism in

serial code.

Note: Throughout the rest of the document, we use the term Host to refer to a combination

of one or more CPUs available in a hybrid system. We use the term Device to refer to the

GPU available in the same system.

2 Patterns, Productivity and Efficient Hybrid-Resource Utilization

In this section we describe a design approach based on hierarchical application of patterns

for parallel programming to data parallel applications with regular data access patterns.

We hypothesize that not only can our approach be used to improve simulation performance

on a hybrid architecture, it also provides the foundation for developing frameworks and

automation tools that can improve developer productivity. We call this method the Efficient

Hybrid-Resource Utilization (EHRU) approach. This approach, as described in this paper,

is based on previous work [KNTP13, KFP14].

2.1 Simulation as Pipeline

Let us consider a typical simulation scenario consisting of the following three steps:

1. Input data is read from file
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2. Input data is processed using one or more computational kernels

3. Output is written to file

Figure 1: A hypothetical simulation depicted as pipeline.

A pictorial representation of the above mentioned steps is provided in Figure 1. In addition

to the two file I/O stages, the simulation presented in Figure 1 comprises of two different

computational kernels; each constituting a pipeline stage. Let us assume that the input

dataset is very large, and only a fraction of the dataset can fit into main memory. In this

case, the dataset can be partitioned into several small chunks, where each chunk can easily

fit into main memory. Then, the first stage of the pipeline reads one chunk at a time and

passes it on to the next stage. Each stage processes output from the previous stage and

passes its output to the next stage, until the final result is written to file. This mechanism

makes it possible to process a dataset too large to fit into the main memory.

It is worthwhile mentioning that a single chunk that completely fills the memory essentially

serializes the pipeline. Therefore, determining the appropriate size of the input data chunk

requires analyzing various properties of the different stages of the pipeline. We refer the

reader to [KFP14] for a detailed account of optimizing pipeline performance.

The concept of parallel pipelining [DFF+02] is well established in parallel computing. Our

intention here is not introduce pipelining as a contribution, but rather to lay the foundation

for the use of the pipeline pattern [KMMS10, MRR12] for efficient big data processing on

hybrid architectures.

2.2 Data Partitioning and Processing on a Hybrid Architecture

Representing the entire simulation as a pipeline is considered as the top-level pattern in

our proposed hierarchy of patterns. The file I/O stages remain at this level of hierarchy.
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The processing stages, however, can be further decomposed into two parts, i.e., 1) Host-

only processing, and 2) Hybrid Pipeline. In order to distribute the input data chunk over

the Host-only processing implementation and the Hybrid Pipeline implementation, the

geometric decomposition [KMMS10] pattern and/or the partition [MRR12] pattern can

be used. Once the data is partitioned, Host-only processing and Hybrid pipeline work

as two parallel forks. The number of Host threads assigned to each fork depends on the

nature of the algorithm and the resulting performance considerations. Once both forks

have finished processing the assigned chunks of data, a join followed by a reduction can

be used to consolidate the separately computed results. Therefore, at this level, in addition

to geometric decomposition and partition, fork/join [MRR12] and reduction [MRR12]

patterns are utilized. This constitutes level 2 of the pattern hierarchy.

Figure 2: Pattern hierarchy.

2.3 Host-only Processing

The total number of available Host threads are divided into two groups; one for Host-

only processing and the other for Hybrid pipeline. Host-only processing is based on

an implementation that combines all the processing stages of the outer pipeline into a

single Host-only execution sequence. This implementation can then use the loop paral-

lelism [KMMS10] pattern and/or the fork/join pattern to process its share of data in paral-

lel. High-level parallel programming models such as OpenMP [Boa11], Intel TBB [Rei07],

Cilk [Rob13], OpenCL [Gro11] etc., can be used by the developer to easily implement

these patterns. Host-only processing and Hybrid pipeline constitute level 3 of the pattern

hierarchy.
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2.4 Hybrid Pipeline

We use the term Hybrid Pipeline for an implementation of the parallel pipeline pattern

where different stages of the pipeline are executed on different processor types, e.g., some

on the Host and others on the Device. For an outer pipeline similar to the one depicted

in Figure 1, where the processing algorithm comprises two stages, the two stages can be

characterized as the producer-consumer dynamic. Such a produce-consumer dynamic can

be implemented using a 3-stage hybrid pipeline, as shown in Figure 3.

Figure 3: A 3-stage hybrid parallel pipeline.

Let us assume that the first processing stage is the most compute intensive stage of the

two, and therefore constitutes the part of the simulation where most of the processing time

is spent. Then, in order to improve the performance of this stage, the massively parallel

nature of the Device can be exploited by implementing this stage as a Device kernel.

Results from the Device kernel can then be fed into the next stage which comprises of a

less compute intensive post-processing algorithm. Since the computational requirements

for this stage are not as high, sufficient performance can be gained by using a Host-only

parallel implementation. Here, we assume that the time required to process this stage as

a Host-only parallel implementation is less than the time required to process the Device

kernel stage.

Since the two above mentioned stages execute on different processor types, results from

the first stage must be copied from the Device memory to the Host memory. Such transfer

of memory can be time consuming, and therefore must be overlapped with computation.

Consequently, it is important to introduce a third stage between the two stages which

implements the asynchronous transfer of results from Device memory to the Host memory.

All the above mentioned stages, when combined, form a 3-stage hybrid pipeline. The

advantages of such a hybrid pipeline are two-fold. Assuming that the post-processing stage

consumes less time than the Device stage, the time taken by the post-processing stage is

outweighed by the Device stage for most of the pipeline iterations. For a large enough

dataset, the post-processing stage works at almost no cost in terms of time. Moreover,

since the post-processing stage is implemented on the Host using high level programming

models, the development effort is much lower. Therefore, the hybrid pipeline provides

efficient processing and high productivity. A generic framework for hybrid pipelining was
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Table 1: Lists of suitable and unsuitable dwarfs.

Suitable Dwarfs Unsuitable Dwarfs

Dense Linear Algebra Sparse Linear Algebra

Structured Grids Unstructured Grids

Monte Carlo Graph Traversal

presented in [KFP14].

3 Feasibility and Limitations of the EHRU Approach

As mentioned in Section 1, our approach primarily focuses on data parallel applications

with regular access patterns. In this section, we show that there are several broad cat-

egories of algorithms that fit these criteria. Moreover, we also highlight categories of

algorithms for which our approach is not suitable. Both these categories are based on

Berkeley Dwarfs [ABC+06]. Table 1 provides a comparative listing of dwarfs for which

EHRU approach is suitable and unsuitable.

3.1 Applications for which the EHRU Approach is Suitable

The most important parameter that contributes to the applicability of the EHRU approach

is decomposability of data. If the input data can be easily decomposed into several chunks

that can be processed using synchronization-free parallelism, the EHRU approach can be

used, regardless of the access patterns within the chunks.

Linear Algebra operations on dense vectors and matrices constitute one category of al-

gorithms for which the EHRU approach is suitable. E.g., two very large dense matrices

can be multiplied block-wise [Str03], without requiring communication between different

processes that operate on different blocks. In certain simulations, Finite Element [ZM71]

or Boundary Element [BB81] methods are used, where the same computations are ap-

plied to most elements in a finite grid. A structured grid can often be easily divided into

many different parts that can be processed in parallel without the need for synchronization.

Final results in such applications are computed by applying a post-processing reduction

operation.

3.2 Applications for which the EHRU Approach is not Suitable

Many Big Data applications operate on input datasets which cannot be easily partitioned

into chunks that can be processed independently. One category of such problems are those

that operate on graph structures. Graph partitioning in itself is a hard problem [BMS+13].
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Therefore, for simulations involving graph structures, it is not often possible to partition

the input datasets in a way that chunks can be processed in a pipeline. This is because an

element in one chunk might require access to elements spread over several other chunks.

Another possible negative case is where the simulation generates huge amounts of data

at runtime, and data generated at each iteration is used as input to the next iteration.

Therefore, the memory requirements increase at runtime. One example from the domain

of computational geometry is the problem of extreme ray enumeration in a polyhedral

cone [MRTT53]. In this problem, the memory consumption grows exponentially over

each iteration. Moreover, the output generated during each iteration cannot be easily parti-

tioned, i.e., every process requires access to the entire data. Therefore, pipelining the input

data is not a feasible solution.

4 Architecture-based Algorithm Decomposition

The hybrid pipeline approach outlined in Section 2.4 raises an important question, “how

does one decide which stage of the hybrid pipeline to implement on which architecture?”.

In this section, we argue that it should be possible to structure the pipeline flow in such a

way that different stages are executed by either the Device or the Host depending on which

architecture is more suitable for that part of the kernel. In the following subsections we

highlight the characteristics of a computational kernel that make it suitable for execution

on a certain architecture. We then propose, that based on these characteristics, an algorithm

can be decomposed into multiple kernels, where each kernel is suitable for execution on

one specific processor type in a hybrid architecture. The overall approach is depicted in

Figure 4.

Figure 4: Architecture-based algorithm decomposition.
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4.1 Characteristics of Computational Kernels

Host architectures (i.e., CPUs such as Intel Core i7, Intel Xeon series etc.) are equipped

with a feature rich Instruction Set Architecture (ISA), Vector processing units, and ad-

vanced features such as branch prediction. This makes it possible for the Host to effi-

ciently perform all kinds of computations. The major disadvantage as compared to Device

architectures is the lack of massive parallelism.

Device architectures have the following major limitations:

• A high Degree of Parallelism (DoP) in a kernel is a fundamental requirement. If the

degree of parallelism is not high enough, compute cycles are not fully utilized.

• Caches are much smaller on the Device. Therefore, kernels with low arithmetic

intensity [PH13] are not particularly suitable.

• Device architectures do not support branch prediction, and are bounded by a min-

imum number of threads that must execute the same instruction in a single clock

cycle. Therefore, excessive control divergence in the kernel can lead to wasted cy-

cles.

It is argued in the following sub-sections that Device kernels for which the processing

is dominated by one or more of the above mentioned limitations, can gain performance

improvement if the appropriate parts of the kernel are executed on the suitable architecture.

4.2 Algorithm Decomposition and Design Patterns

An algorithm can be decomposed based on architectural features if the following condi-

tions are satisfied:

• At least two design patterns can be identified, where one pattern is suitable for the

Device architecture, and the other one is suitable for the Host architecture. Each

pattern can then be implemented as a stage of computation.

• The pipeline pattern is applicable across the two stages of computation.

The design patterns for parallel programming can be used to identify the data and control

flow in a computational kernel. This makes it possible to see whether a certain kernel

would be suitable for a given architecture. The following subsections describe the patterns

that are suitable for Device architectures, as well as those that are not suitable for Device

architectures.

4.2.1 Patterns Suitable for Device Architectures

Some of the important patterns suitable for execution on the Device are:
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• Map: The Map [MRR12] pattern can be seen as a fully unrolled loop, where each

iteration of the loop is mapped to a different processing unit of a massively parallel

processor. There are no dependencies between the loop iterations, which implies

that each processing unit reads input values and writes output values that are com-

pletely independent of all other processing units. The degree of parallelism is pro-

portional to the number of loop iterations, which means that the hardware utilization

is maximal for a large number of iterations.

• Stencil: Similar to Map, there are no output related dependencies amongst the pro-

cessing units. This pattern is also similar to a loop without dependencies. In the

Stencil [MRR12] pattern, however, a processing unit needs access to input values

from the neighboring processing units as well. In fact, Map can be seen as a spe-

cial case of Stencil with the restriction that each processing unit only reads its own

corresponding input values.

Both these patterns map well onto the massively parallel Device architecture. This is

because each processing unit can perform computations completely independent of all

other units. There is no need for elaborate locking and synchronization primitives, which

could slow down the computation.

4.2.2 Patterns Suitable for Host Architectures

As mentioned in Section 4.1, the Host architecture is suitable for all computational kernels.

The only limitation is that massive parallelism is not available on these architectures. The

following patterns are recommended for execution on the Host because they do not exploit

the massively parallel architecture of the Device efficiently.

• Reduce: The Reduce [MRR12] pattern is employed when a large number of values

have to be reduced to a single value. E.g., a vector of 10 values is reduced to a scalar

by summing all the elements of the vector. Furthermore, the Reduce pattern can be

applied to any data type on which an associative binary operator is defined. The most

efficient method for parallel reduction follows computation in a tree structure. For

a sum reduction, it starts with all the values at the leaves, and proceeds upwards to

the root by applying the operator at each level, and halving the number of operands.

Eventually, only the final scalar value is left at the root, which is the desired result.

• Scan: An example of the Scan [MRR12] pattern is the prefix-sum operation. In

this case, the output vector is the same size as the input vector. Therefore, the tree

structure consists of two sweeps: 1) Up-sweep from the leaves to the root to compute

partial reductions, and 2) Down-sweep from the root back to the leaves to complete

the scan.

Both the Reduce and Scan patterns share the same problem when it comes to efficient

resource utilization. The degree of parallelism varies at each step of computation. In

Reduce, e.g., the number of processing units that can be used at the first step is equal

to the number of elements in the vector. For a large vector, this amounts to maximum
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resource utilization. However, at each successive step, the number of processing units

required is halved; eventually leading to the point where most of the compute resources

are idle.

5 Tool-guided Parallelization for Hybrid Architectures

As described in Section 3, the overall approach presented in this paper is suited primarily

to problems with easily decomposable data and regular access patterns. It follows from

these assumptions, that for such applications, most loops are composed of affine iteration

spaces [LL97], as well as affine mapping functions [LL97] from iteration index to array

element. This makes it possible to apply the existing theory of dependence analysis and

loop transformation to these problems.

5.1 Discerning Parallel Patterns from Serial Source Code

The architecture-based algorithm decomposition approach (described in Section 4) relies

on the assumption that the developer can easily discern parallel design patterns from serial

source code. This, however, requires a significant amount of knowledge and experience on

part of the developer. Therefore, we argue that an automated tool that can discern patterns

from serial source code would further improve developer productivity.

It is our conjecture that the fundamental mathematical property that distinguishes different

patterns is the type of dependence among the iterations of the corresponding for loop. The

type of dependence can be computed using the already established theory of dependence

analysis [KA01]. The result can then be mapped onto the corresponding pattern. A tool

capable of discerning parallel patterns from serial source code will not only improve de-

veloper productivity, it will also connect theoretical/compiler level concepts to higher level

abstractions of patterns that are traditionally studied at the level of software engineering.

5.2 Suggestions for Parallelization for Hybrid Architectures

Given our earlier assumption regarding affine spaces and functions, we propose that in-

stead of the developer having to discover all different levels of parallelism, a tool imbued

with the knowledge of patterns as well as discerning parallelism, can assist the developer

by highlighting possibly parallelizable code segments, as well as suggesting appropriate

optimizing transformations. Intel Parallel Advisor [BCS12] is a commercially available

tool with similar features. However, neither does Intel Parallel Advisor discern patterns

from source code, nor is it applicable to hybrid architectures with GPUs. We are currently

working towards the development of such a tool for hybrid architectures.
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6 Related Work and Our Contribution

As determined in a thorough literature review [KFP14] on the subject, apart from overlap-

ping of computation and transfer of data from GPU memory to CPU memory, pipelining

has also been used in hybrid architectures for improving resource utilization and load bal-

ancing. Most pipeline applications for hybrid architectures are focused on solving a partic-

ular problem. E.g., much work has been done in utilizing pipelining for hybrid MapReduce

implementations [CQD+13, SO11]. In [CHA12], an efficient MapReduce scheduling ap-

proach is presented for a coupled CPU-GPU chip. This approach makes it possible to

dynamically divide Map tasks onto CPU and GPU, thereby utilizing both types of pro-

cessing resources. The Moim [XKB] framework for MapReduce supports simultaneous

execution of the reduce phase on both CPU and GPU. Other than MapReduce, a 3-stage

hybrid CPU-GPU pipeline has also been used for solving eigenvector and eigenvalue prob-

lems [GGV12].

As mentioned in Section 5.2, Intel Parallel Advisor [BCS12] is a commercially available

tool that guides a developer through the process of parallelizing existing serial source code.

There have also been other efforts with similar goals. Prospector [KKL10] is a tool de-

signed to assist programmers in parallelizing legacy serial applications developed by other

programmers. For GPUs, GROPHECY [MMK+11] is a performance projection frame-

work that uses skeletonized pieces of CPU source code to determine if the performance

gain from porting the application to GPU is worth the development effort.

To the best of our knowledge, the Architecture-based Algorithm Decomposition is a novel

idea introduced in this paper. Moreover, despite various commendable efforts in devel-

oping automated tools for assisting in code parallelization for either CPUs or GPUs, one

has yet to be developed for hybrid architectures. We believe that our ideas presented in

Section 5 will help us develop an effective tool for parallelization assistance on hybrid

architectures. Our hierarchical application of parallel patterns for efficient processing of

very large datasets is also original, even though the general theme of optimizing resource

utilization for hybrid architectures has already been explored from other perspectives.

7 Summary and Future Work

We have presented our Efficient Hybrid-Resource Utilization approach for processing very

large datasets on hybrid CPU-GPU based architectures. It comprises data decomposition

and distribution amongst different processor types within a shared-memory system. Sys-

tem efficiency and developer productivity are both improved by employing hierarchical

application of patterns for parallel programming. While this approach has partly been im-

plemented and published elsewhere, in this paper, we have extended this idea as a founda-

tion for Architecture-based Algorithm Decomposition. We have argued that the suitability

of execution of a particular computational kernel on a particular processor type can be de-

termined by inspecting the pattern(s) of which the kernel consists. Certain characteristics

of a pattern make it suitable for execution on one or the other processor type in a hybrid
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architecture. In certain cases, in addition to improving system performance, this informa-

tion can save the development effort required for implementing Device kernels, thereby

improving developer productivity.

We have further argued, that it is plausible to assume, that for data parallel applications

with regular access patterns, it is possible to use dependence analysis for discerning par-

allel patterns from serial source code. Automation of this process can further assist in

Architecture-based Algorithm Decomposition. Moreover, it is plausible to assume that for

such applications, an automated tool can be developed that highlights potential parallelism

in a serial application, and guides the developer through the process of parallelization for

hybrid architectures.

We are currently in the process of developing theoretical foundations for discerning par-

allel patterns from serial source code. Finishing this project is our short-term objective.

The tool resulting from this project will then be applied to Architecture-based Algorithm

Decomposition. Eventually, we hope to have an automated tool for assisting the developer

in developing parallel applications for hybrid parallel architectures.
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[BMS+13] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent Advances in Graph Partitioning. CoRR, abs/1311.3144, 2013.

[Boa11] OpenMP Architecture Review Board. OpenMP Application Program Interface. Stan-
dard specification, July 2011.

[CHA12] Linchuan Chen, Xin Huo, and Gagan Agrawal. Accelerating mapreduce on a cou-
pled cpu-gpu architecture. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 25. IEEE Computer
Society Press, 2012.

[CQD+13] Yi Chen, Zhi Qiao, Spencer Davis, Hai Jiang, and Kuan-Ching Li. Pipelined Multi-
GPU MapReduce for Big-Data Processing. In Computer and Information Science,
pages 231–246. Springer, 2013.

[DFF+02] Jack Dongarra, Ian Foster, Geoffrey C. Fox, William Gropp, Ken Kennedy, Linda Tor-
czon, and Andy White, editors. The Sourcebook of Parallel Computing. Morgan Kauf-
mann, 2002.

1778



[GGV12] Michael T Garba and HORACIO GONZÁLEZ-VÉLEZ. Asymptotic peak utilisation
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