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Vorwort

Modelle stellen ein der wichtiges Hilfsmittel zur Beherrschung komplexer Systeme dar.
Die Themenbereiche der Entwicklung, Nutzung, Kommunikation und Verarbeitung von
Modellen sind so vielfältig wie die Informatik mit all ihren Anwendungen.

Die Fachtagung „Modellierung“ wird vom Querschnittsfachausschuss Modellierung der
Gesellschaft für Informatik e.V. seit 1998 durchgeführt und hat sich als einschlägiges
Forum für Grundlagen, Methoden, Techniken, Werkzeuge sowie Domänen und Anwen-
dungen der Modellierung etabliert. Die „Modellierung“ führt Teilnehmerinnen und Teil-
nehmer aus allen Bereichen der Informatik sowie aus Wissenschaft und Praxis zusam-
men. Die Tagung zeichnet sich traditionell durch lebendige und fachgebietsübergreifen-
de Diskussionen aus, weshalb sie gerade auch für Nachwuchswissenschaftlerinnen und
Nachwuchswissenschaftler interessant ist.

Der vorliegende Tagungsband erhält 17 Beiträge. Es wurden insgesamt 31 Beiträge
eingereicht, wovon 11 Beiträge als Vollbeiträge und 6 Beiträge als Kurzbeiträge ausge-
wählt wurden. Die Begutachtung erfolgte durch das Programmkomitee der Modellierung
2016. Während des Auswahlprozesses bestand für die Autorinnen und Autoren die Mög-
lichkeit, zu ihren Gutachten Stellung zu nehmen. Die angenommenen Beiträge behan-
deln aktuelle Erkenntnisse zu Grundlagen, Methoden, Techniken und Werkzeugen der
Modellierung. Im Speziellen werden Arbeiten zur Modellbildung, Modellierungsspra-
chen, Modelltransformation, Modellierungstechniken, Modellvalidierung, sowie zum
modellbasierten Testen vorgestellt.

Für ihre Beteiligung an der Modellierung 2016 möchten wir uns bei allen Autorinnen
und Autoren bedanken. Den Mitgliedern des Programmkomitees danken wir für die
sorgfältige und termingerecht Begutachtung, Bei Prof. Gerti Kappel, Dr. Oliver Raabe
und Dr. Thomas Karle bedanken wird uns für Ihre Keynote-Vorträge. Unser weiterer
Dank gilt den vielen lokalen Helfern für die Vorbereitung und Durchführung der Veran-
staltung. Den Firmen PROMATIS Software GmbH, andrena objects, PPI Akteingesell-
schaft und TWT danken wir für die finanzielle Unterstützung.

Karlsruhe, im März 2016

Stefanie Betz
Erik Burger
Robert Heinrich
Agnes Koschmider
Andreas Oberweis
Ralf Reussner
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Pushing the CIDOC-Conceptual Reference Model towards

Linked Open Data by Open Annotations

Matthias Frank1, Stefan Zander1

Abstract: By using a novel modelling approach, we demonstrate how the Conceptual Reference
Model (CRM) of ICOM’s International Committee for Documentation (CIDOC) can be comple-
mented using the Open Annotation Data Model (OADM) in order to create semantically rich anno-
tations. We show that domain knowledge can be combined with meaningful and linked data exposed
in the so-called Web of Data (aka semantic Web) by having the necessary provenance information
for annotations. The combination of domain specific knowledge with existing Linked Open Data
(LOD) requires well-designed modelling decisions for linking semantic data sets in a comprehensi-
ble way. We show that our combined approach is able to address the requirements of digital heritage
in more sufficient ways than each model separately. We combine the advantages of a proven domain
ontology with the flexibility and semantic richness of the OADM. In order to evaluate our approach,
we show with a concrete example how a museum artifact is modeled in CIDOC-CRM and how these
data can be interlinked with existing LOD in meaningful and machine-processable ways by encoding
provenance information for new annotations using the OADM.

Keywords: Semantic Web, CIDOC-CRM, Open Annotation Data Model, Linked Open Data

1 Introduction

The digitization of our cultural heritage (CH), also known as digital heritage (DH), is one
of the big challenges museums all over the world are faced with [KK13]. Therefore, the
United Nations Educational, Scientific and Cultural Organization (UNESCO) has devel-
oped the Charter on the Preservation of Digital Heritage [Un04] to provide best practice
guidelines for preserving DH. As stated by the UNESCO, DH ”is inherently unlimited by
time, geography, culture or format”, which requires advanced data modeling approaches.

One approach to model DH data is the Conceptual Reference Model (CRM) [CI13] intro-
duced by the ICOM’s International Committee for Documentation (CIDOC)2. As of today,
a growing number of museums and DH projects like the British Museum3, the Smithso-
nian American Art Museum (SAAM)4 or the Classical Art Research Online Services5 have
started to publish semantically enriched data about their hosted objects using the CIDOC-
CRM. However, from a data consuming point of view, modelling DH in this way has a
limitation: The CIDOC-CRM does not provide means to encode provenance information

1 FZI Forschungszentrum Informatik am KIT, Information Process Engineering, Haid-und-Neu-Str. 10-14,
76131 Karlsruhe, {frank, zander}@fzi.de

2 http://network.icom.museum/cidoc
3 http://www.britishmuseum.org/
4 http://americanart.si.edu/
5 http://www.clarosnet.org
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for the annotations itself. Therefore, when using DH data modeled in CIDOC-CRM in
an application, it is impossible to deduce implicit information like the trustworthiness or
comparability of annotations. Without this information, data integration in cross-domain
projects and the reuse and interpretation of annotations in different contexts is hardly pos-
sible.

In order to overcome these limitations of CIDOC-CRM, we introduce a novel modeling
approach that extends CIDOC-CRM by combining its well-structured and proven domain-
specific taxonomy with the flexibility of rich annotations using the Open Annotation Data
Model (OADM) [SCV13].

Representing DH annotations using a combination of CIDOC-CRM and OADM encour-
age the following:

1. Interoperability: As the OADM is a draft of the World Wide Web Consortium (W3C)
community, OADM-annotations can be consumed and interpreted correctly by vary-
ing applications.

2. Adaption: Semantically rich annotations like OADM-annotations allow to adapt the
meta data contained within an annotation without cutting the link between body and
target of the annotation.

3. Reuse and interlinkage: Once a semantically rich annotation is created, it can be
reused by adding further bodies or targets to this annotation.

4. Trustworthiness: By stating the authorship of an annotation and add explanatory
statements to it, annotations become reproducible and the trustworthiness of anno-
tations can be justified.

As a consequence, the main outcome of this work is to provide the logical underpin-
ning upon which CIDOC-CRM can be beneficially extended using the OADM in cre-
ating semantically rich annotations that can be shared, extended and utilized by related
approaches and also adopted by other domains, e.g. incorporated in the Educational Web

of Data [Br11].
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2 Background

In this section we provide an overview of the current modelling approaches for CH and
Linked Open Data (LOD). The focus is on CIDOC-CRM, OADM and LOD in general.

2.1 CIDOC-CRM

Museums as a stakeholder in the process of digital preservation of artifact descriptions per-
form archival functions, like building and maintaining reliable collections of well-defined
digital objects. They preserve the features like content, fixity, reference, provenance and
context which give these objects their integrity. To keep the integrity for digital informa-
tion objects with long-term cultural value intact is a precondition in order to use them
for referring, indexing, citing or any other purpose by the consumers of that data. [LT01,
p. 47] For modeling ontologies in the knowledge domain of CH, CIDOC has defined a ref-
erence model for storing these digital objects: The CIDOC-Conceptual Reference Model.
CIDOC-CRM defines the Terminological Box (TBox) for ontologies in the domain of CH
that covers all concepts relevant to describe all types of material collected and displayed
by museums and related institutions[BCT07, p. 255]. This terminology is also applied
for Lightweight Information Describing Objects (LIDO), an Extensible Markup Language
(XML) schema for CH provided by International Council of Museums (ICOM)[IC10]. An
example for modeling DH data in CIDOC-CRM is shown in Figure 1. The marked nodes
in Figure 1 represent the classes defined in CIDOC-CRM.

ex:1181

crm:P102_has_title

<<class>>
crm:E35_Title

rdf:type

<<class>>
crm:E22_

Man-Made_
Object

rdf:type

crm:P43_has_dimension

crm:P48_has_preferred_identifier

crm:P90_has_value

 Kapitolinische
Wölfin @de rdfs:label

 Capitoline
Wolf @en

rdfs:label

fb:en.bronze

yago:
Capitoline_
Museums

crm:P45_consists_of

crm:P50_has_current_keeper

<<class>>
crm:E40_Legal

_Body

<<class>>
crm:E57_
Material

rdf:type

rdf:type

crm:P2_has_type

<<class>>
crm:E55_Type

rdf:type

rdf:value

crm:P43_has_dimension

 114"^^xsd:non
Negative Integer

 width 

unit:
Centimeter

crm:P91_has_unit

<<class>>
crm:E58_

Measurement
_Unit

rdf:type

crm:P91_has_unit

 Lupa
Capitolina @it

rdfs:label

<<class>>
crm:E42_
Identifier

rdf:type

 Inv.-Nr. 1181 

rdf:value

crm:P2_has_type

<<class>>
crm:E55_Type

rdf:type

rdf:value

 height 

crm:P90_has_value
 114"^^xsd:non
Negative Integer

Fig. 1: Example for modelling in CIDOC-CRM
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2.2 Open Annotation Data Model

Annotations created with Web Ontology Language (OWL)/Resource Description Frame-
work (RDF) have a limited expressiveness by default. Basically, these annotations state
that two resources are related to each other in a specific way. This relationship may be a
predicate like rdfs:seeAlso, rdfs:isDefinedBy or any other predicate that expresses
a relation of these resources. Within the scope of this work, the subject of the triple ex-
pressing the annotation is named body of the annotation, whereas the object of the triple is
named target of the annotation. Such a basic annotation is depicted in Figure 2.

body1 target1is related to

Fig. 2: Basic RDF Annotation

As there has been no uniform approach for creating annotations, in 2012 the W3C com-
munity introduced the OADM. This approach introduces a methodology for annotations
that conforms to the architecture of the World Wide Web (WWW)[CSV12]. The OADM
consists of a core which provides the basic functionality to create open annotations. The
OADM core can be extended by several modules if necessary for a specific applica-
tion. Rather than implementing an annotation as a simple triple pointing from a body

resource to a related target, OADM creates a distinct resource for the annotation it-
self which then points to the body and the target of the annotation and also provides
useful metadata. The idea of OADM is to reuse existing vocabulary wherever possible,
for example the vocabulary defined in Friend of a Friend (FOAF) or Dublin Core (DC).
The reuse of LOD-resources is therefore a major contribution of our approach. How-
ever, there are also classes and properties defined for the open annotation namespace in
http://www.w3.org/ns/oa#, usually abbreviated with the prefix oa:. A depiction of
the basic annotation model is shown in Figure 3, stating the same fact as in Figure 2.

anno1

target1

oa:hasTarget

body1

oa:hasBody

<<class>>
oa:Annotationrdf:type

Fig. 3: Open Annotation Data Model
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Metadata that can be included by OADM covers a person or organization that created
the annotation, the motivation for the annotation and also the time when the annotation
was created. This approach allows to express the authorship of an annotation and separate
between annotations created by the museum’s staff and annotations created by the com-
munity. In addition, OADM provides the possibility to state the software that was used for
serialization and the time when the annotation was serialized, both can be taken into con-
sideration when justifying the provenance and trustworthiness of an annotation. Especially
the time of serialization is important for a proper version control [SCV13] when maintain-
ing the annotations. With OADM, conservators of CH have the option to use linked data
to augment user experience rather than only publishing their own linked open datasets.
The OADM is therefore ideally suited for the creation of knowledge structures through
semantic annotations in the field of CH.

2.3 Linked Open Data

The idea of linked data was introduced by Tim Berners-Lee in 2006 [BL06]. He defined
expectations which apply to both, the conventional Web of Hypertext Markup Language
(HTML) documents and the Web of linked data represented using the RDF. He also added
a 5-Star scheme for LOD in 2010.

An early use of publishing linked data is the creation and publishing of personal profiles
as some kind of business cards using the FOAF vocabulary. These FOAF-profiles have
made an essential part of linked data in the early beginning of the semantic Web. However,
the number of datasets in linked data, the number of triples within these datasets and
also the RDF links interlinking these datasets have increased rapidly during the last years.
Richard Cyganiak and Anja Jentzsch started an approach to visualize datasets of linked
data available on http://datahub.io/dataset?tags=lod as a LOD cloud diagram in
2007. The first version of this diagram contained 12 datasets. This project was maintained
over the years, in 2014 the LOD cloud diagram contained 570 datasets. 374 of them were
described by the data providers themselves in the datahub.io dataset catalog, 196 more
were discovered by a crawl of the Linked Data web conducted in April 2014 [CJ14]. A
depiction of the resulting LOD cloud diagram is shown in Figure 4.

As can be seen from this diagram, FOAF-profiles, Geo-Names and especially DBpedia
are highly interconnected datasets containing a huge amount of triples. For example, a
SPARQL Protocol and RDF Query Language (SPARQL) query counting the triples con-
tained in DBpedia in January 2015 returns a number of more than two billion triples.

3 Related Works

For the creation of annotations for museum objects in this work, we annotate the descrip-
tion of a museum artifact modeled in CIDOC-CRM with data from the LOD cloud. Ac-
cording to a research funded by SAAM, mapping the data of a museum to linked data
involves three steps [Sz13, p. 1–2]:
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Fig. 4: Linked Open Data Cloud as of 2014

1. Map the Data to RDF.
The first step is to map the metadata about works of art into RDF. This
involves selecting or writing a domain ontology with standard terminol-
ogy for works of art and converting the data to RDF according to this
ontology. De Boer et al.6 note that the process is complicated because
many museums have rich, hierarchical or graph-structured data. The
data often includes attributes that are unique to a particular museum,
and the data is often inconsistent and noisy because it has been main-
tained over a long period of time by many individuals. In past work, the
mapping is typically defined using manually written rules or programs.

2. Link to External Sources
Once the data is in RDF, the next step is to find the links from the meta-
data to other repositories, such as DBpedia or GeoNames. In previous
work, this has been done by defining a set of rules for performing the
mapping. Because the problem is difficult, the number of links in past
work is actually quite small as a percentage of the total set of objects
that have been published.

6 Boer, V., Wielemaker, J., Gent, J., Hildebrand, M., Isaac, A., Ossenbruggen, J., Schreiber, G.: Supporting
Linked Data Production for Cultural Heritage Institutes: The Amsterdam Museum Case Study. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) Lecture Notes in Computer Science, pp. 733-747.
Springer Berlin Heidelberg (2012), cited by [Sz13]
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3. Curate the Linked Data
The third step is to curate the data to ensure that both the published
information and its links to other sources within the LOD are accurate.
Because curation is so labor intensive, this step has been largely ignored
in previous work and as a result links are often inaccurate.

We do also consider these three steps for our modeling approach of semantic annota-
tions in the field of CH. As stated in the outcome of the SAAM project, for the first step
there are already some successful approaches like the Europeana project7, the Amsterdam
Museum8, the LODAC museum9 or the KARMA approach10. Therefore, our work fo-
cuses on the linking of museums’ RDF-data to external resources and also in maintaining
these links. For structuring metadata of CH objects we extend the domain specific model
with the OADM. This idea was also suggested for future work for structuring metadata
of CH objects during the International Conference in DC and Metadata Applications in
2014 [Wi14].

For this work, we assume that data of a museum is modeled in CIDOC-CRM in order to
describe museum objects. The goal is to ensure that on the one hand only the museum itself
is able to publish authoritative data, but on the other hand the community is able to create
annotations to this data in order to augment the knowledge structure of the museum’s
repository.

4 Approach

With our approach we show that the combination of the domain specific modeling of
CIDOC-CRM and the OADM leads to an comprehensive model that covers the require-
ments of CH specialists and enables the modeling of provenance information for new
annotations. This novel approach helps museums to use LOD in order to augment their
visitors experience and also publish their data as LOD in a meaningful way by provid-
ing provenance data of annotations, which allows a collaborative annotation of museum
objects.

4.1 Requirements

In order to contribute to the process of digital preservation of CH, we pose the following
requirements:

R1 The data published by a museum about their artifacts has to be modeled in a way that
consumers can distinguish them from annotations created by the user community.

7 http://data.europeana.eu
8 http://www.amsterdammuseum.nl/open-data
9 http://www.ontotext.com/customers/lodac-museum-linked-open-data-academia/

10 http://www.isi.edu/integration/karma/
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R2 The user-created annotations have to be serialized and published in order to augment
user experience when consuming DH-objects.

R3 Methods that enables users to filter annotations by type, creator, annotated object,
annotation time and version has to be provided.

All three requirements are on the approach in general, rather than for a specific proto-
type. The requirements are the result of our practical research work with partners from the
CH-domain. To fulfill requirement R1, museums’ data is published in CIDOC-CRM in
read-only while annotations by users are added using OADM in order to clearly state the
provenance of the created annotations. As an example, when the conservator of a museum
has gathered the required information and added them to the system, any user can search
for resources with similar properties on the LOD cloud and create personal annotations.
Due to the use of the OADM, not only the semantic annotation itself will be created, but
also some useful meta data. This meta data may include information about who created
this annotation, what was his or her motivation doing that, when he or she actually created
the annotation and also which software was used for the serialization and when was the
serialization of the annotation performed.

4.2 Data Structure for Museum Objects

The description of museum objects is assumed to be modeled in CIDOC-CRM for this
work. However, as the full CRM aims to define all classes and properties needed to de-
scribe knowledge in the domain of CH and not only museum objects, for this work only
instances of the class E22 Man-Made Object defined by CIDOC in the CRM are consid-
ered. This comprises physical objects purposely created by human activity [CI13, p. 11]
as artifacts of CH. This Section describes the properties which are applicable to the class
E22 Man-Made Object and introduces the exemplary modeling of the description of a
museum object as an instance of this class.

Figure 5 shows the Unified Modeling Language (UML) class diagram of the TBox for
the class E22 Man-Made Object. The members of the classes are the respective proper-
ties of the classes, consisting of predicate (identifier P) and object (identifier E). In RDF,
properties are not added to a class like in an object orientated modeling approach. In fact,
the properties shown in Figure 5 result from the domain and range defined for each pred-
icate. Although the class E22 Man-Made Object does not have any specified properties,
it inherits all the properties from its superclasses.

4.3 Discover Resources in Linked Data for new Annotations

The core of our approach is to support the conservator of a museum in creating rich anno-
tations for digitized artifacts modeled in CIDOC-CRM with resources available as LOD.
This is done by providing suggestions for annotations and enable volunteers to review
these suggestions.
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E24 Physical Man‐Made Thing

P65 shows vis. item: E36 Visual Item
P128 carries: E90 Symbolic Object

E18 Physical Thing

P44 has condition: E3 Condition State

P159 occupied: E92 Spacetime Vol.

E71 Man‐Made Thing

P102 has title: E35 Title
P103 was int. for: E55 Type

E72 Legal Object

P104 is subject to: E30 Right
P105 right held by: E39 Actor

E70 Thing

P43 has dimension: E54 Dimension
P101 has gen. use: E55 Type

E77 Persistent Item

E1 CRM Entity

P1 is identified by: E41 Appellation
P2 has Type: E55 Type
P3 has note: E62 String

P137 exemplifies: E55 Type
P48 has pref. ID: E42 Identifier

P156 occupies: E53 Place

P51 has f./c. owner: E39 Actor

P58 has section def. E46 Section Def.
P59 has section: E53 Place

P53 has f./c. loc: E53 Place

P45 consists of: E57 Material

P49 has f./c. keeper: E39 Actor

P52 has c. owner: E39 Actor
P50 has c. keeper: E39 Actor

P46 is composed of: E18 Physical Thing

E19 Physical Object

P54 has c./p. loc.: E53 Place

P57 has nr. of parts: E60 Number

E22 Man‐Made Object

P56 bears feature: E26 Physical Feature
P55 has c. loc.: E53 Place P62 depicts: E1 CRM Entity

P130 shows feat. of: E70 Thing
‐Mitgliedsname

Fig. 5: UML class diagram for E22 Man-Made Object with superclasses

In order to find suitable resources for the semantic annotation of digitized artifacts, all re-
sources which are related to the subject and are available as LOD should be discovered.
Relatedness of resources in the semantic Web can be measured in different ways, for exam-
ple the number of edges between two nodes. This approach does not consider the quality
of the edges, therefore each predicate of an RDF-graph is treated similar. There are also
approaches that weight the quality of edges, which means that a even a path with more
edges could express a higher relatedness between two nodes if the quality of the edges is
better, or in sense of RDF the predicates are semantically better suited to express a relation.
In the context of our work, relatedness is measured in the number and quality of property
matches, as a high accordance of properties does also indicate a high relatedness. Museum
objects are objects of public interest, therefore it is likely that someone already published
something with similar properties as LOD.

However, as the semantic Web is not a central database where properties are always de-
fined in the same way, there may be relevant resources which are described with different
properties which have the same meaning. To find these resources, the predicates have to
be mapped to cover these different descriptions. An abstracted depiction of this mapping
is shown in Figure 6.

Rather than just search for resources with similar properties of the subject in the example
data introduced in Section 5.1, like for example the property crm:P45_consists_of

fb:en.bronze, both, the predicate and the object have to be mapped to lists of equivalent
predicates and objects. When the input data is enriched by lists of equivalent predicates
and objects, resources with similar properties published as LOD can be queried. This is
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List of Potential Matches

‐ dbpr:Capitoline_Wolf
‐ dbpr:Capitoline_Wolf,_Chisinau
‐ …

List of Objects

<<class>>
E22 Man‐Made

Object

<<class>>
E57 Materialtype Lupa Capitolina BronzeP45 consists of type

List of Predicates

dbpr:Bronze

„Bronze“@en
„Bronza“@es
„Bronze“@de

„Bronzo“@it

dbpp:material

dbpp:type

dc:type

Fig. 6: Abstracted Mapping Process

done with the help of SPARQL using public SPARQL endpoints. The result of this query
is then returned to the client for further processing.

The resulting graph of this new annotation is shown in Figure 7. However, in this graph,
target and body of the annotation are not shown as actual resources. The abstracted body
shows that the Internationalized Resource Identifier (IRI) resources used for the body of
the annotation come from within the LOD cloud, whereas the abstracted target shows that
the IRI-resource used for the target of the annotation is part of the museum’s repository
modeled in CIDOC-CRM. By using OADM for user created annotations, R2 and R3 are
fulfilled.

The OADM annotations created by our approach combine the digital description of CH
artifacts modeled with CIDOC-CRM with information available as LOD. The result is
therefore a knowledge structure that contains information of CH from both sources, in-
cluding metadata about the annotations themselves. Figure 8 shows an example of an arti-
fact modeled in CIDOC-CRM, the marked nodes represent an additional annotation about
this artifact modeled in OADM.
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rdf:type

oa:hasTarget2015-01-17T19:33:21+01:00

oa:serializedBy

2015-01-17T19:34:59+01:00

oa:serializedAt

oa:annotatedBy

oa:annotatedAt

oa:motivatedBy
ex:usrCreated
Annotation

Resource in
Museum s
repository

oa:describing

ex:user123

<<class>>
oa:Annotation

ex:openAnno

Resource in
LOD

oa:hasBody

Fig. 7: RDF-Graph of OADM-Annotation

5 Use Case – Evaluation

5.1 Example data: Lupa Capitolina

Our approach presumes valid CIDOC-CRM ontology data. Therefore, in addition to the
schema description of E22 Man-Made Object (TBox) given in Section 4.2, some in-
stance data (Assertional Box (ABox)) has to be added. In our example, we assume that
the Capitoline Museums in Rome, Italy, wants to publish a semantic descriptions of their
hosted artifacts using CIDOC-CRM. First, the museum defines http://museum.example.
com/objects/ as the namespace for all museum objects. This namespace will be abbre-
viated with the prefix museum:. The museum artifact that is encoded in this example is
the bronze sculpture “Capitoline Wolf” (Italian: Lupa Capitolina). A description of this
sculpture is provided by the university of cologne11. The preferred local name for an ar-
tifact within the museums namespace is the inventory number of the corresponding ob-
ject [CI11]. In case of the Capitoline Wolf, the Capitoline Museums assigned the inven-
tory number 1181. The resulting IRI for the new object is therefore http://museum.

example.com/objects/1181, abbreviated as museum:1181. This abbreviation is not a
valid qualified name (QName) as the local name starts with a number, however, it is a valid
Compact URI expression (CURIE).

As CIDOC-CRM does not foresee the description of instances of E58 Measurement

Unit [CI13, p. 23], instances provided by the Quantities, Units, Dimensions and Data
Types Ontologies (QUDT) are used. The namespace for this ontology is http://qudt.
org/vocab/unit# (abbreviated with unit:). QUDT is developed by TopQuadrant and

11 http://arachne.uni-koeln.de/item/objekt/16611
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ex:1181

crm:P102_has_title

<<class>>
crm:E35_Title

rdf:type

<<class>>
crm:E22_

Man-Made_
Object

rdf:type

crm:P43_has_dimension

crm:P48_has_preferred_identifier

crm:P90_has_value

 Kapitolinische
Wölfin @de rdfs:label

 Capitoline
Wolf @en

rdfs:label

fb:en.bronze

yago:
Capitoline_
Museums

crm:P45_consists_of

crm:P50_has_current_keeper

<<class>>
crm:E40_Legal

_Body

<<class>>
crm:E57_
Material

rdf:type

rdf:type

crm:P2_has_type

<<class>>
crm:E55_Type

rdf:type

rdf:value

crm:P43_has_dimension

 114"^^xsd:non
Negative Integer

 width 

unit:
Centimeter

crm:P91_has_unit

<<class>>
crm:E58_

Measurement
_Unit

rdf:type

crm:P91_has_unit

 Lupa
Capitolina @it

rdfs:label

<<class>>
crm:E42_
Identifier

rdf:type

 Inv.-Nr. 1181 

rdf:value

crm:P2_has_type

<<class>>
crm:E55_Type

rdf:type

rdf:value

 height 

crm:P90_has_value
 114"^^xsd:non
Negative Integer

anno1

oa:hasTarget

oa:hasBody

<<class>>
oa:Annotation

rdf:type

dbpr:Capitolin
e_Wolf

Fig. 8: CIDOC-CRM extended by OADM

the National Aeronautics and Space Administration (NASA) in order to provide inter-
operability between information systems. It is published under Creative Commons (CC)
Attribution-Share Alike 3.0 United States License and can therefore be freely used, as long
as the name of the creator is provided. For instances of other classes of CIDOC-CRM, for
example E39 Actor or E53 Place, existing upper ontologies are used where applicable.
In order to improve the reuse of resources of the semantic Web, we use upper ontologies
which are published with an open license. In this example, we use the upper ontologies
yago12 (abbreviated with yago:) and freebase13 (abbreviated with fb:).

5.2 Related Resources in LOD for new Annotations of Lupa Capitolina

The discovery of resources in LOD that are related to a fact which is described with a
blank node (bnode) in the museum’s repository requires additional attention. Although it
is possible to query bnodes due to the graph-oriented semantics of SPARQL, many subjects
in LOD are annotated in a more simple way. As an example, the height of the artifact used
here and modeled in CIDOC-CRM is stated with an dimension-bnode having the local
Identifier (ID) _:lh. This dimension has the type “height” and a value of 75 cm. The same
fact is expressed in DBpedia14, a database that contains structured data from Wikipedia,
with the properties dbpprop:heightMetric "75" and dbpprop:metricUnit "cm".

12 http://yago-knowledge.org/resource/
13 http://rdf.freebase.com/ns/
14 http://dbpedia.org/resource/Capitoline_Wolf
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Therefore, all properties modeled as a bnode have to be interpreted by the properties of
the respective bnode. A first-degree (one edge distance from the subject) bnode-property
may have bnode-properties as well. The same goes for the second-degree (distance of two
edges), third-degree (distance of three edges) and so on, therefore this recursive procedure
has to be limited to a particular distance level in order to answer queries in a reasonable
time. A limit of 3 runs in example does ensure to get all properties up to a distance of three
edges.

Our approach is implemented as a prototype which searches LOD for related resources to
annotate a given CH artifact. When the search has finished, all results are listed, aggregated
by instances and ordered by the number of matches as can be seen in Figure 9. The resource
found with the most according properties is listed first. All results that fulfill the predefined
requirements are preselected. For the prototypical implementation used for our work, the
default parameters are P1 = 2 for the minimum number of congruent properties and P1=0.2
for the minimum rate of congruent properties in relation to the total number of properties.
Therefore, all resources which have at least two properties that matches to properties of
the target resource and the number of matching properties in relation to the total number
of properties of the target resource equals to at least 20% are preselected for annotation. In
this example, three resources are suggested to be annotated with ind:Lupa_Capitolina

as can also be seen in Figure 9.

Fig. 9: Positive matches

Ideally, all preselected resources are related to the target and therefore suited for an annota-
tion. To check whether the suggestion does apply, a tooltip does show up when moving the
cursor to the number of according properties of that resource. The tooltip indicates which
properties exactly are in accordance with the target. Based on this information the user
can decide whether this resource should be annotated or not. One example of a preselected



26 Matthias Frank and Stefan Zander

resource is shown in Figure 9. This resource is preselected as the number of properties
that match properties of the target resource fulfill the requirements 7 ≥ 1 and 7

8 ≥ 0.2. The
tooltip of Figure 9 indicates that this resource is in fact related to the resource introduced
in Section 5.1. Therefore, the suggestion of our prototype was correct (true positive) in this
case.

5.3 Creating new Annotations

Once the resources for annotation are reviewed, the annotation can be serialized. When
serialized, an info message is displayed to show the result of the serialization including
the ID for the newly created annotation, as shown in Figure 10. In order to fulfill R2, this
serialization has also to be published. The provenance information of the new annotation
encoded in this output can be used to filter annotations by type, creator, annotated object,
annotation and version, which fulfills R3.

1 @prefix prov: <http://www.w3.org/ns/prov#> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix agent: <http://www.example.org/agents/> .

4 @prefix dbpr: <http://dbpedia.org/resource/> .

5 @prefix oa: <http://www.w3.org/ns/oa#> .

6 @prefix ind: <http://www.example.org/individuals/> .

7 @prefix anno: <http://www.example.org/annotations/> .

8 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

9 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

10

11 anno:88e6667b-00f0-4591-89a9-618481c4f13a

12 a oa:Annotation ;

13 oa:annotatedAt "2015-01-27T16:02:03.309Z"^^xsd:dateTime ;

14 oa:annotatedBy agent:e98eb2d5-fd26-4b29-9ab5-dddaed08c12f ;

15 oa:hasBody dbpr:Capitoline_Wolf ,

16 dbpr:Capitoline_Wolf,_Chisinau ;

17 oa:hasTarget ind:1181 ;

18 oa:motivatedBy oa:editing ;

19 oa:serializedAt "2015-01-27T16:02:34.213Z"^^xsd:dateTime ;

20 oa:serializedBy agent:a69f0971-ff45-4af0-a197-a3f61cfa163d .

21

22 agent:e98eb2d5-fd26-4b29-9ab5-dddaed08c12f

23 rdf:Type foaf:Organization ;

24 foaf:name "FZI" .

25

26 agent:a69f0971-ff45-4af0-a197-a3f61cfa163d

27 rdf:Type prov:SoftwareAgent ;

28 foaf:name "OpenAnno 0.3" .

Fig. 10: Output of OpenAnno in Turtle
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6 Limitations and Conclusion

In this paper, we have shown that a domain ontology can be extended by OADM in order
to provide meaningful, rich annotations. Our approach allows to include provenance infor-
mation for new annotations for data modeled in a domain ontology without destroying the
structure of the domain ontology. By including provenance information of annotations the
annotation process may also be crowdsourced as an collaborative task for new annotations
without decreasing the quality of museums’ data. We have shown how this approach can
be used in order to complement DH data by annotating them with existing resources in
LOD while obtaining the provenance information of the new annotations.

However, there are limitations for our approach. In particular, when using the OADM for
annotations, it is not possible to state the type of relation between the annotated resource
and the resource used for the annotation explicitly, e.g. “is part of”, “consists of” or “is
same as”. These specific relations have to be implemented separately, as they are not pro-
vided by the OADM. In addition, our approach does not include any cryptography that
ensures the authenticity of the encoded provenance information. For a real justification
of the trustworthiness of annotations, a cryptography module has to be added in order to
ensure the authenticity of annotations.

Acknowledgements. This work was supported by the German Federal Ministry for Eco-
nomic Affairs and Energy (BMWI) within the CultLab3D project (Ref. 01MT12022D).
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Deriving Model Metrics from Meta Models

Nebras Nassar1, Thorsten Arendt1, Gabriele Taentzer1

Abstract: The use of model-based software development has become more and more popular be-
cause it aims to increase the quality of software development. Therefore, the number and the size of
model instances are cumulatively growing and software quality and quality assurance consequently
lead back to the quality and quality assurance of the involved models. For model quality assurance,
several quality aspects can be checked by the use of dedicated metrics. However, when using a
domain specific modeling language, the manual creation of metrics for each specific domain is a
repetitive and tedious process. In this paper, we present an approach to derive basic model metrics
for any given modeling language by defining metric patterns typed by the corresponding meta-meta
model. We discuss several concrete patterns and present an Eclipse-based tool which automates the
process of basic model metrics derivation, generation, and calculation.

Keywords: Model metrics, metric patterns, quality assurance, Eclipse Modeling Framework.

1 Introduction

The paradigm of model-based software development (MBSD) has become more and more
popular since it promises an increase in the efficiency and quality of software development.
In this paradigm, models play an increasingly important role and become primary artifacts
in the software development process. In particular, this is true for model-driven software
development (MDD) [SVC06] where models are used directly for automatic code and
test generation, respectively. Furthermore, the use of domain specific modeling languages
(DSMLs) [BCW12] is a promising trend in modern software development processes to
overcome the drawbacks concerned with the universality and the broad scope of general-
purpose languages like the Unified Modeling Language (UML) [UML].

Since software models play an increasingly important role, software quality and quality
assurance consequently lead back to the quality and quality assurance of the involved
models. In [Ar11, Ar14], we introduced a structured syntax-oriented process for quality
assurance of software models that can be adapted to project-specific and domain-specific
needs according to a dedicated quality model (QM). The approach concentrates on quality
aspects to be checked on the abstract model syntax and is based on quality assurance
techniques model metrics, smells, and refactorings well-known from literature.

Metrics are useful to obtain quantitative information about software development pro-
cesses and artifacts. Metrics for measuring the success of modeling and analysis has always
been a challenge, especially in the area of enterprise modeling where very large models are
in practical use. They can be used to analyze model quality, especially to find anomalies in

1 Philipps-Universität Marburg, {nassarn,arendt,taentzer}@informatik.uni-marburg.de
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models, and to estimate project costs. To measure quality aspects (e.g., model complexity)
of DSMLs, basic model metrics are needed such as: total number of model elements of a
specific type, number and average number of model elements of a specific type owned by a
model element, number of incoming (outgoing) links of a specific type to (from) a model
element, and average number of incoming (outgoing) links of a specific type per model
element within the entire model. More really domain-specific metrics can be composed
from already defined ones.

For evaluating quality issues we adopt the Goal-Question-Metrics approach (GQM) that
is widely used and has been well established in practice [Va02]. Figure 1 illustrates the
steps of the GQM process described as follows: 1. To measure the quality of a model, the
first step is to define a measurement goal such as model comprehensibility [MDN09]. 2.
Questions should be defined to support data interpretation towards a measurement goal.
For example, the following question could be derived since a complex model is hard to
understand: How complex is a model wrt. the number of its elements? 3. Metrics should
be defined that help to provide all the quantitative information to answer the questions in
a satisfactory way. A way to measure complexity is to use the metric cyclomatic complex-

ity defined as number of links − number of elements + 2 [Mc76, Mc82] wrt. a control
flow graph. To define model metrics for a given domain, the following tasks should be
done: (a) find out (basic and complex) metrics needed to collect the related quantitative
information and define them, (b) find and derive the corresponding domain metrics wrt.
the definitions by analyzing and understanding the given domain structure, (c) identify the
specification of each derived metric, and (d) find out which domain information is needed
for specifying and implementing the derived metrics. 4. Once this information is identi-
fied, the corresponding code and artifacts of metrics calculation have to be developed for
each derived metrics. 5. Implemented metrics can be used to analyze specific models. 6.
After the defined metrics have been measured, sufficient information should be available
to answer the questions. A cyclomatic complexity of 10, for example, points to a pretty
complex control flow which might be hard to understand.

1. Define
Goal

2. Define
Questions

3. Define
Metrics

4. Implement
Metrics

5. Measure
Metrics Results

6. Interpret
Results

Basic Metrics and Complex Metrics

Fig. 1: GQM process

Considering a DSML being either a completely new language or a changed one due to
evolution steps [HW14], its language and tool designers have to offer enough tool support
for convenient domain-specific modeling processes. Specifying and defining metrics for
a DSML by hand is time-consuming and error-prone. Although the definition and imple-
mentation of metrics cannot be automated completely, new ways are interesting to reduce
the manual effort as much as possible. An approach and corresponding tool support for
automatically deriving basic metrics from any given modeling language definition seems
to be promising. Automatically deriving basic metrics, the effort of specifying and imple-
menting model metrics would be reduced to composing basic metrics in a suitable way.
Considering again the GQM process in Figure 1, Steps 1, 2 and 6 would remain manually,
while 3 - 5 would be largely tool-supported.
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The contributions of this paper are the followings:

• An approach to derive basic model metrics for any given modeling language (DSML
or GPML 2) being defined by a meta-model. The approach is especially useful for
DSMLs to support the development of useful model metrics.

• An Eclipse-based tool to automate the definition of basic metrics for any given do-
main. The outcome of the tool is a high-level tool specification as an Eclipse plug-in
which comprises the specification of the derived metrics, and code generation for
metrics calculation, reporting and composition. (Steps 3 - 5 in Figure 1). The gen-
erated plug-in is used as input to EMF Refactor [Ref] for metrics calculation and
composition.

Generating basic domain-specific metrics from a given meta-model helps us to concentrate
on those metrics that really demand domain-specific knowledge. Our generation approach
does not stop at trivial metrics but can also incorporate more complex ones such as the
cyclomatic complexity and LCOM (Lack of cohesion of methods), or the definition of
model queries. We illustrate our approach by using a DSML for simple Petri nets and
discuss selected metrics patterns which are useful to derive basic metrics for this domain.
Moreover, we present an implementation of the approach based on the Eclipse Modeling
Framework (EMF) [EMF, St08] and EMF Refactor. To demonstrate the applicability and
usefulness of the approach, we present an example application of this implementation on
the UML class model domain.

The paper is structured as follows: The following section presents an example modeling
scenario motivating our work. In Section 3, we present our approach for deriving basic
model metrics in detail. Selected metrics patterns and their application on the example
scenario are discussed in Section 4. After presenting the Eclipse-based tool prototype in
Section 5, we demonstrate the applicability and usefulness of the approach in Section 6.
Section 7 compares to related work and Section 8 concludes the paper.

2 Running Example: Basic Metrics for Petri Nets

In this section, we motivate our work by using an example Petri net scenario. We first de-
scribe the corresponding Petri net meta model. Thereafter, we discuss several basic metrics
which can be used to analyze concrete Petri nets, i.e., instance models of this meta model.
Figure 2 shows the meta model of a Petri net language. A Petri net is composed of sev-
eral places and transitions. Arcs between places and transitions are explicit: PTArc and
TPArc are respectively representing place-to-transition arcs and transition-to-place ones.
Arcs are annotated with weight. Each transition has at least one input place and one out-
put place. Places can have an arbitrary number of incoming and outgoing arcs. In order to
model dynamic aspects, places need to be marked with tokens. Figure 3 shows an example
Petri net instance modeling some specific dynamic behavior. The Petri net consists of four
2 Here, GPML refers to any general-purpose modelling language.
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Fig. 2: Petri net meta model

places (P1 to P4), two transitions (T1 and T2) and altogether seven arcs connecting these
elements. Please note that we omit arc weights and inscriptions for simplicity reasons.

Fig. 3: Example Petri net instance

We present an example of the GQM process applied on the Petri net DSML as follows: Let
the quality goal be the comprehensibility of Petri net models, one derived question is: How
complex is a model wrt. the number of its elements (places and transitions)? A suitable
metric to answer this question is the cyclomatic complexity defined as number of

tparcs and ptarcs − number of places and transitions + 2. Applying this metric to the
given Petri net instance (in Figure 3), the result is 3. Hence, there are only 3 independent
paths and the given model is easy to understand and maintain.

To define metrics for analyzing models such as the cyclomatic complexity, some basic
metrics are useful [Ch95, SJM92], e.g., metrics which simply count elements of specific
types (like number of transitions in the Petri net, number of places in the Petri net and
number of arcs in the Petri net). These basic metrics may be composed using arithmetic
expressions to define the desired metrics.

When analyzing basic metrics such as the ones which calculate average values (like av-

erage number of outgoing (or incoming) arcs of all transitions in the Petri net), we ob-
serve that the structure of how they are specified is generic to some extent. The informa-
tion needed can be obtained from three classes in the meta model (in our case PetriNet,
Transition, and TPArc) where the first two classes are connected by a containment refer-
ence (transition) and the latter two classes are connected by a non-containment reference
(postArc). In the following, we identify recurring patterns in meta models that are useful
to derive basic model metrics.
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3 Approach

Considering tool support for domain specific modeling, we are faced with the dilemma
that we have to set up the tooling for metric calculation for each domain specific modeling
language, even for basic metrics. And if the DSML has changed due to some evolution
steps (e.g., the evolution of the Petri net meta model as described in [HW14]), its tooling
has to be adapted. Therefore, we address the following research problem throughout this
paper:

How can the information, stored in a meta model, be used to automate the
process of creating tool support for calculating basic metrics on corresponding
instance models?

As we have seen in the preceding section, some basic metrics are defined for the Petri net
domain such as Number of transitions in the Petri net and Number of tokens in the Petri

net. These metrics could be abstractly described as Number of instances of type X in an

instance of type Y. Moreover, we observe that several kinds of metrics can be derived by
the same (or at least similar) abstract description. This abstract description can be used
to specify basic metrics for any given domain by using the concrete domain data like the
name of the corresponding domain element, e.g., Transition, PetriNet, and Token.

So, our approach is to design several metrics patterns (i.e., structural descriptions) which
can represent the abstract description structure of several kinds of domain-specific metrics.
Domains are usually defined by a domain-specific language, more specifically by a meta
model. Therefore, the metrics patterns have to be typed by the meta-meta model so that
the patterns can be applied over any given domain (meta-model) to find and derive the
correspondences (the pattern matches). These correspondences within a specific domain
hold the concrete domain data needed to define, specify and generate basic domain-specific
metrics. These metrics are executable on instance models. In the following, we present the
process for defining a new metrics pattern and deriving basic metrics from this pattern for
a concrete meta model.

1. First, we design a pattern over the meta-meta model. This pattern consists, e.g., of
two nodes and a containment relation in between as shown in Figure 4.

Fig. 4: A simple example of a metrics pattern

2. Then, the pattern can be applied to a concrete domain in order to find and retrieve all
the pattern matches (correspondences) whose structures are instances of the pattern
structure. For the Petri net example presented in Section 2, the following pattern
matches are found:

• Node PetriNet, Node Place and a containment relation named place.
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• Node PetriNet, Node Transition and a containment relation named transition.

• Node Place, Node Token and a containment relation named token.

3. From each pattern match we now derive one or more basic model metrics. The
following Petri net metrics can be derived from the matches described above:

• Number of places in a selected Petri net.

• Number of transitions in a selected Petri net.

• Number of tokens in a selected place.

Using the data of the pattern matches we can define and specify the model metrics
for the given domain. Thereafter, an existing tool for metrics calculation on DSML
instance models may be extended.

Our approach helps to easily produce the ”boilerplate” information of metrics specifica-
tion. Having basic domain-specific metrics at hand, metrics and queries which require real
domain-specific knowledge can be specified on top of those.

To sum up, metrics patterns are designed independent of concrete DSMLs. These pat-
terns can be used to find and derive basic domain-specific metrics. Using the data of the
retrieved pattern matches, we can derive basic domain-specific metrics and specify them
in an appropriate query language like OCL. Furthermore, the corresponding code can be
also generated in order to calculate metric values of concrete instance model. Figure 5
illustrates our approach.

Metrics Patterns
on meta-meta model

Patterns Matches
on any domain meta

model

Concrete Metrics
on instances

- Deriving several basicmetrics
- Defining and specifying the derived

basic modelmetrics for the domain
- Generating the corresponding code
- Calculating the metrics on instance

models

- Designing metrics patterns on
meta-meta model

- Analyzing any domains by applying
the patterns

- Finding and retrieving many pattern
matches and managing their data

Fig. 5: The general approach to derive basic model metrics

Specifying thresholds to interpret metric results, however, is out of scope of this work due
to individual interpretation opportunities depending on the modeling language, the model-
ing purpose, and the quality aspect considered by the measurement, respectively [Ar14].
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4 Metrics Patterns

We developed 20 metrics patterns typed by Ecore, the meta-meta model of EMF [EMF,
St08] representing the reference implementation of the Essential MOF (EMOF) standard
for defining meta models using simple concepts [MOF]. The patterns are divided into four
groups depending on the number of the EReference nodes in each pattern. In this section,
we firstly present two selected patterns in detail: the simplest pattern and a more complex
one. Finally, we give an overview about the remaining patterns.

4.1 Selected Metrics Patterns

Each metrics pattern can be used to describe the abstract structure of at least one kind of
metrics. In summary, the 20 metrics patterns can derive altogether 42 kinds of basic model
metrics. In the following descriptions of two selected patterns, the term concrete pattern

refers to an instance of the basic metrics pattern.

Example for a simple metrics pattern

Figure 6 shows a simple concrete pattern (in concrete syntax) matched to the Petri net
domain. It simply consists of one single class (Place) and can be used to derive and spec-
ify metric Number of places in the model. Now, our goal is to find all concrete patterns
(matches) which have the same structure so that we can derive metrics that have the same
abstract form. The pattern can be any class such as Place as shown in Figure 6.

Fig. 6: A node-related pattern Fig. 7: Metrics pattern

Figure 7 shows the corresponding pattern (in abstract syntax) typed by Ecore. It consists
of only one node of type standard EClass in order to represent non-abstract classes. 3 Ap-
plying this pattern to the Petri net domain, several concrete pattern matches exist as, e.g.,
Transition, Token, PTArc and TPArc. Each match can be used to specify a concrete metric.
Example metrics for the Petri net domain are: number of transitions in the model, number
of tokens in the model, number of place-to-transition arcs in the model, and number of
transition-to-place arcs in the model.

As a result, this pattern can be used to find and derive domain metrics which have the
following abstract description:

Number of all instances of type X in the model.

Here, X represents the name of any matched class from any given domain with respect to
the applied pattern.
3 Here, standard EClass means, that meta attributes abstract and interface are set to false.
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Example for a more complex metrics pattern

Figure 8 shows a more elaborated concrete pattern (in concrete syntax) matched to the
Petri net domain. It consists of class PetriNet connected by a containment relation named
transition to class Transition which is in turn connected to class TPArc (the referenced
class) by a non-containment relation named postArc.

Fig. 8: An edge-related pattern Fig. 9: Metrics pattern

This concrete pattern can be used to derive and specify the following concrete metrics:

• Number of all outgoing arcs of all transitions in a selected Petri net.
• Average number of outgoing arcs of all transitions in a selected Petri net.

Again, we want to find all concrete pattern matches for a given domain. Any concrete pat-
tern must consist of three classes with one containment relation and one non-containment
relation between these classes. Figure 9 shows the corresponding pattern (in abstract syn-
tax), again typed by Ecore. The pattern consists of altogether five nodes. The nodes on
the left are of type standard EClass (see above). Here, the top-left node is used to infer a
container class, the middle-left node is used to infer a contained class , and the bottom-left
node is used to infer a referenced class. The other nodes are of type EReference. Here, the
containment attribute of the top-right node is set to true whereas the containment attribute
of the other one is set to false. This means that the top-right node is used to infer the con-
tainment relation between the corresponding matched classes whereas the bottom-right
node is used to infer the non-containment one.
As a result, this pattern can be used to find and derive metrics which have the following
two abstract descriptions:

Number of all instances of type X referenced by all instances of type Y in a selected
instance of type Z.
Average number of all instances of type X which are referenced by all instances of type Y

in a selected instance of type Z.

Here, X represents the name of the matched referenced class, Y is the name of the matched
contained class and Z is the name of the matched container class.
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4.2 Metrics Pattern Groups

As mentioned above, we developed 20 metrics patterns which are separated into four
groups depending on the number of EReference nodes in each pattern. In the following,
we present an overview about the patterns in these groups and the kind of metrics which
can be derived.

Group “Single node pattern” The first group contains only one pattern which consists of
only one node of the type EClass to derive the atomic metrics (see Figure 7).

Group “One-edge patterns” The second group consists of seven patterns where each one
contains one EReference node and several nodes of type EClass. These patterns can be
used to derive the following kinds of metrics: average, percentage, sum or total number
of instances of a specific type in or for a selected instance. Please note that some patterns
are designed to support inheritance in order to match child classes of classes, abstract
classes or interfaces. For example, some patterns can derive the following kind of metrics:
number of instances of a child type in a selected instance. Concrete examples are: number
of transition-place arcs in a selected Petri net, number of place-transition arcs in a selected
Petri net, and total number of all arcs in a selected Petri net (the sum of both metrics
mentioned before).

Group “Two-edge patterns” The third group also consists of seven patterns. Here, each
pattern contains two EReference nodes and several nodes of type EClass. These patterns
can be used to derive the same kinds of metrics provided by group 2 as well as more com-
plex ones. For example, a pattern is designed using two EReference nodes which have the
same source standard EClass and the same target standard EClass node. The containment
attribute of one EReference node is set to true whereas the containment attribute of the
other one is set to false. This pattern can derive the following kind of metrics: Number of
“part”-instances in a selected “whole”-instance so that they have the same specific role

specified by non-containment reference. Some patterns of this group are designed to match
child classes of different pattern nodes such as the child classes of the whole part node, the
direct-part node or of both. The pattern in Figure 9 belongs to this group.

Further more-edge patterns can be defined in the similar way. We assume that our current
patterns may be matched often over any given domain because their structures are vital and
cardinally needed for representing several parts of any meta-model structure. Additionally,
some metrics derived by more-edge patterns could be defined by composing metrics de-
rived by less-edge patterns.

Group “Composed patterns” The last group consists of five patterns for deriving more
complex metrics respectively more specific ones. It contains some patterns for deriving
metrics used to calculate the sum (average, percentage) of the number of different kinds of
instances having the same whole instance as for example total number of transitions and

places in a selected Petri net. The patterns can also be used to derive metrics like average

number of places with respect to the number of transitions in a selected Petri net. However,
these kinds of metrics may not make sense for each domain.



38 Nebras Nassar, Thorsten Arendt, Gabriele Taentzer

So far, we defined 20 metrics patterns to derive 42 different kinds of metrics. However, we
do not claim that this list is complete. Furthermore, the existing patterns could be used to
produce further kinds of metrics. The 42 kinds of metrics are only some suggested ones.
We can also think of combining several kinds of metrics. Additionally, we can also use the
approach to design further metrics patterns by using, as an example, a different number of
nodes and relations with different attributes values. Additionally, we can design patterns
for producing metrics used to inquiry on attributes values of nodes.

5 Tooling

In this section, we present the Nas tool that we developed to automate the process of model
basic metrics creation, i.e., metrics derivation and specification for any given domain, and
to automatically generate a high-level tool specification as an Eclipse plugin thereafter.
The entire tooling is based on the Eclipse Modeling Framework (EMF) [EMF, St08].

Nas Tool We developed an Eclipse-based tool, called Nas Tool, which uses metrics pat-
terns to automatically find matches and to automatically derive, specify and generate basic
metrics of any given domain modeled in Ecore thereafter. The metrics patterns are de-
signed by Henshin [Ar10, Hen], a model transformation engine for EMF based on graph
transformation concepts, as pattern-based rules. Each rule mimics the EMF abstract syntax
of a structure to be matched in a given meta-model. During the pattern matching process,
an isomorphic mapping from EMF node and edge symbols in the pattern to actual nodes
and edges in the meta-model is computed. The Nas tool can be easily applied: The only
input is a meta model in Ecore. The outcome of the Nas tool is a high-level tool specifi-
cation as an Eclipse plug-in which comprises the following: A specification tool support
for model metrics containing already a number of basic metrics specified by OCL being
derived from the meta model. This tool support can be used to define further model met-
rics as compositions of existing ones. An application tool support for model metrics which
can be used to calculate the defined metrics on concrete domain-specific models. The gen-
erated plug-in is used as input to EMF Refactor which is an Eclipse tool that supports
metrics calculation, reporting and composition. Figure 10 depicts the use of the Nas tool
in combination with EMF Refactor.

Nas Tool

Metrics Derivation
Metrics Specification
Metrics Generation

EMF Refactor

Metrics Calculation
Metrics Reporting
Metrics Composition

Meta-
model

Metrics Plugin

Fig. 10: The use of the Nas tool in combination with EMF Refactor

In addition, the Nas tool provides a view component for statistical information about de-
rived metrics: It shows the number of pattern matches, the number of derived metrics for
each applied pattern and the total number of matches and metrics.
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Consequently, the Nas tool provides the following features:

• Automation: Creating (i.e. deriving, specifying and generating) basic model metrics
automatically. Thus, the design and implementation time for each generated metrics
is reduced.

• Abstraction: The Nas tool can be used to define and implement basic model metrics
for any domain-specific language.

• Simplicity: The tool is easy to use, i.e., the user does have not to know about the
metrics definitions, meta model structure and query languages.

• Extendability: The tool is extensible, i.e., it provides the ability to add further metrics
patterns.

More information about the Nas tool, especially about its installation and the provided
patterns, can be found at the accompanying web site of this paper [Nas].

6 Application Case

In this section, we demonstrate metrics generated by the Nas tool and compare them
to the metrics provided by EMF Refactor [Ref] for a simple class modeling language
(SCM) [AT13]. SCM represents the class diagram part of UML but it is much more sim-
pler since it omits concepts like operations and association classes. Figure 11 shows the
SCM meta model specified in Ecore.

Fig. 11: The SCM meta model

The SCM metrics provided by EMF Refactor are manually specified and implemented us-
ing different perspectives and technologies like Henshin, OCL and Java. However, when
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running the Nas tool on the SCM meta model, 127 basic metrics are automatically gener-
ated using only a few mouse clicks. 14 patterns are matched over the SCM model and some
of them can generate several kinds of metrics. The 127 metrics are derived by altogether
72 matches of these metrics patterns. The number of pattern matches will be different from
one domain to another one but we are convinced that the first six patterns (see [Nas]) have
a high possibility to be matched over most given domains because the structure of each
pattern of them could be considered as a simple basic structure.

After analyzing the SCM metrics provided by EMF Refactor, we found out that those
metrics can be abstractly represented by 9 different metrics patterns. 6 of them are common
with the patterns of the Nas tool whereas the other three patterns are too specific to the
SCM model. The total number of the created metrics from these common patterns is 12 in
EMF Refactor and 52 from the Nas tool.

Table 1 presents the SCM metrics provided by EMF Refactor and shows whether the met-
rics can be directly generated by the current version of the Nas tool, whether it can be
defined by combining two generated metrics, or whether it cannot be generated. 12 out of
19 SCM metrics provided by EMF Refactor are also generated by the Nas tool. In addition,
three metrics (i.e., 14, 15 and 17) are combinations of generated basic metrics. Hence, they
profit from the Nas tool. We only need to combine two generated metrics using a mathe-
matical operation, namely the division operation, like the metric called Average number of

attributes in concrete classes.

In the following, we discuss the uncovered metrics: Metrics 2 and 18 could be derived
by adding further metrics patterns, e.g., metric 2 can be derived by adding a pattern which
takes incoming references into account. This metrics pattern shall be included into a future
version of the Nas tool. Metrics 8 and 16 are too specific to the SCM model in the sense
that they check a specific attributes value of the SCM model, e.g., if attribute isAbstract of
ScmClass is set. In the future, we intend to consider ratio metrics for attribute values that
are boolean or enumerations with literals.

The SCM metrics provided by EMF Refactor do not contain all the basic metrics of all
SCM elements like the derived metrics from pattern 1, e.g., number of all comments in the
model. The metrics in EMF Refactor are created using several different technologies and
the process of creation took its time whereas creating the 127 SCM metrics generated by
the Nas tool requires only a few mouse clicks. Please note that the non-covered metrics can
be generated by adding new patterns or by extending some existing ones in the Nas tool.
To summarize, the most of our selected patterns are matched with the SCM meta model
and more than 78.5% of the metrics provided so far can be generated by the Nas tool or
composed from generated ones.

Considering SDMetrics [SDM], a tool dedicated to the calculation of UML metrics, 96
metrics are provided by that tool, all specified by hand. We show that over 80% of them
can be generated by the current version of the Nas tool or composed from generated ones.
The rest of metrics could also be derived if the existence patterns were extended or new
metrics patterns were added. More information about this comparison can be found at the
web site of this paper [Nas].
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Id Metrics description State

1 Number of direct children covered
2 Number of external attributes with class type not covered
3 Number of outgoing associations covered
4 Number of incoming associations covered
5 Number of associated classes covered
6 Number of redefining attributes covered
7 Total number of classes in the package covered
8 Number of abstract classes in the package not covered
9 Number of concrete classes in the package covered
10 Number of associations in the package covered
11 Total number of attributes in concrete classes covered
12 Number of owned attributes in concrete classes covered
13 Number of inherited attributes in concrete classes covered
14 Average number of attributes in concrete classes combination
15 Average number of associations per concrete class combination
16 Ratio of the number of abstract classes not covered
17 Ratio of the number of inherited attributes combination
18 Number of equal attributes with other classes not covered
19 Total number of model elements covered

Tab. 1: The SCM metrics provided by EMF Refactor [AT13, Ref]

7 Related Work

To the best of our knowledge there is no directly related work on deriving model metrics
from the corresponding meta model specification of a DSML. However, in this section, we
discuss several topics being related to our work to some extent.

Model metrics. The problem of measuring the quality of models has been approached in
several ways. Most of the presented metrics measure the quality of UML models. A survey
of metrics applicable to UML models can be found in [GPC05]. Furthermore, in [La06,
MP07], some general observations on managing quality, defining and reusing metrics for
UML models are drawn.

The existing tool support for model metrics calculation is mainly aiming at UML and
EMF modeling. Considering UML modeling, metrics calculation tools are integrated in
standard UML CASE tools such as the IBM Rational Software Architect [RSA] and Mag-
icDraw [MD]. A tool for UML metrics calculation is SDMetrics [SDM] (see above).

Related work in the context of quality metrics for meta models can be categorized into two
groups: Firstly, work that deals with quality on the meta level, i.e., on meta models. Sec-
ondly, approaches that address quality on the instance level, i.e., on models. In [MA07],
quality dimensions for MDD are derived. In [BV10], a taxonomy of meta model quality
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attributes is presented. Both works use metrics to analyze the quality of the meta model in-
stead of corresponding instance models. In [Vé06], a repository for meta models, models,
and transformations is presented. The authors transfer metrics that were designed for class
diagrams to meta models and apply them to contents of the repository. However, these
works do not address the opposite direction to use structural information that is implicitly
given in the meta model to derive basic metrics for instance models.

Metric definition and generation approaches. The closest relation to our work is pre-
sented in [YA14]. Here, the authors present a quality measurement framework for defining
quality metrics at the meta model to measure the quality of conforming instance models.
However, the motivation of this work is not to derive basic quality metrics like in our
approach, but for evaluating a model by comparing it with a reference model which is
motivated in the context of empirical studies, for example. In [AST10, Ar11, AT13] we
present an EMF Metrics plug-in, as a part of EMF Refactor, supporting specification and
calculation of model metrics for a given meta-model. Here, the derivation and specifica-
tion of each model metric for each given meta-model have to be done manually by users.
That work does not consider the automatic creation of model metrics for DSMLs.

In [Mo11], the authors present a model-driven measurement approach allowing model-
ers to dynamically add measurement capabilities to a DSML. The core of this work is to
develop a metric specification meta model which enables to declare metric specifications
as instance models. A metric specification model is taken as input to a prototype gen-
erator which outputs a full-fledge measurement software integrated into Eclipse. In this
approach, the user should manually declare the metrics as instance models for each given
meta model, whereas in our approach, the declaration of metrics will be automatically
derived and specified from any given meta model.

In [Al09], the authors produce source-code representations of object-oriented applica-
tions. The generated representations should conform to a meta model that represents object-
oriented languages such as Java and C++. A metric declarative language is developed to
add new metrics without modifying the code of the framework. The metrics are executed
on the generated representations. In that approach, the metric descriptions are declared
concerning the object-oriented meta model, whereas in our approach, we derive metrics
from any given meta model using characteristic patterns typed by Ecore (a meta-meta
model) and using metrics descriptions.

8 Conclusion

In this paper we presented an approach for deriving basic metrics from the meta-model
of a given domain-specific modeling language. In our work, 20 patterns are designed and
described to derive metrics from any domain (meta-model) based on Ecore. The patterns
are typed by the meta-meta model of EMF. Each pattern can be used to produce one or
several kinds of basic model metrics.

We developed the Nas tool which takes the meta-model of any domain-specific language
to automatically derive, specify and generate basic metrics based on the Eclipse technol-
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ogy [Nas]. The use of the Nas tool is quite simple, only a few mouse clicks are required to
create the metrics. Furthermore, the tooling provides an extension mechanism to add new
custom metrics patterns. In this context, future work will concentrate on extending the ex-
isting metrics pattern base, supporting other metric kinds and more facilities for default
calculation and compositions of metrics. Furthermore, we intend to figure out a vital set
of metrics to be generated by analyzing, for example, user requirement specifications for
the modeling language, to derive thresholds for the derived metrics, and to conduct further
case studies.
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[Mo11] Monperrus, Martin; Jézéquel, Jean-Marc; Baudry, Benoit; Champeau, Joël; Hoeltzener,
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Vom Clean Model zum Clean Code

Anna Vasileva1, Doris Schmedding2

Abstract: In diesem Beitrag wird der Zusammenhang zwischen Code-Qualität und UML-
Modellen in einem Software-Entwicklungsprozess in der Informatik-Ausbildung vorgestellt. Es
wird untersucht, welche der im Code sichtbar werdenden Mängel bereits im Modell erkannt
werden können. Werkzeuge zur statischen Code-Analyse und Refactoring-Techniken unterstützen
die Studierenden beim Entdecken und Beseitigen der Qualitätsmängel im Programm-Code. Eine
Analyse der studentischen Projekte hat gezeigt, dass sich manche Code-Mängel im Nachhinein nur
schwer beseitigen lassen. Aus diesem Grund müssen Qualitätsaspekte bereits beim Modellieren in
Betracht gezogen werden. Frühzeitig erkannte Mängel lassen sich mit geringeren Kosten
beseitigen als spät erkannte Defekte.

Keywords: Clean Code, Code-Qualität, Qualität von UML-Modellen, statische Code-Analyse,
Software-Entwicklung, Metriken

1 Einleitung

Das Software-Praktikum (SoPra) ist eine Lehrveranstaltung, in der im Team Software-
Entwicklungsprojekte durchgeführt werden. Es findet in den ersten Semestern des
Informatik-Studiums statt und wird nach einer Programmier- und Software-Technik-
Veranstaltung besucht. Im Rahmen des SoPras werden die bis dahin erlernten Methoden,
grundlegende Prinzipien und Software-Entwicklungsprozesse in der Praxis eingesetzt.

Es werden zwei Varianten des SoPras angeboten – als reguläre Veranstaltung im
Wintersemester und als Blockveranstaltung in der vorlesungsfreien Zeit im Winter und
im Sommer. Der offizielle Stundenumfang beträgt in beiden Fällen vier
Semesterwochenstunden. Im Ferien-SoPra treffen sich die Studierenden jeden Tag und
arbeiten etwa 30 Stunden pro Wochen an den Projekten.

Die Teilnehmer sind Bachelor-Studierende, die in Gruppen mit jeweils acht Mitgliedern
aufgeteilt sind. Jede Gruppe hat die Unterstützung eines Betreuers bzw. einer Betreuerin.
In der beschränkten Zeit werden zwei Projekte durchgeführt. Etwa sechs bis zehn
Gruppen bearbeiten gleichzeitig dieselben Projekte. In der Regel ist das erste Projekt ein
Verwaltungsprogramm und das zweite Projekt ein Spiel.

Die Software-Entwicklung basiert auf einer vereinfachten Version des

1 Technische Universität Dortmund, Fakultät für Informatik, Otto-Hahn-Str. 12, 44227 Dortmund,
anna.vasileva@tu-dortmundd.de

2 Technische Universität Dortmund, Fakultät für Informatik, Otto-Hahn-Str. 12, 44227 Dortmund,
doris.schmedding@tu-dortmund.de
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Wasserfallmodells von Royce [Ro70]. Dieses ist auch für Studierende ohne Erfahrung
leicht verständlich sowie für kleine und übersichtliche Projekte gut geeignet. Jede Phase
ist vordefiniert und wird streng befolgt. Die Betreuer führen am Ende jeder Phase
Reviews durch. Mit einer Präsentation der Zwischenergebnisse wird die aktuelle Phase
jeweils abgeschlossen.

Abb. 1: UML-Modellierung

In der ersten Phase werden die Anforderungen definiert. Anschließend folgt die Analyse-
Phase. In diesen beiden Phasen wird die Unified Model Language (UML) [Ru12] zur
Modellierung eingesetzt. Abbildung 1 stellt die Abhängigkeit zwischen den in den
einzelnen Phasen eingesetzten UML-Diagrammen dar. Darauf wird in Kapitel 3 näher
eingegangen. Nach der Modellierung werden aus dem Strukturmodell einmalig Java-
Code-Rahmen generiert. Das Programm wird implementiert und getestet. Dabei wird
auch die Qualität des produzierten Codes überprüft. Am Ende der
Implementierungsphase findet ein Produkttest durch das Entwicklerteam statt, in dem
noch einmal überprüft wird, ob die in der Aufgabestellung geforderten Funktionalitäten
von dem entwickelten Produkt erfüllt sind. Zum Abschluss des Projekts findet ein
gegenseitiger Abnahmetest der teilnehmenden Gruppen statt.

Für die Implementierung wird die objektorientierte Programmiersprache Java eingesetzt.
Die verwendete Entwicklungsumgebung ist Eclipse. Viele Plugins, z.B. für die Versions-
und Zugriffskontrolle oder für die Entwicklung der grafischen Benutzeroberflächen,
unterstützen die Studierenden zusätzlich.



Vom Clean Model zum Clean Code 47

Die Projekte haben einen Umfang von ca. 6000 Lines of Code (LOC) und umfassen
ungefähr 30 Klassen ohne Berücksichtigung der Klassen der graphischen
Benutzungsschnittstelle (GUI). Diese Klassen werden weitgehend mit Hilfe von GUI-
Editoren erzeugt und bleiben deshalb in den nachfolgenden Betrachtungen
unberücksichtigt.

Die Arbeit ist folgendermaßen aufgebaut. Nach der Einleitung gibt Kapitel zwei einen
Überblick über die Motivation, die Ziele und die Probleme bei der Integration von
Qualitätsaspekten in einen Software-Entwicklungsprozess. Im Kapitel „Modellierung
mit UML“ wird genauer erläutert, welche UML-Diagramme von den Studierenden im
Rahmen der ersten Phasen des Entwicklungsprozesses erstellt werden. In Kapitel vier
und fünf wird vorgestellt, welche Maßnahmen bisher getroffen wurden, um die innere
Qualität der erstellten Software zu verbessern. Anschließend folgt eine Erläuterung der
Mängel, die bereits in der Modellierungsphase zu erkennen sind. Der Beitrag schließt
mit einem Ausblick und einem Fazit.

2 Motivation

In den ersten Semestern des Informatik-Studiums lernen die Studierenden die Semantik
der verwendeten Programmiersprachen, verschiedene Programmierparadigmen, die
Modellierung mit UML, Entwurfsmuster und Software-Entwicklungsprozesse kennen.
Im Zentrum der Ausbildung im Bereich Programmierung und Software-Entwicklung
steht das Ziel, funktional korrekte Programme zu erstellen. Im Software-Praktikum ist
bei der Abnahme der Projekte aber deutlich geworden, dass die innere Qualität der von
den Studierenden erstellten Programme zu wünschen übrig lässt.

In mehreren Iterationen haben wir ein Konzept entwickelt, das der langfristigen
Verankerung des Ziels „Hohe innere Software-Qualität“ im Software-
Entwicklungsprozess dient. Unser Vorgehen basiert auf Untersuchungen zu typischen
Qualitätsmängeln im Code von studentischen Projekten in der Lehrveranstaltung
Software-Praktikum ([Sc15], [Re14]).

Die bisherigen Analysen der studentischen Projekte mit Hilfe eines Werkzeugs zur
statischen Code-Analyse haben gezeigt, dass das Beseitigen von Mängeln, die bereits
entstanden sind, häufig zeitaufwendig, sehr schwierig und für unerfahrene Entwickler
manchmal auch unmöglich ist. Am Ende der Projekte bleibt keine Zeit für die
Verbesserung der inneren Qualität der Programme. Der Schwerpunkt der Aktivitäten
liegt in der Endphase des Projekts auf dem Aussehen, dem Hinzufügen von zusätzlichen
Features und der funktionalen Korrektheit der vorhandenen Eigenschaften. Unser Ziel
ist, dass die Studierenden bereits beim Modellieren mehr Wert auf die innere Qualität
der Programme und nicht nur auf die funktionale Korrektheit legen.
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3 Modellierung mit UML

In der ersten Phase des Software-Entwicklungsprozesses werden die Anforderungen
erhoben. Ein Anwendungsfalldiagramm stellt die funktionalen Anforderungen in Form
von Anwendungsfällen dar, die die Nutzer des Systems in unterschiedlichen Rollen
ausführen können. Anschließend wird jeder Anwendungsfall näher beschrieben, indem
der genaue Ablauf durch ein Aktivitätsdiagramm dargestellt wird.

Die Aktivitätsdiagramme sind wichtige Artefakte im Entwicklungsprozess. Beim
Erstellen dieser Diagramme stellen die Studierenden zum ersten Mal fest, dass einige
Anwendungsfälle sehr komplex sind. Andere Anwendungsfälle laufen anders ab, als die
Studierenden gedacht haben. Zur genaueren Erläuterung der Aktivitätsdiagramme
müssen die Studierenden eine textuelle Beschreibung der Anwendungsfälle erstellen, in
denen Vor- und Nachbedingungen sowie Fehlerfälle beschrieben werden.

Der Entwicklungsprozess startet also mit einer ausführlichen Erhebung der funktionalen
Anforderungen, auf die im weiteren Verlauf des Prozesses immer wieder
zurückgegriffen wird. Neben der Modellierung der funktionalen Anforderungen wird ein
Datenmodell, das so genannte Problembereichsmodell, erstellt, welches die Klassen des
Problembereichs mit ihren Attributen und den Beziehungen untereinander darstellt.

In der Analysephase wird das Problembereichsmodell zum Strukturmodell ausgebaut,
indem Steuerungsklassen ergänzt und Methoden hinzugefügt werden. Wir streben aus
Gründen der Übersichtlichkeit und Verständlichkeit eine Dreischichtenarchitektur an,
die sich an dem Model-View-Controller-Muster [Ga09] der Software-Entwicklung
orientiert. Um zu überprüfen, ob im Strukturmodell alle Methoden und Beziehungen
zwischen den Klassen vollständig erfasst sind, werden Sequenzdiagramme eingesetzt,
die in der Regel die Anwendungsfälle aus dem Anwendungsfalldiagramm
repräsentieren. Bei der Definition der Methoden im Strukturmodell werden die
Signaturen der Methoden vollständig angegeben.

Im SoPra wird zum Modellieren mit UML das leichtgewichtige Werkzeug Astah [As15]
verwendet. Dieses Tool ist sehr benutzerfreundlich und intuitiv bedienbar. Die
Studierenden kommen damit gut zurecht. Das Strukturmodell und die
Sequenzdiagramme sind, wie bereits erläutert, inhaltlich gekoppelt. Bei Astah liegt
diesen beiden Diagrammtypen ein gemeinsames Datenmodell zugrunde. Bei der
Erstellung eines Sequenzdiagramms stehen die bereits definierten Methoden zur
Verfügung. Eine große Unterstützung stellt die Möglichkeit zur automatischen
Generierung von Java-Code-Rahmen dar.

4 Code-Qualität

Die innere Qualität der Programme beruht an erster Stelle auf der Lesbarkeit und
Verständlichkeit des Programm-Codes. Erst in der Zusammenarbeit im Team und wenn
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die Zeit knapp ist, wird klar, dass eine hohe innere Qualität des Codes das Modifizieren
und Testen vereinfacht und die Wartbarkeit des entstehenden Programms erhöht.

Mit Hilfe eines Werkzeugs zur statischen Code-Analyse können außerdem potentielle
Fehler frühzeitig entdeckt werden.

Es wurden Messungen mit dem Tool zur statischen Code-Analyse PMD [PMD15]
durchgeführt. Die erste Messung diente der Analyse des studentischen Programm-Codes
und der Suche nach typischen Defekten. Beim Programmieren wussten die Studierenden
anfangs nicht, dass Messungen durchführt werden und nach Mängeln gesucht wird.

Die Analyse der studentischen Projekte hat gezeigt, dass immer wieder ähnliche Mängel
im Programmcode vorkommen. Diese lassen sich in folgende Bereiche aufteilen:

 Namensgebung und Einhaltung der Java-Konventionen,

 Komplexität und Länge der Methoden,

 Verantwortlichkeit, Länge und Komplexität der Klassen.

Die Anzahl der Metriken und der Tools, welche die innere Qualität vom Programm-
Code messen, ist sehr groß. Gemäß der Goal-Question-Metrik-Methodik [Ba94] werden
konkrete Ziele zur Verbesserung der Code-Qualität definiert. Die ausgewählten Metriken
dienen dem Ziel, die Lesbarkeit, Verständlichkeit und Wartbarkeit des Codes zu
erhöhen. Für unsere Lehrveranstaltung wurden Metriken und Grenzwerte ausgewählt,
die für die Studierenden leicht verständlich sind [Re14]. Die Metriken helfen, die
Mängel mit Tool-Unterstützung möglichst leicht zu entdecken und zu beheben. Tabelle 1
stellt die definierten Ziele, die verwendeten Metriken und Grenzwerte dar.

Bei der Auswahl der Metriken und der Festlegung der zu erreichenden Grenzwerte
wurden der Projektumfang sowie die Erfahrungen der Studierenden berücksichtigt.
Darauf aufbauend wurde für das ausgewählte Tool zur statischen Code-Analyse PMD
ein SoPra-spezifischer Regelsatz definiert. Dieser wird im XML-Format im SoPra-Wiki
[SP15] zur Verfügung gestellt.

Da ein Werkzeug zur statischen Code-Analyse nicht über die Aussagekraft eines
Bezeichners entscheiden kann, müssen die Bezeichner auch manuell kontrolliert werden.
Mit Hilfe von PMD kann nur die Länge der Bezeichner geprüft werden. Jedoch können
auch Bezeichner, die länger als fünf Zeichen sind, sinnlos sein, die Java-Konventionen
nicht einhalten oder missverständliche Information liefern.
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Tab. 1: SoPra-Regeln

5 Bisherige Vorgehensweise zur Qualitätsverbesserung

Eine erste Messung ohne Vorankündigung hat gezeigt, dass die ausgewählten Metriken
[Re14] und Grenzwerte für die Studierenden grundsätzlich erreichbar und passend zum
Projektumfang gewählt sind. Dennoch wiesen die Projekte erhebliche Mängel auf.

In mehreren Iterationen, Durchführungen des Software-Praktikums, wurde daran
gearbeitet, das Thema Code-Qualität in den Ablauf des Software-Entwicklungsprozesses
langfristig zu integrieren und die Qualitätsergebnisse der Gruppen zu verbessern [Sc15].
Die Iterationen orientieren sich an dem Plan-Do-Check-Act-Zyklus (siehe Abbildung 2).
In jeder Iteration wurden mit Hilfe von PMD-Messungen durchgeführt. Diese wurden
analysiert und anhand der Ergebnisse wurden Änderungen am didaktischen Vorgehen
vorgenommen, die die Integration der Qualitätsaspekte zusätzlich unterstützen. Diese
Änderungsmaßnahmen werden nachfolgend erläutert.

3 Weighted Method Count
4 Access To Foreign Data
5 Tight Class Cohesion

Ziel Metrik Grenzwert Erkannt durch

Einhaltung der
Java-
Konventionen

Naming Conventions - PMD + Manuelle
Prüfung

Sinnvolle
Bezeichner

Länge der Bezeichner 5 Zeichen PMD + Manuelle
Prüfung

Übersichtliche
und gut lesbare
Methoden

Zeilenlänge der Methoden 40 Zeilen PMD

Parameteranzahl der
Methoden

4 PMD

Zyklomatische
Komplexität

10 PMD

Übersichtliche
und gut lesbare
Klassen

Zeilenlänge der Klassen 400 Zeilen PMD

Toter Code - PMD

Gott-Klasse WMC3 > 47,
ATFD4 > 5,
TCC5 < 0,33

PMD
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Bereits in der Einführungsveranstaltung zum Praktikum wird Code-Qualität thematisiert.
Zum Thema Clean Code [Ma09] und Refactoring [Fo99] werden Tutorials im SoPra
[SP15] zum Selbststudium bereitgestellt.

Die Studierenden führen in der Implementierungsphase eigenständig Messungen mit
PMD und dem zur Verfügung gestellten SoPra-Regelsatz durch. Die
GruppenbetreuerInnen weisen wiederholt auf die Relevanz der Code-Qualität für das
Projekt hin und versuchen gemeinsam mit ihrer Gruppe bessere Lösungen zu finden.

Trotz all dieser Maßnahmen wurde festgestellt, dass es offenbar nicht ausreicht, über die
Möglichkeit von Qualitätsmessungen und Maßnahmen zur Qualitätsverbesserung
informiert zu sein. Deswegen musste ein anderer Weg beschritten werden. Nach dem
ersten und vor dem zweiten Projekt folgte eine Diskussion der Ergebnisse der
durchgeführten Messungen mit jeder Gruppe und deren BetreuerIn. Die Studierenden
wurden in der letzten Iteration aufgefordert, die gefundenen Mängel mit Hilfe von
Refactoring-Techniken [Fo99] zu beheben und einen Bericht darüber zu verfassen.
Wenn das Verwenden von Refactoring nicht erfolgreich war, mussten die Studierenden
dies schriftlich begründen.

Ein Vergleich der Ergebnisse mehrerer Sopra-Durchläufe zeigt, dass diese Maßnahme
endlich dazu geführt hat, dass die Ergebnisse im zweiten Projekt deutlich besser wurden.
Besonders auffallend ist, dass es in der Kategorie Bezeichner fast keine Verstöße gegen
die Bezeichnerwahl gab. Das liegt auch daran, dass die Studierenden diese Mängel
bereits beim Modellieren erkennen konnten.

Viele Mängel, insbesondere im Bereich der Namensgebung, lassen sich problemlos, z.B.
durch das Refactoring Rename, beheben. Um die Länge der Methoden zu verkürzen und
ihre Komplexität zu verringern, kann das Refactoring Extract Method oft erfolgreich
eingesetzt werden. In manchen Fällen waren die Studierenden trotz ihrer Bemühungen
nicht in der Lage, die Mängel zu beseitigen. Jedoch konnten sie gut erklären, woran sie
gescheitert waren.

Diese praktische eigene Erfahrung der Studierenden und der Einsatz dieser didaktischen
Methoden haben dazu geführt, dass sich die Entwicklerteams bereits in der
Modellierungsphase des zweiten Projektes Gedanken über eine gute Bezeichnerwahl und
die Vermeidung von langen Methoden, langen Parameterlisten und Gott-Klassen
gemacht haben. Bei der Implementierung haben einige Gruppen versucht, der Regel vom
Martin [Ma09] zu folgen. Diese besagt, dass eine Methode nur vier Zeilen lang sein
sollte.
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Abb. 2: PDCA-Zyklus

6 Entdeckung von Mängeln beim Modellieren

Frühzeitig erkannte Mängel sind einfacher zu beheben, als wenn diese bereits fest im
Programm-Code verankert sind. Basierend auf unseren Untersuchungen [Sc15] wurden
die Mängel analysiert, die bereits im Modell zu finden sind, und nach Hinweisen
gesucht, die im Modell auf spätere mögliche Defekte im Programm-Code hindeuten.
Diese Mängel werden in den folgenden Unterkapiteln vorgestellt.

6.1 Bezeichner

Die Wahl guter Bezeichner ist von großer Bedeutung für die Lesbarkeit des
Programmcodes. Die Studierenden neigen dazu, kurze und nicht aussagekräftige
Bezeichner zu wählen. Häufig wird auch Humor verwenden, der die allgemeine
Verständlichkeit des Codes nicht unterstützt.

In Abbildung 3 wird eine Steuerungsklasse gezeigt, die im Rahmen eines
Verwaltungsprojekts modelliert wurde. Die Studierenden musste ein Software-Produkt
für die Organisation einer Cocktail-Bar erstellen. Mit Hilfe des Programms sollten
Cocktail-Rezepte und ein Vorrat an Zutaten verwaltet werden. Die vorgestellte Klasse
beinhaltet die Methode „getMaxMix“, die ein Beispiel für eine schlechte
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Bezeichnerwahl darstellt. Der Name der Methode hält zwar die Java-Konventionen ein,
ist aber inhaltlich nicht aussagekräftig. Sogar mit gutem Kontextwissen ist die
Bedeutung schlecht zu verstehen.

In der ersten Iteration wurde festgestellt, dass die Java-Konventionen schon bei der
Namensgebung in den UML-Diagrammen nicht eingehalten wurden. Da, wie bereits
erwähnt, mit Hilfe von Astah aus dem Strukturmodell die Java-Code-Rahmen der
Klassen und Methoden generiert werden, werden die schlecht gewählten Bezeichner aus
dem Modell automatisch in den Java-Code übernommen.

Die Experimente haben gezeigt, dass die Qualitätskategorie Namensgebung sehr einfach
und verständlich für die Studierenden ist. Mit Hilfe von Refactoring können ohne
weitere Probleme und Nebenwirkungen die gefundenen Mängel schnell beseitigt
werden. In der letzten Iteration haben die Studierenden nach der Einführung des
Beseitigungszwangs bereits beim Modellieren auf die Bezeichnerwahl geachtet.
Verstöße gegen die Java-Konventionen wurden deshalb im Programm-Code kaum noch
gefunden.

Ein Grund für die hohe Qualität bei der Namensgebung für aus dem Modell
übernommene Bezeichner in der letzten Iteration kann die Zusammenarbeit im Team
beim Erstellen der UML-Modelle, aus denen die Java-Code-Rahmen generiert werden,
sein. Hinzu kommen die von den Betreuern durchgeführten Reviews.

Besonders viele zu kurze Bezeichner stellten wir in Programmteilen fest, die von
Einzelpersonen in der Implementierungsphase erstellt wurden. Diese Programmteile
wurden bis dahin keinem definierten Code-Review-Prozess unterzogen.

6.2 Methoden

Als Qualitätsmerkmale der Methoden werden die Länge der Parameterlisten, die Länge
der Methoden und ihre Komplexität betrachtet.

Mit Hilfe von Refactoring-Techniken, z.B. Extract Method [Fo99], kann die Lesbarkeit
der Methoden verbessert werden, indem ihre Länge und Komplexität verringert werden.
Diese Verbesserungen können aber nicht immer oder nicht so einfach umgesetzt werden.
Ob nach dem Refactoring die Funktionalität erhalten geblieben ist, muss regelmäßig
durch Tests überprüft werden. Die korrekte Beseitigung derartiger Mängel kostet viel
Zeit.

Die Anzahl der Parameter lässt sich mit Hilfe von Refactoring reduzieren. Durch
Introduce Parameter Object eine neue Klasse erzeugt und mehrere Parameter einer
Methode lassen sich durch ein Objekt dieser Klasse ersetzen. Diese Methodik hat jedoch
auch Nachteile. Die Lesbarkeit und die Übersichtlichkeit der Programme werden nicht
unbedingt verbessert, da durch das Erzeugen von neuen Klassen die gesamte Struktur im
Nachhinein verändert wird.
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Abb. 3: Klasse in einem SoPra-Projekt

Die Länge der Parameterliste lässt sich sehr gut bereits im Modell überprüfen. Die
vorgestellte Klasse in Abbildung 3 beinhaltet zwei Methoden mit sehr langen
Parameterlisten. Laut unserer SoPra-Regeln (s. Tabelle 1) dürfen Methoden maximal
vier Parameter übergeben bekommen. Eine Parameterliste darf nicht zu lang sein, weil
sie schwer zu verstehen und zu benutzen ist. Insbesondere Boolesche Variablen, die wie
Schalter funktionieren, sollten nach den Regeln von Robert Martin [Ma09] vermieden
werden. Stattdessen sollten zwei Methoden angelegt werden, um die Komplexität zu
verringern.

Die Wahrscheinlichkeit, dass Methoden mit sehr langen Parameterlisten auch zu
umfangreich sind und eine hohe zyklomatische Komplexität besitzen, ist hoch. Die
übergebenen Parameterwerte müssen überprüft werden. In unserem Beispiel muss beim
Erstellen eines Rezepts überprüft werden, ob die Eingabe z.B. keine Sonderzeichen
beinhaltet, kein leerer String übergeben wird oder ein Rezept mit dem Namen bereits
hinzugefügt wurde. Diese Überprüfungen erhöhen die Komplexität und die Länge
zusätzlich. Erfahrungsgemäß sind die Methoden, die mehr als 40 LOC haben, auch
diejenigen, die von PMD als zu komplex erkannt werden.

Die Komplexität und die Länge der Methoden kann nicht erkannt werden, wenn nur das
Klassendiagramm betrachtet wird, da ein Klassendiagramm nur die Struktur des Systems
und nicht das Verhalten darstellt.

Zu Beginn eines Projekts werden in den Aktivitätsdiagrammen die Abläufe der
Anwendungsfälle modelliert. Diese Anwendungsfälle entsprechen den Methoden in den
Steuerungsklassen. Einen ersten Eindruck von der Komplexität eines Anwendungsfalls
erhält man, wenn die Verzweigungen im Aktivitätsdiagramm betrachtet werden.

In der nächsten Phase, der Analysephase, erfolgt eine bereits implementierungsnähere
Modellierung der Anwendungsfälle als Interaktion der Objekte in Sequenzdiagrammen.
So wird das Verhalten der Methoden modelliert. Aus einem Sequenzdiagramm lässt sich
zum einen ablesen, welche Teilaufgaben an andere Objekte delegiert werden, aber auch,
welche Entscheidungen im Objekt selbst getroffen werden.

Beide Diagrammarten sind Teil der Verhaltensmodellierung und stellen Skizzen der
Abläufe dar. Sie liefern nur Indizien auf zu hohe Komplexität. Anhand dieser
Diagramme kann aber geschätzt werden, wie hoch ungefähr die zyklomatische
Komplexität einer Methode sein könnte.
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6.3 Klassen

Für die Studierenden war es besonders schwierig, die bereits entstandenen Mängel in
dieser Kategorie durch Refactoring auf dem Programm-Code zu beseitigen.

Bei der Messung mit dem Tool zur statischen Code-Analyse wird geprüft, ob eine Klasse
zu viel Verantwortung übernimmt, man spricht dann von einer Gott-Klasse. Die
Definition von Gott-Klassen und die Kriterien, die die Entdeckung unterstützen, wurden
von Lanza und Marinescu [LM06] übernommen.

PMD erkennt eine Gott-Klasse, wenn alle folgenden Kriterien (vgl. Tab. 1) verletzt sind:

 Die Summe der zyklomatischen Komplexität aller Methoden einer Klasse (WMC -
Weighted Method Count) darf den Grenzwert von 47 nicht überschreiten.

 Die Anzahl der direkten Zugriffe einer Klasse auf die Attribute anderer Klassen
(ATFD – Access To Foreign Data) darf nicht höher als 5 sein.

 Die dritte Metrik (TCC - Tight Class Cohesion) misst die Anzahl der direkt
gekoppelten public-Methoden einer Klasse geteilt durch die maximale Anzahl der
Verbindungen der Methoden. Dieser Wert sollte 0,33 nicht unterschreiten. Nur
wenn dieser höher als 0,33 ist, wird nach der Definition von Lanza und Marinescu
[LM06] die gewünschte Kohäsion der Methoden gewährleistet. Zwei Methoden
sind als verbunden anzusehen, wenn sie auf die gleichen Instanzvariablen einer
Klasse zugreifen. Innerhalb einer Klasse sollten die Methoden eine hohe Kohäsion
besitzen. Andernfalls kann man die Methoden leicht auf zwei Klassen aufteilen.

Aus den durchgeführten Diskussionen mit den Studierenden und ihren Berichten ist
bekannt, dass die Definition der Gott-Klassen für die Studierenden schwer zu verstehen
ist. Einmal entstandene Gott-Klassen sind durch Refactoring schwer zu beseitigen. Die
Berichte in der letzten Iteration zeigten, dass die Studierenden trotz offensichtlicher
Anstrengungen damit überfordert waren, z.B. Gott-Klassen im Nachhinein zu beseitigen.
Aus diesem Grund ist es notwendig, dass zu lange Klassen und zu komplexe Methoden
bereits bei der Modellierung vermieden werden. Oft lässt sich schon bei der
Modellierung erkennen, dass eine Klasse oder eine Methode zu viel Verantwortung
übernimmt. Die Klasse in Abb. 3 ist ein Beispiel für eine Gott-Klasse, die bereits in der
Modellierungsphase erkennbar ist.

Controller-Klassen, die für die Umsetzung der Anwendungsfälle verantwortlich sind,
neigen häufig dazu, sich zu komplexen Klassen zu entwickeln. Die Modell-Klassen sind
meist unproblematisch.

Besonders häufig haben wir Gott-Klassen in den Spiel-Programmen gefunden, wenn
simulierte Gegner mit verschiedenen Spielstärken implementiert werden sollten. Oft ist
es in diesen Klassen auch duplizierter Code zu finden, weil die verschiedenen Stärken
ähnlich realisiert sind. Außerdem sind auskommentierte Methoden zu finden, die z.B.
die schnellere Berechnung der möglichen Züge unterstützen sollten. „Duplizierter Code“
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ist ein Mangel, der erst in der Implementierungsphase entsteht und im Modell meist noch
nicht vorhergesehen werden kann. Sequenzdiagramme mit ähnlichen Abläufen könnten
ein Indiz für diesen Mangel sein.

„Toter Code“ ist ein weiterer Mangel, auf den man bei den Klassen achten muss. Viele
Methoden werden aus dem Strukturmodell automatisch generiert, von denen einige in
der Implementierungsphase nicht benutzt werden. In Spielprogrammen ist es oft so, dass
die Studierenden beim Modellieren des simulierten Gegners z.B. nicht wissen, welcher
Algorithmus passend zu dem Spiel sein kann. Aus diesem Grund werden Methoden
hinzugefügt, die sich später als überflüssig herausstellen. Derartige Mängel stören nicht
beim Kompilieren, so dass sie nicht betrachtet und beseitigt werden, obwohl die
Beseitigung einfach ist. „Toter Code“ ist ein Mangel, der erst in der
Implementierungsphase entsteht und den es im Modell noch nicht gibt.

Wie bereits erwähnt, kann die zyklomatische Komplexität der Methoden nicht aus dem
Klassendiagramm abgelesen werden. Dafür wird eine nähere Erläuterung der Methoden
benötigt, welche die Aktivitäts- und Sequenzdiagramme liefern.

Die Aktivitäts- und die Sequenzdiagramme zeigen, wie kompliziert die Methoden sein
können. Diese Erkenntnis muss beim Modellieren des Strukturmodells berücksichtigt
werden, so dass nicht zu viele komplexe Methoden in einer Klasse zusammengefasst
werden sollten. Erfahrungsgemäß ist, wenn zwei oder mehrere derartigen Methoden in
einer Klasse zu finden sind, die Gefahr einer Gott-Klasse sehr groß (siehe Beispiel in
Abb. 3).

Bei der Kontrolle der Code-Qualität am Ende des Projekts hat sich unsere Vermutung
bestätigt. Für die Klasse „RezeptController“ hat PMD, abgesehen davon, dass die
Anzahl der Methoden zu hoch war, für die Methode „rezeptErstellen“ eine
zyklomatische Komplexität von 17 und für „rezeptAendern“ von 20 gemessen. Diese
Methoden hatten auch ca. 65 LOC, was unseren Grenzwert von 40 LOC überschreitet.
Außerdem war diese Klasse eine Gott-Klasse mit WMC 49, ATFD 18 und TCC 0.0.

Auch Klassen, die zu viele Attribute haben, können kritisch sein und sollten rechtzeitig
betrachtet werden. Viele Attribute führen dazu, dass die Parameterlisten, z.B. im
Konstruktor, lang werden. Eine derartige Klasse sollte in mehrere Klassen aufgeteilt
werden.

Lange Klassen sind im SoPra eher selten, da der Projektumfang nicht so groß ist. Die
längste Klasse, die wir gefunden haben, hatte 992 LOC. Diese war auch eine Gott-
Klasse. WMC betrug 126, ATFD war 10-fach größer als der Grenzwert und TCC
erreichte nur 0.042. In dieser Klasse wurden auch auskommentierter und duplizierter
Code gefunden.

An den vorgestellten Beispielen ist erkennbar, dass die betrachteten Mängel voneinander
abhängig sind. Eine Klasse wird zu lang, wenn sie entweder zu viele Methoden hat
oder/und die Methoden zu lang sind. Wenn die Methoden zu lang sind, sind sie
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erfahrungsgemäß auch zu komplex, dann kann sich die Klasse auch zu einer Gott-Klasse
entwickeln. Die Komplexität der Methoden kann oft anhand der Anzahl der Parameter
der Methoden, der Komplexität des zugehörigen Aktivitäts- und Sequenzdiagramms
vorhergesehen werden (siehe Abbildung 4). Diese Abhängigkeit lässt sich von Anfang
an kontrollieren, indem die Modell-Merkmale überprüft werden.

Abb. 4: Abhängigkeit zwischen den verwendeten Metriken

7 Ausblick

Wir wollen, dass die Studierenden lernen, die in den UML-Modellen abgebildete
Komplexität richtig einzuschätzen, um von vornherein zu lange und zu komplexe
Klassen zu vermeiden. Das ist das nächste Ziel, das wir uns für die Verbesserung unserer
Lehrveranstaltung gesetzt haben.

Unsere bisherigen Arbeiten zur Code-Qualität ([Sc15], [Va15]) basieren auf den meist
verwendeten Metriken im Bereich der objektorientierten Programmierung. Diese wurde
von McCabe [Mc76] und Chidamber und Kemerer (CK-Metriken) [CK94] für Code-
Qualität vorgestellt und analysiert. Die für unsere Lehrveranstaltung gewählten
Grenzwerte und Bewertungskriterien haben sich als passend zum Umfang unserer
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Projekte und der Erfahrungen der Studierenden erwiesen, so dass auch die Motivation
nicht verletzt wurde. Für die Verankerung der Code-Qualität im Entwicklungsprozess
hat sich der PDCA-Zyklus als erfolgreich erwiesen.

In der Modifikationsphase (s. Abbildung 2) haben wir in jeder Iteration die Reaktion der
Studierenden berücksichtigt und passende Änderungen vorgenommen. In den
zukünftigen Iterationen sollen Regeln, die auf den oben dargestellten Überlegungen zur
gegenseitigen Beeinflussung der Qualitätsmetriken basieren und somit die Untersuchung
der Qualität der UML-Modelle ermöglichen, verwendet werden.

Durch automatisches Analysieren der UML-Diagramme und der von Astah erstellten
Code-Rahmen wollen wir die Studierende auf potentielle Fehler, die beim Modellieren
übersehen wurden, aufmerksam machen.

Tang und Chen [TC02] stellen ein Werkzeug vor, das UML-Modelle ohne
Berücksichtigung des Quellcodes überprüft. Das Tool basiert auf den CK-Metriken. Die
betrachteten UML-Diagramme sind Klassen-, Aktivitäts- und
Kommunikationsdiagramme und werden mit Hilfe des Tools Ration Rose erstellt. Tang
und Chen nehmen an, dass alle Methoden in einer Klasse ähnliche Komplexität haben.
Aus diesem Grund verwenden sie zu ihren Messungen die Metrik WMC1 statt WMC für
alle Methoden im Modell. Nach der Definition von WMC1 hat jede Methode eine
Komplexität von 1, d.h. es wird für die Komplexität der Klassen die Anzahl der
Methoden pro Klasse gemessen. Das scheint erfahrungsgemäß ein sehr ungenauer und
ungeeigneter Schätzwert zu sein. Wir streben die Entwicklung einer besseren Metrik für
die Komplexität der Methoden im Modell auf Basis der zur Verfügung stehenden
Aktivitäts- und Sequenzdiagramme an.

8 Fazit

In diesem Beitrag wurde eine langfristige Integration von Qualitätsaspekten für
Programm-Code durch didaktische Maßnahmen vorgestellt. Am Ende der
Implementierungsphase lassen sich die Mängel im Programm-Code mit Hilfe von Tools
zur statischen Code-Analyse entdecken. Diese sind aber schwer zu beseitigen, besonders
wenn die Zeit eher in das bessere Aussehen des Programms investiert wird. Komplexe
Änderungen führen zur Entstehung von Kettenreaktionen, denen Programmieranfänger
nicht gewachsen sind. Darunter leidet an erster Stelle die Motivation der Studierenden.
Dies soll vermieden werden. In Rahmen eines modellbasierten Entwicklungsprozesses
lässt sich hohe Code-Qualität von Anfang des Projektes an integrieren. Aus diesem
Grund werden neben der Thematisierung der Code-Qualität in den
Einführungsveranstaltungen, der Messung mit PMD und dem Beseitigungszwang die
Modelle näher analysiert, um Mängel frühzeitig zu erkennen und zu beseitigen. Wir
haben Merkmale im Modell identifiziert, die direkt zu Mängeln im Programm-Code
führen, wie schlecht gewählte Bezeichner und lange Parameterlisten. Andere Merkmale
liefern uns Hinweise darauf, welche Methoden und Klassen zu lang und zu komplex
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werden könnten.

Tom DeMerko sagt, dass die Alternative zur Fehlerbeseitigung die Fehlerlosigkeit ist
[De04]. Deswegen beschäftigen wir uns mit der Integration von Qualität Im Rahmen
eines Software-Entwicklungsprozesses von Anfang an.
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On the de-facto Standard of Event-driven Process Chains:
How EPC is defined in Literature
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Abstract: The Business Process Modelling Notation (BPMN) and the Event-driven Process Chain
(EPC) are both frequently used modelling languages to create business process models. While there
is a well-defined standard for BPMN, such a standard is missing for EPC. As a standard would be
beneficial to improve interoperability among different vendors, this paper aims at providing the
means for future EPC standardization. Therefore, we have conducted a structured literature review
of the most common EPC variants in IS research. We provide a structured overview of the evolution
of different EPC variants, describe means and capabilities and elaborate different criteria for
decision-making in regard to including EPC variants in a standardization process.

Keywords: event-driven process chain, EPC, process modelling, literature review, EPC variants,
EPC dialects, exchange formats, EPC evolution, standardisation

1 Process Modelling with Event-driven Process Chains

To support the management of business processes, a multitude of business process
modelling languages (BPML) has emerged over time, for example BPMN or the Unified
Modelling Language (UML) [Aa13]. As a result of the growing interest of researchers and
practitioners, many BPML have been standardized by respective standard development
organizations (SDO) [KLL09]. One of the most dominant languages for business process
modelling is the EPC developed in 1992. Consequently, the EPC has been extensively
researched and is still ongoing subject of discussion in the business process management
(BPM) domain [Fe09, Fe13, HFL09, Ri00]. However, despite its maturity, no attempts for
a successful EPC standard-making have been undertaken to this day. As a consequence,
EPC loses ground compared to other languages regarding diffusion, usage and acceptance
[DKK14, Fe13, KLL09].

A BPML standard typically contains constructs such as modelling elements, a (formal)
syntax, a meta-model or a model exchange format [e.g. Om11]. Ultimately, a standard
ensures international adherence to those constructs and not only serves as an agreed-upon
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basis for further language refinement, but also facilitates applicability in practice, e.g. by
increasing the interoperability of process models [Fo03, MN06]. Although there exist
numerous publications that propose specifications for constructs of the EPC language [e.g.
MA07, NR02, Ro08], a unified approach towards EPC standardization has not been
initiated to date [KLL09]. The challenges of systematic standardization primarily originate
in the large amount of scientific contributions that have been published, which have
significantly increased the variety of EPC-related propositions. Hence, identifying and
determining what language constructs and extensions to include in an EPC standard
becomes a difficult task.

The paper at hand aims at providing the groundwork for a successful EPC standardization.
The characterized obstacles are tackled by reviewing, ultimately synthesizing and
evaluating relevant scientific work in the field of EPCs. Since standard-making heavily
depends on agreement and consensus of a domain community [DG90, FKL03], an
overview over state-of-the-art in EPC research is necessary to create a common
understanding of the EPC language. The main focus of this paper is hereby put on the
evolution of the EPC language, more specifically on the various language variants that
have been developed over time, which extend the basic EPC language with additional
concepts and constructs. We believe that providing transparency over a language’s natural
evolution is needed for the establishment of a common ground that supports a subsequent
successful standard-making procedure.

The conducted literature review has been able to examine the evolution of the EPC in
terms of variants and included concepts that have emerged over the last years. In doing so,
the paper extends the body of knowledge by providing an overview of the EPC language
progression over time. Furthermore, relevant language extensions are introduced and
evaluated according to predefined criteria, ultimately resulting in a consolidation of
previous work that is able to serve as a basis for an EPC standard. Finally, the paper
proposes a suggestion of constructs and extensions to consider for an EPC standard.

The paper is structured as follows. Section 2 introduces basic concepts of the EPC
language. Additionally, the evolution of related business process management languages
is highlighted briefly. In Section 3, the applied research methodology is characterized. The
findings of the literature review are presented in Section 4 and discussed in Section 5. The
paper concludes with a summary of the results with respect to the research question and
an outlook indicating further work.

2 Theoretical Background and Related Work

At the time when EPCs emerged in the 1990s from a joint work of the Institute for
Information Systems in Saarbrücken and SAP [KNS92], the effort in BPM standardization
has been a negligible factor. Actually, the first standard published in this particular field
has been the Workflow Reference Model by the Workflow Management Coalition and
was first released three years after the EPC, in 1995 [Ho95]. If we instance the year 2004,
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in which the BPMN has been publically released, there have been more than ten
organizations, who developed standards in the field of BPM [NM06]. Furthermore, not
only the quantity of standardization endeavours has been smaller, but also the extent
significantly differed from nowadays standards. While the initial standard of the
Workflow Reference Model has been described on approximately 50 pages, the BPMN
2.0 standardization paper goes beyond the constraint of 500 pages [Om11]. Despite this
heavy increase of extent, the generally recognized need for standardization in 2004 led to
the development of a BPMN standard in only two years, while after more than one decade
there is still no received standard for EPC models.

Besides the lack of a de-jure standard for EPC models, there is another ancillary effect
ensuing from the historical background – as there never has been a coalition, a committee
or any other form of society establishing a standardization process and additionally
discussing possible extensions of the EPC, an equivalent amount of proposals to alter the
EPC have been developed and published. For partial overviews of these extensions, the
reader can refer to [Me08] and [SDL05]. Unfortunately, these papers do not provide
insights to the evolution of the EPC-extensions, their dependencies among themselves, or
detailed descriptions. Also, the papers’ main issues do not concern EPC extensions
themselves. Therefore, they are just mentioning or briefly describing them. In
consequence of this heterogenous area of EPC interpretations, it is necessary to gain a
structured overview of these versions and to cover the mentioned aspects above. Only then
it is possible to completely capture all relevant aspects for an EPC standard. There are
some publications, which already address partial areas of EPC standardization, either by
proposing formal notations of the EPC [Aa99, Me08] or by assembling informal rules for
EPC modelling [e.g. Fe13]. Other publications have analysed file-based exchange formats
for EPC models [Ri16] and the implementation of EPC in different modelling tools
[Ka16]. Unfortunately, such papers neglect the occurrence of EPC-variations and do not
discuss their relevance.

In favor of a better understanding of the proposed alterations which are given in section 4,
we briefly introduce the initial EPC elements as introduced by [KNS92]. This first version
of the EPC only consisted of events, functions and operators. Thereby, the event is defined
as an “occurrence of a defined condition”, while the function is a “process that converts
an input state to an output state”. Beginning with events, these entities always have to
alternate. Furthermore, the initial EPC provided operators for splitting and joining the con-
trol flow of a process model. These operators were distinguished as conjunctive, dis-
junctive and adjunctive and corresponded to AND, XOR and OR operators respectively.

3 Methodology

We have conducted a structured literature review in the discipline of information systems,
as suggested by [WW02] and [Br13]. Since the first publication regarding the EPC was
published as a working paper in the working paper series of the institute for information
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systems at the University of Saarbrücken, we included their working series with a total of
198 papers as a data source in our review process. Additionally, we considered the EPC
workshop from 2002 to 2009, whose proceedings with a total of 57 papers were included
as our second data source. Lastly, we queried two scientific search engines with the terms
“Ereignisgesteuerte Prozesskette” and “event-driven process chain” (in several spellings)
to find further publications. We are aware that these generic search queries deliver a huge
result set, however we think that there is no simple and more specific query that still
includes all publications of different EPC adoptions in different application areas.
Altogether, our queries returned 1.806 publications at SpringerLink4 and 198 publications
at ScienceDirect5. The large difference is due to SpringerLink including more German
publications than ScienceDirect.

Due to the large number of 2.259 publications, we followed [WW02] in considering only
titles first and discarded papers, whose titles suggested an application of EPC without
contributing to the EPC modelling language itself. Further, for technical reasons, we
excluded papers of which we could neither find a full text online nor in the libraries of
three different universities. This left us with 316 papers. After removing duplicates,
reading the abstracts and where necessary the contents as well, we came to a set of 79
publications in our first iteration.

Next, we conducted a forward and backward search to find additional literature that might
not have been found by our search engines. While the backward search was done
manually, we used Google Scholar6 for the forward search. In this iteration we also revised
some of our decisions on discarding papers in the previous iteration, e.g. in case a
referenced paragraph generated more insight to the papers’ content than solely its title.
After reading the abstracts of the papers delivered by forward and backward search, and
after another removal of duplicates, we found 35 new publications. Therefore, we came to
a final set of 114 papers.

4 Different EPC Variants from Literature

More than 20 years ago, the idea of modelling business processes with alternating events
and functions was published by [KNS92]. Not surprisingly, event-driven process chains
have heavily developed over the years, leading to similar, yet different understandings of
EPC in literature. Many authors have suggested extending the EPC in one or the other way
and several formalizations of the EPC modelling language have been provided.

Within our set of 144 publications regarding EPCs, we found 14 different variations of the
EPC, which we will call EPC dialects. For all these 14 different dialects, the authors
described in one or more papers how their variation of the EPC is defined and in which

4 http://link.springer.com/
5 http://sciencedirect.com/
6 http://scholar.google.com/
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terms they modified the base EPC by [KNS92]. An overview of these 14 EPC dialects is
provided in Tab. 1. Additionally, we identified 8 different exchange formats for EPC
models (counting different versions of the same format separately, due to
incompatibilities), which are capable of storing EPC models of one or more of the 14
different EPC dialects.

Name References Short Abstract
EPC [KNS92] The prototype of all event-driven process chains, consisting

only of functions, events and connectors
Extended EPC
(eEPC)

[HKS93]
[GS94]
[KT97]

An enriched EPC, including organizational units,
information objects, IT systems and process refinements

Real-Time EPC
(rEPC)

[HWS93] Includes a state machine, which is modelled in parallel to the
EPC, events and functions of the EPC are linked to
conditions and actions of the state machine

EPC* [ZR96] Information objects can be connected to model data flow and
conditions can be added to the control flow, e.g. to start
events

Object-oriented
EPC (oEPC)

[SNZ97]
[NZ98]

Uses an object-oriented process definition, where activities
are carried out on business objects, therefore such objects are
modelled instead of traditional functions

Risk EPC [BO02] Adds a risk element to the EPC which can be linked with
function to visualize potential business risks

Fuzzy EPC [THA02]
[TD06]
[Th09]

A new fuzzy connector allows to model fuzzy decision-
making in business processes, using variables and decision
rules related to the fuzzy connector

Yet another
EPC (yEPC)

[MNN05] Extends the EPC to support state-based workflow patterns,
multi-instantiation and cancellation

Risk EPC
extended

[RM05]
[RW08]

Adds different risk events which are triggered when an
exception occurs, further risk-management functions can be
used to handle the exception

Configurable
EPC (C-EPC)

[RA07]
[Re05]

Functions, events and connectors are configurable, several
EPCs can be generated from a single EPC reference model

Semantic EPC [TF06]
[FKS09]

EPC elements are linked to ontologies, to improve semantics
and prevent ambiguity

Nautilus EPC
(N-EPC)

[KUL06] Allows modelling of several events between two functions,
trivial events can make decisions and can hence be followed
by an XOR or OR connector

Service EPC [HW07] Traditional functions are replaced by services, which can be
synchronous or asynchronous, introduce timeouts and
message events

Configurable
integrated EPC
(C-iEPC)

[Ro08] Extends the configuration introduced in the C-EPC to
information objects, IT systems and organizational objects,
allowing an even greater range of configuration

Tab. 1: Overview of EPC dialects most prominent in literature

While the original EPC only considered the process flow by using events and functions,



66 Dennis M. Riehle et al.

this basic EPC model was soon extended. A very early extension was the real-time
extension to EPC, which included a state machine similar to Petri nets. Events and function
of the EPC are linked to conditions and actions of the state machine, enabling a state-based
execution of rEPC models [HWS93].

Another early extension of the EPC is referred to as extended EPC (eEPC) in literature.
Extended EPCs include organizational units, which are connected to functions to model
process responsibilities, information objects, which represent abstract data (documents)
and can be used or generated by functions, IT systems, which can be used by functions,
and process refinements, which aggregate a set of activities, i.e. a subordinate EPC to a
single element [GS94, HKS93, KT97, Ro96]. The eEPC was widely accepted and all
further dialects are based heron.

The EPC* extension is provided by [ZR96], who tried to overcome the shorting of
traditional EPCs only representing the control flow in a process. Therefore, EPC*
introduced relations between information objects to represent the data flow within a single
process. Furthermore, conditions can be added to control flows to enable decision-making,
and organizational units can be connected with start events to model organizational units
that are allowed to initiate the process.

If processes are not understood as a set of activities (function-oriented process definition),
but rather as operations on a business object (object-oriented process definition), an object-
oriented EPC (oEPC) can be used to model business processes [NZ98, SNZ97]. The oEPC
replaces functions which object classes, which includes methods for operating on the
business object. Still, organizational units and information objects can be attached to
objects.

An idea of explicitly modelling business risks in EPC models was first suggested by
[BO02], who add a risk element, which when connected with a function indicates that this
function can cause a potential problem. We refer to this dialect as the “Risk EPC”. The
idea of modelling risks has been further adapted by [RM05] and [RW08], who propose to
separate between different kinds of risks. [RW08] suggest three different risk elements,
which can be triggered by functions when an exception occurs. These risk events can be
followed by different kinds of risk handling functions. This dialect, which we refer to as
“Risk EPC extended”, allows not only to model different kinds of risks, but also to model
how unexpected situations are handled in the process.

With the Fuzzy EPC, one is capable of modelling fuzzy decision making based on textual
variables and decision rules, for which [THA02] introduce the fuzzy connector. Further
publications describe attributes and details of Fuzzy EPCs in more detail [TD06, Th09].
Similarly, the Yet another EPC (yEPC) introduces a new connector as well, namely the
empty connector. The yEPC further adds process parameters for multi-instantiation and a
cancellation area for cancellation support [MNN05], to make the EPC capable of
executing common workflow patterns described in [Aa03].

The suggestion of using configurable process models as a basis for reference modelling
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[Aa06] lead to the development of a configurable EPC (C-EPC). The C-EPC includes
configurable functions, events and connectors which make the control flow of the EPC
configurable [RA07, Re05]. With this technique, several different concrete EPC models
can be generated from a single C-EPC, depending on the configuration. This approach has
been further extended by [Ro08], who specified configuration for organizational units,
information objects and IT systems. This so-called configurable integrated EPC (C-iEPC)
enables extremely configurable scenarios and therefore a high reusability of EPC models.

A simplified dialect called nautilus EPC (N-EPC) has been proposed by [KUL06].
Contrasting to other EPC dialects, trivial events are able to make a decision. Therefore,
trivial events can be followed by an XOR or an OR operator. Technically, this dialect
omits the function succeeding trivial events, as this function is also regarded to be trivial.

Another fairly recent publication adopts the idea of IT services and regards business
processes as services, which are consumed during the process execution. Consequently,
[HW07] add functions, which refer to service calls that can either be synchronous or
asynchronous. We refer to this dialect as “service EPC”. Since the introduction of
asynchronous functions requires some kind of message processing when an
asynchronously executed function finishes, the service EPC also introduced events to be
triggered upon message receipt. This allows a service EPC to start the execution of several
asynchronous services first, and then to wait until the service execution finishes.

Besides these 14 different EPC dialects described in literature, we also found different
exchange formats. Exchange formats provide a computer-readable data storage for EPC
models, which helps to store, transfer and reuse EPC models in different environments.
The specification of an exchange format provides an implicit definition of an EPC dialect,
by the EPC elements which have been implemented in the concrete exchange format. For
all 8 different exchange formats we have identified in literature, we have analysed with
which of the 14 different EPC dialects they are compatible with. The evolution of EPC
dialects and exchange formats over time is shown in Fig. 1.

A first XML notation for EPC models (XML EPC) has been proposed by [GK02], who
provide an XML schema to describe an eEPC, including functions, events, connectors,
information objects, organizational units and process refinements. At the same time, a
similar yet incompatible XML schema has been described by [MN02], who introduce the
EPC Markup Language (EPML) as a general purpose format for exchanging EPC models
[MN04].

[WS06] use a different approach by adopting the Graph Exchange Language (GXL) for
use with EPC models. GXL is capable of storing any conceptual models as graphs, using
nodes to reflect conceptual elements and edges to reflect relations. Though [WS06] do not
provide an example for all elements of the eEPC, their exchange format is capable of
representing all eEPC elements, as new node types can easily be defined using a custom
identifier.

For semantic EPCs, [FKS09] have proposed an ontology based exchange format. By
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transforming elements of the semantic EPC to ontology concepts, they embed the EPC
model within an ontology.We refer to this approach as “XML EPC Ontology”. Similar to
the GXL approach, this leads to storage formats where EPC elements are only meaningful
by their description, which usually is a string-based identifier. However, for automated
processing it is helpful, if EPC elements are defined within the specification on an
exchange format.

Fig. 1: Evolution of different EPC dialects and exchange formats over time

Besides these four different and independently developed formats, the EPML approach by
[MN02] has been adapted several times. A modification called oEPML has been
developed by [Ho09], who extends the XML schema for objects of the oEPC dialect.
Similarly, [TD08] suggested a modification named Fuzzy EPML, which adds a fuzzy
connector to the EPML schema and therefore is capable of representing Fuzzy EPC
models. However, Fuzzy EPML and oEPML have not been integrated yet, making these
two modifications of EPML incompatible to each other. As a consequence, there is no
exchange format that can be used for eEPC, Fuzzy EPC and oEPC models altogether.

After a modification for EPML to support C-EPC models was suggested by [Me05], an
updated schema for EPML has been released as EPML 1.2 [Me09], which supports yEPC
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and C-EPC model. Additionally, with EPML 2.0 [Me11], support for C-iEPC models was
added, which makes EPML 2.0 capable of storing eEPC, yEPC, C-EPC and C-iEPC
models. From the number of supported EPC dialects, EPML 2.0 supports the largest
variety of EPC dialects.

Summing up the results of our structured literature review, we found 14 different EPC
dialects and 8 different exchange formats. Most EPC dialects developed in the last 20
years are based on the eEPC dialect, therefore these dialects share a common
understanding of not only events, functions and connectors, but also of information
objects, IT systems and organizational units.

There are some extensions, which we have not considered as EPC dialects, for example
the SEQ connector [Pr95] or the ET and OR1 connector [Ro96]. These connectors focus
on providing a simplification for modelling and can be added to any EPC dialect.
Additionally, the SEQ, ET and OR1 connectors can be converted into structures consisting
of eEPC elements only, i.e. functions, events and XOR, OR and AND connectors [Ru99,
p.62 ff.]. Furthermore, we have neither considered modified EPCs (modEPC) nor agent-
oriented EPCs (xEPC), as these EPC dialects were only briefly discussed at one single
conference and in working papers of the years 1999 and 2000. Unfortunately, we were not
able to obtain a full-text as described in the methodology section before.

5 Towards an EPC Standard

The diversity of EPC dialects and exchange formats calls for a standardization procedure
to develop a specification for an integrated EPC language and exchange format. As
mentioned in our introduction, a standardized modelling language can be more easily
implemented by tool vendors and hence can spread faster in the BPM community.

It is worth mentioning that an EPC standard would not only be beneficial for companies
that start modelling business processes with event-driven process chains, but also for
companies that already have modelled EPCs in the past and still store these models as
legacy models. With an EPC standard, such legacy models could be reused in any
modelling environment supporting the prospective EPC standard. Possibly some legacy
models have to be revised, but it is safe to assume that basic EPC construct will find their
way into the standard. Moreover, procedures for migrating one modelling language to
another, e.g. EPC to BPMN as suggested by [DT09], could be implemented independently
of a modelling tool.

While the benefits of an EPC standard are numerous and rather obvious, there are several
open questions yet to be answered. Most importantly, it has to be decided which EPC
dialects should be part of an EPC standard. There are several criteria that one might
consider. On the one hand, one could evaluate the dominance of an EPC dialect in the
literature, e.g. for the rEPC there is – to the best of our knowledge – only one publication
[HWS93], which might be an indicator for the rEPC being less relevant to researchers. On
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the other hand, one might consider the compatibility of different EPC dialects. For
example, the N-EPC breaks with the formal semantics of traditional EPCs, as it allows
trivial events to make decisions, which is not allowed in any other EPC dialect presented
in this paper. Therefore, one might exclude the N-EPC for compatibility reasons.

Besides regarding EPC dialects in the literature, one might also consider the spread of
EPC dialects in practice. Since an EPC standard should be implemented and used by
practitioners, such a standard should include all artefacts which are needed in practice.
Therefore, one should perform a market analysis of BPM modelling tools to get an
understanding of EPC dialects which are commonly used in practice. The results of such
a market analysis should be included in the process of deciding which EPC dialects are
becoming parts of an EPC standard.

Since practitioners can only use the EPC dialects which have been implemented in EPC
modelling tools, there might be a discrepancy between what practitioners would like to
see in an EPC model and what they can actually model with their modelling tool.
Therefore, a survey among practitioners might deliver further insights, especially in terms
of useful EPC dialects which have not made it into modelling tools yet.

To further circumstantiate the integration or exclusion of certain EPC dialects and artefacts
in an EPC standard, one could interview EPC experts. Interviews with individuals might
deliver more detailed results than a survey and provide better arguments for decision-
making. Together with a group of experts, a final decision on what to be included in an
EPC standard should be made. This should be done once modelling tools have been
analysed and practitioners have been surveyed.

For a first step towards standardization, we have analysed the type of EPC extension, the
type of specification of that extension, the impact in research and the degree of
generalization for each 14 EPC dialects. An overview is provided in Tab. 2. To estimate
the impact in research, we have used Google Scholar to conduct a forward search for each
paper and to count the number of citations each paper has received (column “Cites” in
Tab. 2). For EPC dialects that consist of multiple papers, we have conducted a forward
search for each paper, and have built an outer set, i.e. eliminated all duplicates in the
citations. That number is listed in brackets in the column “Impact”. We have classified the
impact as “high” if there were more than 100 citations, “noticeable” if there were more
than 50 citations, “medium” if there were more than 25 citations and “low” otherwise.

In regard to the way an EPC dialect was specified, we distinguished between an
enumerative specification, i.e. the authors provided a textual or visual list of all elements
or extensions they provided, a formal semantic specification, i.e. a specification in terms
of mathematical equations based on set theory and a meta-model based specification,
where the authors provided a meta-model for their EPC variant.

The column “Type of Extension” in Tab. 2 lists the means of each EPC variant, for
example if the authors provide additional elements to enrich the information of an EPC
model or if the authors aim at a different goal like achieving execution of workflows.
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Lastly, the column “Generalizable” describes whether the variant is applicable to business
process models modelled in EPC in general or if the dialect aims at a certain application
domain. As the N-EPC breaks with formal semantics of other EPC dialects, it is not
generally applicable to other EPC models.

Dialect Reference Cites Impact Specifi-
cation

Type of
Extension

Generalizable

EPC [KNS92] 993 high enumerative - generally
applicable

eEPC [HKS93] 67 high
(163)

enumerative additional
elements

generally
applicable[GS94] 19 enumerative

[KT97] 84 enumerative
rEPC [HWS93] 10 low formal

semantics
execution of
processes

generally
applicable

EPC* [ZR96] 35 medium execution of
workflows

generally
applicable

oEPC [SNZ97] 64 noticeable
(74)

enumerative additional
elements

for modelling
business
objects

[NZ98] 18 enumerative

Risk
EPC

[BO02] 25 low enumerative additional
element

generally
applicable

Risk
EPC
extended

[RM05] 150 high
(166)

enumerative additional
elements

generally
applicable[RW08] 17 meta-model

Fuzzy
EPC

[THA02] 24 medium
(34)

meta-model additional
elements and
decision
tables

generally
applicable[TD06] 10 formal

semantics
[Th09] 9 meta&formal

yEPC [MNN05] 41 medium enumerative execution of
workflows,
additional
elements

generally
applicable

C-EPC [RA07] 505 high
(526)

formal
semantics

reference
modelling

generally
applicable

[Re05] 42 enumerative
Semantic
EPC

[TF06] 5 low
(22)

enumerative annotation
w/ontologies

generally
applicable[FKS09] 17 enumerative

N-EPC [KUL06] 22 low formal
semantics

simplification conflicts with
formalization
of common
EPC dialects

Service
EPC

[HW07] 8 low enumerative additional
elements

for modelling
business
services

C-iEPC [Ro08] 67 noticeable formal
semantics

extended
configuration

generally
applicable

Tab. 2: Attributes of different EPC dialects for decision-making in a standardization process
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Besides fostering a common understanding of EPC elements, an EPC standard should also
provide an exchange format for EPC models to improve interoperability among different
modelling tools. We think that such an exchange format should be focused on EPC models
only and not on process models in general. Approaches like GXL, which can be applied
to different process modelling languages as EPC or BPMN, are more complex, thus harder
to implement for tool developers and, in most cases, do only support portions of modelling
languages, namely those concepts which are supported by all considered languages.
Contrastingly, an EPC-specific exchange format like EPML has a well-defined set of
element types it can represent, namely those of the underlying EPC dialect. This makes
adoption of such an exchange format in modelling tools much easier.

An exchange format for EPC models should be designed carefully. If an EPC standard is
extensible, as discussed above, an exchange format needs to be extensible as well.
Therefore, an exchange format should be designed in a way that additional information
can be added without breaking backward compatibility, so that a tool, which can import a
basic EPC model, can also import an EPC model with extensions it is not aware of. Of
course, such extensions the modelling tool is not aware of will not be displayed or in any
way handled by the modelling tool. The important point is that a modelling tool needs to
recognise information in the exchange format it does not know as an unknown EPC
extension that has not been implemented in the tool. Then, the modelling tool can simply
ignore the additional information. Obviously, in this scenario, an EPC model might
become incomplete if imported in a modelling tool which does not implement all EPC
extension used within the EPC model. However, this way, a modelling tool could still
import as much as possible from a model, providing the greatest possible benefits to users
in terms of reusing models.

6 Conclusion

In this paper, we have performed a structured literature review on business process
modelling with event-driven process chains and have identified 14 different EPC dialects
in the literature. While an overview of EPC dialects has already been provided in [Me08,
p.28 ff.] and [SDL05], we have found more EPC dialects and we have described all EPC
dialects we found in more detail. Additionally, we have described the evolution of
different EPC dialects over time, which – to the best of our knowledge – has not been done
to this day. Therefore, we provide a more recent and greater overview of EPC variants.

Furthermore, we have considered exchange formats for EPC models, of which we have
found 8 different exchange formats in literature. We have related these 8 different
exchange formats to the 14 different EPC dialects we found and have analysed, which
exchange format can be used for storing EPC models of which dialect. With this analysis,
we have shown that for some EPC dialects there are no well-known exchange formats and
that there are several incompatible exchange formats. Only a few exchange formats
support more than one EPC dialect.
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Lastly, we have analysed the 14 different EPC dialects in four different criteria, their
impact in research, the type of specification, the type and mean of the variant and the
generalizability. By this, we have shown that some EPC variants can be considered being
more prominent than others and therefore being more adequate for inclusion in a future
EPC standard.

With our research, we have contributed towards the development of a standardized EPC
modelling language and a standardized EPC exchange format, shortly referred to as an
EPC standard. While a standard is beneficial for research and practice under several
aspects, such a standard has not been developed yet. With our research, we have provided
parts of a research agenda towards a successful EPC standardization.
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On the de-facto Standard of Event-driven Process Chains:
Reviewing EPC Implementations in Process Modelling
Tools

Arne Karhof1, Sven Jannaber1, Dennis M. Riehle2, Oliver Thomas1, Patrick Delfmann2,
Jörg Becker3

Abstract: Nowadays, most process modelling tools implement popular modelling languages such
as the Business Process Model and Notation (BPMN) or the Event-driven Process Chain (EPC).
However, in contrast to BPMN, no effort has yet been undertaken to standardize the EPC language,
thus rendering EPCs as being merely a de-facto standard for business process modelling.
Subsequently, this paper addresses this issue by laying ground for a successful EPC standardization.
To achieve this task, several process modelling tools have been evaluated regarding their
implementation of the EPC language with the objective to derive consensus about important
language constructs. The evaluation reveals that there is a high degree of variety in the way tools
implement EPCs. Especially syntax, semantic and pragmatic of the EPC language are not perceived
homogenously and, in fact, commonly neglected. Hence, our research provides valuable
implications for further EPC standardization by highlighting the state-of-the-art of the EPC from a
software point of view.

Keywords: Event-driven Process Chain, EPC, Business Process Management, BPM,
standardization, modelling tools, tool evaluation

1 The need for an EPC standard - How reviewing BPM tools might
help

The modelling of business processes is an integral part of Business Process Management
(BPM) [BNT10]. For any successful modelling endeavor, the emphasis has to be put on
the choice of modelling software and business process modelling languages (BPML)
[WAV04]. Studies reveal that the market volume of BPM software is continuing to grow,
reaching 2.7 billion $ in 2015 [Ga15]. In 2013, over 52 vendors for BPM software compete
in the broader BPM market [RM13]. Additionally, there exist several niche products of
local software companies [DKK14], resulting in a large variety of potential tools to choose
from. Beside proprietary notations, most tools support standardized languages such as the
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Business Process Model and Notation (BPMN) or the Unified Modeling Language (UML)
for process design [DKK14]. Although the event-driven process chain (EPC) has been one
of the most dominant languages for business process modelling in research and practice
over the last decades [Fe09, HFL09, KS08], no systematic standardization efforts have
taken place. Hence, the EPC is still considered merely a de-facto standard for business
process modelling [Fe13, Wa13], though it consists of a variety of different variants [e.g.
Ri16a]. The absence of an international accepted standard yields significant drawbacks for
the EPC language, since the focus shifts towards standardized languages such as BPMN
[DKK14]. This is primarily due to difficulties in terms of interoperability, further
development and overall acceptance of modelling languages that are not based on an
agreed-upon ground and thus may be implemented differently across modelling tools
[Fe13].

In literature, many studies have addressed the amount of BPM software by providing an
overview over the (German) BPM software market [BFV07, BS01], evaluating process
modelling tools [NS02] or comparing implemented BPML [DGS10]. However, a specific
focus on different EPC implementations in common BPM software has not yet been
conducted. Furthermore, despite single attempts to provide specifications for parts of the
EPC [e.g. MA07, NR02, Ro08], even literature has failed to reach agreement on
fundamental EPC constructs. As a consequence of the combination of fragmented EPC
research and arbitrary EPC implementations in software there exists no common ground
in both theory and practice regarding the EPC language and its integral constructs. This,
of course, hampers a systematic standard-making process guided by a standard
development organization (SDO), since standardization is fundamentally based on
agreement and consensus of a domain community [DG90, FKL03].

In order to prepare for a successful EPC standardization, this paper faces the stated
challenges by bringing EPC implementations into perspective. Several BPM tools from
both international as well as local vendors are examined in terms of degree and shape of
EPC support. Hence, the paper specifically aims at providing an overview of EPC
constructs as implemented in common business process modelling tools. Furthermore, the
synthesis of the findings is proposed as a basis for further standardization efforts. The
evaluation of various EPC implementations yields valuable insight into EPC language
constructs that software companies have considered to be relevant. Therefore, the tool
evaluation is able to highlight differences as well as congruities of EPC language
constructs from a software point of view, which result in a proposition of constructs for
standardization purposes.

The structure of the paper is organized as follows. Section 2 covers theoretical background
on BPM with special focus on EPC modelling. The research methodology as applied in
this paper is presented in Section 3. Subsequently, Section 4 provides an overview of
identified EPC implementations. In Section 5, implications for EPC standard-making are
carried out based on these findings. The paper concludes with a summary of the gained
insights and an outlook on further work.
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2 Process Modelling with Event-Driven Process Chains

In all kind of organizations, sets of activities are performed to achieve a superordinate
business goal. Such activities, together with the organizational and technical environment
they are performed in, are called business processes [We12, p.5]. BPM is about “concepts,
methods, and techniques to support the design, administration, configuration, enactment,
and analysis of business processes” [We12, p.5]. A key part of BPM is the creation of
conceptual models to represent business processes, so called business process models.

Process models may be created using different BPML, which, for instance, can be UML,
Petri nets, EPC or BPMN (see e.g. [DAH05]). One dominant language over the last
decades is the EPC, which has initially been introduced at the University of Saarbrücken
by [KNS92] in 1992. EPC models consist of alternating events and activities, which
represent the process flow. Connectors can be used to split or merge the process flow as
needed. For this reason, [KNS92] defines the AND connector (all subsequent process
flows are performed), the XOR connector (exactly one process flow is performed) and the
OR connector (one or more process flows are performed). Later, organizational units,
information systems and information objects were added to EPC models to enrich
functions with further details [HKS93].

Over the years, the EPC language has been further developed, extended and modified by
a large number of different authors. For example, [Pr95] defines a sequence connector
(where several process flows are performed in a sequence of any order), [Ro96] presents
a decision table connector (ET) and the OR1 connector. New elements have been added
to the EPC to model business risks [BO02, RM05, RW08] or to model fuzzy decision-
making [TD06, THA02]. New relationships have been added to not only include the
process-flow, but also the data-flow in EPC models [ZR96].

Other authors have added different concepts to EPC models, such as [HWS93], who link
EPC models to a state-machine for real-time execution, or [TF06] and [FKS09], who
annotate EPC models with concepts from an ontology. For different use cases of the EPC,
there are several different and incompatible file-based exchange formats [Ri16b]. The idea
of EPCs has also been transferred to different application scenarios, for example object-
oriented business process modelling [NZ98, SNZ97], modelling of state-based workflow
patterns [MNN05] or service-based process modelling [HW07]. Lastly, EPC has also been
applied to configurative reference modelling [RA07].

In order to support design and administration of business processes, there are several
commercial and a few non-commercial solutions for managing process models. Several
studies provide an overview of the market for BPM tools [BH14, DKK14, Ga15, RM13].
As the number of BPM tools on the market is large, different variations and adoptions of
the EPC are manifold. As there is no established standard for EPC, it is obvious that the
implementation of EPC differs between BPM tools.
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3 A methodology for identifying and evaluating BPM tools

In order to provide a comprehensive and holistic overview of the BPM software market, a
structured procedure model is applied. For this purpose, we draw upon methodologies
coming from marketing science and transform these methods to fit our needs. In [CM99],
a systematic procedure model is introduced to support managers in the assessment of their
market for potential competitors. A similar approach is presented by [BP02], who use a
two-step framework for competitor identification and analysis. In essence, both models
share the way in which an unstructured and crowded environment is grasped, and objects
of interest are identified and evaluated. We apply this general process to the situation at
hand. In this case, the environment is represented by the BPM software market. The
detailed procedure model followed throughout this paper is depicted in Figure 1.

Fig. 1: Applied methodology

Using a five-step process, BPM tools are identified and analyzed. Regarding the scope,
we limited our search to international software vendors who explicitly offer BPM
software. Hence, workflow modelling suites have not been considered. Additionally,
software tools had to be available for testing purposes. Therefore, we excluded vendors
that did not provide any form of test or demo access to their software. Similarly, tools that
could not have been installed due to technical circumstances have been omitted. Lastly,
the final number of BPM tools has been shortened according to their support of the EPC
language. Following the setting of the scope, relevant literature has been reviewed. This
includes, for example, scientific contributions regarding EPC language constructs, but also
related research-driven evaluations of BPM tools. Next, insight into the BPM market has
been gained by taking various studies and market reports coming from institutions such as
Gartner [SH10], the Fraunhofer Institute [DKK14], Forrester Research [RM13] or Ovum
[BH14] into account. The final list has been analyzed using predefined criteria, which
directly facilitate the identification of similarities and differences of EPC implementations
in BPM tools. The criteria applied in this paper are presented in Table 1. For all EPC
implementations, the state of EPC syntax, semantic and pragmatic is investigated. In doing
so, we refer to respective sets of rules carried out in [Fe13]. Exemplarily, “1” as a
characteristic of the syntax criterion indicates that a particular EPC implementation
adheres to syntax rule “1” as presented in [Fe13]. Reviewing the state of syntactical,
semantical and pragmatical rules covered by EPC implementations facilitates the
understanding of what aspects of the EPC language are considered important in practice,
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hence supporting the determination of a standardized EPC specification that meets
practical demands.

Criterion Example Description

Syntax 1,2,5
Refers to the set of syntactical rules as presented
in [Fe13]

Semantic 3,4
Refers to the set of semantic rules as presented in
[Fe13]

Pragmatic 1,6
Refers to the set of pragmatic rules as presented
in [Fe13]

Elements ● Does the extension introduce new elements
beyond [Ro96]?

Connectors ● Does the extension introduce new connector
types beyond [Ro96]?

Checking M (M)anual or (D)esign time syntax check

Exchange format XML Type of EPC exchange format provided

Guidelines Tooltips
Guidelines that support the modeler in the
creation of sound EPC models

Tab. 1: EPC implementation evaluation criteria

Besides syntax, semantic and pragmatic, we expand the evaluation to modelling guidance
and the extent of language constructs covered as well as their graphical representation. For
this purpose, we use EPC elements and connector types summarized in [Ro96] as a
baseline for further investigation. In particular, it is of interest whether an EPC
implementation adheres to these elements resp. connector types. Based on potential
similarities or deviations in terms of elements introduced or their graphical layout, a
consensus of these elements can be reached from a software perspective. The Checking
criterion is used to assess if the tool implements a manual or design-time based checking
of the syntax, semantic and pragmatic of an EPC model, which provides insight regarding
the importance of model soundness as perceived from BPM software vendors.
Furthermore, having a look at the implemented exchange format is used to formulate a
consensus regarding a standard exchange format for EPC models. Lastly, it is subject of
analysis whether and how EPC implementations support the modeler in creating sound
and meaningful EPC models.

Finally, the evaluation of tools using the aforementioned criteria is used to investigate the
state of the EPC modelling language from a software point of view, hence to a certain
degree reflecting needs that come from practice. The evaluation step not only provides an
overview of a tool’s capability to handle EPC modelling, but also gives additional input
whether to include EPC language constructs in a potential EPC standard that have proven
to be applicable and beneficial in practice.



82 Arne Karhof et al.

4 An overview of EPC implementations in BPM tools

After setting the scope of our analysis, considering previous relevant literature and
integrating similar studies about BPM software (cf. Fig. 1), we initially identified a set of
78 contemplable solutions. At first, no software has been excluded from our investigation.
The list included leaders like Pegasystems or Appian, challengers, e.g. Fujitsu, niche
players, exemplary Newgen or visionaries such as Intalio or BizAgi [SH10]. While
classifying the first set according to our specified criteria in Section 3, we were able to
remove 64 software solutions in total that did not fit our requirements. Thus, only 14
software providers have been identified that support EPCs and offer a free trial. We
analyzed these solutions according to the predefined criteria. The results are presented in
Table 1. Due to lack of space, we relinquish and outline the presentation of some
categories. Overall, we relinquish the category miscellaneous, where we recorded
additional elements that are not directly related with business process modelling or
information about the underlying software like Eclipse or Microsoft Visio. Also, we spare
the detailed enumeration of all elements the solutions provide, as we pit the extent against
the native EPC components.

First, we recorded the supported business process languages to solely include EPC-
supporting BPM solutions. Since we specifically examine EPC functionalities, all of the
listed software can be considered as EPC compatible. During the examination, we checked
if not only the standard EPC [KNS92] is supported, but also if any EPC extensions can be
modeled. Except for EPC Tools, every solution supports the extended EPC [HKS93]. The
Bflow* platform additionally provides modelling with object-oriented EPCs [SNZ97].
Multiple tools also offer additional elements, but did not implement a specific EPC
extension known from literature [e.g. SDL05]. We fastidious listed every additional
element, adjusted the degree of abstraction and used circles as the form of representation.
Thereby, a filled circle in the column “Elements” declares that the tool not only covers the
extended EPC elements but also additional, partly tool-specific, elements. The software
EPC Tools only supports the plain EPC and therefore is the only software figured as a bar.
Unfilled circles represent just eEPC modelling elements support. Accordingly, unfilled
circles in the column “Connectors” signify the AND, OR, XOR operators and the
control/information flow. The only software solution that offers more than these basic
constructs is the Bflow* platform that additionally supports relation flows between EPC
elements.
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Tab. 2: Evaluation of EPC supporting BPM Software
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The examination of quality criteria revealed an outlier for the second syntactic criterion,
which requires a continual transition between events and functions. Many tools do not
strictly demand the adherence to this rule, since they permit the omission of (trivial)
events. In case this broad interpretation of the second rule has been implemented, the
corresponding rule “2” in Table 1 has been underlined. Another striking point is the filled
circle in the row of the Bflow* tool. Because no tool supported any semantically validation,
the Bflow* tool stood out as being the only software that at least demands that the process
model entities have to be labeled. Although this is no criterion stated in [Fe13], we decided
to document it in the table nevertheless. The last two categories illustrate if there is any
exchange format for EPC models supported by the solution and if there is any kind of
guidance for the user while modelling in EPC. As the table constitutes, multiple solutions
provide the import and export of specific exchange formats. However, the specific type of
exchange format heavily differs. Although just three entries could be done in the last
category, a heterogeneous distribution can be observed. The three addressed solutions
pursue different approaches as there are either tooltips that pop up during design-time,
reference models that the user can use as templates or a recommendation system that
supports the user in deciding what element to model next.

5 Implications for EPC standardization

As our findings indicatethere is hardly a consensus between software vendors in the field
of BPM regarding essential EPC constructs. For our next step, it has to be discussed to
what degree the insights gained from reviewing BPM tools influence the proposed
standardization process. In order to solve this debate, stakeholders of a standard need to
be considered. Possible stakeholders are consultants, academia, research institutes, and
governmental agencies [LK06]. From a high-level point of view, these groups can either
be considered as (academic) researchers or practical applicants, who do not necessarily
have to be disjoint groups. However, for the sake of argument we assume that these groups
have different roles regarding the impact factor on standardization. On the one hand,
research interest groups are more likely to take part in the (continued) development
process of a standard, while on the other hand practical applicants fulfill their role by
implementing and actual using this standard. Hence, we argue that the developer point of
view of a business process modeling language best reflects the acceptance or denial of
specific language constructs in practice. Therefore, it is possible to derive insights about
whichcomponents to consider in an EPC standardization process and which not.
Furthermore, as Table 1 already demonstates, our examination highlights the negative
outcome a missing standard can cause. The practical implementation of EPC modelling is
a strikingly heterogonous area, as the software vendors were never able to adhere to an
agreed-upon basis for the EPC language.

In favor of a better overview of this diversified field of application, we analyzed our results
as shown in Figure 1. Especially the overlaps, where the software vendors achieved
agreement among themselves, are of particular interest, as derivations for an EPC standard
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can directly be deduced. Unfortunately, as depicted in Figure 1, the commonalities are
highly underrepresented. Regarding the elements category, only 21.4% still support solely
the EPC and eEPC basis elements. However, it is worth mentioning that 78.6% does not
imply that all of the vendors actually use one set of EPC elements but their own notation
set that exceeds the eEPC (illustrated by “eEPC+”). Therefore, the majority of EPC tools
extends the (e)EPC with additional, self-developed elements. The second category is the
only one where a major consensus could be identified. Only 7.1% of all vendors use
additional, own developed connector types. Consequently, from a practical point of view,
it seems like the standard EPC connector types already cover most of the users’
requirements. The following three categories illustrate the distribution of quality checking
in regard to syntax, semantic and pragmatic. While syntax is the only category which is
supported by more than half of the tools, the nearly non-existing semantic validation
stands out. However, the pragmatic quality seem to be well-covered by BPM tools.
Furthermore, as the binary classification only represents the number of tools supporting
quality checking, but not the number of criteria covered, we added an additional value for
the average support. This value is calculated as follows:

Ø − Support = ∑ 𝑇𝑖|𝑇|𝑁𝑖=1𝑁
The variables are as follows: 𝑁 = quantity of quality criteria based on [Fe13], 𝑖 = the
specific quality criterion, and 𝑇𝑖 = number of tools who support the specific quality
criterion 𝑖. |𝑇| indicates the cardinality of the set 𝑇. This value is equal to the overall
number of evaluated tools. In our case, this value always signifies 14. Exemplary, the
value for average support of the pragmatic quality can be obtained by calculating:

Ø − 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑃𝑟𝑎𝑔. = 214 + 614 + 014 + 014 + 014 + 114 + 014 + 014 + 014 + 11410Ø − 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑃𝑟𝑎𝑔. = 0.71428610 = 0.07143 ≜ 7.1%
Considering these values of the three quality categories (illustrated in Figure 1 as hatched
areas), it is evident that every category is insufficiently supported by BPM tools. Even the
syntactical category, which demands criteria relatively easy to implement, is only
associated with an average support of 22.3%. Furthermore, the average semantic support
is nearly nonexistent (0.4%). The pragmatic support is weakly represented as well. Finally,
the last three categories present the statistically analysis of checking support, provided
exchange formats and user guidance. While most of the tools support some form of
verification or validation while modelling, it has to be kept in mind that the corresponding
Ø-support values show that this support is heavily constrained. Additionally, most of the
tools provide some sort of exchange format. However, as Figure 1 depicts, besides using
XML as an underlying structure, software vendors have not been able to reach an
agreement on an exchange standard. The same problem can be observed with user



86 Arne Karhof et al.

supporting guidelines. While only three software solutions (21.4%) provide any kind of
user guidance, they all confine to different approaches.

Fig. 2: Evaluation of BPM-Tools
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Following the elicitation and evaluation of BPM-Tools, it is of interest to draw - in the
best case obvious - implications towards EPC standardization. Our initial intension to
interpret commonalities is hampered by the fact that, besides the category Connectors,
there are no distinct overlaps among the software solutions. Despite this circumstance, we
can ascertain the following points regarding to our evaluation categories:

Elements: Based on the percentage distribution, we assume that the basic (e)EPC
elements seem not to completely fit the needs of nowadays users. The majority of software
vendors use additional elements, partly self-developed, partly from other BPM languages
or proposals from academic research. Nevertheless, it could be observed that most of the
tools did use a similar layout for their elements. This includes the hexagon for events, the
rectangle for functions (mostly with rounded edges) and circular connectors. However, the
labelling of connectors is again diversified in EPC implementation (XOR vs. X). For
future work, it will become necessary to value those additional elements in favor of
deciding whether to integrate them in an EPC standard.

Connectors: As nearly all solutions use the basis set of EPC connectors, the general
applicability can be underlined. Self-evidently, the outlier has to be examined in terms of
determining its usability.

Syntax, Semantic, Pragmatic: In this area, there is a heavy mismatch among the tools. It
can be concluded that the EPC would heavily benefit from an underlying and formal
defined standard as a basis for EPC implementations. Unfortunately, as there are almost
no commonalities, explicit rules for EPC standardization cannot be deduced. A single
implication that can be made is that the difficulty of verifying EPC quality seems to vary
in regard to the respective category. Based on the findings we assume that the semantic
quality is the most challenging task for computer-based verification.

Checking: Since the evaluation presents roughly the same distribution between design-
time and manual-triggered checking of syntactical, semantical or pragmatically aspects,
an evident recommendation from practice cannot be made. Additionally, no coherence
between the type of checking and the nature and extent of covered rules could be detected.
Generally, a design-time approach seems to be more applicable from a practical
perspective, as it prevents users from working with erroneous models. However, it has to
be kept in mind that not every error detected by a checking mechanism necessarily has to
be an actual error of the underlying process model. Hence, the checking mechanism must
not be too restrictive for practical application. In general, the review of checking
mechanisms implies that, considering a potential EPC standard, emphasis has to be put on
the degree of complexity and restrictions in order to meet practical demands.

Exchange Formats: The area of exchange formats represents the most diversification.
Out of nine software vendors, who offer any type of exchange format, six different
approaches are pursued. The most common format is XML. Since many other listed
formats are also based on XML, namely XMI, EPML, BPEL and XPDL, it can be seen as
the major choice for data communication between EPC tools. This heavily implies that a
XML-based exchange format might be feasible for an EPC standard.
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Guidelines: The provided user guidance is rather underrepresented. Any concrete
implications for an EPC standard cannot be deduced. In future, the usability of proposed
guidance types has to be valued. Furthermore, it needs to be clarified if the presence of
user guidance is actually necessary if there is already a checking mechanism.

6 Conclusion

In order to prepare for EPC standardization, the similarities and differences between EPC
implementations in common BPM software has to be revealed. Subsequently, we
identified BPM tools that implement the EPC modelling language and evaluated them
against our predefined criteria. Altogether, we analyzed 14 tools measured against 8
categories and 34 different quality criteria.. Our findings show that the negative effects
caused by the abstinence of a universally accepted EPC standard are prevalent. Regarding
the predefined criteria, there has been no consensus in terms of EPC language constructs.
The only commonalities that could be identified regard the basic layout of EPC elements
and EPC connectors. Most notably, the diversification of quality criteria regarding the
syntax, semantic and pragmatic is apparent. Despite 64% of identified tools provide a basic
checking mechanism, most of them only consider a small subset of rules. The majority of
tools leave the creation of valid process models solely to the user. This may imply a lack
of importance for semantic, pragmatic and syntactic issues in practice.

By evaluating, we could further deduce implication for standardization purposes and gain
valuable insights about the practical implementation of the EPC. Explicit conclusions
could be made regarding the layout, the set of connectors, and the exchange format. In
terms of the layout, all EPC implementations share the same graphical representation.
Accordingly, also the set of connectors is identical among the tools. Therefore, we
conclude that there is an agreement regarding the layout of EPC elements that has to be
considered for EPC standard making. Furthermore, we revealed that exchange formats for
EPC modelling are dominated by XML. Hence, we suggest a XML-based EPC exchange
format to be included in a future EPC standard.

Based on our research, we are able to state and underline the urgent need for an EPC
standard. In this paper, we evaluated EPC modelling from a practical point of view and
uncovered the consequences of a non-standardized process modelling language. In
conclusion, our research contributes to the body of knowledge in two ways. First, we shed
light on the BPM software market and provide an overview of core players in EPC
modelling which supports both academic and practical disciplines, as we build
groundwork for further research and application in the field of EPC modelling. Second,
we investigated EPC implementations in order to achieve a consensus regarding essential
EPC language constructs from a software point of view.
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NESTML: a modeling language for spiking neurons

Dimitri Plotnikov1, Bernhard Rumpe1, Inga Blundell2, Tammo Ippen2,3, Jochen Martin
Eppler4 and Abigail Morrison2,4,5

Abstract:

Biological nervous systems exhibit astonishing complexity. Neuroscientists aim to capture this com-
plexity by modeling and simulation of biological processes. Often very complex models are nec-
essary to depict the processes, which makes it difficult to create these models. Powerful tools are
thus necessary, which enable neuroscientists to express models in a comprehensive and concise way
and generate efficient code for digital simulations. Several modeling languages for computational
neuroscience have been proposed [Gl10, Ra11]. However, as these languages seek simulator inde-
pendence they typically only support a subset of the features desired by the modeler. In this article,
we present the modular and extensible domain specific language NESTML, which provides neuro-
science domain concepts as first-class language constructs and supports domain experts in creating
neuron models for the neural simulation tool NEST. NESTML and a set of example models are
publically available on GitHub.

Keywords: Simulation, modeling, biological neural networks, neuronal modeling, neuroscience,
NEST, NESTML, MontiCore, domain specific language, code generation, C++.

1 Introduction

Classical neuroscience investigates the biophysical processes behind single neuron behav-
ior and higher brain function. The first experimental studies of the nervous system were
conducted already hundreds of years ago [Sh91], but observing single-cell activity in a cell
culture or slice (in vitro) or in an intact brain (in vivo) is a technically challenging task. It
was thus not before the beginning of the last century that details about the structure and
function of the building blocks of the brain became known.

In the early 40s of the last century, McCulloch and Pitts [MP43] explored the idea of using
simple threshold elements to mimic the behavior of interconnected nerve cells. However,
it soon turned out that these artificially built circuits were too simple and limited to study
the principles at work in living brains.
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The field of neural networks consequently split: the descendants of the early neural net-
works are still used under the term artificial neural networks (ANN) to solve learning
and classification tasks in engineering applications. Biologically more plausible models of
neural circuits are nowadays known as spiking or biological neural networks.

1.1 Neural modeling and simulation

Computational neuroscience builds models for nerve cells (neurons) and their connections
(synapses) that capture certain aspects of their anatomy and physiology. Depending on
the study, different aspects are important (Section 2). As theoreticians prefer to use the
simplest model that still exhibits the behavior they are interested in, a multitude of different
models was published. The level of detail ranges from compartmental models that include
many biophysical details to reduced point neuron models that describe the basic quantities
or the cell by a small set of differential equations (Section 2). The simulation of networks
of such model neurons (i.e. the propagation of the underlying equations in time) allows to
execute in silico experiments to test hypotheses in a stable and controllable environment.

As the simulation of different classes of neurons requires different technical infrastructure
(e.g. for the storage of connections or the communication between elements), different
simulators have been developed. Each of them is specialized on a specific part of the
spectrum of modeling tasks. This makes it hard to develop new neuron and synapse models
in a general way and even harder to compare and verify findings across simulators, since
models must be re-implemented for every simulator [Cr12].

To ease model-sharing and improve reproducibility in the field, several modeling lan-
guages were conceived (Section 3). They usually consist of the language itself and tools
to generate a model implementation from a model specification. As the majority of the
languages are simulator agnostic, they cannot take advantage of the convenience functions
of a given simulator. This often results in models with lower performance or accuracy
compared to a hand-written version of the same model.

1.2 The neural simulation tool NEST

NEST [GD07] is a simulator for large networks of spiking point neurons available as open
source software (www.nest-simulator.org). Using hybrid parallelization it runs on all ma-
chines from laptops to the world’s largest supercomputers [He12, Ku14]. Over 450 pub-
lished studies used NEST and 360 users are currently subscribed to the mailing list. Due to
its reliability and popularity, NEST was selected as simulator for brain-scale networks of
simplified neurons in EU’s Flagship Human Brain Project (http://humanbrainproject.eu).

At the outset of this study, NEST contained 36 neuron models, each of which implemented
by hand as a C++ class using NEST’s model API and embedded into NEST’s infrastruc-
ture. Developing new models requires expert knowledge of the neuroscience context, as
well as of C++ and NEST’s internals. Changes to NEST’s infrastructure or API often re-
quire changes to all models, which impairs the maintainability of NEST.
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The C++ classes mix the model description (i.e. the equations and algorithms governing
the dynamic behavior) with the model implementation, which impairs model comprehen-
sion. An example are the linear models in NEST, which use an exact solution for the
differential equation rather than one obtained by a general solver [RD99]. This hides the
actual equations deep in the model code.

Due to the lack of modularity in the C++ model code, new neuron models are mostly
created by copy&paste from existing models. The fact that this task is often carried out
by neuroscientists who are not experts in programming leads to redundancy, suboptimal
performance, improper documentation and reduced maintainability. Preliminary investiga-
tions show cases where two models share more than 90% of their implementation.

1.3 The NEST modeling language NESTML

NESTML is a domain specific language that supports the specification of neuron models
in a precise and concise syntax, which is familiar to the domain experts. Model equations
can either be given as a simple string of mathematical notation or as an algorithm written
in the built-in procedural language. The equations are analyzed by NESTML to compute
an exact solution if possible or use an appropriate numeric solver otherwise (Section 4).

The simplicity of the explicit syntax of NESTML guarantees good comprehensibility and a
clear separation between the model specification and its implementation. A code generator
creates optimized model code alongside auxiliary code to load the model dynamically into
NEST (Section 5).

First class modularization concepts in the language simplify the reuse of neuron definitions
and parts thereof. This feature fosters the re-use of well tested components in models
instead of re-implementing them. Models expressed in other languages can be compiled
to NESTML by the code generation tools of the language.

Being built on top of the language workbench MontiCore [KRV07, KRV08], all tools
belonging to NESTML are generated from a language grammar. This allows us to conve-
niently update the language itself to new modeling requirements, and the code generator
to changes in the NEST infrastructure or API.

2 Modeling spiking neurons

As with all body cells, neurons are also confined by a membrane. Channels embedded into
the membrane selectively allow certain types of ions to pass, active transporter molecules
move ions in and out of the cell. These mechanisms maintain up a gradient of charges,
resulting in an electrical potential across the membrane.

An incoming signal (action potential, spike) leads to a short excursion of the membrane
potential. The direction of the excursion depends on the type of the sending (presynaptic)



96 Plotnikov, Rumpe, Blundell, Ippen, Eppler and Morrison

neuron, which can be either excitatory (positive excursion) or inhibitory (negative excur-
sion). If the input is strong enough or several inputs occur simultaneously, the membrane
potential eventually reaches a threshold and the neuron fires a spike itself. Spikes are trans-
mitted via the synapses to receiving (postsynaptic) neurons, where the spike again leads
to a change of the membrane potential. After emitting a spike, a neuron is inactive for a
certain time, called its refractory period [Ni01].

The work of Lapicque [La07] and later Hodgkin and Huxley [HH52] paved the way for
creating models of neurons with biologically realistic parameters. For the membrane po-
tential, they define an equivalent electrical circuit, in which the membrane itself is rep-
resented by a capacitor, ion channels by resistors and external inputs by an additional
current.

(A) (B)

CV̇ =−
1
R
V + Isyn

Figure 1: Electrical circuit corresponding to single compartment of a neuron. (A) circuit diagram.
(B) differential equation for the membrane potentialV given capacitanceC, resistance R and external
input current Isyn

.

A common approach to modeling neurons is to divide the 3D reconstruction of a real neu-
ron into compartments and use one Hodgkin and Huxley circuit for each compartment.
The compartments are coupled using the formalism of cable theory. In case the morphol-
ogy of such a multi-compartment model only consists of a single compartment, it is called
a point neuron model.

The basic differential equation shown in Figure 1 only characterizes the subthreshold dy-
namics of the neuron. Checks for threshold crossings, spike generation and refractoriness
are usually added in an algorithmic fashion using conditionals and wait cycles. Spiking
input enters the equation in form of a summed current Isyn. To obtain its value, the time
of each incoming spike is convolved with a kernel that represents the excursion of the
membrane potential (post-synaptic potential). Frequently used functions for this kernel are
α-shapes with varying time constants, exponentially decaying functions or delta pulses.
Multiple inputs are lumped together into Isyn before propagation of the equation to the
next time step. This approach is commonly referred to as current-based modeling.

Another way to model the influence of external input is the conductance-based approach.
In contrast to integrating the inputs into a general current variable, the input instead in-
fluences the conductance of the membrane in this case. This is generally considered more
realistic, but leads to a non-linear differential equation, as changes to the conductance
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depend on the membrane potential and vice versa. Simulating these models is computa-
tionally more demanding than it is for the current-based approach.

Due to their property of integrating incoming spikes and firing one if a threshold is reached,
the family of models described above is known under the name integrate-and-fire neurons.

2.1 Neuron dynamics

Substituting the resistor and the capacitor of the RC circuit shown in Figure 1 by the rise
time τm (membrane time constant) and the capacitanceC, we obtain the following equation
for the membrane potential V of the standard integrate-and-fire neuron:

d

dt
V =−

V

τm
+

1
C
I (1)

The input current I is the sum of the synaptic current and any external input. The α-shaped
synaptic current as a function of time t for one incoming spike is given by:

ι(t) = ι̂
e

τα
te

−t
τα . (2)

Here ι̂ is the peak value of the incoming spike and τα is the rise time. The inhomoge-
neous differential equation (2) (for simplicity we assume that I == ι) is rephrased as a
homogeneous system of differential equations (or matrix differential equation):
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For a fixed time step t it is now possible to solve the differential equation by calculation of
the matrix exponential of the given matrix [RD99]. This way of propagating the model in
time is particularly efficient because it consists only of a few multiplications.

Although this calculation is done only once for each linear neuron model in NEST dur-
ing the implementation of the model, it is tedious and has to be done manually. With
NESTML, all necessary factors for the time propagation for any given synaptic current
and any linear differential equation can be calculated automatically, which solves one of
the major obstacles for developing new neuron models in NEST.

3 Related Work

Various modeling languages for neurons and neural networks exist, each of which focusing
on different aspects of neural modeling. Here, we describe the representative examples
NineML and NeuroML in detail.
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3.1 NineML

The Network Interchange for Neuroscience Modeling Language (NineML, [Ra11, Go11])
provides an unambiguous description of spiking neural networks for model sharing and
re-use. NineML defines a common object model that describes the different elements of a
model in a neuronal network. This object model corresponds to its abstract syntax, while
XML is used as its concrete syntax.

NineML consists of two semantic layers: the abstract layer describes the core concepts
of a model alongside its mathematical description, parameter and state variables and state
update rules. The user layer allows the description of state or parameter variables and
definition of initial or default values and units. Objects defined in the user layer can be
re-used in different models, while model re-use in the abstract layer is not supported.

In the abstract layer each network element is represented by a ComponentClass composed
of a Dynamics-block and a set of Interfaces. The Dynamics contain the internal model
dynamics, e.g. state variables and update rules. The Interfaces contain the parameters
that can be set from the user layer and ports for the communication with other network
elements. The advantage of the ComponentClass is that it supports any kind of network
element instead of just complete neuron or synapse models. The drawback is that the exact
kind of model modeled by the ComponentClass is unknown. It could be a neuron, a
synapse or an ion channel and the relation to domain concepts is hidden from the user.

To make NineML descriptions simulator agnostic, they only provide differential equations
to describe the dynamics of a model. As the system itself chooses the solver for the dy-
namics, this might lead to the generation of unnecessarily complex and inefficient code
for a specific simulator or to an inaccurate solution of the model equations. Expressing
neuron dynamics as a finite-state automaton with regimes and transitions as in NineML
works well to visualize them. However, for developing new neuron models and express-
ing complex relationships between states a procedural definition of the dynamics is more
intuitive.

3.2 NeuroML

The model description language NeuroML [Gl10] is a description language for biophysi-
cally detailed neuron and neural network models and enables interoperability across mul-
tiple simulators. Neuron models in NeuroML can have complex morphologies, voltage-
and ligand-gated conductances, and synaptic mechanisms. Network models contain the
3D positions of cells and synapses in the network.

NeuroML is optimized for complex compartmental models, but also supports simple point
neurons like the leaky integrate-and-fire model (Section 2). However, more advanced types
of point neuron models such as the exponential integrate-and-fire neuron [BG05] or the
Izhikevich model [Iz03] are not fully supported yet. The language itself is split in three
levels, each of which is responsible for describing a different scale of biological detail:
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Level 1 describes the morphology of a neuron model using the sub-language MorphML.
This contains the number and 3D position of compartments and their size and shape.
Additionally, it provides mechanisms to store metadata.

Level 2 uses ChannelML to describe voltage-gated membrane conductances together with
static and plastic synaptic conductance processes. It also extends level 1 descriptions
by specifying the location and density of membrane conductances in the cell model.

Level 3 describes neural networks with 3D locations of individual neurons, synaptic con-
nections between neurons (in projections) and external inputs via NetworkML.

NeuroML can define neuron models by using predefined elements for segments, channel
mechanisms or synapse mechanisms. This results in compact and clear definitions of mod-
els by outsourcing and reusing mechanism definitions. On the other hand, the limited set of
possible language elements reduces the expressiveness of NeuroML to models for which
corresponding elements exist. Defining new mechanisms requires changes to the language
definition itself.

3.3 XML as carrier language

Most of the established modeling languages use XML [Ye04] as their concrete representa-
tion, because an ecosystem of tools already exists and no additional lexers and parsers have
to be developed to check syntactic correctness. However, this approach has two disadvan-
tages: first, the verbosity of XML makes writing and reading models difficult for modelers
[Ch01] and sophisticated tools are required for creating, visualizing and understanding
more complex models. Second, the model descriptions have to be processed separately
to ensure semantic correctness. An example for this is NineML’s MathInline statement,
which requires custom parsers to check the contained mathematical expressions for cor-
rectness. Listing 1 illustrates these two problems of XML using an excerpt of a NineML
file.

1 ...
2 <Dynamics >
3 <StateVariable name="V" dimension="voltage" />
4 <StateVariable name="U" dimension="voltagedperdtime" />
5 <Alias name="rv" dimension="none">
6 <MathInline >V*U</MathInline >
7 </Alias >
8 <Regime name="subthresholdRegime">
9 <TimeDerivative variable="U">

10 <MathInline >a*(b*V - U)</MathInline >
11 </TimeDerivative >
12 <TimeDerivative variable="V">
13 <MathInline >0.04*V*V + 5*V + 140.0 - U + iSyn</MathInline >
14 </TimeDerivative >
15 </Regime >
16 </Dynamics >
17 ...

Listing 1: Excerpt from a NineML file. To declare the simple mathematical expression rv =
V ∗U , three lines of code are required (cf. lines 5-7). The MathInline element in line 13
contains only a string that cannot be checked for syntactic or semantic correctness with existing
XML tools.
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3.4 Simulators

Before the existence of general model description languages, simulators already had their
own languages for specifying models. In the case of NEST (Section 1.2) this language so
far is just plain C++ and the features provided by the simulator API. The remainder of this
section introduces two other approaches for the definition of neuron and network models
for completeness.

Brian [St14] is a simulator for spiking neural networks written entirely in Python. It uses
code generation based on SymPy, NumPy and Cython to obtain reasonable performance,
but lacks the facilities for running distributed simulations. Neuron models are defined by
specifying the differential equations written in a text-based mathematical notation. How-
ever, as these definitions are ordinary Python strings, checking context conditions and
semantically analyzing them is difficult. Unless own extensions to Brian are provided, it
is up to the simulator to chose a solver method for the equations, which can have nega-
tive effects on accuracy or efficiency. Brian is mainly used for small-scale and exploratory
simulations on laptops and workstations.

NEURON [HC97] is a simulator mainly for compartmental neuron models with biophys-
ical properties. Neuron and synapse models can be defined with a set of graphical tools
or using the custom programming language HOC. NEURON’s focus is not on large-scale
modeling, but on the simulation of very detailed neuron models on large computer clusters
and supercomputers. In principle, it also supports simulations of large networks of simple
neuron models, but falls behind the performance and memory footprint of simulators that
are aimed specifically at these simulations.

4 Modeling spiking neurons with NESTML

NESTML consists of three modular and separately usable sub-languages, a symbol ta-
ble and context conditions. These languages together form the NESTML domain specific
language (DSL).

Procedural DSL (PL) defines the imperative logic of the model. PL also provides a li-
brary with methods for emitting messages, logging and working with buffer objects.

Units DSL (UL) enables defining and checking variables with physical units like Volt (V)
and Ampere (A). UL also supports common magnitudes like mili (m) and pico (p).

Differential Equation DSL (DL) provides the possibility to define differential equations
in the form of a string of math notation and analyze these equations.

NESTML separates model definition from simulator specific code and thereby allows the
user to concentrate on the development of models instead of implementation details. Au-
tomatic analysis of differential equations simplifies the formulation of new models by out-
sourcing the task of finding an accurate solution to NESTML’s infrastructure. This section
introduces NESTML with the example of a simple integrate-and-fire neuron [RD99].
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4.1 Basic design and definitions

The general syntax of NESTML is inspired by that of Python, which is widely known to
researchers in the computational neuroscience community [Mu09, Da13]. This lowers the
entry barrier for new users and improves comprehensibility of models. NESTML supports
common data types like integer, real and string as well as physical data types with units
provided by the PL. Variables are defined by stating the name followed by a type or unit.
 neuron iaf_neuron:

 state:
y0, y1, y2, y3, V_m mV [V_m >= -99.0]
# Membrane potential
alias V_rel mV = V_m + E_L

end

 function set_V_rel(v mV):
y3 = v - E_L

end

 parameter:
# Capacity of the membrane.
C_m pF = 250 [C_m > 0]

end

 internal:
h ms = resolution()
P11 real = exp(-h / tau_syn)
...
P32 real = 1 / C_m * (P33 - P11)

/ (-1/tau_m - -1/tau_syn)
end

 input:
spikeBuffer <- inhibitory

excitatory spike
currentBuffer <- current

end

 output: spike

 dynamics timestep(t ms):
if r == 0: # not refractory
V_m = P30 * (y0 + I_e) + P31 *

y1 + P32 * y2 + P33 * V_m
else:
r = r - 1

end
# alpha shape PSCs
V_m = P21 * y1 + P22 * y2
y1 = y1 * P11
y0 = currentBuffer.getSum(t);

end

end

Excerptfrom
the

explicitO
D
E
solution

Figure 2: Excerpt from the integrate-and-fire neuron expressed in NESTML. See https://github.com/
nest/nestml for the complete neuron model description.

A neuron in NESTML is declared by the keyword neuron and a name ( 1 in Figure 2).
The name can be used to reference the model from other NESTML models. Each neuron is
composed of blocks with definitions of state and parameter variables, inputs and outputs.
A dynamics function is responsible for the behavior of the neuron when the model is
simulated. All blocks in NESTML start with a colon and end with the keyword end

state 2 contains the variables of the dynamic state of the neuron. An example for a state
variable is the membrane potential of a neuron (V m). An alias variable describes
the dependency between variables using an expression (V rel). For setting a value
on an alias a setter function is required (set V rel), as the defining expression
cannot be inverted automatically for the general case. Plausibility constraints can
be added in square brackets after the variable definition (V m >= -99.0). These are
useful for debugging and during the development phase of the model and can be
removed in the production version for better performance.

parameter 4 contains attributes that do not change over time, but may vary among neu-
ron instances. Examples are the length of the refractory period or the membrane
capacitance (C m). To ensure that values are in a sensible range, it is possible to de-
fine guards which are evaluated every time a parameter is changed by the user. The
syntax is the same as for the plausibility constraints in the state block.



102 Plotnikov, Rumpe, Blundell, Ippen, Eppler and Morrison

internal 5 contains values that depend on the parameters, but can be precalculated once
or auxiliary variables needed for the implementation. In Figure 2 for example, the
propagator matrix (i.e. the solution of the model equation) is defined in this block.

input 6 Several named inputs can be declared using the name of the buffer that should
receive the specified input during simulation. The input type can specified as spike
or current. A spike input can further be inhibitory, excitatory or both. De-
pending on the sign of the input, incoming spikes are routed to the corresponding
sub-buffer. If no such modifier is given the buffer receives all spikes.

output 7 Each neuron in NEST can just send one type of event during simulation.
NESTML supports spike or current output, which is specified after the keyword
output.

Functions allow the convenient reuse of code (e.g. 3 in Figure 2). Their definition starts
with the keyword function followed by the function name and a list of zero or more
function parameters in parentheses. Just like declaring a variable, a parameter is declared
by first stating its name and then its type. Multiple parameters are separated by a comma.
The parameter list is followed by an optional return type.

The definition of the dynamics of a neuron is similar to that of a function (e.g. 8 in Fig-
ure 2). It starts with the keyword dynamics followed by the type of the dynamics. De-
pending on the type, the function is called once per update step (timestep) or just once
per minimum delay interval in the simulated network (minDelay). A list of parameters
can be defined in parentheses.

4.2 Modularity and component concept

In order to reuse parts of a model they must be defined in a block starting with the keyword
component and a name ( 2 in Figure 3). The component is then imported into a neuron
(see 1 ) and made available using the keyword use and optionally giving a convenient
name (see 3 ). Functions and variables from the component can be referenced using the
dot-notation (see 4 ).
 import PSPHelpers

neuron iaf_neuron:

 use PSPHelpers as PSP

dynamics timestep(t ms):
 PSP.computePSPStep(t)

# alpha shape PSCs
y2 = P21 * y1 + P22 * y2
y1 = y1 * P11

end

...

end

 component PSPHelpers:
state:
- y0, y1, y2, V_m mV [V_m >= 0]
alias V_rel mV = y3 + E_L

end

function computePSPStep(t ms):
if r == 0: # not refractory
y3 = P30 * (y0 + I_e) + P31 *

y1 + P32 * y2 + P33 * y3
else:
r = r - 1

end

end
...

end

Figure 3: An example for a neuron that reuses a function from a component. Left panel: the code of
the referencing neuron; right panel: the code of the component.



NESTML: a modeling language for spiking neurons 103

This concludes the description of the imperative approach, where the solution of the under-
lying differential equation is described completely and explicitly in the blocks internal
and dynamics. This approach maps directly to the current implementation of models in
NEST. In addition, NESTML provides a declarative approach that is more intuitive, be-
cause it is closer to the mathematical description of neuron models common in computa-
tional neuroscience.

4.3 Declarative model definition

One of the main difficulties in writing models for NEST is writing the code for solving
the equations, as this requires advanced knowledge of mathematics and numerics. In the
declarative approach, differential equations are directly expressed as a string in mathemat-
ical notation under an ODE block. Figure 4 shows the declaration of an equation for the
current (see 3 ) and the differential equation for the membrane potential V m (see 4 ). As
this is also the way how models are presented in publications, this syntax makes it easy to
re-implement published models in NESTML.

neuron iaf_neuron:
internal:
h ms = resolution()
P11 real = exp(-h / tau_syn)
...
P32 real = 1 / C_m * (P33 - P11)

/ (-1/tau_m - -1/tau_syn)
end

dynamics timestep(t ms):
if r == 0: # not refractory

 V_m = P30 * (y0 + I_e) + P31 *
z1 + P32 * y2 + P33 * y3

else:
r = r - 1

end
# alpha shape PSCs

 V_m = P21 * y1 + P22 * V_m
y1 = y1 * P11

end

end

neuron iaf_neuron_ode:
internal:
h ms = resolution()

end

dynamics timestep(t ms):
if r == 0: # not refractory
ODE:

 I_shape == w * (E/tau_in) * t *
exp(-1/tau_in*t)

 d/dt V_m == -1/Tau * V_m +
1/C_m*I_shape

end
else:
r = r - 1

end
end

end

Figure 4: Modeling an integrate-and-fire neuron in NESTML. Left panel: using the imperative ap-
proach calculating V m explicitly (see 1 and 2 ). Right panel: just specifying the shape of the synap-
tic current (see 3 ) and the differntial equation for V m (see 4 ).

Calculating the matrix for propagating the state is usually a time consuming manual task in
NEST. The possibility to write models in a declarative fashion thus considerably reduces
the work required to define new models. With the imperative approach still available, we
don’t have to sacrifice control over other parts of the neuron dynamics, which can nonethe-
less be expressed as procedural code.

The detailed mathematical and algorithmic techniques for transforming neural dynamics
equations to efficient and accurate C++ code are out of scope of the current manuscript,
and will be published in a follow-up article.
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4.4 Implementation of NESTML

NESTML is implemented using the MontiCore [KRV08, KRV07] language workbench,
which enables an agile development of DSLs. Based on a context-free grammar, Monti-
Core defines concrete and abstract representation as abstract syntax tree (AST) and pro-
vides infrastructure for checking the compliance to the rules via context conditions [Vö11].
MontiCore supports various mechanisms for heterogeneous language integration, e.g. lan-
guage aggregation, inheritance, and embedding. These features were used for implement-
ing the NESMTL language inheritance and embedding [Lo13].

The modular design of NESTML gives users the flexibility to exchanges parts of NESTML.
For example it enables us to embed Python to be used instead of the Procedural DSL in
the future.

MontiCore provides a symbol table infrastructure [Ha15]. The symbol table stores symbols
of the model and provides them to the language mechanisms. An example are NESTML
components, which provide available functions with their signature, but hide the imple-
mentation. NESTML’s symbol table automatically handles the resolution of model ele-
ments distributed over several files.

All languages of NESTML are strongly typed to allow type compatibility checks within
and between models. The checks are performed using information from the symbol table.
A constraint inside a model could be one that checks if the dynamics block only changes
values of the state block, while one between models could be a check if a function
called from an imported component is actually defined there. The framework to check
such context conditions is also provided by MontiCore.

5 NESTML Tool Support

We provide a command line interface to the NESTML tools. They process NESTML
model descriptions by parsing them, checking context conditions on the described model
and generating the C++ model implementation and bootstrapping code for NEST. The
code generator is based on the MontiCore generation framework [Sc12], which uses ex-
ogenous model-based transformations [MVG06] to integrate the solution code for the dif-
ferential equation and a template-based system [CH06]. After executing the NESTML
tools on a model description, the generated code can be compiled and the model immedi-
ately be used in NEST.

During model processing (Figure 5) an abstract syntax tree (AST) is created from the
source model and context conditions are checked. From the AST, a SymPy script [Sy14]
is generated and executed later by the code generator. For linear neuron models, the script
returns the matrix entries of the propagator matrix, or the right hand side of the ODE
for use in a solver otherwise. The source AST is transformed by adding these entries
as variable declarations to the internal block. The altered AST is serialized by pretty
printing it again as a NESTML description. This way, the model developer can inspect
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Figure 5: Processing of models in the NESTML frontend. Processing steps include parsing, checking
context conditions, model transformations and code generation.

how the solution of the ODEs is implemented. If the model doesn’t contain any differential
equations, this step is skipped and code generation is performed on the initial AST.

The code generator produces C++ implementation and header files for each model. The
integration code consists of a C++ file describing the module and a set of scripts for boot-
strapping in NEST. depending on the SymPy analysis, the generated code either contains
an explicit implementation of the solution for the ODE, or code that relays the right hand
side of the ODE to a numerical solver, e.g. SUNDIALS [Hi05], GSL [Go09] or NAG
[HF01].

The frontend is implemented as a regular Java archive available as a download from https:
//github.com/nest/nestml. It has the following modes of execution:

parse Models are parsed and syntactic correctness will be reported.
contextConditions Models are parsed and checked against the context conditions.

Syntactic and semantic correctness will be reported.
generate The code generation workflow will be executed after parsing and checking

context conditions.

6 Discussion and Outlook

We presented the NEST Modeling Language NESTML to describe spiking neurons and
introduced a code generator for the NEST platform. NESTML supports two development
paradigms: an imperative scheme based on a procedural language and a declarative scheme
using a textual definition of differential equations. Both paradigms can be transparently
combined in the same neuron model in order to increase the expressiveness. A dedicated
module concept allows a seamless reuse of models and model components. The complex-
ity of model development is decreased by abstracting the implementation and infrastruc-
ture details.

Using NESTML, neuron models can be described using domain concepts. The syntax of
NESTML is similar to that of the Python programming language, which is well known to
the computational neuroscience community. As NESTML is implemented as a MontiCore
language, the development of language variants using language inheritance or language



106 Plotnikov, Rumpe, Blundell, Ippen, Eppler and Morrison

embedding is straightforward [Lo13]. This fact can be exploited in the future to develop a
family of NESTML languages targeting users with different technical expertise or adding
code generation for other simulators.

In order to demonstrate the usefulness of the proposed language, we reformulated about
30% of NEST’s models as NESTML in a collaboration with the developers of NEST. The
language and tools were generally well received and especially the concise syntax and
the code generation pipeline were mentioned as big improvements. NESTML provides a
20 fold reduction of code between model description and generated implementation code.
This value includes both the C++ model code as well as the bootstrapping code.

Large-scale modeling of nervous systems requires an abstraction as provided by NESTML
to increase modeling capabilities, reusability and maintainability. This is an interesting
challenge from the viewpoint of software language engineering and ongoing research will
show, how to raise the level of modeling capabilities even further.

NESTML is publically available on https://github.com/nest/nestml. Our ongoing work fo-
cuses on the addition of features for the description of synapse models in NESTML. The
language and the tools will be evaluated in a more structured way at a community work-
shop this winter and the feedback will be incorporated into the next public release of
NESTML.
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Infrastructure to Use OCL for Runtime Structural

Compatibility Checks of Simulink Models

Vincent Bertram1 , Peter Manhart2 , Dimitri Plotnikov1, Bernhard Rumpe1, Christoph
Schulze1 and Michael von Wenckstern1

Abstract: Functional development of embedded software systems in the automotive industry is
mostly done using models consisting of highly adjustable and potentially reusable components. A
basic pre-requisite for reuse is structural compatibility of available component versions and variants.
Since each vendor in the automotive domain uses its own toolchain with corresponding models, an
unified modeling notation is needed. For this reason based on a detailed feature analysis of well-
established and commonly used modeling languages, a meta-model has been derived that allows
checking structural compatibility, even between heterogeneous modeling languages.

Keywords: Automotive, C&C ADLs, OCL, Meta-Model, Simulink, Structural Compatibility

1 Introduction

Nowadays, the differentiation of vehicles will take place not just in body and interior
design but also in embedded software systems like adaptive cruise control or road sign
detection. The growing number of Advanced Driver Assisted Systems (ADAS) and their
emerging variants and versions each using individual components cause an increase in
software maintenance costs making up to 60% of total software costs [Gl01]. Reusing
software components reduces development and maintenance costs. A basic precondition
is component compatibility. Structural compatibility serves as a first indicator as it is an
important prerequisite for full compatibility, which would also enclose behavioral com-
patibility [Ru15], also called refinement [Ru96].

First, the methodology and infrastructure to check structural compatibility will be intro-
duced. In Sec. 3 a meta-model is proposed that is based on a detailed feature analysis of
well-established and commonly used modeling languages and their constraints. In Sec. 4
the feasibility of the proposed overall approach is demonstrated using an ADAS model de-
veloped in the industrial research project SPES XT. This paper finishes with related work
in Sec. 5 as well as a conclusion and outlook in Sec. 6.

2 Method to Check Structural Compatibility

To define structural compatibility constraints at runtime, the first order predicate logic
language OCL [Ob14] is chosen to describe meta-model constraints. One of its benefits
1 RWTH Aachen University, Chair of Software Engineering, Ahornstraße 55, 52074 Aachen
2 Daimler Research & Development Ulm, RD/EEC, Wilhelm-Runge-Straße 11, 89081 Ulm
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is that it is reasonable efficiently executable. The Java-based derivate OCL/Programmable
(OCL/P) is used; as it is based on an easier syntax and thus easier to read and understand
[Ru11, Ru12] compared to OMG’s OCL.

In order to express properties of widespread Component & Connector (C&C) architec-
tures, a generic meta-model which is encoded as a Class Diagram (CD) was developed.
CDs encapsulate the state and functions of objects in form of attributes and methods. They
are well suited to define the meta-model describing the data structure of C&C architec-
tures to check compatibility on. The semantics of a CD [HR04, CGR08] is a set of valid
objects. Since the meta-model describes the signature of C&C models in a notation in-
dependent manner, every C&C model can be transformed into an Object Diagram (OD)
instance being conform to the meta-model [MRR11]. OCL/P constraints are then used to
define structural compatibility between two of these ODs.

The overall idea of the proposed infrastructure is to check compatibility using a Satisfiabil-
ity Modulo Theories (SMT) solver. Thus, the meta-model, the used C&C model, and cor-
responding OCL/P constraints must be mapped to solver code. In a first step two Simulink

[DH14] model components (SLC)s are transformed to ODs using the MATLAB-Connector

API. Next the resulting ODs, the meta-model and the defined compatibility constraints are
mapped to SMT code. Furthermore, the compatibility constraints are defined and stored in
separated artifacts decoupling them from the C&C models. After merging all parts to one
file artifact using a PartMerger [Gr15], Microsoft’s Z3 solver [MB08] is invoked with the
resulted SMT file. The solver can deal with uninterpreted functions to generate counter-
example witnesses to show incompatibilities.

3 Meta-Model for Component and Connector Languages

In order to express OCL constraints for heterogeneous C&C architectures in a uniform
way, this section defines an expressive meta-model. Existing meta-models were not ca-
pable to express all necessary aspects that were needed to check structural compatibil-
ity. Its syntax is derived from the results of an intensive analysis of the most important
Architecture Description Languages (ADLs) used in the automotive domain. This sec-
tion’s outline is top-down: First, the most specific meta-model classes such as Funct-

ionComponentElement and FunctionComponent are presented. Then, general classes
like TypeReference and Port are described. Finally DataType and Unit are introduced.

FunctionComponentElement: The interface FunctionComponentElement is realized as
composite design pattern to support hierarchical C&C models wherein the class Function-
Component contains components and the class PortConnector associates two Port

classes allowing directed communication from source to dest Port (c.f. Fig. 1a). The
class Interface shown in Fig. 1b uses in- and out-ports for direct asynchronous commu-
nication. Indirect communication takes place over shared GlobalStorage elements.

TypeReference: The DataType and the TypeReference meta-model are adoptions from
EAST-ADL [EA13] coupled with SysML. Properties being necessary for a concrete us-
age of a data type are split up for easier reuse. In order to be compatible with Simulink,
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Fig. 2: Meta-Model of Port, GlobalStorage and TypeReference

changes were made on EAST-ADL’s homogeneous container having now a fixed amount of
elements. A Simulink component that needs access to global variables is intentionally not
supported by AUTOSAR [AU08], EAST-ADL and MontiArc [HRR12]. As a result SysML’s
component interface model is used.

Port: The meta-model distinguishes three different kinds of Port classes (see Fig. 2a)
based on the signal’s purpose. This is similar to AUTOSAR. The class TypeReference of
a Port defines the kind of signal content. Each TypeReference has at least one Range

specifying the operative minimum and maximum (see Fig. 2b). If a signal has one range
with higher accuracy (e.g. at low speed) than in another range (e.g. at high speed), there
exists the possibility to define as many Ranges with its own Accuracies and Resolutions
as necessary. The difference between Resolution and Accuracy is that Resolution
represents the maximum delta how measured data can be stored and Accuracy represents
the maximum error on stored data. Each SignalPort has additionally a SamplingMode

describing the sample rate of a physical signal sampled into a digital one. If TriggerPort
has a SamplingMode, an event can only arise at a specific time interval.
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DataType: The class DataType shown in Fig. 3a is based on the type systems used by Java

and Simulink where ComplexType represents complex numbers like 5+3i, a Composite-
Type is a heterogeneous container accessing its children by an unique id and an Array is a
homogeneous container of a specified length. An Enum consists of finite set of EnumLiteral
elements. Each String has a specific CharacterEncoding. Nested ports that are avail-
able in SysML are similar to ports having a CompositeType as DataType.

Unit: The interface Unit in Fig. 3b is based on the unit type system of SysML [Ha06]
and Modelica [Mo12]. Unit has a QuantiyKind such as acceleration, energy or speed.
Each QuantiyKind has a physical dimension defined in terms of basic units. Two dif-
ferent QuantityKind objects can have the same PhysicalDimension, e.g. torque (Nm)
and energy (J) are different units, but have the same physical dimension kg·m2

s2 . The class
DerivedUnit specifies how units with different magnitudes within the same QuantiyKind
are converted by stating a conversion formula. Among other earlier mentioned ADLs, the
proposed meta-model allows to create all existent units, supporting either the metrical
(km/h) or empirical (mph) measurement system.

4 ADAS Component Demonstrating Methodology

This section starts with an overview of the evaluated ADAS V1 component and continues
with the translation of structural information of SLCs into the proposed meta-model.

The provided ADAS model has four different levels of evolution and is realized as Simulink
model which is a special case of an C&C architecture software mainly but not only used in
the automotive domain. This section depicts the structure of the ADAS V1’s top-level SLC
only. The running example is simplified and does not represent a 100% real world model,
but it provides enough structural information without being overloaded with unimportant
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Simulink
classdef(Enumeration) LeverAngle <

Simulink.IntEnumType

enumeration

ZeroDegree(0)

PlusFiveDegree(1)

MinusFiveDegree(2)

end

end

LeverAngle.m

>> el = CruiseControl.Elements;...

n = char(10);... % newline

for i=1:length(el)...

e=el(i);...

disp([...

e.Name n...

e.DataType '(' ...

e.DocUnits ')' n...

num2str(e.Dimensions) n...

'[' num2str(e.Min) ';'...

num2str(e.Max) ']' n...

]);...

end

% output of bus CruiseControl:

CC_active_b

boolean()

1

[;]

V_CC_delta_kmh

fixdt(1,9,0.1,0)(km/h)

1

[-20;20]

MATLAB Console
(SPa)

(SPb)

(VP)

(SPc)
(CP)

(TP)

(1)

(2)

(3)

(SPa)

Fig. 4: Syntactic Interface Description of ADAS V1 developed in the project SPES XT

details. The whole SLC interface is defined as the set of all in-, out-ports as well as used
variables being shared outside this component.

The SLC interface of the ADAS V1 as shown in Fig. 4 is clearly evident, because it is
completely covered by all visible in- and out-ports. This example consists of three different
port types: (1) signal, (2) configuration, and (3) trigger ports. Signal ports can be grouped
using arrays or non-virtual buses and have been divided into three subtypes: (SPa) for one
single primitive type, (SPb) for grouped signals having the same data type, and (SPc) for
grouped signals of different data types. Due to different purposes for using a configuration
port, it is divided into two subtypes: (VP) for software variation (enabling or disabling
features) and (CP) for calibrating subcomponents with parameters. The trigger port (TP)
has only one kind. All port types (CP, SP, TP, VP) extend the port concept defined in
AUTOSAR. The ports’ data types with its ranges together are displayed directly on the
signals connected to them; ufix12 Sp1 [0..250] stands for unsigned fixed point data
type of word length 12 and having a slope (resolution) of 0.1 and a value range between 0
and 250.

In the example SLC of ADAS V1, the port Lever enum is an enumeration of LeverAngle
and contains three values representing the deflecting angle of the lever: ZeroDegree,
PlusFiveDegree, and MinusFiveDegree (c.f LeverAngle.m in Fig. 4). Non-virtual
data types represent a semantic union. The non-virtual data type CruiseControl groups
the boolean signal CC active b and the fix-point number signal V CC delta kmh having
a [−20;20] range together to a non-virtual bus (c.f. MATLAB Console in Fig. 4).
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Fig. 5: Example meta-model instantiation of ADAS V1 Limiter component

1def Boolean infix (Number v) isin (Range r) is:

2 result =

4 v >= r.min &&

5 v <= r.max &&

6 (~r.res ||

7 (v - range.min) % range.res == 0)

OCL/P

(Range r has no optional association res to Resolution)

Fig. 6: OCL code snippet and SMT function defining whether Number v belongs to a given Range r

To show an example instantiation of the meta-model, a subset of ADAS V1 is chosen and
shown as an OD in Fig. 5. The excerpt uses 3 of 15 in-ports (VariantsEnableTempomat
(VP), BrakeForce pedal pc (SPa), Distance Object m (SPb)) and 1 of 7 out-ports
(CruiseControl (SPc)) containing all port types already shown in Fig. 2. The classes
CompositeDataType and CompositeTypeRefence use numbers instead of names as
identifiers as this allow an easier iteration over the elements in the used OCL constraints.

The code shown in Fig. 6 defines the semantics for the overloaded isin operator in OCL.
This operator returns the Boolean value true when the Number v can be found in the
given Range r, which is specified by a minimum (min), maximum (max) and a resolution
(res). As an example a range with the properties min=1.0, max=4.1, res=0.5 would
return true only for the values 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0, which is
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defined in the lines 4, 5 and 7. Line 6 is only necessary because the res association is
optional. If it is not defined, the range will contain all values between min and max.

5 Related Work

MontiArc [HRR12] is a C&C ADL where asynchronous message based communication is
done over directed connectors between typed component ports. It uses context conditions
for structural consistency checks such as data types and input/output directions of ports.
Context conditions extend the expressiveness of grammar based approaches and enable
checking of constraints, e.g. type systems, which are not expressible through grammars.

The approach presented in [Bh11] tackles the problem of defining and evaluating con-
sistency relation between architectural views imposed by various heterogeneous models
and a base architecture for the concrete system model. The consistency check happens
on different abstraction levels if the concrete architecture model is consistent to the more
abstract and less detailed abstract view. Instead, this approach checks compatibility on the
same abstraction level.

The approach from [Da14] presents an architectural framework where multiple views on
one system can be defined. The consistency is checked by leaving out details unnecessary
for comparison, which is termed as a “lifting” operation. It lifts the more detailed software
view to the more abstract functional view. This lifting operation causes valuable informa-
tion loss, so the architectural framework is insufficient to check the structural compatibility
as described in Sec. 2. The SysML meta-model which is used, supports only a subset of
features available in the meta-model presented in Sec. 3.

6 Conclusion and Outlook

This paper has presented a first overview of an infrastructure for compatibility constraint
checks using OCL. It was exemplified using a model from automotive domain but it is not
limited to only this. Comparatively MATLAB Simulink is also used in other domains like
aerospace and medical engineering. The main contribution is the proposed meta-model
which is based on an intensive analysis of well-established modeling languages to support
heterogeneous C&C architectures. It includes all meta-elements of the most known indus-
trial meta-models (SysML, Simulink, Modelica, AUTOSAR, EAST-ADL). All of these
ADLs can be mapped and as a result only a meta-model transformation must be written.

While this paper deals with the modeling aspect of the proposed infrastructure, future work
will give more information about the generative part. This will contain how to generate
SMT code for the Z3 solver using OCL/P constraints. The solver results will be presented
as user-friendly error messages describing the reason for constraint violations based on
counter-example witnesses. The highly modular infrastructure is capable of supporting
new third party plug-ins and consequently allows a seamless integration into industrial
development environments. To demonstrate the extensibility of the proposed infrastructure
further modeling notations will be implemented.
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Towards a Catalog of Structural and Behavioral

Verification Tasks for UML/OCL Models

Frank Hilken1, Philipp Niemann1, Martin Gogolla1, Robert Wille2

Abstract: Verification tasks for UML and OCL models can be classified into structural and behav-
ioral tasks. For both task categories a variety of partly automatic solving approaches exist. But up to
now, different interpretations of central notions as, for example, ‘consistency’ or ‘reachability’ can
be found in current approaches and tools. This paper is designed to clarify central verification notions
and to establish a collection of typical verification tasks that are common to multiple approaches and
tools. In addition, the verification tasks are categorized with the aim of creating a central catalog of
tasks, providing a common understanding of the terms used in model verifications.

1 Introduction

The increasing usage of modelling languages like the Unified Modelling Language (UML)
and the Systems Modeling Language (SysML) and their formalizations have lead to a va-
riety of verification engines for various model descriptions. Along with these tools, a heap
of verification tasks were created and defined, each approach with their own definitions.
This process has lead to model verification terms, such as, consistency or reachability, that
are used multiple times with differing semantics [CCR08].

In order to establish a general terminology and create a common understanding, this paper
takes frequently used verification tasks, describes their goals and categorizes them into a
catalog. The categories give a general idea and quick overview of the goals of the tasks
assigned to them. In addition, these categories and tasks are divided into structural and
behavior topics. The descriptions shall clarify the interpretation of verification tasks. Sim-
ilar, distinct tasks were given concrete names and descriptions to seperate their overlap.
For example, the consistency task was split into a weak and a strong consistency.

The goal of the catalog is a common understanding of the various existing verification
tasks to reduce misinterpretations and establish a foundation for communicating about
them with a clear understanding of their semantics. The catalog provided in this paper is
not meant as a final product, but rather a basis to discuss and extend it.

The remainder of this paper is structured as follows: Section 2 pictures the state of the art
and further motivates the categorization of verification tasks. Section 3 introduces a short
running example that is used to exemplify the goal of selected verification tasks. Section 4

1 University of Bremen, Computer Science Department, D-28359 Bremen, Germany
Email: {fhilken|pniemann|gogolla}@informatik.uni-bremen.de

2 Johannes Kepler University, Computer Science Department, A-4040 Linz, Austria
Email: robert.wille@jku.at
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first defines a metamodel to represent verification tasks and then finished with the actual
catalog, categorizing and describing the verification tasks. Section 5 wraps up the paper
with a conclusion.

2 Motivation

Modeling languages such as the Unified Modeling Language (UML) or the Systems Mod-

eling Language (SysML) together with textual constraints, e.g., provided by the Object

Constraint Language, have been established to specify the design of complex systems.
They provide different concepts such as class diagrams, sequence diagrams, or activity di-
agrams which are expressive enough to formally specify a complex system, but hide spe-
cific implementation details. Since modeling languages permit formal descriptions, they
additionally enable the verification of the respective specification already in the absence
of a specific implementation1.

The corresponding verification tasks can be divided into

• Structural Verification Tasks, where a single system state is considered, as well as
• Behavioral Verification Tasks, where a sequence of system states as well as their

transitions (e.g., described by operations with pre- and postconditions) is considered.

For both categories of verification tasks, a variety of (automatic) solving approaches have
been introduced in the recent past [CCR08, SWD11, An07, Ba12, CKZ11, EW04, La07,
Ro14]. However, until today different interpretations and terminologies exist for the re-
spectively considered verification tasks.

For structural verification tasks, definitions as proposed e.g. in [GKH09] became rather es-
tablished. Nonetheless, even in this context, multiple notions and variations can be found
in the literature. For instance, consider the well-established task of checking “consistency”,
i.e. investigating whether a model description is consistent in that sense that an instanti-
ation of the model exists which satisfies all of the model’s constraints: in [CCR08], any
non-empty instantiation of the model is accepted, while [GHH14] forces each class of the
model to be instantiated at least once.

For behavioral verification tasks, so far a comprehensive list of tasks has not even been
attempted at all (to the best of our knowledge). In contrast, for other areas of validation
and verification in modeling, similar compilations of verification tasks and techniques have
been presented, e.g. a survey on tasks for model transformations in [CS13] or a survey on
modeling techniques for behavioral verification of software product lines in [Be15].

In this work, we aim for providing a unique and clear definition of important verifica-
tion tasks that can be applied on UML/OCL models. This includes a comprehensive con-
sideration of both, structural and behavioral issues. Thus far, verification tasks are often
1 In model-driven engineering, it is common to apply so called model transformations to automatically transform

models into a different description mean or language during the design process. In this context, it is an important
task to validate/verify whether source and target model of a transformation are equivalent. However, this is out
of the scope of the present paper where we focus on the verification of stand-alone model descriptions
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referenced using different terms or using the same term, but having in mind different mean-
ings. By presenting a fine granular differentiation of tasks in the following sections, we try
to reduce misinterpretations and establish a common basis for an improved and clarified
communication about verification tasks.

3 Traffic Light Running Example

Controller
request : Boolean

pedRequest()
switchPedLight()
switchCarLight()

Signal

green : Boolean

inv safety:
not (carLight.green

and pedLight.green)

pedRequest()
pre: not pedLight.green
post: request

switchPedLight()
pre: request
post: not request
post: pedLight.green

<> pedLight.green@pre

switchCarLight()
post: carLight.green

<> carLight.green@pre

1

1 carLight

1

pedLight 1

Fig. 1: Traffic light running example.

In this section we introduce a simplified
pedestrian traffic light preemption which
will serve as a running example to illus-
trate concepts discussed in the next sec-
tion. The corresponding model is depicted
in Fig. 1. The main class of the exam-
ple is the Controller which is connected
to exactly two traffic light signals, one
for cars (carLight) and one for pedes-
trians (pedLight). For simplicity, we as-
sume two-state signals (green light on/off).
With the operation pedRequest(), pedes-
trians express the desire to cross the road from either side. The controller stores these
requests in the request attribute and switches the corresponding signals using the
switchPedLight() and switchCarLight() operations. To prevent accidents, the in-
variant safety ensures that pedestrians and cars may not both face a green light (indicat-
ing a safe crossing) at the same time.

4 Categorizing Verification Tasks

We have identified a variety of verification tasks that are used in model checkers and ex-
tracted use cases from them. These use cases were assigned to five basic categories, giving
a quick overview of the general goal of each task. The five categories are Consistency,
Independence, Reachability, Executability and Consequence. The Consistency category
represents general instantiability use cases, the Independence category describes use cases
checking relations of model elements, the Reachability category contains use cases that
check if certain goals are reachable when the behavior of the model is simulated, the Ex-
ecutability category specifies use cases that examine possible transitions between system
states and, finally, the Consequence category characterizes use cases that deduct model
properties and put model elements into relation. These categories naturally divide into two
areas: structural and behavioral tasks.

Figure 2 illustrates the extracted use cases and relations in between them and the general
categories. The dotted line in the middle indicates the separation between structural and
behavioral verification tasks, with structural tasks on the left of the line and behavioral
tasks on the right, respectively. As for the five categories, the classification into structural
and behavioral verification tasks is not as strict, as behavioral tasks may be categorized
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Fig. 2: Overview of verification task catalog.

StateDefinitionSequence

StateDefinition

SystemState

partial : Boolean

Constraint

0..1

0..*

InitialStateDefinition

FinalStateDefinition

Transition

states {ordered}0..*

0..1
pred

0..1
succ

Fig. 3: Data model of inputs for verification tasks.

in a structural category (Operation Independence) or extend on structural tasks (Property
Reachability). The listed verification tasks will be explained later in this section.

4.1 Verification Task Metamodel

In order to describe verification tasks in a formal fashion, we use the metamodel shown in
Fig. 3. It shows an abstract metamodel that we use as a baseline for the declaration of the
verification task input. The metamodel describes a structure that contains the information
verification engines need to solve a certain verification task. The model creates a skeleton
of information that must be filled in with a valid assignment by the verification engine.

Structural tasks utilize the StateDefinition, in the center of Fig. 3. This class repre-
sents a single abstract system state, which imposes no restrictions on a verification engine
when generating a result. Using the abstract class SystemState, a concrete assignment
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for this state can be given. The attribute partial determines, whether more elements
may be added to this system state or not. Finally, the class Constraint allows to add
(boolean) properties to a StateDefinition that have to be satisfied in the result. These
methods to describe a system state can be mixed as necessary. To give a concrete example,
a StateDefinition might be an object diagram or a state in a state machine.

While structural tasks only need the three classes mentioned above, behavioral tasks have
access to additional information about the sequence in which these defined states oc-
cur (StateDefinitionSequence), the predecessors and successors of the states as well
as the order and possibly the type of transitions between them. For example, the abstract
class Transition might be extended to represent operation calls, state transitions in a
state machine or signals. Finally, a StateDefinition can explicitly be declared as the
initial or final state.

Figure 4 shows an example for a Reachability verification task pictured as an instance of
the metamodel2. In the example, an initial and a final state is given by object diagrams. In
the final state, both signals are set to green and the task is to find valid transitions from the
initial to the final state, using the behavior defined in the model from Sect. 3. Since there
is no path of transitions given in between the two system states, the amount and type of
transitions is not restricted. Additionally, the system states could be further restricted by
constraints in which the objects can be accessed using their names. The object names are
also used to map them in between system states.

c:Controller
request=true

s1:Signal
green=true

s2:Signal
green=false

carLight pedLight

:SystemState c:Controller
request=false

s1:Signal
green=true

s2:Signal
green=true

carLight pedLight

:SystemState

:StateDefinitionSequence:InitialStateDefinition :FinalStateDefinition

Fig. 4: Verification task metamodel example to define a reachability task with object diagrams.

4.2 Verification Tasks

In the following, the categories and their associated verification tasks from Fig. 2 are de-
tailed and examples are given to illustrate the goals of selected tasks. The list of verification
tasks, as framed in this work, is not meant to be complete. However, the provided list is a
good viewpoint to show verification tasks that model checkers should be able to perform
on UML/OCL models. We encourage others to extend the list and iteratively collect a more
complete catalog of verification tasks.

4.2.1 Consistency

A Consistency verification task describes the instantiability property of a model, taking
into account different sets of constraints applied, e.g., explicit and implicit model con-
straints, additional properties that serve as a certain verification goal, or even a reduced
2 Due to space restrictions, we leave out exact details, how the abstract classes are extended to represent the

information as an object diagram.
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set of constraints. This category contains crucial verification tasks like showing whether
a model contains contradictions and, therefore, might not be instantiable at all. Consis-
tency problems are structural problems and do not involve behavior, like the execution of
operations.

Weak Consistency This task describes the general instantiability of a model. The goal is
to generate a system state that uses at least some model elements while satisfying all
model constraints. Note that invariants assigned to classes that are not instantiated,
are satisfied by design in the standards.

Strong Consistency This task is an extension of Weak Consistency by the property that
all model elements have to be considered in the generated system state, i.e., at least
one object of all classes and one link of all associations have to be instantiated.

Consistency w.r.t. particular UML Features This task extends the former two tasks al-
lowing particular UML features, such as multiplicities, aggregation and composition
rules or invariants, to be ignored.

Property Satisfiability This task represents a consistency task including external proper-
ties in addition to the model. The goal is to find a valid system state satisfying all
model constraints plus the additional properties. Figure 5 shows a small example
requiring at least a system state with a controller c. In addition, a specific property
is specified as an OCL constraint, requiring both signals of this controller show the
green signal, which fails due to the invariant safety.

c:Controller
request=false

:SystemState:StateDefinition

:Constraint
c.pedLight.green and c.carLight.green

Fig. 5: Verification task model for property satisfiability task.

4.2.2 Independence

Independence describes verification tasks that reason about (in)dependencies between
model elements. This includes any type of dependencies that can exist between, e.g., at-
tributes, roles or invariants. In addition, tasks setting these dependencies in relation also
belong in this category.

Invariant Independency The goal of this task is to check whether invariants exist that
are implicitly specified by one or more others and are therefore always satisfied
when the dependant invariants are satisfied. Further extensions of this task is the
identification of which invariants imply the dependent invariant.

4.2.3 Consequence

Verification tasks in the categoryConsequence describe tasks that deduct information from
a model. These consequences are inherent in the model and are given by the model con-
straints, e.g., multiplicities, invariants or more complex deductions.

Property Deduction This task describes the action of identifying information not explic-
itly in a model, but that are clearly implied by one or more model elements from
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the model. In contrast to the Property Satisfiability task, these information deducted
from the model are not restricted to boolean properties.

4.2.4 Reachability

Reachability verification tasks include all tasks with a certain defined goal in mind that
is reached by executing the behavior of a model such as operations or state machine state
transitions. In contrast to Consistency verification tasks, Reachability tasks involve at least
two system states that are connected by model transitions, defined by the behavior of the
model.

Property Reachability Similar to the Property Satisfiability verification task, this task
checks the satisfiability of properties in a model. This tasks, however, tries to satisfy
them by executing model transitions and additionally allows to specify initial and
intermediate system states that must be included in the simulation. The properties to
be reached can be given as system states or constraints, as defined in the metamodel
in Fig. 3. In the running example, it is desirable to reach a state where the pedestrians
are finally allowed to cross the street, when the signals are currently allowing the
cars to cross, and vice versa.

4.2.5 Executability

In the Executability category are all verification tasks that focus on the transitions and
their contracts between system states. While this paper focuses on operation calls, the
metamodel in Sect. 4.1 allows for any form of state transition.

Livelock Finding This task identifies state transitions that result in a livelock, i.e., the
system is in a state where there is no possible sequence of transitions to reach a
defined end state, while transitions can still be executed.

Deadlock Finding This verification task is the extension of the Livelock task, searching
for reachable system states, where the system comes to a complete halt and no fur-
ther transition is possible, without being in a defined end state. This task can make
sure that, in the running example, there is no possibility to get into a state where
only either cars or pedestrians are allowed to cross the street (forever).

Executable Operations The goal of this verification task is to identify all executable tran-
sitions of a single system state. In the running example this is achieved by evaluating
the preconditions of all operations against the given system state. This task is the ba-
sis for many other verification tasks.

Executable Operation Tree This verification task extends the previous task by checking
the possible transitions not only for a single system state, but also simulating the
operation calls and iteratively evaluate the executable state transitions, building a full
tree of operation call sequences up to a given depth. Again the task can be restricted
by giving a certain final state as a goal or constraining the transition sequence using
simple OCL. The constraints on the sequence can be as complex as temporal logic.

Operation Independence This task introduces the detection of dependencies in opera-
tions from the former verification task. An example is the identification of mutually
exclusive operation calls, i.e., identifying operation calls that are never available at
the same time in a single system state.
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5 Conclusion

We have presented a catalog of general verification tasks for UML/OCL verification tasks
including their categorization into five groups. All tasks are individually detailed to estab-
lish a fine granular differentiation between their goals. These definitions shall help mod-
ellers to communicate with each other and unify the term usage in verification engines. In
addition, we have presented a metamodel to represent these verification tasks in a formal
fashion.
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Tool Support for Model Transformations: On Solutions

using Internal Languages

Georg Hinkel1 and Thomas Goldschmidt2

Abstract: Model-driven engineering (MDE) has proven to be a useful approach to cope with todays
ever growing complexity in the development of software systems, yet it is not widely applied in
industry. As suggested by multiple studies, tool support is a major factor for this lack of adoption.
Existing tools for MDE, in particular model transformation approaches, are often developed by small
teams and cannot keep up with advanced tool support for mainstream languages such as provided
by IntelliJ or Visual Studio. In this paper, we propose an approach to leverage existing tool support
for model transformation using internal model transformation languages and investigate design de-
cisions and their consequences for inherited tool support. The findings are used for the design of an
internal model transformation language on the .NET platform.

Keywords: Model-driven Engineering, Model Transformation, Internal DSL, C#

1 Introduction

While in the past, increasing complexity of software systems has been tackled by an in-
creasing abstraction of the programming language, it seems like the abstraction level of
modern programming languages can hardly be raised without losing general purpose ap-
plicability. Therefore, in recent years, many domain-specific languages (DSLs) [Fow10]
have been proposed that offer a raised abstraction level at the price of limited expressive-
ness.

The usage of such domain-specific language requires a specification how these languages
are executed. A popular approach for this is to map a domain-specific language to a tar-
get platform by a transformation. Since such a transformation determines the execution
semantics of the source languages instances, model transformations are sometimes called
the ‘heart and soul’ of model-driven approaches that should be supported by dedicated
languages [SK03].

This has lead to a variety of model transformation approaches [CH06] incorporating high-
level abstractions like the composition of model transformations into rules describing the
transformation for a particular model element. While these languages produce more con-
cise, more understandable and sometimes even more performant (cf. eg. [GR13]) model
transformations than general purpose languages, the model-driven approach is still not

1 FZI Forschungszentrum Informatik, Software Engineering Division, Haid-und-Neu-Straße 10-14, 76131 Karl-
sruhe, hinkel@fzi.de

2 ABB Corporate Research, Software Systems, Wallstadter Straße 59, 68526 Ladenburg,
thomas.goldschmidt@de.abb.com
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widely adopted in industry and the question is why. Multiple studies [Sta06; Moh+09;
Whi+13] suggest that a major factor in this decision is the tool support, particularly also of
model transformations given their importance in model-driven approaches. Recent studies
[Moh+13] suggest that the tool support is still not satisfactory.

But as the model-driven approach is not widely adopted, relatively few resources are spent
to improve the tools, at least in comparison to IDEs for mainstream languages like IntelliJ
or Visual Studio. These tools have a massive user base and thus much more resources are
spent for the improvement of the tools. Furthermore, many model transformation tools
are maintained by researchers with few incentives to implement in principle long-known
tool concepts in their model transformation tools, simply because of the lack of insights
generated by these mostly laborious tasks.

Furthermore, as Meyerovich suggests [MR13], many developers do not appreciate to switch
their primary programming languages and do so only if there is a significant amount of
code they can reuse or if management requires them to do so. This is reasonable since
such a change often makes valuable knowledge of particular technologies superfluous. Fur-
thermore, similar concepts are sometimes implemented in slightly different ways, causing
subtle bugs. As an example in the world of model transformations, the difference between
is-kind-of and is-type-of in OCL often causes confusions for developers not confronted
with it on an everyday-basis.

A promising approach to tackle this problem of 1. general purpose languages with the lack
of model transformation concepts on the one side and 2. dedicated model transformation
languages with lacking tool support on the other is to combine both worlds using an inter-
nal DSL. To gain best tool support, the model transformation language should be hosted
in a mainstream general-purpose language such as Java or C#. This allows to combine
high-level abstractions for model transformations with advanced tool support.

However, so far internal transformation languages do not exist for all often used general-
purpose languages. This raises the problem how to design an internal transformation for a
language so far not covered and how to implement this transformation DSL with respect
to tool support.

In this paper, we tackle this problem as we extract our experience with the design of the
NMF Transformation Language (NTL)[Hin13] regarding design for tool support reuse.
We discuss the design alternatives how to map model transformation concepts (in partic-
ular transformation rules) to code artifacts in an internal DSL and explain limitations and
consequences. We then describe briefly how these design decisions are implemented in
NTL.

In the remainder of this paper, we first present related work in Section 2. Section 3 dis-
cusses how transformation rules can be embedded in general-purpose object-oriented pro-
gramming concepts aiming for optimal tool support reuse. Section 4 explains our imple-
mentation in the internal model transformation language NTL. Finally, we conclude the
paper in Section 5.
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2 Related Work

There exists a variety of model transformation approaches, surveyed and summarized for
example by Czarnecki et al. [CH06]. In the remainder of this section, we concentrate on
those implemented as internal DSLs.

A language that has been used as host language for model transformation several times is
Scala [GWS12; KCF14] . Scala has not as many users as Java or C# but still advanced tool
support is available. However, the language adoption problem remains, i.e. fewer develop-
ers know Scala than Java or C#.

Surprisingly, the most often used mainstream languages to the best of our knowledge have
hardly been used as a host language for model transformation yet. Next to NTL and its
close relative NMF Synchronizations [Hin15], we are only aware of two approaches using
Java [TL12] which is rather focussed on pattern matching and SDMLib [Zün+13], an
internal DSL for the Fujaba tool using a method chaining syntax.

In this paper, we discuss how an internal model transformation language can be con-
structed specifically for the inheritance of tool support, but DSLs have been used in a
number of approaches for a multitude of different rationales, including the ease of devel-
opment [BH11], type safety [GWS12] or language adoption [Hin+15].

3 Implementing Transformation Rules with respect to Tool Support

This section discusses the implications of different ways to represent transformation rules
in the object-oriented design aiming specifically to gain optimal tool support for model
transformations. Our discussion is based on strongly-typed multi-paradigm programming
languages such as Java or C# as host languages where there is rich tool support available.

3.1 Editing Support

According to a study on the usage of the Eclipse IDE with 41 Java developers, the ba-
sic editing operations like delete, copy, cut and paste are upon the most commonly used
editing commands [MKF06]. These commands are supported by any editor. However, the
study showed that also more sophisticated tools were often used, indicating that they raise
productivity. The most often used tool support beyond the basic commands was code com-
pletion that was used by every developer, making up in the average 6.7% of all executed
commands. This study was made in 2006 and code completion has been improved by
learning from examples, frequency or mined associations [RL08; BMM09]. While many
model transformation tools support a basic code completion listing all available members
in alphabetic order, more advanced code completion is usually limited to large mainstream
IDEs.

Code completion requires strongly typed environments since in this case the tool knows
what methods are available for a given object. Thus, the signature of a transformation rule
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must be known to the compiler. This can be achieved either when the transformation rule
is represented by a method or by turning the transformation rule signature into generic
type parameter. The problem with the representation as a method is that it is very hard
to decide when to create a trace entry. Transformation rules like ATL, ETL and QVT-O
solve this problem by dividing the transformation rule execution into phases. In SIGMA
which represents transformation rules as methods, the problem is solved by allowing only
a single transformation phase specified by the user.

The approach of turning a transformation rule signature into generic type parameters is
more flexible, but there are multiple possible implementations. The difference between
these implementations is the artifact that represents a given transformation rule. Generic
type parameters can be created for methods or classes. In case of generic parameters of
methods, each transformation rule would be a call of a generic transformation rule method
that creates the transformation rule, taking in additional configuration such as different
phases of the transformation.

1 var state2place = TransformationRule <State , Place >(
2 createOutput: (state , context) => ...,
3 transform: (state , place , context) => ...
4 );

List. 1: Representing transformation rules as method calls

An example how the transformation of states of a finite state machine to places of a Petri
net looks like when transformation rules are implemented as method calls is shown in
Listing 1. In this listing, we assume an optional context parameter that can be used
for tracing purposes. The example uses named parameters which are not available in all
languages (and usually optional where they are available). Other options include method
chaining syntaxes. An example of these languages is SCALAMTL, as method chains have
a suitable syntax in Scala.

The representation as inheritance means that there is a generic transformation rule class
that is inherited from for each transformation rule, passing the type signature again as
generic type parameters. Here, different phases of a transformation rule can easily be rep-
resented by different methods of the class which the transformation rule has to override.

1 class State2Place : TransformationRule <State , Place > {
2 Place CreateOutput(State state , Context context) { ... }
3 void Transform(State state , Place place , Context context) {...}
4 }

List. 2: Representing transformation rules as classes

The representation of transformation rules as classes with a certain inheritance relation
is sketched in Listing 2. Here, the concept of a transformation rule is implemented in a
generic class which is inherited from. The transformation phases are represented as over-
ridden methods.

The design decision whether to implement transformation rules as method calls or as
classes has several important consequences. While the syntax of the method calls contains
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less syntactic boilerplate and is thus more concise in terms of lines of code, the latter ver-
sion using inheritance has the important advantage that being types, transformation rules
are reflected in metadata. This has advantages for visualization as we will discuss in the
next section. Furthermore, an object as the result of a method call can only be referenced
once it has been created while a class can be referenced regardless of the order in the code
(in most languages). This is problematic when the abstract syntax (cf. Fig. ??) contains
a cross-reference to transformation rules, when traces are explicit. Thus, for example in
SCALAMTL, the traces are implicit and cannot be made explicit.

3.2 Navigation Support

A large proportion of development activities is devoted on the analysis of existing code
and navigation through it [MKF06]. However, the navigation support of the mostly used
search commands (searching for references to a selected element or its definition) can be
derived independently of the transformation rule representation, if there is a representation
as a code element at all (as opposed e.g. to pure naming conventions).

However, Rentschler et al. have shown that a visualization of a model transformations
structure aids the navigation and is thus helpful for the maintainability of model transfor-
mations [Ren+13]. A similar visualization is getting common for general-purpose object-
oriented code visualizing the usage of members within a class or the usage of classes
within a package, as for example with Code Maps in Visual Studio. This analysis is based
on metadata, i.e. classes, methods and their interrelations based on the methods’ bodies.
Objects as results of method calls are not part of this metadata since they are runtime arti-
facts and cannot be predicted at compile-time in general. As a consequence, code visual-
izations based on this metadata is not available when transformation rules were represented
in method calls.

For internal languages, inherited visualization is of particular importance. Unlike exter-
nal languages, they are merely guidelines how to use a framework but these guidelines
are not enforced by the host language compiler3. As a consequence, static analysis like
visualization specifically created for the internal language is of limited applicability. For
analyses that look at the big picture like visualizations of the entire transformation, this
means that it is hard to create something above the inherited visualization support. Alter-
natively, dynamic visualization as supported by SDMLIB are a viable approach, but are
hard to integrate in the development environment and laborious to develop.

For the implementation of transformation rules as types as outlined above, the usage of
a transformation rule is the same as the usage of this type. Therefore, visualization tech-
niques to show dependencies in object-oriented programming can be used to visualize the
structure of model transformations. An implementation of transformation rules as method
cancels the possibility of inherited visualizations.

3 Technologies like the modular compiler Roslyn give internal languages the chance to enrich the host language
compiler
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4 The NMF Transformations Language (NTL)

This section describes the NMF Transformations Language (NTL), the concrete syntax
of the model transformation framework of NMF. The language uses C# as host language
and is able to describe model transformations from and to arbitrary runtime objects. The
implementation is part of NMF and thus available as open-source4.

As we are aiming for a comprehensive transformation language, we represent transfor-
mation rules as classes that inherit from a common generic transformation rule class and
pass in their signature as generic type parameters (cf. Section 3). The different phases of
the transformation rule (cf. Section ??) are specified by overriding methods from the base
class. Thus, transformation rules in NTL exactly look like sketched in Listing 2 except for
some syntactic boilerplate: In C#, overriding methods must repeat the entire signature of
the base method accompanied by the override keyword.

1 public class FSM2PN : ReflectiveTransformation {
2 public class State2Place : TransformationRule <State , Place > { ... }
3 }

List. 3: A transformation in NTL

The assembly of a model transformation of transformation rules is done by adding the
transformation rule as public nested types of the transformation class which in turns in-
herit from ReflectiveTransformation. An example is presented in Listing 3. As a
consequence, the declaration of the transformation rule and its registration with the trans-
formation coincide, decreasing maintenance efforts.

1 public class State2Place : TransformationRule <State , Place > {
2 protected override RegisterDependencies () {
3 CallMany(Rule <Transition2Transition >(),
4 selector: s => s.Outgoing ,
5 persistor: (p,transitions) => p.From.AddRange(transitions));
6 }
7 }

List. 4: Specifying dependencies in NTL

The specification of dependencies for a transformation rule is sketched in Listing 4. De-
pendencies are created in a dedicated method RegisterDependencies (see line 2) which
is run by the transformation engine at initialization of the transformation.

Unlike transformation rules, dependencies themselves are merely uninteresting in code
visualization. Furthermore, dependencies need not to be cross-referenced. Therefore, we
represent them as method calls in a dedicated function of transformation rules. The at-
tributes of dependency elements of the abstract syntax are simply passed as method call
arguments. In line 3, such a call is made creating a dependency of the State2Place rule to
Transition2Transition for each outgoing transition of a state in the state machine (line 4).
The resulting transitions are then added to the From reference of the Petri net place which
is the transformation result of the current state (line 5).
4 http://nmf.codeplex.com
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The entire finite state machine to Petri nets transformation can be found in [Hin13]. We
abbreviate it here for space limitations.

5 Conclusion

Despite the improvements in terms of productivity, Model-driven engineering still lacks
an industry adoption. In this paper, we have proposed an approach how this tool support
problem can be solved by internal model transformation languages by exploring the design
alternatives how model transformation rules can be represented in object-oriented design.
We have shown how this discussion has lead to the development of NTL.

There is no unique way of implementing transformation rules in an object-oriented lan-
guage. The implementation choices are trade-off decisions. An implementations of trans-
formation rules as methods or method calls lead to a more concise syntax with less syntac-
tic boilerplate but yield restrictions. Implementations as methods restrict the transforma-
tion language to a single operational phase in transformation rules and method calls make
explicit tracing hard and cancel inherited visualizations based on metadata. An implemen-
tation alternative without these shortcomings at the price of a less concise language is the
implementation as classes inheriting from a common transformation rule class.
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An Extended Symbol Table Infrastructure to Manage the

Composition of Output-Specific Generator Information

Pedram Mir Seyed Nazari1, Alexander Roth1, Bernhard Rumpe1

Abstract: Code generation is regarded as an essential part of model-driven development (MDD) to
systematically transform the abstract models to concrete code. One current challenges of template-
based code generation is that output-specific information, i.e., information about the generated source
code, is not explicitly modeled and, thus, not accessible during code generation. Existing approaches
try to either parse the generated output or store it in a data structure before writing into a file. In this
paper, we propose a first approach to explicitly model parts of the generated output. These modeled
parts are stored in a symbol for efficient management. During code generation this information can
be accessed to ensure that the composition of the overall generated source code is valid. We achieve
this goal by creating a domain model of relevant generator output information, extending the symbol
table to store this information, and adapt the overall code generation process.

Keywords: Symbol Table, Output-Specific Generator Information, Code Generation

1 Introduction

In model-driven development (MDD) code generation is an essential part to systematically
generate detailed code from abstract input models. To bridge the gap between problem do-
main (abstract models) and solution domain (concrete code), MDD lifts the input models
to primary artifacts in the development process. Regardless of the importance, code gen-
erator development is still a labor-intense and time-consuming task, where approaches to
explicitly manage output-specific information are still lacking.

Explicitly management of output-specific code generator information, i.e., information
about the generated source code, is essential for code generation to ensure that the gen-
erated source code is valid, i.e., well-formed. More importantly, it is necessary in the de-
velopment process of code generators to split development tasks and in the maintenance
phase as a documentation. For example, consider Java code is generated from UML class
diagrams [Ru11]. In order to access parts of those generated Java classes are to be accessed
during code generator runtime, the information of the relation of class diagram elements to
Java elements is required such as class instantiation via the factory pattern [Ga95] versus
direct instantiation via new-constructs.

Current code generator frameworks, e.g., [Me15, Xt15, Ac15, Je15], primarily focus on
the code generation process and the development of code generators but mainly neglect
explicit modeling of code generator output. Moreover, round-trip engineering [MER99]

1 RWTH Aachen University, Software Engineering, http://www.se-rwth.de
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and reverse engineering [CC90] try to recreate models from the generated output. An ap-
proach to explicitly model information, which is exchanged during code generation, has
been presented [JMS08]. However, the output still needs to either be first generated or
approaches to address the required parts of the generated source code are lacking.

Hence, in this paper we present our approach to make output-specific code generator infor-
mation explicit. As this information is dependent on the used input and output language,
we present a preliminary domain model for a code generator that uses a variant of UML
class diagrams [OM15] as input and Java as output. In this domain model, we use existing
approaches [Ru11, Ru12] to map elements of UML class diagrams to Java code and pro-
vide an extension to manage Java object instantiation and field access via accessors and
mutators. By making such information explicit, we enable code generator developers to
exchange this information during development. Moreover, we make this information ac-
cessible at generation-time by extending the symbol table and the code generation process
to allow storing arbitrary information.

Hence, we first introduce the basic concepts of symbol tables and code generation used in
the MontiCore framework in Section 2. Then, we present our approach to manage output-
specific code generator information by extending the symbol table and the code generation
process (Section 3). Finally, we conclude our paper in Section 5.

2 Symbol Table and Code Generation

As the foundation for all aspects of language definition, language processing, and template-
based code generation, we use the MontiCore language workbench [KRV10]. It uses a
grammar defining the language to be processed and generates a parser and infrastructure
for language processing based on this grammar. The generated infrastructure can be used
to parse models conforming the defined grammar.

During processing of models the parser creates a abstract syntax tree (AST), (an internal
representation of the input model). This abstract representation is used for further phases
of language processing, e.g., context condition checking and code generation. In addition,
a symbol table is created in order to store relevant information for each model element.

2.1 Symbol Table

A symbol table (ST) is a data structure that maps names to associated model element in-
formation. In MontiCore, a symbol is an entry in the ST and represents a (named) model
element [HNR15]. It contains all essential information related to that element. Different
kinds of model elements, e.g., method and field in Java, are distinguished by correspond-
ing symbol kinds. The main purpose of the symbol table is an efficient finding of model
element specific information such as its type and its signature.

Compared to classical symbol tables, which are typically simple hash tables [Ah07], the
symbol table in MontiCore is a combination of a (conceptual) table and the semantic model
as described in [Fo10]. Its underlying infrastructure is a scope-tree containing a collection
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of symbols (cf. [Pa10]). Furthermore, it serves as a language-unspecific infrastructure for
an efficient and effective integration of heterogeneous modeling languages [Lo13, Ha15])

Besides the information defined in the model element and represented by a symbol in
the symbol table, a symbol can also contain information that is not explicitly part of that
model element. For example, a Java field symbol can state whether it shadows a field of
the super class or not. In addition, the source position of the model element can be stored
in the symbol. Both information are not explicitly stated in the model element, but can be
managed by the symbol. This allows to associate any kind of information—even technical
information such as the source position— with the corresponding model element. We have
even shown that a symbol table can manage code generator customizations [NRR15].

2.2 Code Generation

The code generation process of MontiCore is a mix of template-based and transformation-
based code generation as shown in Figure 1. After the parser has created the AST, multiple
transformations can be applied to transform the AST by adding, removing, or changing el-
ements of the AST. The overall goal of the transformations is to make it fit the needed
AST for code generation. During the transformation steps templates can be attached to
AST elements in order to explicitly define the template to be used for this particular ele-
ment. Certainly, this approach has limitations when generating non object-oriented code or
when the input model is not a structural description that can be used for code generation.
Thus, in the remainder of this paper we focus on a modeling language that is a variant of
UML class diagrams [OM15] and Java as the output language of the code generator.

input model AST

Template
Engine

Default
Template Set

Java

produces the AST

Parser

Model

multiple different
transformations

templates attached
to AST elements

Fig. 1: Overview of a template-based and transformation-based code generation process.

After the transformations have been successfully applied, the AST is passed to the Tem-
plate Engine. In addition, a default set of templates, which describe how to generate Java
code from the input model, is passed to the template engine. When the template engine is
started, it traverses the input AST and for each element executes either the attached tem-
plates of one of the default templates depending on the type of the AST element. Finally,
the generated output is written to a file.

3 Managing Output-Specific Information with the Symbol Table

Our presented approach to manage output-specific code generator information is based
on three elements. First, a common understanding of output-specific code generator infor-
mation is needed. In general, this information is concerned with output language specific
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elements and concepts, e.g., object instantiation in Java. Second, an extension to the sym-
bol table is required in order to add output-specific information and make it available at
generation-time, i.e., run-time of the code generator. Third, the code generation approach
needs to be adapted such that the information is added to the symbol table. Subsequently,
we elaborate on each of the three main steps in more detail.

3.1 A Preliminary Domain Model for Class Diagrams and Java

A domain model of code generator output specific information depends on the output of
the code generator and the input language. Hence, aiming for a general domain model
for code generator output specific information is challenging and possibly not feasible.
However, restricting the input language to UML class diagrams and the output language
to Java, we try to provide a preliminary domain model that shows how code generator
output-specific information can be modeled and managed with a symbol table. We do not
claim for completeness of the domain model. Instead, we try to give an idea of how to
model code generator output-specific information.
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CDEnum CDInterface
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Fig. 2: Mapping of Symbols to Java Symbols and additional Generator Information

Our domain model in Figure 2 shows how UML class diagram symbols are mapped to Java
symbols based on [Ru11, Ru12]. In this domain model, a CDType, which may represent a
UML enum, interface or class, is mapped to a JavaType. We do not restrict the mapping
to JavaClasses, because it may be necessary to generate interfaces or a modeled class.
Moreover, each CDField is mapped to JavaMethod and JavaField. The mapping of a
CDField to JavaMethods is optional as accessors and mutators may not be wanted. A
CDMethods symbol is mapped to JavaMethod and JavaField. An example for a UML
method that is mapped to a JavaField is an accessor that is mapped to the generated
JavaField to allow for direct variable access.

Figure 2 gives an example for code generator output-specific information. This information
is relevant for code generator developers and should be accessible during generation time
rather than after code generation. Focusing on our small example, we have identified two
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types of code generator output-specific information. First, a JavaField, when mapped
to Java code, can have Accessors and Mutators. This information is relevant during
code generation as the generated code should access the field using the generated accessor
and mutator. Thus, this information should be modeled explicitly and be accessible before
the code is generated. Moreover, for JavaClasses the information relevant for creating
instances of this class is required, e.g using the Singleton pattern [Ga95].

3.2 An Extension to the Symbol Table

Having an understanding of the mapping and additional information to be stored in the
symbol table, we extend MontiCore’s symbol table infrastructure to efficiently manage
this information. The subsequent description is reduced to the essential parts and mainly
focuses on the extensions, as shown in Figure 3. In [HNR15], we introduce the symbol
table infrastructure in detail.
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* 0..1
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*
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«RTE»

JClassGI
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JClassSymbolJFieldSymbol

«LS»

«interface»
GeneratorInfo

Fig. 3: Extended Symbol Table Infrastructure

As a first step, we enriched a symbol with information about the symbols of the target lan-
guage it generates to. Moreover, symbols of the source language are associated with the
corresponding symbols of the target language. For example, a class diagram field (source)
can be generated as a Java field (target). Hence, the CDFieldSymbol maps to the cor-
responding JavaFieldSymbol (see Sect. 3). However, different generators can lead to
different mappings and, thus, a unique generator id is used for each generator.

Second, each symbol now can optionally store generator-specific information, represented
by the GeneratorInfo interface. GeneratorInfo must be implemented for each sym-
bol of a target language and provide the required information. In the example of Java as
the target language, information for, among others, classes and fields is needed, which are
presented by JavaClassGI and JavaFieldGI, respectively. The former provides infor-
mation such as how the generated class is instantiated, while the latter states how the field
of the generated class is changed or accessed.

3.3 An Extension to Code Generation to handle Output-Specific Information

All modeled output-specific information is added to the symbol table to make it available
at generation-time. Two different approaches can be used to add this information. First,
before generation-time the transformations and templates can be parsed and the required
information can be extracted. To identify relevant information comments or keywords may
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be used. While this approach makes sure that all information is available before generation-
time, it has the disadvantage of processing all transformations and templates. In conse-
quence, a supporting infrastructure to parse templates and transformations is necessary.

The second approach for adding all relevant information to the symbol table is to add it
at generation-time. In particular, this means that all output-specific information is added
to the symbol table while the code generation process is running. The information is not
available before generation-time but still available at generation-time. A benefit of this
approach is that no parsing of transformations and templates is required and the provided
infrastructure can be kept small by providing an API to add this information. For our
example in Figure 2, we can to provide the following methods:

• toJavaType(CDType s, String className): Defines that a CDType is mapped
to a JavaType with the name className.

• toJavaField(CDField s, String fieldName): A mapping CDField to a Java-
Field is stored in the symbol table with the fieldName as the name of the gener-
ated Java field.

• toJavaMethod(CDMethod s, String methodName): To define a mapping of a
CDMethod to a JavaMethod the symbol table creates a Java method with the name
methodName.

• addInstantiation(JavaClass c, String code): In order to explicitly model
object instantiation and store it in the symbol table, the API allows to add piece of
code of type String to a Java class. For instance, to regard the Factory pattern, the
piece of code can be “BookFactory.create()” for the Java class Book.

• setAccessor(JavaField, String code): A mutator for a JavaField can be
defined as a piece of code that represents, e.g., the name of the method (“getTitle”
for a field named “title”).

• setMutator(JavaField, String code): For mutators the method is the same
as for accessors. Additionally, we assume that each mutator requires one argument.
Hence, when accessing this information in the symbol table a parameter should be
passed. This is used to create the resulting string for the mutator.

A disadvantage is that the transformations and code templates have an execution order in
which they have to be executed. If the execution order is violated, the information may not
be available. In other words, the symbol in the symbol table cannot be resolved.

4 Related Work

Explicit modeling of output-specific code generator information is, to our knowledge, only
hardly addressed by current literature. A closely related approach has been presented in
[JMS08]. Here, a code generator is explicitly modeled via small interconnected services,
which exchange information at runtime. This approach is similar to our presented ap-
proach as the exchanged information between serviced may contain generated informa-
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tion. In contrast, our presented approach proposes explicit modeling of this information
and efficient management by using a symbol table.

Another approach that can be used to exchange information about the generate output has
been presented by [ZR11]. The authors propose to generate the source code into containers
before writing it into files. Hence, the complete source code is available at generation-
time. However, as the authors are mainly concerned with producing syntactically correct
output, there is no approach to address parts of the generated code as proposed by this
paper. This is, however, essential to address composition of the generated source code,
e.g., instantiation of generated Java classes.

Finally, an extension to round-trip engineering has been proposed to address the framework-
provided abstractions via a dedicated domain-specific language (DSL) [AC06]. Rather
than proposing a DSL, we explicitly model output-specific information using UML class
diagrams and additionally provide efficient management at generation-time.

5 Conclusion

As code generation is regarded as an essential part of model-driven development to gen-
erate source code, output-specific code generator information has to be regarded in order
to generate valid source code and decompose the generator development. In this paper, we
presented a first approach to make output-specific code generator information explicit.

Our proposed approach consists of three steps. First, the relevant information is collected
in a domain model. Based on this domain model the symbol table is extended to manage
this information. Using the symbol table as an infrastructure has the benefit that the man-
agement is more efficient and no additional infrastructure is required. Finally, in the last
step the code generation process needs to be adapted in order to make use of the stored
information. We have applied this approach to a small use case to show how to model
output-specific information for a UML class diagram to Java code generator. In particular,
we focused on information related to object instantiation, and mutaturs and accessors for
fields. In future, we plan to extend this approach to more real world examples.
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Modeling Variability in Template-based Code Generators

for Product Line Engineering

Timo Greifenberg1 , Klaus Müller1, Alexander Roth1, Bernhard Rumpe1, Christoph
Schulze1, Andreas Wortmann1

Abstract: Generating software from abstract models is a prime activity in model-driven engineering.
Adaptable and extendable code generators are important to address changing technologies as well
as user needs. However, they are less established, as variability is often designed as configuration
options of monolithic systems. Thus, code generation is often tied to a fixed set of features, hardly
reusable in different contexts, and without means for configuration of variants. In this paper, we
present an approach for developing product lines of template-based code generators. This approach
applies concepts from feature-oriented programming to make variability explicit and manageable.
Moreover, it relies on explicit variability regions (VR) in a code generator’s templates, refinements
of VRs, and the aggregation of templates and refinements into reusable layers. A concrete product
is defined by selecting one or multiple layers. If necessary, additional layers required due to VR
refinements are automatically selected.

Keywords: Model-Driven Engineering, Code Generator Development, Variability Modeling

1 Introduction

Engineering complex software systems introduces a conceptual gap between the problem
domains and the solution domains of discourse [FR07]. Model-driven engineering (MDE)
aims to bridge this gap by lifting abstract models to primary development artifacts. Deriv-
ing executable software from models requires extensive handcrafting or code generators.
Thus, generating software from abstract models is a prime activity in MDE and many
domains have adopted code generation [RR15].

Although reuse is of essence in software engineering, most code generators are monoliths
developed for a very specific purpose (such as a certain target platform with specific fea-
tures) that do not consider reuse or variability as their primary focus. Reusing such code
generators in different contexts with different requirements or features is hardly feasible
and thus impedes code generator development. One approach to handle variability in such
monolithic code generators is to create code generator variants via informal reuse [Jö13]
such as copy-paste. In this scenario, the original code generator variant is copied and all re-
quired changes are applied to the copy of the variant. The main downside of this approach
is that generator changes might need to be applied to all generator copies. This is laborious
and error-prone. An alternative to that is to use specific code generation frameworks with
built-in support for handling variability [Ac15, Xt15]. Even though this alternative does
not result in monolithic code generators, the resulting code generator variants are bound
1 RWTH Aachen University, Software Engineering, Germany, http://www.se-rwth.de
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to a specific code generation framework, which might not be feasible for legacy code gen-
erators. Additionally, the provided approaches rely on language specific approaches for
implementing variability, e.g. design patterns.

The goal of this paper is to present an approach to develop code generator product lines
(CGPLs), which is explicitly designed to handle variability in code generators and which
can be applied to any code generator framework. To implement variability in code gener-
ators, the approach is based on explicit variability regions (VRs) and the aggregation of
templates into reusable layers. Each VR can refine one or multiple VRs from a different
layer. A concrete code generator variant is configured by selecting one or multiple layers.
In addition to that, further layers are selected automatically, if this is required by the VR
refinements. The resulting layers are composed to create a concrete variant. For defining
and selecting layers, we provide two domain-specific languages (DSLs).

This idea is rooted in feature-oriented programming (FOP), an implementation technique
from classical software product line (SPL) development [Ap13]. We extend the notion
of FOP layers [SB98] over templates and define how (parts of) templates can be reused
with these layers. The benefit of applying ideas of FOP to CGPL development is that the
underlying concept is decoupled from specific template languages and can be applied to
any code generator.

In the remainder, Section 2 introduces the variability concepts our approach relies on
and Section 3 describes the product configuration mechanisms for code generators. Af-
terwards, Section 4 demonstrates the application of our approach to a code generation
framework. Then, we compare our approach to the informal (copy-paste) approach for
creating CGPLs in a case study in Section 5. Subsequently, related work is presented in
Section 6 and, finally, Section 7 concludes this contribution.

2 Variability Concepts in Code Generator Product Lines

Code generator product lines and common SPLs are both founded on a set of components
that are used to create a concrete code generator product or a software product [CN12,
PBL05, RR15]. The main difference is that a code generator product is a SPL on its own,
since it generates a variety of software products that are similar, and thus shares generator
components potentially in different variants [BS99]. As in SPLs, a concrete code generator
product, which is referred to as a variant, is a set of selected components with additional
adaptations and customizations.

Feature-oriented programming (FOP) [Ap13] is an approach to implement SPLs that is
based on building software systems by composing features. A feature represents a con-
figurable unit of a software system that represents a requirement-satisfying design deci-
sion [ALS06, Ap13]. Each feature is arranged in a layer [SB02, BSR03, ALS05] that
contains artifacts. In order to reuse existing functionality and to successively add new fea-
tures by adapting existing artifacts, an artifact may refine multiple other artifacts [Ap13].
In FOP, a refinement adds new code to an existing artifact, e.g., adds a new variable to a
Java class. Figure 1 shows an example for a stack of three layers with refinements.
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Fig. 1: Example for layers: three vertical layers L1 to L3 refine four artifacts C1 to C4.

In this example, the first layer contains three artifacts. The second layer contains a refine-
ment for the artifact C1 and a new artifact C3. Finally, the third layer contains a refinement
of the refinement for C1, a refinement for C3 and a refinement of C4 from the first layer.
By merging layers, different variants of a software system are formed. As the used layers
contain code generator artifacts, the layers are subsequently called code generator layers

(CGLs). As shown in this example, FOP relies on artifact refinements. This is feasible for
object-oriented languages but becomes challenging for template languages, as they may
differ inherently. Thus, a concept for applying FOP to template languages is needed.

2.1 Variability Regions and Variability Region Refinements

Variability regions (VRs) provide a template language independent approach to apply con-
cepts of FOP to code generators. A VR represents an explicitly designated region in an
artifact that has to be uniquely addressable by an appropriate signature. We distinguish
between three types of VRs. First, variability regions are explicitly marked in some way
and contain content within an artifact. This, for instance, allows to group a designated part
of a template as one VR, which can be refined. Second, variability regions are explicitly
marked but are empty, i.e. do not contain any content. Such VRs can be used for future
extensions. Third, the complete artifact is regarded as one VR.

For each VR, we define three different refinement operations. First, a replace operation
completely replaces a VR with some other content. In this case, a certain VR is provided
that substitutes the original VR. For example, template code for a Java method can be
replaced with a new implementation. Second, content can be added before a VR and,
third, content can be added after a VR. Semantically, before and after mean that specific
content should be included before or after a VR. This shares many phenomena with aspect-
oriented programming (AOP) [Ki97] applied on templates.

When dealing with replace operations, the effect of a replace operation to the content
added before and after a VR has to be addressed. In this work, VRs are simply replaced but
the before and after content, which may have been added, is kept. When the content that
replaces a VR or that is added contains VRs, the new content with the VRs is regarded as
a complete unit with all replacements and before and after operations. In consequence,
all existing before and after contents have to be composed.
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3 Code Generator Variant Configuration and Generation

A CGPL consists of a number of CGLs and each CGL contains a number of templates.
Before a concrete product of a CGPL can be generated, it has to be defined which re-
finement operations are performed in which CGL, i.e., which VR contained in a template
from a CGL refines which VR contained in a template from another CGL. Based on such
a definition of the refinement operations, a concrete code generator variant of the CGPL
can be configured and finally generated.

3.1 Layer Definition

In our approach, all files encapsulated in a concrete CGL of the CGPL are stored in a spe-
cific file system directory, comparable to the work in [ALS05]. The refinement operations
that are performed for each CGL are modeled in one layer definition model. To define a
layer definition model, we provide a simple domain-specific language (DSL) called Layer
Definition Language (LDL). Using LDL, it can be defined which CGL refines which other
CGL and which concrete refinement operations are performed. LDL allows for modeling
the three refinement operations we introduced in Section 2.1:

• A replaces B: The VR with signature B is replaced by the VR with signature A.

• A before B: The VR with signature A is added before the VR with signature B.

• A after B: The VR with signature A is added after the VR with signature B.

An example for a layer definition model defined using LDL is shown in List. 1. At first,
this example states that CGL factoryVariant refines CGL baseVariant (l. 1). Subse-
quently, the layer definition model defines which concrete refinement operations are per-
formed (ll. 2−3). As explained in Section 2.1, we require each VR to be uniquely identifi-
able by its signature. In List. 1, the first refinement operation (l. 2), which is a replace op-
eration, refers to the signatures EntityExt:AdditionalMethods and ClassMain:Meth-
ods. By default, each VR signature starts with the path to the artifact containing the VR
(relative to the CGL directory) and its name. Hence, the first refinement operation ex-
presses that the artifact EntityExt contains a VR AdditionalMethods and that this VR
replaces the VR with name Methods contained in artifact ClassMain. Signatures for VRs
can also be constructed in different ways, as long as it is possible to uniquely identify
the artifact and the VR in that artifact. The second refinement operation (l. 3) states that
the VR ClassCopyright, which represents a complete template, is added before the VR
Class, which represents a complete template too. If the CGPL contains other CGLs with
refinement operations, these have to be defined in the layer definition model too.
As this example already indicates, layer definition models are not restricted to particular
types of languages. The only decision that has to be made is how to uniquely identify a
VR within an artifact written in a particular language.
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LayerDefinition

1 layer factoryVariant refines baseVariant {

2 EntityExt:AdditionalMethods replaces ClassMain:Methods;

3 ClassCopyright before Class;

4 }

List. 1: A layer factoryVariant that defines two refinements of the layer baseVariant.

3.2 Variant Configuration

Based on the layer definition model, a concrete generator variant can be configured by
defining which CGLs of the CGPL should be selected. As a consequence of this, a con-
crete generator variant will be created which results from composing the VRs of the se-
lected CGLs with the VRs they refine and all other not refined VRs of the selected layers.
This procedure is repeated for the refined CGLs until a CGL is traversed which does not
refine any other CGL. To configure a concrete generator variant, we define a product con-
figuration model using a simple DSL called Product Configuration Language (PCL). In
PCL, the name of the resulting concrete generator variant has to be defined and it has to be
stated which CGLs should be selected. In each PCL, at least one CGL must be selected.
Moreover, it can optionally be defined into which output folder the artifacts of the resulting
generator variant are written.

An example for a product configuration model defined in PCL is shown in List. 2. Accord-
ing to this configuration, the resulting generator variant will be called FactoryGenerator
and this variant is constructed by selecting the CGL factoryVariant. Moreover, the ar-
tifacts of FactoryGenerator would be written to the output folder gen. To infer which
CGLs need to be composed to create the FactoryGenerator, the layer definition model
needs to be analyzed. In this example, the layer definition model is given in List. 1 and it
indicates that the CGL factoryVariant refines CGL baseVariant. Thus, both CGLs
need to be composed to create FactoryGenerator. However, before a concrete generator
variant can be composed, it has to be ensured that the layer definition model is valid, i.e., a
set of layers can be computed and VR refinements are unambiguous. Validation is required
to ensure that the selected code generator product can actually be build.

ProductCfg

1 generator FactoryGenerator {

2 output = "gen";

3 layers = "factoryVariant";

4 }

List. 2: Example for a product configuration model selecting layer factoryVariant

To validate the layer definition model, we map it to colored directed graphs, where each
vertex represents a VR, each edge a refinement, and the color represents the layer a VR
belongs to. First, the refinement operations for the selected layers are processed. For each
refinement two vertices are introduced, if they are not already existing in the graph: one
for the refining VR and one for the refined. The added vertices represent the VRs with all
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their contained VRs. Additionally, a directed edge between the two vertices is created. It
points from the refining VR to the refined. Each vertex that represents a VR of the current
layer is colored in a particular color, that represents the layer. The other vertex is colored in
another color that represents the other layer. After processing the refinement operations of
the selected layers, the graph is traversed. Each time a new vertex with a color that has not
yet been processed is found, the layer definition model is processed as described above.

A layer definition model does not induce any conflicts if and only if: 1) for any two vertices
v
q
i and vcj with colors q and c and and a path (vqi ,v

c
j) there exists no other path (vcj, v

q
i ), i.e.,

the graph does not contain a cycle and 2) there exists no other vertex v
g
f with color g such

that (vgf , v
c
j) holds, i.e., a VR is not refined by multiple VRs. A cycle in the graph makes

it impossible to perform the composition automatically, as it results in an infinite loop
of refinements with no dedicated end point. Furthermore, if multiple CGLs are selected
and in this selection, a VR is refined by multiple VRs, it cannot be automatically decided
which of these multiple refinements should actually take place in the composition. In both
situations, it is necessary to resolve the problem manually. To derive a valid configuration,
we can employ any graph traversal algorithm and select the different colors of the visited
vertices, which represent the different layers.

In Figure 2, an example for a graphical representation of a layer definition model is given
on the left-hand side. The resulting graph structure is shown on the right-hand side. It is
assumed that artifacts of layer L1 are colored in purple (p), artifacts of L2 are colored in
orange (o) and artifacts of L3 are colored in blue (b). We further assume, that the layer L3
is manually selected and, therefore, layers L2 and L1 are automatically selected because
of their refinements. In this example, there is a path (Cb

1 ,C
p
1 ) as L3 contains a refinement

of a refinement of C1 from L1. In addition, as L2 is automatically selected, the refinements
(Cb

2 ,C
p
2 ) and (Co

2 ,C
p
2 ) produce a conflict.

 !  "  #$!$"
$#  "%

manually selected layer

automatically selected layers

conflict detected !%
 !&
 !'  "'

 "&
 #'

Fig. 2: A three-layered example, where layer L3 is manually selected and layers L2 and L1 are auto-
matically selected because of their refinements. This selection introduces a cycle and, thus, a conflict.

3.3 Building Variants by Composition

Based on the layer definition model and the product configuration model, a concrete code
generator variant is created. To this effect, the templates, and corresponding refinements
are composed. A template that is not refined in one of the relevant layers is used as is for
the resulting code generator variant.
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Refining templates requires proper application of refinement operations prior to variant
composition. To compose a variant, we first need to (a) transitively determine all layers that
have to be additionally selected because of the refinements and (b) compose the resulting
layers to define the code generator variant.

In general, there are two options on composing VRs. The first option is to perform com-
position at run-time of the generator, called generation-time. In this case the VR opera-
tions are executed at generation-time. This means that no VRs are created but support for
generation-time execution of VR operations is required. As an alternative, the VRs can be
composed by creating new VRs which contain the composition results. The main question
that needs to be answered when applying this latter approach is how to deal with before

and after operations. To avoid that the generator framework has to be extended to be
able to handle these operations at generation-time, on template level, before and after

operations can be replaced by template inclusion statements in the according template
language.

The composition of two layers means that all contained artifacts and their VR refinements
are composed. Two layers are composed if and only if there is at least one VR refining
a VR in the opposite layer, according to the understanding of composition as defined for
FOP [Ap13]. If more than two layers are involved in the composition, then we process all
refinements for one VR sequentially in a bottom-up way. If in this sequence a refinement
is a replace operation, then the VR being replaced is substituted by the VR replacing it.
Moreover, if a refinement in a sequence denotes a before or after operation, then the
refining VR is added before (respectively after) the refined VR.

An algorithm for performing this composition would start visiting all selected layers and
then the automatically added layers. In each layer, every refinement is considered in a
bottom-up way, i.e., only the outgoing refinements refining a VR are considered.

4 Demonstrating Example for Variability Regions

In this section, we demonstrate the application of our approach to the code generator
framework openArchitureWare using Xpand [Xp15] as a template language. Motivated
by an industrial use case (see Section 5), the openArchitectureWare framework in version
3.0.1 has been chosen.

4.1 Example Description

In this example, we consider a code generator that processes a class diagram (CD) as
input and translates every class into a Java class with the same name. Each attribute of a
class is translated to a Java variable with a mutator and an accessor method. It also adds
a public constructor with an argument list containing all attributes defined in the class.
For demonstration purposes, we assume the input CD contains the class Person with the
attribute name of type String. On the left-hand side, Figure 3 shows a CD of the resulting
generated class.
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Person

+ Person(String name)
+ String getName()
+ void setName(String name)

- String name

CD

Person

+ Person(String name)
+ String getName()
+ void setName(String name)
+ Person create(String name)

- String name

CD

assert(name !=null)
this.name = name;

assert(name !=null)
return new Person(name);

Fig. 3: Overview of the originally generated output (left) and the required output (right).

Another context requires to generate the code for classes differently. Instead of writing a
new code generator from scratch or copying the original one, a new variant of the exist-
ing generator should be created. This variant should validate the argument passed to the
mutator methods and produce a factory method that asserts proper creation arguments. A
CD of the resulting output is depicted in Figure 3 on the right-hand side. Here, the gen-
erated class name corresponds to the input model’s class name, it features an assertion in
setName(), and provides a factory method create() for Person objects that asserts that
the value passed for name actually exists. Please note that, usually the constructor visibil-
ity would be changed too, to prevent others from invoking the public constructor directly.
However, due to limitations of space, we omitted this part and assumed that the constructor
visibility is not changed. To achieve this kind of extensibility, our approach lifts the code
generator to a CGPL by explicitly managing variability.

4.2 openArchitectureWare

The Xpand template language allows to split templates into multiple blocks. Such blocks
begin with the keyword DEFINE and, thus, we henceforth refer to these as DEFINE blocks.
Each DEFINE block is identified by a name and is defined for a specific type of input
model element, called meta model class. For instance, all concrete classes of the CD in
our example are represented by the meta model class MMClass.

List. 3 shows an excerpt of the realization of our example in Xpand. For the sake of brevity,
only those parts are shown that are relevant for the refinement of the template. The first
DEFINE block with name ClassImpl is defined for the meta model class MMClass. If this
DEFINE block is invoked for a concrete class, a new Java file is created for that class, indi-
cated by the FILE statement (l. 2). Expressions encapsulated in [...] lead to the invocation
of the according methods of the meta model classes. The results of these invocations are
inserted into the output at the current location.

To generate the implementation for a class, the DEFINE blocks Constructor (l. 4) and
FurtherMethods (l. 6) are invoked for the class and SetterMethod (l. 5) is invoked for
each attribute of the class by using the EXPAND statement. The string that is constructed in
the according DEFINE blocks is inserted into the output at the current location.
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Xpand

1 [DEFINE ClassImpl FOR MMClass]

2 [FILE ... Name".java"]

3 class [Name] {

4 [EXPAND Constructor]

5 [EXPAND SetterMethod FOREACH Attribute]

6 [EXPAND FurtherMethods]

7 }

8 [ENDFILE]

9 [ENDDEFINE]

10

11 [DEFINE Constructor FOR MMClass]

12 public [Name ](...) {

13 [EXPAND ConstructorImpl]

14 }

15 [ENDDEFINE]

16

17 [DEFINE SetterMethod FOR MMAttribute]

18 public void set[UpperCaseName ]([ Type] [Name]) {

19 [REM]BEGIN VR:SetterMethodBody[ENDREM]

20 this.[Name] = [Name];

21 [REM]END VR:SetterMethodBody[ENDREM]

22 }

23 [ENDDEFINE]

24

25 [DEFINE FurtherMethods FOR MMClass]

26 [ENDDEFINE]

List. 3: Template Class (in Folder base) showing an excerpt of the base template for the
translation of CDs into Java code realized with Xpand.

4.3 Mapping Variability Regions to Templates

In Section 2, we introduced three kinds of VRs: non-empty VRs that refer to a particular
region within an artifact, empty VRs for future extensions and the VR representing the
complete artifact. In Xpand, non-empty VRs can be introduced by defining non-empty
DEFINE blocks and, accordingly, an empty VR can be introduced by declaring an empty
DEFINE block. The most important aspect of every VR is that it has to be uniquely iden-
tifiable through its signature. The signature of a DEFINE block can be derived by the path
to the template and its name. If multiple DEFINE blocks with the same name exist in one
template, the meta model class of such a DEFINE block has to be stated in the signature
as well. Otherwise, it cannot be differentiated between the different blocks with the same
name. In addition, the complete template represents a VR as well with the path to the
template and its name representing the signature of this VR.

Besides interpreting every DEFINE block as one VR, it is possible to introduce further VRs
into Xpand templates explicitly by using, e.g., named comments around the correspond-
ing region in the template. The advantage of using comments for this is that the template
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language does not have to be extended and this approach is applicable to all template lan-
guages supporting comments. This approach is comparable to utilizing protected regions
for integrating handwritten and generated code [Gr15], as there, comments mark the re-
gions into which handwritten code can be inserted. List. 3 shows an example in lines 19
to 21, in which the body of the setter method is contained in the VR SetterMethodBody.
The start and the end of the VR SetterMethodBody is denoted through comments, repre-
sented by REM and ENDREM, in which the name of the VR is defined. This comment-based
approach is used here only for demonstration purposes, to illustrate how it can be ap-
plied. When using Xpand, instead, a separate DEFINE block could have been used as well.
Even though this approach allows for introducing any kind of VR into a template, this
approach is rather fragile, as a comment can be changed by accident easily. Moreover, a
template might contain several other comments which makes it more difficult to identify
VRs marked by comments.

4.4 Variability Region Refinements

Using the template introduced in List. 3, we show how VR refinement operations can be
mapped to concepts in Xpand. This is done by using the layer definition model shown in
List. 4. Moreover, List. 5 illustrates the refining template used for the example.

LayerDefinition

1 layer factoryVariant refines baseVariant {

2 base.ClassWithFact:FurtherMethods

3 replaces base.Class:FurtherMethods;

4

5 base.ClassWithFact:Method.SetterMethodBody

6 replaces base.Class:SetterMethod.SetterMethodBody;

7 }

List. 4: Layer definition model for Xpand realization.

As indicated by the first refinement operation, the VR FurtherMethods, contained in
template ClassWithFact (ll. 1-8 of List. 5) which is located in folder base, replaces
the empty VR FurtherMethods from template Class (ll. 25-26 of List. 3), which is
located in folder base too. By means of this, the factory method create() is generated
additionally.

Furthermore, the VR SetterMethodBody contained in the DEFINE block Method in tem-
plate ClassWithFact (ll. 11-14 of List. 5) replaces the VR SetterMethodBody, con-
tained in the DEFINE block SetterMethod in template Class (ll. 19-21 of List. 3). The
comments denoting the start and the end of the VR SetterMethodBody are defined within
a DEFINE block, as otherwise the resulting template would be syntactically wrong. This
last refinement operation is responsible for introducing assert statements at the beginning
of the setter methods. For this purpose, it takes advantage of the INCLUDE-SUPER state-
ment, which we introduced to include the original content of the refined DEFINE block.
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Consequently, the original content is inserted after the assert statement.
Xpand

1 [DEFINE FurtherMethods FOR MMClass]

2 public static [Name] create (...) {

3 [FOREACH Attribute AS at]

4 assert ([at.Name] != null);

5 [ENDFOREACH]

6 return new [Name ](...);

7 }

8 [ENDDEFINE]

9

10 [DEFINE Method FOR MMClass]

11 [REM]BEGIN VR:SetterMethodBody[ENDREM]

12 assert ([Name] != null);

13 [REM][INCLUDE -SUPER][ ENDREM]

14 [REM]END VR:SetterMethodBody[ENDREM]

15 [ENDDEFINE]

List. 5: Template ClassWithFact (in Folder base) showing an excerpt of the refining template
for the translation of CDs into Java code realized with Xpand.

Please note that, it would not be possible to implement this variability using the XPand
language constructs of the used XPand version - only later versions of XPand provide
means to customize a code generator. Hence, without our approach, a copy of the original
code generator variant would have to be created to develop the shown code generator
variant. The decision to use this particular XPand version was rooted in the fact that this
version was used in a real-world code generator to which we applied our approach in a
case study (see Section 5).

5 Industrial Case Study

The approach has been applied to a large real-world Java code generator which processes
UML CDs as input. For the contained classes, it generates, among other things, Java
classes with mutator and accessor methods. Moreover, each Java class contains additional
inner classes and accessor methods that expose the data in a different way and allow a
special access to the Java fields. This code generator variant is in the following referred to
by OV1. Besides this existing code generator OV1, a variant of this code generator OV2
should be build which:

• does not generate the additional inner classes and special access methods.

• does not generate a normal Java field for all UML associations of the corresponding
UML class but which generates a field of a special type for UML associations to
UML classes tagged with a specific stereotype.

• names the resulting classes according to the originally named classes but with a new
suffix, to be able to differentiate between the original and the new classes easily.
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The objective of our case study is to demonstrate the usefulness and applicability of our
approach to implement a CGPL for a real-world code generator and to compare it to the
classical informal approach (copy-paste) for creating CGPLs. For this purpose, we derived
the following research questions:

• Is it feasible to apply the approach to establish a CGPL for real-world code generator
variants?

• Is the application of the approach superior to the informal reuse of code generators
through copy-paste in terms of complexity of the involved artifacts?

5.1 Applicability to Real-World Code Generators

In order to better understand the usefulness of the approach, we first implemented the vari-
ant OV2 through informal reuse by doing copy-paste of OV1. Then, we applied our ap-
proach to realize both generator variants with our approach. For this purpose, we defined
a CGL NV1 which contains the common parts of OV1 and OV2. Moreover, we defined a
CGL NV2 which refines NV1 in such a way that the generator resulting from the compo-
sition of NV1 and NV2 generates the same code as OV1. Analogously, we defined a CGL
NV3 which refines NV1 such that the generator resulting from the composition of NV1 and
NV3 generates the same code as OV2. Hence, we assumed that the code generator variants
resulting from the composition with the base layer NV1 must generate the same code as
the original code generators - neglecting whitespaces for the sake of simplification.

Using our approach, we were able to derive two code generator variants which generate
the same code as code generator variants which did not use our approach. In particular, the
presented refinement operations were sufficient to realize the CGPL. For these refinement
operations, only replace refinement operations have been used, as the developers of the
original code generator preferred these over introducing before or after operations.

5.2 Improvements over Informal Reuse

To answer the second research question, we compared the variants OV1 and OV2 with
the variants NV1, NV2 and NV3. To increase comparability, we removed those templates
from OV2 which were copied from OV1 but not needed for that variant. However, we
applied our concept not only on templates, but also on helper classes which can contain
more complex functionality which can be accessed from templates. In this use case, helper
classes were implemented in Java. The only refinement operation we used in this context
was the replace operation, which expresses that the implementation of one helper method
is replaced by the implementation of another helper method.

To perform the comparison, we measured the templates lines of code (TLOC) and the
helper lines of code (HLOC) for OV1, OV2, NV1, NV2 and NV3. To compare our approach
with the copy-paste approach, we compared the total TLOC and HLOC of OV1 and OV2

with that of NV1, NV2 and NV3.



Modelling Variability in Template-based Code Generators 153

OV1 OV2 ΣO NV1 NV2 NV3 ΣN

TLOC 5563 2260 7823 1882 4000 349 6231
Number DEFINE 327 146 473 189 267 37 493
Number refined DEFINE - - - - 94 36 130
HLOC 929 929 (665) 1858 (1594) 630 330 49 1009
Number helper 100 100 (79) 200 (179) 78 34 5 117
Number refined helper - - - - 8 8 16

Tab. 1: Case study results: TLOC and HLOC for the different variants

Table 1 gives an overview over the measured values for the original generator OV1 and
the variant OV2 created through copy-paste of OV1 and the generator variants obtained
by using our approach. The primary numbers relevant for this comparison are TLOC and
HLOC. For OV2 two HLOC numbers are given: the first results from simple copy-paste
of the original helpers, the second number refers to the case that only the helpers used by
the variant are counted. Thus, the existing helpers have been analyzed and the helpers not
needed were removed. For NV2 and NV3, the number of helpers refers to the number of
additionally introduced helper methods. ΣO refers to the sum of the values of both variants
OV1 and OV2. Accordingly, ΣN refers to the sum of the values for the variants NV1, NV2
and NV3.

As can be seen in Table 1, we can reduce the TLOC size to approximately 79% of the
original code generators using our approach. Moreover, we can reduce the HLOC size to
approximately 54% respectively 63% of the original code generators.

In addition to that, Table 1 shows that the total number of DEFINE blocks is comparable
for both variants. Even though DEFINE blocks can potentially be reused by multiple vari-
ants, this effect does not become apparent in this case, as only two generator variants are
created and for each refinement of a DEFINE block, one DEFINE was introduced, increas-
ing the total number of DEFINE blocks. For helper methods, a significant reduction can be
observed, as most helper methods can be reused by both generator variants and only few
refinements were necessary.

6 Related Work

Different annotative, compositional, and transformational modeling approaches have been
proposed to express variability in the solution space [Sc12]. Annotative approaches specify
all variants in one model. Compositional approaches combine different model fragments to
derive a specific variant [HW07, NK08]. Delta modeling [Ha11] applies transformations
to a core model. Only few of them have been successfully applied to CGPLs.

In the following, we present existing approaches to address variability in code generators
with a special focus on existing code generator frameworks and how they support variabil-
ity. The concepts we presented are independent of a concrete code generator framework
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and template language. Another difference to most existing approaches is that arbitrary
regions can be marked as VRs.

In the Genesys [JMS08] framework, new generators are established by composing existing
Service Independent Building Blocks (SIBs), the atomic unit provided for composition.
This approach has been evaluated in many case studies: in most cases, new generators
could be derived by the introduction of a small set of new SIBs and a slightly modified
composition. This specific mapping represents one point of variation, which can easily
be adapted for different targets. The main part of variation are the SIBs, which can be
modified via configuration parameters, via a modification of the their execution flow or by
replacing a service adapter, which contains execution code for a specific task. In contrast
to our approach, Genesys defines a set of different explicit concepts (parameter, service
adapters, outgoing branches) to achieve the necessary variation. Our proposed approach of
VRs allows to introduce variation points on different kinds of development artifacts and
the related before and after operations can be used to manipulate the execution flow
where necessary, too. This way it is also possible to apply variation points to templates,
while in [JMS08] templates are modified directly and no variation points are introduced
on that level.

[VG07b] highlights the necessity to combine model-to-model transformations and template-
based code generation to perform efficient code generation. They suggest that all structural
differences on model level should be handled by the transformation layer. [PT02] follow
this by pointing out that the generator should handle only two kinds of variation: target
variation and the establishment of higher-level primitives based on low-level primitives.
Our approach does not provide a guideline on which level which kind of variation should
be established, but represents a general concept, to be able to apply variation points where
required. If a model-to-model transformation is performed via Java helper classes, corre-
sponding variation can also be applied on that level.

Acceleo [Ac15] provides the concept of dynamic overriding to customize existing gen-
erators. To dynamically override templates, a module (which can comprise multiple tem-
plates) must extend a module of the existing generator. The extending modules are treated
with a higher priority than overridden modules. Thus, the overriding template is invoked
instead of the existing template. Templates can only be exchanged as a whole, no variation
points can be introduced inside a template.

The template language Xpand supports the customization of code generators using aspect-
oriented programming (AOP) [VG07a]. Aspects can be provided which contain template
code that is, e.g., invoked instead of code contained in a specific block in the template.
Although the original template definition is intercepted, the original overridden template
code can still be called in the aspect code [El11]. Our approach is motivated by the con-
cepts applied in Xpand. The main difference to our approach is that our approach does not
require support for AOP in the code generator. In Xpand’s successor Xtend [Xt15], code
generators are composed of extension methods. To customize a code generator written in
Xtend, any extension method of a code generator can be exchanged by means of depen-
dency injection. However, these concepts are completely based on language constructs. In
contrast, our approach is more general and can be realized with different languages.
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7 Conclusion

Monolithic code generators are hard to adapt to new requirements and target platforms and,
thus, are hardly reusable in different contexts, as they are not designed for adaptations. To
overcome this limitation regarding customizations, code generator variability needs to be
handled as a primary concern.

We have presented an approach for modeling variability in template-based code genera-
tors. This approach relies on variability regions (VR) that define extension points in arti-
facts. Furthermore, since it is an extension of feature-oriented programming, the artifacts
are structured in layers that represent code generator features. We additionally define three
refinement operations to extend VRs. In order to extend a code generator with a new fea-
ture, a new layer can be introduced and existing VRs can be refined. The benefit of the
proposed concept is that it is independent of any language that is used for code generator
development. We achieve this by introducing a layer definition model language that can
be used with any other language. By means of this, the approach facilitates reusing and
customizing code generators.
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[Ap13] Apel, Sven; Batory, Don; Kästner, Christian; Saake, Gunter: Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer-Verlag, October 2013.

[BS99] Batory, Don; Smaragdakis, Yannis: Building Product-Lines with Mixin-Layers. In:
ECOOP Workshops. Springer, 1999.

[BSR03] Batory, Don; Sarvela, Jacob Neal; Rauschmayer, Axel: Scaling Step-wise Refinement. In:
ICSE. IEEE, 2003.

[CN12] Clements, Paul; Northrop, Linda: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., February 2012.

[El11] Elsner, Christoph; Groher, Iris; Fiege, Ludger; Völter, Markus: Model-Driven Engineer-
ing Support For Product Line Engineering. In: Aspect-Oriented, Model-Driven Software
Product Lines - The AMPLE Way. Cambridge University Press, 2011.

[FR07] France, Robert; Rumpe, Bernhard: Model-Driven Development of Complex Software: A
Research Roadmap. In: Future of Software Engineering 2007 at ICSE. IEEE, 2007.

[Gr15] Greifenberg, Timo; Hoelldobler, Katrin; Kolassa, Carsten; Look, Markus; Mir
Seyed Nazari, Pedram; Mueller, Klaus; Navarro Perez, Antonio; Plotnikov, Dimitri; Reiss,
Dirk; Roth, Alexander; Rumpe, Bernhard; Schindler, Martin; Wortmann, Andreas: A
Comparison of Mechanisms for Integrating Handwritten and Generated Code for Object-
Oriented Programming Languages. In: MODELSWARD. Scitepress, 2015.



156 Timo Greifenberg et al.

[Ha11] Haber, Arne; Kutz, Thomas; Rendel, Holger; Rumpe, Bernhard; Schaefer, Ina: Delta-
oriented Architectural Variability Using MontiCore. In: ECSA. ACM, 2011.

[HW07] Heidenreich, Florian; Wende, Christian: Bridging the gap between features and models.
In: AOPLE. 2007.

[JMS08] Jörges, Sven; Margaria, Tiziana; Steffen, Bernhard: Genesys: service-oriented construc-
tion of property conform code generators. Innovations in Systems and Software Engineer-
ing, 4(4), 2008.
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A Software Product Line of Feature Modeling Notations

and Cross-Tree Constraint Languages

Christoph Seidl1, Tim Winkelmann1, Ina Schaefer1

Abstract: A Software Product Line (SPL) encompasses a set of closely related software systems
in terms of common and variable functionality. On a conceptual level, the entirety of all valid
configurations may be captured in a variability model such as a feature model with additional cross-
tree constraints. Even though variability models are essential for specifying configuration knowledge,
various notations for feature models and cross-tree constraints exist, which increases implementation
effort when having to realize new tools for a different language. In this paper, we provide remedy
to this problem by introducing an SPL to generate different variants of feature modeling notations
and cross-tree constraint languages. We base our approach on the state of the art in various works
and surveys on feature modeling to create a family of feature modeling notations with similar
expressiveness as the original approaches. For our findings, we provide both conceptual configuration
knowledge as well as a generative model-based realization. We further demonstrate the feasibility of
our approach by generating feature modeling notations similar to those of various publications.

1 Introduction

A Software Product Line (SPL) encompasses a set of closely related software systems in
terms of common and variable functionality. On a conceptual level, configuration knowledge
may be captured in a variability model to describe configuration rules for all valid products.
The most commonly used type of variability models are feature models [Ka90], which
arrange features as configurable units along a tree-structured decomposition hierarchy.
Commonly, language constructs are used to represent optional and mandatory features as
well as alternative-groups allowing selection of exactly one feature and or-groups permitting
selection of one or more features. Furthermore, cross-tree constraints [Ba05] may be used
to further restrain configuration options.

Ever since the original introduction of feature models [Ka90], a great number of ex-
tensions has been made to the original notation to address various needs, such as at-
tributes for features with finite and infinite domains [Cz02, CHE05, KOD10], cardinal-
ities for groups and individual features [Ri02, CHE05, ME08, SSA14a] or configurable
feature versions [SSA14a, SSA14c]. Likewise, languages for cross-tree constraints may
be represented by different means using various subsets of propositional logic [Ba05]
or the OCL [CE00, Cz02] (Object Constraint Language) as well as textual formula-
tions [Ba05, KOD10] and graphical representation as additional edges in the feature
model [HSVM00, SLW12]. Through these extensions for feature models and cross-tree
constraints, a wide variety of different concerns of configuration problems can be addressed.

1 Software Engineering Institute, Technische Universität Braunschweig, E-Mail:
{c.seidl,t.winkelmann,i.schaefer}@tu-bs.de
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However, the cluttering of different languages also entails problems in practice as, e.g.,
implementation effort is increased when having to realize new tools for a different language,
which results in hampered progress and, presumably, less robust software.

Despite the differences in the various languages for feature models and cross-tree constraints,
the languages encompass a significant level of commonality. In this paper, we exploit this
fact to make a first step towards solving the aforementioned problems by devising an SPL
to generate feature modeling notations and cross-tree constraint languages with a selected
set of language constructs. We bootstrap feature modeling to conceptually capture the
configuration knowledge of the software family. We further use SPL techniques to allow
configuration of various different concrete languages for feature models and cross-tree
constraints. We supply both theoretical background as to the capabilities of the different
language constructs as well as technical realizations of the different concrete languages
through generative model-based development.

With these contributions, it is possible to derive variants of feature modeling notations and
cross-tree constraint languages that are similar to those of existing approaches and to treat
them with procedures common in SPL engineering (e.g., family-based analyses). Further-
more, new combinations of feature modeling language constructs may yield previously
non-existing notations to address the individual characteristics of specific use cases. In the
future, this approach may be used to support data exchange between different notations by
transforming one notation of a source system to an (at least) equally expressive notation
with different characteristics of a target system.

The rest of this paper is structured as follows: Section 2 provides the criteria we used to
select feature modeling notations we consider for our SPL. Section 3 analyzes 23 individual
approaches from the state of the art in feature modeling (including constraint languages) as
well as 4 surveys on feature modeling notations and categorizes the respective approaches
by a number of distinctive characteristics. Section 4 presents our family of feature models
and constraint languages that subsumes all of the analyzed approaches in expressiveness and
even allows creation of previously non-existent notations. Section 5 demonstrates feasibility
of our work by first applying the implementation of the presented feature modeling family
to generate multiple variants with different expressiveness and then recreating the available
examples of the inspected approaches. Finally, Section 6 closes with a conclusion and an
outlook to future work.

2 Considered Work

A large number of similar yet different feature modeling notations exists which address
a wide variety of different concerns. Developers have to find the right tool with the right
notation for their respective SPL project. To help developers in making a conscious deci-
sion, an overview of existing notations and their dependencies is needed. As the different
characteristics of feature modeling notations can themselves be represented as features
and the dependencies can be expressed using constraints, we create an SPL that covers the
variability of the inspected modeling notations. For this purpose, we define a family of fea-
ture modeling notations including cross-tree constraint languages to express dependencies
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between the elements of a feature model. However, we do not claim completeness with
regard to expressiveness or other properties such as succinctness or naturalness [SHT06] for
all feature modeling notations. Nevertheless, we do cover a wide range of approaches used
in practice [Ka90, Ka98, GFA98, HSVM00, vGBS01, Ri02, EBB05, CE00, Cz02, CHE04,
BTRC05] as well as specific special-purpose extensions [ME08, SLW12, KSS13, SSA14a].

To select suitable feature modeling notations to analyze as basis for the presented software
family, we applied the following criteria for selection: First, we included those feature mod-
eling notations that have a particular high impact on further development. For this purpose,
we considered all approaches included in Kang’s keynote presentation from VaMoS’10
on 20 years of feature modeling [Ka10] as they are fundamental for many further feature
modeling notations [Ka90, Ka98, GFA98, HSVM00, vGBS01, Ri02, EBB05, CE00, Cz02,
CHE04, BTRC05]. We further included surveys that analyze state of the art in feature mod-
eling [Jé12, BSRC10, SHT06, CHE04] to determine relevant feature modeling approaches.
Second, we included approaches that are representative for various special-purpose exten-
sions [ME08, SLW12, KSS13, SSA14a] in feature modeling. Third, we included textual
variability languages, such as TVL [CBH11], Familiar [Ac13] and Clafer [BCW11], which
can be represented with a meta-model similar to feature models. For work from the last 10
years, we mainly considered those extensions that explicitly provide a meta-model or
grammar for their language and that introduce new concepts to feature models.

Existing surveys on feature modeling notations have presented contributions that are
closely related to our work: Schobbens et al. [SHT06] also analyzed a great number
of the high impact feature modeling notations in a formal way. During their analyses,
they devised a language called Varied Feature Diagrams (VFD) [Sc07]. For VFD, they
used expressive and succinct elements of feature modeling notations to build a combined
modeling notation. That notation is as expressive and succinct as the other analyzed
notations. Their approach is different from ours as we generate variants of feature modeling
notations with capabilities tailored to the respective intended use instead of creating one
monolithic notation for all use cases. Dhungana et al. [Dh13] allow the use of various
different variability modeling notations and transform them into a uniform notion of
configuration options. Hence, their approach is practical for the configuration process of
different employed variability modeling notations where ours aims towards the modeling
process. Hubaux et al. [HTH13] analyzed feature diagram languages with regard to
separation and composition of concerns. They identified important concerns and purposes
of feature diagram languages, how they are separated and composed in existing SPL
approaches and other characteristics. Different notations we discuss in this paper have
a direct impact on separation and composition of SPLs. Jézéquel [Jé12] surveys several
modeling notations and explores the combination of these notations with artifacts in the
product generation process. Lichter et al. [Li03] compare a number of feature modeling
notations with a focus on the process and required input to make a particular feature
modeling notation useful. While they acknowledge large commonalities but also differences
of notations, they do not build an SPL to create different variants of feature modeling
notations. Eichelberger and Schmid [ES13, ES14] present an analysis of textual variability
languages. They provide an overview of the commonalities and differences of the notations
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in order to provide information on the evolution of textual variability modeling languages
and identifying common weaknesses for future research.

We improve over the mentioned literature reviews [Jé12, Li03, BSRC10, Ka10, Sc07] by
not just listing and discussing different characteristics of feature modeling notations but by
further presenting an SPL and a model-based realization to generate individual variants.
The idea of our work is that the provided SPL can be used to create variants for representing
configuration knowledge in a notation tailored to the concrete use case. However, at present,
proofs for semantic equivalence of arbitrary variants are outside the scope of the paper.
In the future, appropriate tools should be generated, such as an editor that supports the
respective notations. As basis for this SPL, we selected 23 different feature modeling
notations we analyze for distinct characteristics in the next section.

3 Analysis

Using the criteria presented in Section 2, we determined 23 different approaches for
feature modeling notations and constraint languages to analyze regarding their common and
distinctive characteristics as basis for a software family. Table 1 summarizes our findings
and the following sections elaborate on characteristics of the analyzed approaches regarding
notational concepts of the employed feature modeling and constraint languages.

3.1 Feature Modeling Notations

In the upper part of Table 1, we provide information on different language constructs
provided by the examined approaches, which are explained in the following.

Mandatory Features represent commonalities that have to be included in a configuration
if their parent feature is selected. All examined approaches support this language construct.

Optional Features represent variabilities that may or may not be included in a configuration.
All examined approaches support this language construct.

Feature Cardinality specifies a minimum and maximum number for how often a feature
may be selected as [m..n]. When using 1 as maximum cardinality [Cz02, CHE04, Ri02,
ME08, SLW12, SSA14a], feature cardinality may be perceived as alternative to the explicit
variation type for mandatory features (i.e., [1..1]) and optional features (i.e., [0..1]). Fur-
thermore, Czarnecki et al. [Cz02, CHE04] use feature cardinalities to be able to represent
multiple instances (e.g., [2..5]) of one and the same feature as cloned features by allowing
maximum cardinalities greater than 1.

Attributes are named variables of features [Ri02, Cz02, CHE04, BTRC05] that refine
configuration options so that, besides selection of features, concrete values for attributes
may be chosen. Czarnecki et al. [Cz02, CHE04] and Benavides et al. [BTRC05] assign a
specific type to the attributes, which specifies permissible values. In the literature, types of
attributes are typically categorized into discrete (finite or infinite) and continuous domains.
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Feature Versions include variability in time in feature models [SSA14a, ME08]. Mitschke
et al. [ME08] support two versions per feature representing the state of the feature model’s
structure and its associated implementation but do not allow using them as configurable
units. Seidl et al. [SSA14a, SSA14c] allow specification of multiple feature versions with
interdependencies to make feature versions a configurable unit. Configurable versions may
not adequately be represented using attributes as their relation cannot be specified properly.

Layers of feature models provide a separation of concerns for different sources of variability.
Kang et al. [Ka98] use layers for Capability, Operating Environment, Domain Technology
and Implementation Technique. Each layer may contain a set of separate feature models
with relations to feature models of other layers. This increases the reuse of feature models
and supports scalability.

External Features allow referencing of features that are defined in other feature mod-
els [vGBS01]. For example, this may be used in combination with layers of feature models
when referencing features of other feature models [BCW11, Ab10, CBH11, Ro11, Ac13].

Binding Times specify at which time a feature may be or has to be configured. Typical
binding times are at compile time or run time [GFA98, vGBS01, B3]. Griss et al. [GFA98]
use attributes in the features to describe the binding time. Van Gurp et al. [vGBS01] use a
label on the connector between features to distinguish the binding time.

Resource Mapping allows association of various resources with the features in a feature
model [SLW12, KSS13, Th11]. Schroeter et al. [SLW12] provide a mapping of features
to views, which show only selective parts of a feature model for different stakeholders of
the feature model. Kowal et al. [KSS13] map priorities for the configuration and specific
hardware to the features.

Alternative-Groups allow selection of exactly one of the contained features, which makes
them mutually exclusive. All examined approaches support this language construct.

Or-Groups allow selection of at least one of the contained features. With the exception of
Kang et al. [Ka90], all examined approaches support this language construct.

Group Cardinality specifies the minimum and maximum number of selectable features in
that group as [m..n]. Hence, it may be perceived as an alternative to the explicit variation
type of groups as alternative-groups (i.e., [1..1]) and or-groups (i.e., [0..n] for groups with n
members) [Ri02, CHE04, SLW12, SSA14a]. In contrast to the explicit variation types,
group cardinality supports further restrictions on selections in a group (e.g., [2..5]).

Multiple Groups describe the possibility that a feature can have more than one child group,
e.g., a feature that has two alternative-groups. Many notations do not explicitly state whether
they support multiple groups or not. Czarnecki and Eisenecker [CE00] appear to be the first
who explicitly support multiple groups.
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Feature
Modeling
Notation

Mandatory Features + + + + + + + + + + + + + + + + + + + + + + +

Optional Features + + + + + + + + + + + + + + + + + + + + + + +

Feature Cardinality - - - - - - o + + - - - + o + + + - - o - - o

Attributes - - + - - - o + + - - + - - + + + - - - - - -

Feature Versions - - - - - - - - - - - - - o - - - - - - - - +

Layers - + - - - - - - - - - - - - + + + + + - - + -

External Features - - - - - + - - - - - - - - + + + - + - - + (+)

Binding Times - - + - - + - - - - - - - - - - - - - - - + -

Resource Mapping - - - - - - - - - - - - - - - - - + - + + - -

Alternative-Groups + + + + + + + + + + + + + + + + + + + + + + +

Or-Groups - + + + + + + + + + + + + + + + + + + + + + +

Group Cardinality - - - - - - + - + - - - + + + + + - - + - - +

Multiple Groups (-) (-) (-) (-) + + + + + - (+) + (-) (-) + + (-) - + (-) (-) (-) +

Constraint
Language

Expressiveness R R R R O R O O - P R - P R P+ P P+ P P R P P P+

Representation T T G G T G G,T T - T G - T T T G,T T T T G T T T

R: Requires/Excludes, O: OCL, P: Propositional Logic, T: Textual, G: Graphical

Table 1: Distinctive characteristics of the inspected feature modeling notations.
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3.2 Constraint Languages

The inspected feature modeling approaches utilize various constraint languages. They differ
in their expressiveness and their representation as presented in the bottom part of Table 1.

Expressiveness of constraint languages is determined by the employed formalism and its
utilized language constructs. For one, mere requires and excludes relations (R) may be
specified [Ka90, GFA98, HSVM00, vGBS01, EBB05, SLW12]. Furthermore, the OCL (O)
is used in some approaches [CE00, Cz02]. In addition, it is possible to utilize propositional
logic (P). Depending on the concrete work, different subsets of Boolean operators are uti-
lized to specify constraints over features [KSS13, SSA14a]. In addition, new language con-
structs are introduced for special purposes (P+), e.g., to compare attribute values [KOD10]
or to express constraints over feature versions [SSA14a].

Representation of constraints is either graphical or textual. With a graphical (G) represen-
tation, additional edges are added between two features to express requires or excludes
relationships [GFA98, HSVM00, vGBS01, EBB05, SLW12]. Textual representations (T)
may be employed for a wider range of formalism, such as requires and excludes relation-
ships [Ka90], OCL [CE00, Cz02] or subsets of propositional logic [KSS13, SSA14a]. In
the latter case, there is a further distinction on how Boolean operators are represented
as they may use logical symbols (e.g., ∧, ∨), a verbal representation (e.g., and, or) or a
representation known from various programming languages such as Java or C++ (e.g., &&,
||). In some cases [Ri02, Ab10], both a textual and a graphical representation of constraints
is provided.

4 Feature Modeling Family

From the results of the analysis in Section 3, we define a software family of feature modeling
notations and constraint languages, which subsumes the individual approaches examined in
Section 3. Furthermore, it is possible to generate variants with combinations of language
constructs that currently do not exist in the literature or in practice.

We use a feature model to describe all valid configurations of the family in terms of
configuration knowledge. Due to its size, the graphical representation of the feature model
is split up over multiple figures. Figure 1 shows an overview of the top-level features of the
family with FeatureModel describing the configuration options of the feature modeling
notation and ConstraintLanguage capturing the configuration options for the cross-tree
constraint language. Both these features are refined and described in detail in the following
sections.

Featurename

External Featurename

Mandatory Feature

Optional Feature

FeatureModelingFamily

FeatureModel ConstraintLanguage

Figure 1: Top-level features of the feature modeling family. FeatureModel and ConstraintLanguage are defined in Figure 2 and Figure 3, respectively.
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4.1 Variability of Feature Modeling Notations

Figure 2 shows a refined view of the feature model branch describing configuration op-
tions for the various feature modeling notations. We modeled both Features and Groups

to be mandatory parts of each feature modeling notation. Features represent their type
by either using a FeatureCardinality (e.g., [1..1] for mandatory) or an explicit Fea-
tureVariationType (i.e., OptionalFeatures or MandatoryFeatures). When using
feature cardinalities, it is further possible to allow ClonedFeatures if a feature can be
instantiated multiple times. In addition, it is possible to explicitly allow UnlimitedFea-

tures by providing an unbounded maximum cardinality (using *) instead of an integer
value. As the latter case implicitly depends on cloned features being enabled, we introduced
constraint (1). Furthermore, it is possible to enable External to reference features defined
in a different feature model, e.g., to realize feature layers [Ka98]. Using Resources allows
association of features with arbitrary resources. Finally, enabling BindingTimes allows
assigning a binding time to a feature, e.g., compile time.

Legend

Mandatory/
Optional
Feature

Featurename

Or
Group

Alternative
Group

VersionBranching

Configurable
Versions

DomainType
Continuous

Infinite

Finite
Discrete

Attributes

FeatureCardinality
UnlimitedFeatures

ClonedFeatures

FeatureVariationType
MandatoryFeatures

OptionalFeatures
External

Features

BindingTimes

Resources

MultipleGroups

GroupCardinality UnlimitedGroups

GroupVariationType OrGroups

AlternativeGroups

AndGroups
Groups

FeatureModel

(1) UnlimitedFeatures -> ClonedFeatures
(2) VersionBranching -> Configurable

Figure 2: Feature model branch describing configuration options for feature modeling notations.

Furthermore, Attributes may be included in the feature model notation. Optionally,
attributes have a DomainType, which specifies the domain for an attribute as either Dis-
crete (e.g., enumerations, integer numbers or strings) or Continuous (e.g., floating point
numbers). A discrete domain type may further be either Finite (e.g., enumerations) or
Infinite (e.g., integer numbers or strings).

Additionally, it is possible to enable feature Versions to support variability in time. It
can be decided whether versions can be used as Configurable units (as in [SSA14a])
or not (as in [ME08]). Versions are arranged along a chronological development line that
is assumed to be linear unless VersionBranching is selected, which allows different
branches, which depends on configurable versions so that we introduced constraint (2).
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Similarly to features, groups represent their type either as GroupCardinality or as explicit
GroupVariationType. To subsume the expressiveness of the inspected approaches, it
would have been possible to model AlternativeGroups as a mandatory feature and
OrGroups as an optional feature. We decided to use an or-group instead to give more
liberty in variant derivation and also allow feature models that do not use alternative-
groups. When using group cardinalities, it is possible to enable UnlimitedGroups, which
permit an arbitrary number of features to be selected by providing an unbounded maximum
cardinality (using *) instead of an integer value. Generally, only a single group is allowed
as child of a feature unless MultipleGroups is selected.

4.2 Variability of Constraint Languages

Figure 3 shows a refined view of the feature model branch describing configuration options
of the various cross-tree constraint languages. We designed the feature model of con-
straint languages to support Propositional logic or OCL as well as textual and graphical
representations.

For propositional logic, various options for different language constructs exist (grouped by
their respective number of operands). A number of AtomicConstructs is provided: The
mandatory FeaturePresence checks whether a specified feature is part of a configuration.
AttributeRestrictions allow comparison of attribute values using various arithmetic
operators (LT (<), LEQ (≤), GEQ (≥) and GT (>)), string operators (SUBS as substring
comparison) or those used in both contexts (EQ (=) and NEQ (-=)).

Optionally, VersionRestrictions [SSA14a] may be selected with VersionRangeRe-

strictions allowing dependence on an interval of versions, RelativeVersionRestric-
tions specifying a valid set of versions in relation to a given version and Condition-

alVersionRestrictions allowing evaluation of the former constructs for configurable
versions only if their respective containing feature is present in a configuration. As restric-
tions for attributes and versions may only be specified if the respective elements are part of
the notation, constraints (3) and (4) were added.

The sole child of UnaryConstructs is the feature Not (¬A) as logical negation, which
may be deselected by not selecting its parent. Furthermore, various BinaryConstructs
are provided as known from Boolean algebra:

• Or: A∨B (logical or)
• And: A∧B (logical and)
• Xor: (A⊕B)≡ ((A∧¬B)∨ (¬A∧B))

• Implies: (A→ B)≡ (¬A∨B)1

• Equivalent: (A≡ B)≡ ((A→ B)∧ (B→ A))

• Excludes: (A excludes B)≡ ¬(A∧B)

1 We did not define a Requires feature as it is semantically equivalent to the already existing Implies.
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(3) AttributeRestrictions-> Attribues
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Figure 3: Feature model branch describing configuration options for cross-tree constraint languages.

The expressiveness of the constraint language may differ with the selection of supported
constructs: For example, both selections {Or, Not} and {Implies, Excludes} result in a
language that is complete with regard to Boolean logic. In contrast, when only selecting Not
as construct, the expressiveness of the resulting cross-tree constraint language is severely
limited.

It is possible to choose different representations for these constructs (Representation) as
either textual or graphical: With a Verbal representation, textual literal names are used for
constructs (e.g., and, or). With a Programming representation, textual operands similar to
those used in Java or C++ are used (e.g., &&, ||)2. Alternatively, it is also possible to choose
a Graphical representation where constraints are added as additional edges between
features to the visual representation of the feature model. This type of representation is
only capable of visualizing implications and exclusions so that constraint (5) was added
to exclude all other constructs when the graphical representation is selected. The type

2 With the implementation of the feature modeling family in mind, we did not include a constraint representation
that uses logical operators from Boolean logic (e.g., ∧, ∨) as those symbols cannot be typed on a keyboard.



A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 167

of representation for constraints is further relevant for a generation of variants because a
textual representation requires a grammar for the language to be supplied (see Section 5).

5 Case Study

To demonstrate the feasibility of our approach, we performed a case study using the
presented family of feature modeling notations and constraint languages.3 For this purpose,
we provide a prototypical model-based realization of the aforementioned family of feature
models and constraint languages in the form of an SPL as depicted in Figure 2 and Figure 3.
This SPL may be used to generate variants of the underlying meta-models and grammars
for individual feature model notations and cross-tree constraint languages regarding the
described configuration options. Within the case study, we are particularly interested in
answering two research questions:

RQ1 Is it possible to derive meta-models for feature models and constraint languages that
are as expressive as the approaches analyzed in Section 3?

RQ2 Does the family of feature modeling notations support derivation of notations that
have not been devised before?

We employ the transformational variability realization mechanism delta modeling [Sc10]
to generate different variants of the family. In delta modeling, a base variant of a system is
transformed to a target variant by applying a number of delta modules that each specify a
set of coherent transformations defined as sequence of delta operations. A delta language

provides the delta operations available to alter a source language by adding, modifying and
removing elements. A variant is derived by selecting a valid subset of delta modules (e.g.,
using a feature model with a mapping to delta modules) and applying the delta modules in
a suitable order to generate the intended target variant by transforming the base variant.

As base variant for the parts of the software family regarding the feature model and the
constraint language based on propositional logic, we use the meta-models for Hyper Feature
Models and their version-aware constraint language as used in our previous work [SSA14a,
SSA14c], which provide language constructs as described by the last column of Table 1.
Figure 4 depicts a representative excerpt of the base meta-model for feature models defined
using Ecore4 of the Eclipse Modeling Framework (EMF). Similarly, the base meta-model
for constraint languages in propositional logic is also defined in EMF Ecore but further uses
a concrete syntax to define a textual language using the tool EMFText5. For OCL, we use
the meta-model and textual representation provided by the DresdenOCL toolkit6, which is
again based on EMF Ecore.

To make these artifacts subject to variability in delta modeling, we defined delta languages
for both Ecore meta-models and concrete syntax files of EMFText using the delta language
3 https://fusionforge.zih.tu-dresden.de/projects/snowflake
4 http://eclipse.org/emf
5 http://emftext.org
6 http://dresden-ocl.org
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*
supersedingVersions

supersededVersion

0..1

*versions

SVersion
- number : EString

SCardinalityBasedElement
- minCardinality : EInt
- maxCardinality : EInt
- UNLIMITED_CARDINALITY : EInt

SGroupArtifact

artifacts*

+ isAnd() : EBoolean
+ isAlternative() : EBoolean
+ isOr() : EBoolean

SGroup

groups
*

SFeature
- name : EString

+ isOptional() : EBoolean
+ isMandatory() : EBoolean

root

SFeatureModel

Figure 4: Excerpt from the base variant for the Ecore meta-model of the feature model family.

generation framework DeltaEcore7 [SSA14b]. We further defined 58 delta modules that
realize changes to accommodate for the different language constructs of the feature model
and constraint language families when generating variants. We assigned delta modules to
(combinations of) features of Figure 2 and Figure 3 so that variants can be generated by
selecting a valid configuration of features, determining the respective delta modules and
applying them in an automatically determined suitable order.

We defined configurations to represent the distinctive characteristics of each analyzed
work by selecting features from our family of feature modeling notations that reflect
the entries in each column of Table 1. We used these configurations to generate a vari-
ant for each inspected work consisting of the meta-models for the feature model and its
constraint language as well as the concrete syntax file of the textual constraint language
(if applicable). We inspected the generated variants for conformance with the selected
configurations as well as their expressiveness with regard to the included distinctive char-
acteristics. We used the generated variants of the meta-model and the constraint language
to recreate the examples presented in each of the analyzed works8. Figure 5 shows an
example of a variant of the meta-model for feature models for the configuration that con-
sists of the features FeatureModelingFamily, FeatureModel, Features, External,
FeatureVariationType, OptionalFeatures, MandatoryFeatures, Groups, Group-
VariationType, AlternativeGroups, OrGroups, AndGroups and MultipleGroups.
This variant resembles the notation used for the diagrams presented in Figure 1, Figure 2
and Figure 3.

SGroupArtifact

root
artifacts*

feature

SFeatureModel

- variationType : SGroupVariationType

+ isAnd() : EBoolean
+ isAlternative() : EBoolean
+ isOr() : EBoolean

SGroup

groups
*

SFeature
- name : EString
- variationType : SFeatureVariationType

+ isOptional() : EBoolean
+ isMandatory() : EBoolean

SExternalFeatureReference

«enumeration»
SFeatureVariationType
+ MANDATORY
+ OPTIONAL

«enumeration»
SGroupVariationType
+ AND
+ ALTERNATIVE
+ OR

Figure 5: Excerpt from an example variant for the Ecore meta-model of the feature model family resembling the feature model notation used for the diagrams of this paper.

7 http://deltaecore.org
8 For papers, we recreated all presented examples. However, [CE00] is a book with over 800 pages so that we

focused on creating a sample of all presented feature models.



A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 169

As a result of generating specifically tailored variants of feature model notations and cross-
tree constraint languages, the majority of concepts could be expressed directly by dedicated
language constructs. In addition, we used external features linking different feature models
to realize layers [Ka98]. However, we could not directly represent calculated attribute
values [BTRC05] but had to substitute constraints on the attributes demanding respective
values as a workaround. Finally, we had to create mock up models for the externally defined
resources (e.g., hardware, views) to realize resource mappings [SLW12, KSS13], which
are otherwise supplied along with a particular SPL. Using these techniques, we were able
to capture all information presented in the original work by employing a variant generated
from the feature modeling family. As a conclusion, we were able to answer RQ1 positively
as we could generate feature model notations and cross-tree constraint languages with
similar expressiveness as the inspected approaches with regard to the information available
in the respective publications.

In addition, we defined configurations for feature modeling notations that have a com-
bination of language constructs that, to our knowledge, did not exist, yet. For example,
we derived the variant for the feature models presented as diagrams in this paper, which
includes multiple groups and external features (as presented in Figure 5). Furthermore, we
generated previously non-existent variants, such as a variant with cardinality-based features
as well as binding times and resource mappings for features. As a result, we were able to
answer RQ2 positively.

6 Conclusion

In this paper, we presented a family of feature modeling notations and constraint languages
that encompasses various similar, yet different notations in order to generate specifically
tailored variants of feature model and cross-tree constraint notations. As basis, we analyzed
state of the art in feature modeling notations and classified 23 approaches by the notational
concepts they offer. From these findings, we assembled conceptual configuration knowledge
within feature models for a family of feature modeling notations and cross-tree constraint
languages. We provided a model-based realization of this family and used it in a case
study to demonstrate feasibility of our approach by generating variants with expressiveness
similar to the analyzed approaches as well as previously non-existent notations. Using
our work, it is possible to bootstrap SPL techniques to use them on feature models and
their constraint languages to generate variants of feature model and cross-tree constraint
notations according to a particular selection of language constructs. This is beneficial
when depending on a notation with specific capabilities and may further be useful when
transforming configuration knowledge specified in different feature modeling notations, ana-
lyzing configuration options of various different feature models or integrating configuration
knowledge from various sources with different notations.

In our future work, we will extend the provided SPL with variability of analyses techniques,
possible graphical representations, the generation of adequate tools for the variants as well
as support for different SPL implementation techniques. A configuration of this feature
modeling notation may determine which solvers (e.g., SAT, BDD, CSP) can be used, which
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analysis techniques are available and also which other dependencies need to be considered
for an implementation (e.g., if a chosen feature modeling notation restricts the choice for
an SPL implementation techniques). Additionally, we will analyze effects of transforming
models conforming to one variant of the feature model family to conform to another variant
by substituting language constructs. As far as feasible, we will provide an implementation
based on model transformation to allow data exchange between different variants of the
family for feature modeling notations.
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Konzeptionelle Modellierung ausführbarer Event
Processing Networks für das Event-driven
Business Process Management

Stefan Gabriel1, Christian Janiesch2

Abstract: Unternehmensübergreifende Geschäftsprozesse müssen nicht nur interne, sondern auch
externe Ereignisse berücksichtigen, um adäquat auf auftretende Situationen reagieren zu können.
Eine kurze Reaktionszeit auf Basis von Event-driven BPM-Systemen verbessert hierbei den Ent-
scheidungsspielraum. Die Planung derartiger Systeme auf Basis von BPM- und CEP-Technologie
ist derzeit allerdings nicht ohne frühzeitige Festlegung auf proprietäre Technologie möglich. Um
dem zu begegnen, schlagen wir eine Sprache und Architektur zur konzeptionellen Modellierung
und Serialisierung in ausführbaren Code von CEP-Modellen für das Event-driven BPM vor. Wir
zeigen, wie eine entsprechende Implementierung auf Basis einer herstellerunabhängigen CEP-
Modellierungssprache und Notation, umgesetzt in der Open-Source-Modellierungs-Plattform
Oryx, für die Esper Event Processing Language aussehen kann und demonstrieren diese an einem
Beispiel.

Keywords: Event-driven Business Process Management, Complex Event Processing, Complex
Event Processing Model & Notation, Model-driven Engineering.

1 Einleitung

Die Maßnahmen und Entscheidungen zur Reaktion auf auftretende Geschäftsvorfälle
werden insbesondere durch die Latenzzeiten in der Datenübermittlung und Datenverar-
beitung beeinflusst. Je mehr Zeit zwischen dem Auftreten der geschäftsrelevanten Ereig-
nisse und der getroffenen Maßnahme vergeht, desto niedriger ist in der Regel der ge-
schäftliche Nutzen der Entscheidung [MS10; OJ15]. Jedes Unternehmen sollte daher
bestrebt sein, seine Geschäftswerte zu optimieren und die Latenzzeiten zu reduzieren.
Aus Sicht der IT lässt sich dies bspw. durch den Einsatz ereignisgesteuerter Technolo-
gien im Sinne eines Business Activity Monitoring (BAM) [Ga02] oder weiterführend
eines Event-driven Business Process Management (EdBPM) [Ja12, Kr14] reduzieren.

Existierende Lösungen haben aber gemein, dass sie jeweils nur einen Ausschnitt des
Gesamtproblems lösen. Wesentliche Faktoren stellen Hindernisse für die Benutzung
solcher Lösungen dar. Zu diesen Faktoren zählen: fehlende offene Standards [BD10],
Abhängigkeit vom eingesetzten (rudimentären) Produkt [Ja12] und die Abstraktion zwi-
schen Modellierung und technischer Umsetzung [Du13].

1 Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, stefan-gabriel@web.de
2 Julius-Maximilians-Universität Würzburg, Juniorprofessur für Information Management, Sanderring 2, 97070

Würzburg, christian.janiesch@uni-wuerzburg.de
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Für die Entwicklung von Complex Event Processing (CEP)- und EdBPM-Systemen sind
weitere Ansätze bereits vorhanden: [EN11] beschreiben eine grundlegende Idee für die
semantische Benutzung ereignisverarbeitender Konstrukte. [Fr12] haben dies graphisch
und in Anlehnung an BPMN [OM13] für die Anwendung im BAM umgesetzt. [BD10]
erläutern den theoretischen Aufbau und praktische Herangehensweise zur Einführung
ereignisgesteuerter Systeme in Organisationen. Verwandte Arbeiten im Bereich der
Integration von BPM(N) und CEP finden sich auch bei [De07; Ku10]. Hier geht es aber
weniger um CEP im engeren Sinne als um die Verbesserung des Event-Handlings in
BPMN. [Vi14] schlägt die Event Processing Model and Notation ([moby-]EPMN) vor.
Es handelt sich allerdings nicht um eine geeignete Methode zur konzeptionellem, seman-
tischen Modellierung von Event Processing Networks (EPN). Die Notation dient im
Wesentlichen dazu, Konjunktion, Disjunktion, Sequenzen, und funktionale Annotationen
vorzunehmen. Eine umfangreiche Übersicht zum EdBPM findet sich auch bei [Kr14].

Im vorliegenden Beitrag stellen wir eine Software-Architektur als Basis für das EdBPM
vor, die es erlaubt konzeptionell und anbieterunabhängig EPN für das CEP zu modellie-
ren und diese automatisch in entsprechenden CEP-Code zu transformieren. Wir haben
dafür die Vorabreiten von [Fr12] auf CEP erweitert und eine Transformationsschicht
geschaffen, die diese anbieterunabhängigen Modelle beispielhaft in Esper-Code über-
setzt, der dann automatisiert zum Monitoring von Prozessen eingesetzt werden kann.

2 Konzeptionelle Modellierung von Event Processing Networks

Die grundlegende Idee zum zugrundeliegenden Meta-Modell der Modellierungssprache
basiert auf [Fr12]. Die nachfolgende Spezifikation des Meta-Modells (siehe Abb. 1), die
Notation und zugehörige Semantiken, Umsetzung in einer Programmiersprache und
Serialisierung sind eine Weiterentwicklung dieser Grundidee.

Die Modellierung eines EventProcessingNetwork entspricht der Modellierung eines
EPN. Ein Modell wird sequentiell erstellt und die einzelnen Ereignisse gelangen ebenso
sequentiell in die entsprechenden EventStreams.

Alle Knoten werden über die abstrakte Klasse FlowNode weiter verfeinert und entspre-
chend alle Kanten über die abstrakte Klasse Edge. Als Flussknoten stehen die Adapter
und alle Event Processing Agents (EPA) zur Verfügung. Diese Arten werden als abstrak-
te Klasse definiert. Die Klasse EventProcessingAgent hat drei Spezialsierungen mit
weiteren Konkretisierungen basierend auf [EN11]: die konkrete Klasse Filter, die abs-
trakten Klassen Transformation und PatternDetect. Die Klasse Transformation wird von
den EPAs Aggregate, Translate, Split und Compose konkretisiert. Die Klasse Enrich ist
ein Sonderfall von Translate und erbt daher von dieser Klasse. Ein Objekt der Klasse
PatternDetect beinhaltet genau ein Objekt der Klasse Pattern. Die Klasse Pattern spezia-
lisiert elementare Muster durch die abstrakte Klasse BasicPattern und dimensionale
Muster durch die abstrakte Klasse DimensionalPattern. Der Filter-EPA kann neben dem
Filtern von Informationen auch Ereignisse projizieren. Dabei kann ein Filter-Objekt
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keine bis alle Ereignisattribute projizieren und definiert dadurch einen eigenen Ereignis-
typ für den ausgehenden EventStream.

Abb. 1: Complex Event Processing Model & Notation Meta-Modell (Ausschnitt)

Die Modellierungssprache kann an BPMN angedockt werden, um EdBPM-Prozesse zu
modellieren. Die folgenden wesentlichen Notationselemente in Abb. 2 geben einen
Überblick darüber, wie Ereignisse verteilt, verarbeitet und benutzt werden, um Bezüge
zwischen Ereignissen herzuleiten.

Abb. 2: Notationsübersicht (Ausschnitt)
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3 Softwarearchitektur und Implementierung

Die Implementierung der Systemarchitektur folgt der üblichen Dreiteilung im CEP von
Producer, Processor und Consumer [Lu02; EN11]. Wir haben dazu drei Komponenten
implementiert: Die CEP-Applikation, die Event-Kommunikation und ein Modellie-
rungswerkzeug.

Die CEP-Applikation ist der Kern der entwickelten Software und bindet die CEP-Engine
und weitere Werkzeuge an. Das Projekt ist die CEP-Applikation und beinhaltet den Web
Service zur Registrierung von Statements in der Esper Event Processing Language
(EPL), implementiert die Schnittstellendefinition und enthält die Bereitstellungslogik des
Registrierungs-Web-Services. Als CEP-Engine kommt hier Esper 5.1 zum Einsatz. Wei-
terhin wird eine MySQL-Datenbank betrieben, mit einem entsprechenden Connector an
die Komponente angebunden und über eine eigene entwickelte Komponente zur Event-
Kommunikation gekoppelt. Weiterhin beinhaltet die Applikation die Schnittstellen zu
den Web Services zur Registrierung der EPL-Statements und zur Bereitstellung der Key
Performance Indicators (KPI). Die Schnittstelle bietet Operationen an, um EPL-
Statements an der CEP-Engine als einzelne oder gebündelte Anweisungen zu registrie-
ren, und deren erzeugten KPI-Web-Services zu identifizieren und deren Daten bereitzu-
stellen. Die Schnittstelle definiert wie der KPI-Web-Service seinen Wert bereitstellt.

Die Event-Kommunikation ist für die Ereignisübertragung zwischen den Ereignisprodu-
zenten und der Ereignisverarbeitung zuständig. Sie enthält die nachrichtenorientierte
Middleware (MOM) und implementiert das Publish-Subscribe-Entwurfsmuster als Event
Channel. Die Komponenten benutzt die Tools Apache ActiveMQ, Apache CXF WS-
Notification und Simple Logging Facade for Java (SLF4J). Als MOM wird Apache
ActiveMQ eingesetzt. Die Implementierung des Publish-Subscribe-Entwurfsmuster von
Apache CXF WS-Notification wurde für den speziellen Einsatz für die Software erwei-
tert. Die MOM dient dem Entwurfsmuster zur Nachrichtenübermittlung. Das SLF4J ist
ein Hilfstool für die Middleware, die Funktionalität zum Logging beinhaltet.

Als Modellierungswerkzeug wird der Oryx-Editor eingesetzt [Or12]. Der Oryx-Editor
dient als Oberfläche einer ganzheitlichen Lösung, die sich von der Modellierung ent-
sprechender Prozesse über die Serialisierung in EPL-Statements bis zur Veröffentli-
chung von KPIs als Web Services erstreckt. Grundsätzlich besteht der Oryx-Editor aus
einem Frontend und Backend, die beide als Applikation auf einem Web-Server ausge-
führt werden. Das Frontend ist über einen Browser abrufbar und bedienbar. Die Kompo-
nente benutzt die Tools Apache Tomcat 7 als Webserver, PostgreSQL Database als Da-
tenbankserver für den Oryx-Editor und unsere CEP-Applikation. Der Web-Server und
der Datenbankserver sind die Grundvoraussetzung für den Betrieb des Oryx-Editors. Das
Stencil Set ist der Datensatz für die Benutzung der Modellierungssprache im Editor. Ein
Stencil Set besteht aus der grafischen Darstellung der Sprachelemente, einer konkreten
Beschreibung der Elemente mit Eigenschaften und Eingabemöglichkeiten und der Re-
geldefinition für die Sprache [Pe07]. Hierdurch wird das Meta-Modell syntaktisch als
auch semantisch implementiert.
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4 Serialisierung der konzeptionellen Modelle

Im Backend ist das Meta-Modell implementiert und alle Flusselemente werden als Klas-
sen abgebildet. Diese Klassenstruktur ist eine allgemeine Zwischenstruktur des Dia-
gramms, bevor es in die speziellen Elemente des Meta-Modells übersetzt wird. Factory-
Klassen erzeugen die entsprechenden Objekte der implementierten Klassenstruktur an-
hand der Diagrammrepräsentation. Spezielle Klassen organisieren die Serialisierung
eines Modell-Elements für die konkrete EPL der CEP-Engine Esper.

Das Frontend speichert die Diagramme anhand der Definition des entsprechenden Sten-
cil Sets ab. Die Datenrepräsentation wird im Backend für die Konvertierung in die inter-
ne Struktur benötigt. Der Austausch der Daten zwischen Frontend und Backend erfolgt
über ein Servlet. Es steuert die Konvertierung in die interne Struktur an und übersetzt die
interne Struktur der Meta-Modelle in EPL. Weiterhin tritt das Servlet als Vermittler
zwischen dem Frontend und Registrierungsservice der CEP-Applikation auf.

Nachdem die Modelle erzeugt wurden, müssen die Anweisungen zur Ereignisverarbei-
tung aus dem Modell zur CEP-Engine gelangen. Abb. 3 zeigt den Ablauf der Daten von
der Modellierung bis zur Registrierung in der Engine.

Abb. 3: Datenaustausch zwischen den Softwarekomponenten

Im Frontend des Oryx-Editors wird das entsprechende Plug-In ausgeführt und öffnet ein
Dialogfenster zum Generieren der EPL. Dieses schickt die Diagrammdaten an das ein
Servlet im Backend (1). Dort werden die Daten konvertiert und in entsprechende EPL-
Statements übersetzt (2). Die EPL-Statements werden an das Servlet im Backend ge-
schickt (3). Das Servlet sendet die Statements weiter an den Registrierungs-Web-Service
der CEP-Applikation (4). Die Statements werden anschließend in der CEP-Engine regis-
triert (5) und durch die modellierten KPIs als Web Service veröffentlicht (6). Danach
sendet der Registrierungs-Web-Service die Adressen der erzeugten KPI-Web-Services
an das Servlet zurück (7), der sie ans Dialogfenster im Frontend weiterleitet (8).



178 Stefan Gabriel und Christian Janiesch

5 Implementierungsbeispiel

Das folgende Szenario beschreibt einen Kühllager-Monitoring-Prozess bei dem die
Kühllagertemperatur beobachtet und bei Unregelmäßigkeiten reagiert wird (siehe
Abb. 4). Die Schnelligkeit der Reaktion ist von Bedeutung, da Güter in Kühllagern ver-
derblich sind.

Abb. 4: Prozess Kühllager-Monitoring in BPMN mit CEPMN-Ergänzungen

Die Ereignisverarbeitung läuft wie folgt ab: Das Ereignis Temperatur des Typs Ther-
mometerEvent geht in das System ein. Das Trend-Pattern untersucht die Temperaturer-
eignisse auf eine streng steigende Temperatur. Ist dies der Fall, wird das letzte Ereignis
des Trends als Ereignistyp TemperatureChangingEvent an ein Logical-Pattern weiterge-
leitet. Liegt diesem Pattern kein Ereignis Thermostatregulierung vom Typ Thermostat-
Event vor, erzeugt es innerhalb des Zeitfensters ein Ereignis zur nichtregulierten Tempe-
raturänderung vom Typ NotRegularedTemperatureEvent. Zum Schluss wird das Event
auf die Eigenschaft ColdStoreID reduziert. Diese Eigenschaft ist der Wert der resultie-
renden KPI. Der Output-Adapter benennt mit seinem Namen den zugehörigen KPI-Web-
Service. Parallel dazu wird ein Kühllager-Monitoring-Prozess in BPMN dargestellt, der
durch die Echtzeitauswertungen über eine konkrete Aktivität beeinflusst werden kann.
So wird deutlich an welcher Stelle im Prozess Daten ausgelesen und verwendet werden.

Die Serialisierung der einzelnen EPA und die Adapter werden in der Esper EPL gene-
riert. Ein EPN beginnt mit mindestens einem Input- und endet mit mindestens einem
Output-Adapter. Die Anweisung INSERT INTO gibt an, dass die Ergebnisse in einen
EventStream weitergeleitet werden, der gleichzeitig neu erzeugt wird. Auf diese Weise
wird der korrekte Event-Fluss im EPN zwischen den verschiedenen EPA sichergestellt.

Die Syntax SELECT, FROM und WHERE ist in der EPL gleichbedeutend mit den Kon-
strukten aus SQL. Über die Angabe as wird eine ausgehende Event-Eigenschaft be-
nannt. Die Trend- und Logical-Pattern wenden eine Mustererkennung von Ereignissen
und lösen dann ein Ereignis aus, wenn in ihren angegebenen Zeitfenstern die definierten
Bedingungen erfüllt sind. Im Logical-Pattern heißen die Variablen gleich den Ereignis-
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typen, die jeweils nach EventStreams benannt sind. Die Serialisierung hat folgende
Form:

// this is an InputAdapter
INSERT INTO a8db2f2b
SELECT * FROM ThermometerEvent
// this is a TrendPattern
INSERT INTO 2705dfd2
SELECT {a.ColdStoreID, b.ColdStoreID} as ColdStoreID,

{a.Temperature, b.Temperature} as Temperature
FROM pattern[every a=a8db2f2b ->

b=a8db2f2b(Temperature > a.Temperature)].win:
time(20 second) output last

// this is an InputAdapter
INSERT INTO b9f185a9
SELECT * FROM ThermostatEvent
// this is a LogicalPattern
INSERT INTO a93f9b48
SELECT b9f185a9.EmployeeID as EmployeeID,

b9f185a9.ColdStoreID as ColdStoreID,
b9f185a9.Temperature as Temperature

FROM pattern[every 2705dfd2=2705dfd2 AND NOT b9f185a9=b9f185a9
(ColdStoreID=2705dfd2.ColdStoreID)].win:time(30 minute)

// this is a Filter
INSERT INTO 9071b7fc
SELECT ColdStoreId as ColdStoreId
FROM a93f9b48
// this is an OutputAdapter
SELECT ColdStoreID as 9071b7fc
FROM 9071b7fc

6 Zusammenfassung und Ausblick

Existierende Produkte für das Echtzeit-Monitoring und -Management von Geschäftspro-
zessen bieten derzeit keinen offenen Ansatz, der die Planung und Entwicklung von
EdBPM-Prozessen ohne die vorgelagerte Entscheidung für einen Anbieter proprietärer
Software abbildet. Wir schlagen daher eine anbieterunabhängige Modellierung von
EdBPM vor. Das Meta-Modell und die grafische Notation orientieren sich am Standard
BPMN 2.0. Wir haben dabei sichergestellt, dass die Modellierung nicht nur ein Selbst-
zweck ist, sondern legen darüber hinaus dar, wie eine Transformation und Serialisierung
vom Modell zu einem ausführbaren CEP-Statement möglich ist. Wir zeigen dies am
Beispiel der Event-Verarbeitungssprache Esper EPL und der offenen CEP-Engine Esper
und illustrieren das Ergebnis an einem Anwendungsbeispiel. Neben der Modellierung
serialisiert die Software die resultierenden Modelle automatisiert in EPL-Statements und
registriert diese in der CEP-Engine. Die spezifizierten KPI werden so automatisch und in
Echtzeit über Web Services verfügbar. Während die gegenwärtige Implementierung auf
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Esper basiert, ist es aber auch denkbar, vergleichbare auf SQL basierende CEP-Sprachen
wie die Continuous Computation Language (CCL) oder Continuous Query Language
(CQL) zu nutzen.
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BPM Considered Harmful

Stefan Berner1

Abstract: Business Process Modeling (BPM) spielt eine grosse Rolle in den frühen Schritten der
Softwareentwicklung. Eine zu grosse Rolle nach Meinung des Autors. Fast alle Vorgehensmethoden
empfehlen für den Beginn einer Geschäftsmodellierung BPM. Fast alle Business-Analysten nutzen
BPM als Einstieg und einfachsten Zugang zu Wissen und Verständnis um eine Geschäftswelt.

Ohne gemeinsames Verständnis der Begriffe und ihrer Relevanz für eine Umgebung können weder
künftige Nutzende noch Informatiker gute Geschäftsprozesse modellieren. BPM ist nicht der beste
Weg dieses gemeinsame Verständnis zu erlangen. BPM hat weitere gravierende Nachteile, die es als
Einstiegsvorgehen in ein IT-Projekt ungeeignet machen.

Dieses Paper zeigt die Nachteile des BPM auf. Es zeigt weiter auf, wie vor der Prozessmodellierung
ein besseres Verständnis der zu modellierenden Welt erlangt werden kann.

Keywords: BPM, Prozessmodell, Informationsmodell, Softwarequalität

1 Einleitung

Mit seinem berühmten letter to the editor “Go To Statement Considered Harmful” [Di68]
lancierte Dijkstra eine kontroverse Diskussion, die zur Akzeptanz strukturierter Program-
mierung führte. In diesem Sinne wurde der Ausdruck im Titel dieses Papers übernommen.
Die vorliegenden Betrachtungen aus Sicht eines Praktikers sollen die Diskussion anstossen.
Welche Rolle soll Business Process Modeling in einem Softwareprojekt spielen? Ist es
wirklich der beste Einstieg und Zugang zu einer Softwarelösung?

BPM weist einige Nachteile auf. Sein typischer Einsatz führt nicht zu bester Softwarequa-
lität. Die aufgeführten Beobachtungen und daraus abgeleiteten Hypothesen haben sich in
der jahrelangen praktischen Projektarbeit des Autors bestätigt. Ein unabhängiger Nachweis
liegt ausserhalb meiner Möglichkeiten. Dieser Beitrag soll Leute aus der Forschung anregen,
die Aussagen und Hypothesen in neutralen Studien zu überprüfen.

1 Diso AG, Morgenstrasse 1, CH-3073 Bern-Gümligen, sberner@diso.ch
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2 Begriffe

2.1 Business Process Model

Das Business Process Model (Geschäftsmodell) dient dem Zweck, Geschäftsabläufe in
einer für die Auftraggeber verständlichen Art zu beschreiben. Es soll gleichzeitig eine
formale Vorlage für die Umsetzung in Software sein. Typischerweise sind die folgenden
Aspekte in einem Business Process Model vereinigt:

Funktionen Daten, Informationen
Ereignisse Zustände
Organisationseinheiten Akteure
Transportkanäle Medien
Datenspeicher und -kanäle Schnittstellen zu Umsystemen

Das Business Process Model beschreibt aus fachlicher Sicht was Akteure wie mit Informa-
tionen tun. Es beschreibt Geschäftsabläufe aus Sicht der Nutzenden. Beispiel:

Abb. 1: Beispiel eines Business Process Models (siehe [BP10])

2.2 Informationsmodell

Ein Informationsmodell ist eine Beschreibung der in einer Umgebung benötigten Infor-
mationen. Es beschreibt Entitäten mit ihren Attributen und ihren Beziehungen zu anderen
Entitäten. Es wird normalerweise als konzeptionelles Datenmodell bezeichnet. Der Begriff
Informationsmodell wird verwendet um folgende Unterschiede zu einem Datenmodell
hervorzuheben:

• Sämtliche Namen (Entitäten, Attribute, Beziehungen) sind ausschliesslich Begriffe
der Geschäftswelt und werden von allen Beteiligten vorbehaltlos akzeptiert.
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• Sämtliche Verknüpfungen von Entitäten sind in beide Richtungen mit einem Verb
beschrieben.

• Es kommen keine technischen Begriffe (wie Datenbank, Tabellen, data types, keys,
constraints, XML etc.) vor.

Das Informationsmodell beschreibt, was Dinge (Entitäten) fachlich miteinander zu tun

haben. Wie sie strukturell zusammenhängen. Es beschreibt die möglichen, konsistenten
und relevanten Zustände, die statische Struktur eines Systems.

Der Begriff Datenmodell wird im Zusammenhang mit Geschäftsmodellierung bewusst
vermieden. Daten bilden Informationen in speicherbare, technisch verwaltbare Elemente ab.
Datenwerte sind per se sinnlos. Anwenderinnen und Anwender nutzen nie Datenwerte. Sie
nutzen Informationen, die durch Interpretation der Datenwerte entstehen. Das Informati-
onsmodell ist die explizite Dokumentation der verbindlichen, fachlichen Interpretation der
Daten einer Umgebung.

Abb. 2: Beispiel eines Informationsmodells

3 Kritik am BPM

3.1 Falsche Reihenfolge

Ein Prozess überführt ein System von einem konsistenten Zustand in einen anderen. Pro-
zesse sind nie das Ziel, sie sind immer der Weg. Prozesse beschreiben, wie eine Zu-
standsänderung herbeigeführt wird. Sie beschreiben nicht die Zustände als solche. Das
Business Process Model beschreibt was Akteure wie mit den Dingen (Entitäten) tun. Es
beschreibt, wie durch eine Aktivität, unter Einsatz von (technischen) Hilfsmitteln, das
System von einem konsistenten Zustand in einen anderen überführt wird.

Damit ein guter Prozess entworfen werden kann müssen Start und Ziel bekannt sein.
Einerseits sind das Auslöser (Ereignisse) und der Anfangszustand, andererseits der erwartete
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Endzustand der manipulierten Informationen. Ohne zu wissen, was das Ziel eines Prozesses
ist, macht es wenig Sinn, diesen zu beschreiben. Konsistente Zustände werden durch das
fachliche, statische Systemwissen – dem oben genannten Informationsmodell – beschrieben.

In der Praxis wird als erster Schritt einer Systembeschreibung meistens ein Prozessmo-
dell erstellt. Warum das so ist wird weiter unten erläutert. Die darin verwendeten oder
erzeugten Informationen werden in einem zweiten Schritt zu einem Datenmodell zusam-
mengefasst. Eine vollständige, exakte Beschreibung der Informationsstruktur aus Sicht
der Anwendenden und losgelöst von den Prozessen, ist in der Praxis kaum je anzutreffen.
Diese fehlende Sicht auf die Begriffe und das mangelhafte Verständnis der Geschäftswelt
führen i.d.R. dazu, dass Datenmodelle zu stark die Struktur der Prozesse und die Sichtweise
der Entwickler abbilden. Strukturelle fachliche Probleme und Inkonsistenzen werden mit
diesem Vorgehen erst spät im Entwicklungsprozess (bei der Datenmodellumsetzung, der
Modulerstellung oder im Test) erkannt. Weil die Prozesse zu diesem Zeitpunkt in der Regel
bereits abgenommen und fixiert sind, will man diese nicht mehr ändern. Das führt dazu,
dass Architekturprobleme auf Ebene der Daten und Programme “ausgeglichen” werden.
Dieses Vorgehen ist mit Sicherheit suboptimal.

3.2 Zu komplex

Durch die Menge der Aspekte, die in einem Business Process Model kombiniert dargestellt
werden, wird das Dokument und seine Erstellung sehr komplex. Es ist extrem schwierig,
während der Modellierung einzelner Prozesse gleichzeitig eine stimmige Strukturbeschrei-
bung des Gesamtsystems zu entwickeln. Eine solche Arbeit setzt eine überdurchschnittliche
Abstraktionsfähigkeit voraus und ist für viele eine Überforderung.

Die Komplexität des Modells schränkt zusätzlich seinen Nutzen als Übersichtsdokument
ein. Es ist für die meisten Beteiligten schwer lesbar. Einzelne Aufgaben können gut verfolgt
werden (“was passiert mit einer Mahnung?”). Ein Überblick über das gesamte System kann
mit einem Business Process Model nur schwer gewonnen werden.

3.3 “Legacy”

Prozessmodelle werden typischerweise gemeinsam mit den Nutzenden der bestehenden
Systeme erstellt. Dabei wird in den meisten Fällen von bestehenden Prozessen ausgegangen
und es wird versucht diese zu verbessern. Die bestehenden Prozesse sind entstanden unter
den Voraussetzungen der damaligen Umgebung (Organisation, Technologie, Kommuni-
kationskanäle, Medienbrüche etc.). Viele Prozesse sind wie sie sind, weil es unter den

damaligen Umständen die beste (pragmatischste) Lösung war. Diese Prozesse haben über
die Jahre die Arbeitsweise der Leute, die damit arbeiten, geprägt. Viele Mitarbeitende
haben diese Prozesse als Grundlage ihrer Arbeit kennen gelernt und verinnerlicht. Diese
Prozesse sind ihre Arbeit. Aus ihrer Sicht sind die Geschäftsabläufe das, was durch die
bestehenden Prozesse vorgegeben wird. Ein gutes Beispiel dafür ist die schweizerische
Postleitzahl. Sie wurde 1964 eingeführt um die manuellen Prozesse der Postsortierung
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und -verteilung zu verbessern. Ihre (hierarchische) Struktur war auf geografische Regionen,
wirtschaftliche Zentren und die Hauptverkehrsachsen (vor allem der Bahn) ausgerichtet.
Bei der Einführung von der Bevölkerung bekämpft, wandelte sie sich mit der Zeit zu einem
identitätsstiftenden Kulturgut. Bei der heutigen Technik der optischen Adresserkennung
und automatischen Sortierung ist sie ein ineffizientes Überbleibsel. Trotzdem wird sie in
Prozessen rund um Adressierung weiterhin eingesetzt und verwendet.

Bessere Prozesse entstehen, wenn aus den bestehenden Prozessen die rein fachlichen Ziele
(=Informationszustände) extrahiert werden und der Weg, diese zu erreichen unter Einbezug
der aktuellen Rahmenbedingungen neu entworfen wird.

3.4 Mehrdeutige Begriffsdefinitionen

Beim Modellieren von Geschäftsprozessen werden Geschäftsbereiche immer aus Sicht
einzelner Prozesse und damit einzelner Akteure oder Organisationseinheiten betrachtet
und modelliert. Die Begriffe, die verwendet werden um die benötigten oder erzeugten
Informationen (Entitäten) zu beschreiben, werden immer aus Sicht der momentanen Ge-
sprächspartner interpretiert. Beispiel: Jeder und jede weiss, was ein “Produkt” ist. In einer
Applikation, die den gesamten Produktezyklus abhandelt, ändert der Begriff von Abteilung
zu Abteilung seine Bedeutung. Ein “Produkt” ist in der Herstellung etwas anderes (sprich
hat andere Eigenschaften und Beziehungen) als ein “Produkt” im Einkauf, im Marketing,
in der Logistik oder im Verkauf.

Es braucht eine von den Akteuren und Prozessbeschreibungen unabhängige Definition und
Beschreibung aller gemeinsam genutzten Begriffe. Ohne diese Definitionen besteht die
grosse Gefahr, dass unsaubere Benennungen und Definitionen übernommen werden. Es
entsteht eine semantisch falsche Architektur.

Das zu frühe Modellieren der Prozesse erschwert die notwendige Diskussion um einheitli-
che Begriffe und Definitionen. Der jeweilige Fokus auf einzelne Abläufe impliziert eine
bestimmte Interpretation der Begriffe. Missverständnisse in der Kommunikation zwischen
Fach und IT aber auch zwischen verschiedenen Fachbereichen, bleiben dadurch während
der Business Analyse häufig unentdeckt.

4 Ursachen und Lösung

4.1 Ursachen

Warum beginnen fast alle Entwickler und Entwicklerinnen in allen Stufen der Softwareent-
wicklung mit den Prozessen und leiten daraus die benötigen Daten ab? Warum ist diese
falsche Reihenfolge so beliebt? Wir wissen spätestens seit Niklaus Wirth’s Algorithmen und
Datenstrukturen (1975) dass eine gute Datenstruktur zu einfacheren Algorithmen führen
kann.
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Es scheint einfacher zu sein, Prozesse (Wege, Touren) zu beschreiben als statische Struktu-
ren (Karten). Eine überwiegende Mehrheit der Menschen beschreibt lieber Touren (siehe
[LL75]). Interessanterweise ist es im Gegensatz dazu einfacher, sich ein Bild einer Umge-
bung anhand einer Karte zu machen, als anhand der Beschreibung einer Tour durch diese
Landschaft zu navigieren. Diese Asymmetrie erklärt sich damit, dass auf einer Karte mehr
Information auf kleinerem Raum dargestellt ist und dass sich mit dem Verständnis der
zugrunde liegenden Struktur die Touren fast von selbst ergeben. Information verdichtet zu
dokumentieren ist aufwändig. Dieser Mehraufwand wird durch Einsparungen beim Lesen
wettgemacht. Goethe hat diesen Sachverhalt so beschrieben: “Entschuldige die Länge des
Briefes, ich hatte keine Zeit mich kurz zu fassen!”

Einheitliche Definitionen und Begriffsverwendungen sind schwierig zu finden und durch-
zusetzen. Sie setzen voraus, dass die Differenzen erkannt sind und dass die Beteiligten
bereit sind, ihre Begriffsverwendungen und damit ihre Sprechweise anzupassen. Eindeuti-
ge Begriffe können nur in Diskussionen über Inhalte und Verständnis erarbeitet werden.
Häufig braucht es fachliche Entscheidungen über die richtige bzw. in dieser Umgebung
sinnvollste Verwendung eines Begriffs. Diese Diskussionen werden in den Sitzungen mit
Fachvertretern gern vermieden. Sie bedeuten viel Arbeit und der Aufwand für die möglichen
Konsequenzen wird von Informatikern und Anwendenden gescheut. Es ist vordergründig
einfacher (= mit weniger Arbeit verbunden), sich über Prozesse zu unterhalten. Der Kontext
und die möglichen Interpretationen sind klarer und es finden weniger Diskussionen statt.

Es ist ein grosser Aufwand, in bestehenden Prozessen die unterschiedlichen Aspekte
zu identifizieren, extrahieren und ändern. Es ist eine intellektuelle Herausforderung und
braucht gute Fachkenntnisse. Es müssen oft Widerstände der Nutzenden und ihrer Mana-
ger überwunden werden (siehe das Beispiel PLZ auf Seite 182). Diese Vermeidung von
schwierigen Aufgaben hat zur Folge, dass zu viele überflüssige und veraltete Anteile der
bestehenden Geschäftsprozesse in die neue Lösung übernommen werden.

Der Versuch (Denk-)Aufwand zu vermeiden, sowie die Abneigung gegen eine Revision des
eigenen Verständnisses der Dinge, führen zu unsauberen Begriffen und Datenstrukturen
und damit zu suboptimalen, stark an die Vergangenheit angelehnten (legacy) Prozessen.

4.2 Lösungsansatz

Die Gesamtaufgabe des BPM muss unterteilt werden. Häufig werden strukturelle Kriterien
(Systemgrenzen, Medienbrüche, Organisationseinheiten, Programmierumgebungen etc.)
für die Unterteilung in Teilaufgaben angewendet. Diese haben den Nachteil, dass mit jeder
Änderung der Umgebung die Modulstruktur der Lösung ineffizient oder falsch werden
kann. Der stabilste Aspekt von Systemen ist die eigentliche Fachsemantik. Die Informati-
onsstrukturen und fachlichen Grundabläufe einer doppelten Buchhaltung z.B. haben sich
seit ihrer Einführung im 14. Jahrhundert kaum verändert.

Am volatilsten sind Technologien und Medien. Eine Strukturierung der Lösung nach
semantischen Aspekten führt zu langfristig stabilen Systemen. Für eine stabile und einfache
Lösung müssen:
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• Aspekte mit unterschiedlicher Änderungsrate in gesonderten Arbeitsschritten und
Dokumenten dokumentiert werden.

• Prozessvoraussetzungen und Ergebnisse (Ereignisse, Start- und Zielzustände) vor
den Prozessen modelliert und beschrieben werden.

• Aspekte, die der Kommunikation mit den Auftraggebern oder Fachnutzern dienen,
getrennt werden von Aspekten für technische Belange.
(Jedes Dokument darf nur Elemente enthalten, die das adressierte Zielpublikum als
relevant betrachtet und verstehen kann.)

Das folgende Vorgehen hat sich für BPM bewährt. Als erstes werden Geschäftsereignisse2

und die möglichen Systemzustände (Informationsmodell) erstellt. Als Voraussetzung für die
Modellierung von guten Prozessen können und sollen diese beiden Dokumente unabhängig
von Prozessbetrachtungen erarbeitet werden. Als nächster Schritt werden die stabilen, rein
fachlichen Aspekte der Geschäftsprozesse beschrieben. Möglichst unabhängig von jeglicher
Technologie, Organisation und Medien(-brüchen) etc.

Erst nach Vorliegen dieser Übersichtsergebnisse aus fachlicher Sicht, können gute betriebli-
che Prozesse erstellt werden, die alle Aspekte kombinieren. Dieser letzte Schritt bettet die
fachlichen Anforderungen (Geschäftsereignisse, Informationsstruktur, fachliche Prozess-
beschreibung) in die aktuelle Umgebung (Organisation, Technologie, Systemlandschaft)
ein.

Abbildung 3 und 4 zeigen Informationsbedarf und Fachprozessschritte des Entwicklungs-
prozesses in rudimentärer Form.

Abb. 3: Skizze eines Informationsmodells des Entwicklungsprozesses

2 Geschäftsereignisse sind fachliche Umstände die Geschäftsprozesse auslösen. Da diese Ereignislisten eine
einfache Auflistung sind, wird ihre Erarbeitung und Dokumentation in diesem Paper aus Platzgründen nicht
weiter behandelt.
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Abb. 4: Skizze eines Fachprozessmodells des Entwicklungsprozesses

5 Zusammenfassung

Nicht BPM per se ist schädlich. Es wird in der Praxis falsch bzw. zum falschen Zeitpunkt
eingesetzt. Es werden zu viele Aspekte in der falschen Reihenfolge und mit falschem Fokus
bearbeitet. Dies führt dazu, dass

• keine benutzertauglichen Übersichtsdokumente entstehen.

• viele Business Analysten, Manager und Fachleute von ihren Aufgaben überfordert
sind.

• die resultierenden Datenmodelle die Fachsemantik nicht optimal abbilden.

• zu viele legacy-Aspekte in die neue Lösung übernommen werden.

• viele Module zu komplex werden.

• neue Technologien, Organisationsformen und Medien nicht effizient genutzt werden
können.

Der im Abschnitt 4.2 beschriebene Lösungsansatz wurde in vielen Projekten erfolgreich
angewendet. Die Modellierung der Prozesse wurde massiv vereinfacht. Viele Prozesse wur-
den im Vergleich zur alten Lösung einfacher. Die obige Negativliste wurde aus Erfahrungen
mehrerer Projekte extrahiert. Meine Hypothese ist, dass ein Wechsel von BPM zu Informa-
tionsmodellierung als erster Schritt im Entwicklungsprozess diese Mängel vermindert oder
verhindert. Ich hoffe, dass die vorgelegten Überlegungen Leute motivieren, nach diesem
Ansatz zu arbeiten bzw. ihre Arbeitsweise und Ergebnisse zu kommunizieren, und dass sich
dadurch genügend Beispiele ergeben, damit die Vorteile des Vorgehens objektiver bestätigt
werden können.
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Automatically Binding Variables of Invariants to Violating

Elements in an OCL-Aligned XBase-Language

Sebastian Fiss1, Max E. Kramer1, Michael Langhammer1

Abstract: Constraints that have to hold for all models of a modeling language are often specified
as invariants using the Object Constraint Language (OCL). If violations of such invariants shall be
documented or resolved in a software system, the exact model elements that violate these conditions
have to be computed. OCL validation engines provide, however, only a single context element
at which a check for a violated invariant originated.Therefore, the computation of elements that
caused an invariant violation is often specified in addition to the invariant declaration with redundant
information. These redundancies can make it hard to develop and maintain systems that document or
resolve invariant violations.
In this paper, we present an automated approach and tool for declaring and binding parameters of
invariants to violating elements based on boolean invariant expressions that are similar to OCL
invariants. The tool computes a transformed invariant that returns violating elements for each iterator
variable of the invariant expression that matches an explicitly declared invariant parameter. The
approach can be used for OCL invariants and all models of languages conforming to the Meta-
Object Facility (MOF) standard. We have evaluated our invariant language and transformation tool by
transforming 88 invariants of the Unified Modeling Language (UML).

Keywords: OCL, Xbase, XOCL4Inv

1 Introduction

When models are used to develop software systems, a metamodel can be used as a language
specification that constrains all valid model instances. Not all types of constraints that have
to be enforced can directly be expressed in a metamodel. For such constraints, specification
languages can be used in addition to the metamodeling language. If a constraint has to
hold for all models of a language, it is usually called an invariant. The Object Constraint
Language (OCL) defined in the ISO 19507 standard is a popular language for defining such
invariants for object-oriented software . OCL invariants are mainly used to validate model
instances in order to ensure correctness prior to further processing or manipulation.

For many application scenarios, it is not sufficient to know whether an invariant holds
for a given model: In order to document or resolve the problem indicated by an invariant
violation, it is important to obtain the context of a violation [KPP09].In OCL, an invariant
is, however, only a boolean constraint expression that may specify a name and a context
type. Therefore, OCL-based validation engines provide only a single context element of this
type to indicate an invariant violation. Many OCL invariants navigate and inspect several

1 Karlsruhe Institute of Technology (KIT), Institute for Program Structures and Data Organization (IPD),
Chair for Software Design and Quality (SDQ), Am Fasanengarten 5, 76131 Karlsruhe, Germany, sebas-
tian.fiss@student.kit.edu, max.e.kramer@kit.edu, michael.langhammer@kit.edu
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different elements and collections of elements related to the context element at which a
check was initiated. Therefore, the context element of an OCL invariant often does not
directly indicate where, how, and why a model violates the constraints. To achieve this,
more specific elements that cause an invariant violation, e.g. by not satisfying one of several
conditions defined in the invariant, have to be retrieved.

The retrieval of such model elements that cause an invariant violation is usually defined
separately from the boolean invariant condition. As a result, model navigation statements
and condition checks are repeated in the code for element retrieval and constraint validation.
Although only a few statements may be redundant for a single invariant, the amount of
duplicated code can grow to a considerable size for metamodels with hundreds of invariants,
such as the Unified Modeling Language (UML) [ISO12a]. This code duplication can be a
source for costly errors and can lead to unnecessary development and maintenance effort. It
is common to all current approaches except EMF-IncQuery, which only support queries.

In this paper, we present an approach and tool2. to avoid this code duplication by computing
elements that cause an invariant violation directly from an OCL-aligned invariant definition
with explicit parameters. We propose a prototypical invariant language XOCL4Inv, which
extends the expression language Xbase [Eff+12] and seamlessly integrates with the popular
model transformation language Xtend3. As a result, our language is extensible and inherits
the power and expressiveness of Xbase, e.g. lambda expressions and extension methods.

The language supports the definition of OCL-aligned constraints using boolean expressions
and is in large parts syntactically and semantically equivalent to a subset of OCL. In order
to relieve developers from writing separate code for element retrieval, it adds a possibility
to define which elements should be retrieved in case of an invariant violation: Variables that
are used to iterate over collections can be declared as invariant parameters, which is not
possible in OCL. For every declared parameter, our tool computes a transformed invariant,
which collects all those elements that are a) bound to the iterator variable corresponding to
the parameter and b) causing the invariant violation. It is, however, also possible to directly
specify queries, if this is preferred to invariant-to-query transformations.

Consider a simplified example invariant for a library metamodel, which specifies in the
context of a reading room that all those books in a reading room that are used as reference
copies have to have at least three copies:

self.books.forall[Book b | b.referenceCopy implies (b.copies >= 3)]

Our tool computes a transformed invariant, which collects all books that violate the con-
straint, i.e. that are used as reference copies but have less than three copies. It replaces the
forall iterator with a select iterator and negates the condition:

self.books.select[Book b | !(b.referenceCopy implies (b.copies >= 3))]

For more complex invariants, e.g. with more iterators and parameters, it would be a waste of
time to specify such transformed invariants manually as they can be computed automatically.

The presented invariant transformation algorithm can be used for OCL invariants that are
defined for models conforming to the Meta-Object Facility (MOF) ISO/IEC 19508:2014(E)
2 The language and tool are available as open-source software on http://sdqweb.ipd.kit.edu/wiki/XOCL4Inv
3 http://www.eclipse.org/xtend
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standard. Our current invariant language XOCL4Inv and transformation prototype is based
on the Eclipse Modeling Framework (EMF) and can transform invariants for metamodels
that were built with the Essential MOF variant Ecore. We evaluated the correctness by trans-
forming all 88 invariants of the UML metamodel of the Eclipse IDE4 that contain collection
iterators but do not use statements that cannot be transformed, such as allInstances.

The paper is structured as follows: In Section 2, we explain concepts and languages that are
fundamental for our approach. In Section 3, we present our OCL-aligned invariant language
XOCL4Inv. In Section 4, we explain the invariant transformation algorithm. In Section
5, we present our evaluation of the invariant language and transformation algorithm. In
Section 6, we discuss related work and in Section 7 we draw some final conclusions.

2 Foundations

In this section, we explain the technologies and concepts that we use for our approach.

2.1 Model-Driven Software Development (MDSD)

In MDSD [SV06] models and code are used to develop a software system. An important
point is that models are at least as important as the source code and not used for documen-
tation purposes only. A common use case is to automatically create source code from the
information in the models. The models are often created by domain experts to model a
specific domain. To apply these models, Stahl et al. have described three requirements:
First, DSLs are necessary to create the models. Second, model-to-code transformations
languages are required to process them. Last, specific compilers, generators or transformers
are necessary to create executable code from the models.

2.2 Object Constraint Language (OCL)

OCL [ISO12b] is a typed, declarative language that can be used to describe constraints that
apply to model instances. OCL was initially developed for UML models, but can be used
for arbitrary metamodels. Constraints that are specified with OCL are side-effect free. This
means that the queried model instance is not changed by OCL. In MDSD, OCL is used to
define constraints and invariants that cannot be easily expressed in a metamodel. Users of
OCL can check whether a specific model instance fulfills the constraints that are defined for
the metamodel. If one of these constraints is not fulfilled, the model instance is not valid.

2.3 Xtext and Xbase

Xtext [EV06] is a language development framework for creating DSLs. Users have to define
the grammar of their DSL. From the grammar definition Xtext creates the lexer, parser and
4 Eclipse UML metamodel – Rev. 57c76de64a8925e897c2a2ef0a898ea6c153816d – 2014-12-14

http://git.eclipse.org/c/uml2/org.eclipse.uml2.git/tree/plugins/org.eclipse.uml2.uml/model/UML.ecore
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1 context ReadingRoom

2 invariant AtLeast3ReferenceCopies (Book b)

3 check self.books.forall[Book b | b.referenceCopy implies (b.copies >= 3)]

Listing 1: XOCL4Inv invariant definition with a simplified constraint for a library

the semantic analyzers for the new DSL. Xtext itself as well as the DSLs designed with it
are integrated in the Eclipse IDE.

Xbase [Eff+12] is an expression language that can be used within any DSL that is created
with Xtext. It is a partial programming language with a Java-like syntax. The goal of Xbase
is to reduce the necessary effort to implement a DSL. Xbase expressions are similar to Java
expressions and the type system is linked to the Java type system. Since it is an expression
language, Xbase does not have the concept of statements in contrast to Java.

3 XOCL4Inv: an Xbase Extension for OCL-Aligned Invariants

We present a prototypical language for invariant specifications, which provides a syntax
and look-and-feel that is very close to OCL. Unfortunately, OCL cannot directly be used to
automatically retrieve elements that cause an invariant violation as described in Section 4
for two reasons: a) a mechanism for indicating which elements shall be retrieved is needed,
and b) the language should be restricted to forbid the formulation of invariants for which the
demanded elements cannot be retrieved. Both could also be achieved by extending an OCL
grammar, editor, and validation engine. We decided, however, to develop a new language
that can easily be extended and integrated with other languages for further research and that
leverages the functional programming style and tool-support of Xtend. We first present the
structure of our language and then we explain the relation to OCL.

3.1 Language Structure

In XOCL4Inv, model constraints can be declared using invariants. Listing 1 shows the
running example. Within the invariant declaration, a context type has to be specified that
conforms to a type from the constrained model (ReadingRoom, line 1). The constraint must
hold for all model instances of the provided type. These context elements are bound by the
tool as implicit first parameters for each invariant declaration. Furthermore, a unique name
is used as an identifier for the invariant (AtLeast3ReferenceCopies, line 2).

In addition to the context element, XOCL4Inv allows the declaration of optional invariant
parameters (Book b, line 2). Each parameter has a unique name and specifies an element
type. These parameters are used to indicate which elements of a certain type need to be
bound from the invariant upon its violation. XOCL4Inv allows the specification of multiple
invariant parameters which get bound to independent sets of constraint-violating elements.

Finally, the language allows the declaration of a constraint (line 3). A constraint is a boolean
expression that has to hold for every model instance of the context element type, which
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OCL Xbase Expression of extension method for XOCL4Inv
iterate fold -
forAll forall -

forAll(a,b) - coll.product(coll).forall(predicate)

exists exists -
exists(a,b) - coll.product(coll).exists(predicate)

select filter -
reject - coll.filter[e|!predicate.apply(e)]

collect flatten ◦ map -
collectNested map -

isUnique - coll.groupBy[function.apply(it)].values

.forall[it.size == 1]

sortedBy sortBy -
any findFirst -
one - coll.filter(predicate).size == 1

Table 1: OCL iterators and corresponding Xbase or XOCL4Inv extension methods

is referenced using the keyword self within the expression. The constraint is an ordinary
expression of the expression language Xbase used in the DSL bench Xtext.It can contain
iterators to specify expressions that are iteratively evaluated for a multi-valued property
of a metaclass or another collection. For each iterator, an iterator variable can be used to
reference the individual element for each evaluation of the iterator expression. If such an
iterator variable is explicitly declared as an invariant parameter, then the algorithm described
in Section 4 can be used to transform the invariant in order to collect the violating elements.

3.2 OCL Alignment

Invariant declarations in XOCL4Inv are very similar in their structure to OCL. Both lan-
guages allow the specification of an invariant name, a context element, and a boolean
constraint. Additionally, XOCL4Inv allows the optional specification of invariant parame-
ters to indicate which model elements shall be retrieved for an invariant violation. Since
XOCL4Inv constraints are formulated in Xbase, model elements, attributes, references,
operations, collection types and primitive types can be used. Most constructs, such as
enumerations, null values, and arithmetic and logical expressions exist in Xbase and OCL.

Furthermore, OCL provides methods marked with the prefix ocl, for instance oclAsType or
oclIsTypeOf. These methods either rarely occur within invariant constraints, e.g. oclIsIn-
State, or have an equivalent Xbase method, for instance type casts or instanceof-checks.To
provide equivalent functionality for the remaining OCL operations that are commonly used,
we defined extension methods which add custom behavior to existing types. Most of these
extension methods operate on multi-valued properties. In Table 1, we show which operations
for OCL iterators are already available in Xbase and which had to be added to XOCL4Inv.
Other common collection operations that do not iterate over collections are shown in Table 2.
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OCL Xbase Expression of extension method for XOCL4Inv
includes contains -

includesAll containsAll -
excludes - !coll.contains(object)

excludesAll - objects.forall[!coll.contains(it)]

isEmpty empty -
notEmpty - !coll.empty

size size -

Table 2: OCL operations without iterator variables and corresponding Xbase or XOCL4Inv methods

For every OCL operation, we either show a corresponding Xbase operation or an expression
implemented in an equivalent XOCL4Inv extension method with the same name.

Like in OCL, constraints formulated in XOCL4Inv have to be side-effect free. Xbase in
general does not have this restriction, so the language has to be restricted in order to prevent
modifications of the model state through constraint checking. Side-effect free methods
can be marked with a @Pure annotation. Additionally, library methods that cannot be
annotated can be added to a user-defined whitelist for pure methods. The tools checks
whether constraints only call methods that are marked accordingly or that are whitelisted.
The whitelist and static analysis for side-effect free methods should, however, be improved
in future work in order to reduce the amount of false positives.

4 Binding Variables of Violating Elements to Parameters

In this section, we explain how invariants formulated in XOCL4Inv are used to compute
constraint-violating elements based on invariant parameters. First, we present our algorithm
for transforming invariants to queries on a high level and introduce a running example. Then,
we explain the individual steps and transformation rules in detail. Finally, we illustrate how
the algorithm works by discussing the transformation of the running example.

4.1 Transformation Overview

Invariants in XOCL4Inv contain a boolean constraint for which named invariant param-
eters may be specified. For each of these parameters, our automated approach finds the
corresponding model elements that violate the constraint, and binds these elements to the
parameters. More precisely, our algorithm finds the unique multi-valued collection property
that is iterated with an iterator variable and that matches the invariant parameter’s name and
type. For this collection, only those elements that are responsible for the invariant violation
are bound. The tool transforms the invariant into a query that collects the constraint-violating
elements and binds them to the parameters by executing several transformation steps.

First, the constraint expression is parsed into a custom expression tree. Then, the specified
invariant parameters are matched to expression nodes for iterate operations. For every
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1 context Library

2 invariant AtLeast3OpenReferenceCopies (Book b, List<Edition> editions)

3 check self.books.select[Book b|!b.stack.closed]

4 .map[it.editions.filter[it.referenceCopy]]

5 .forall[List<Edition> editions|editions.reduce[e1,e2|e1.copies + e2.copies] >= 3]

Listing 2: Complete example invariant ensuring at least three copies for open reference books

invariant parameter that needs to be bound, transformation rules are applied to the iterator
node and its parent nodes in a copy of the expression tree. The resulting transformed
expression tree represents the desired query. In a last step, this expression tree is converted
back into a query expression, which is used to bind the computed elements to the parameters.

The presented approach has a few limitations: Currently, only invariant parameters that
match an iterator variable can be specified. Other attributes and members of model elements
can be used to formulate invariants but they cannot be bound to parameters. The effect
of variables and members can also be expressed with iterators. Therefore, this is not a
limitation of the expressiveness but an inconvenience. Nevertheless, we plan to support
invariant parameters that match members or variables similar to the let-statement in OCL
in future work. Furthermore, the algorithm has to apply transformation rules to the iterator
node and all direct and indirect parent nodes. Only operations that correspond to a node for
which a transformation rule is defined are therefore allowed after a parameterized iterate
expression. Currently, these operations are not, and, or, select, map, forall, and
exists. No such limitations exist for child nodes, i.e. the partial expressions prior to a
matched iterator can be arbitrary Xbase expressions.

4.2 Running Example

In Listing 2, we present a complete version of the library invariant, which we already used
to motivate our approach and to explain our language. This complete invariant illustrates
more transformation rules (see Section 4.6) and applies to the more precise metamodel
presented in Figure 1. In contrast to the metamodel used in the simplified invariant, books
do not belong to a fixed reading room but to the library. They are stored in a stack which
may be open to the public or not. Furthermore, the flag for reference copies and the attribute
for number of copies are no longer specified for a book but for a specific edition of a book.

Library

Book
Edition

referenceCopy:boolean
copies:int

Stack

closed:boolean

books

1

1..*

editions
1 1..*

stack
1..*1

stacks

1

1..*

Figure 1: Library metamodel for the complete version of the example invariant
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1 context Library

2 invariant Books4AtLeast3OpenReferenceCopies (Book b)

3 query self.books.select[Book b|!b.stack.closed &&

4 !(b.editions.filter[it.referenceCopy].reduce[e1,e2|e1.copies + e2.copies] >= 3)]]

Listing 3: Query for the complete example returning open reference books with less than three copies

The constraint of the extended example specifies that for every book in an open stack the
sum of copies for all editions must total to more than three (line 3–5). If the constraint
is violated, the responsible elements have to be computed. A trivial solution would be to
return the library context element (line 1). This solution ignores, however, the collection
and properties that are inspected during a check and does not determine a precise cause
for an invariant violation. The directly responsible elements are those lists of editions for
which the sum of copies does not satisfy the constraint. With our approach, these elements
could be retrieved by specifying an invariant parameter List<Edition> editions. For our
running example, we choose the invariant parameter Book b (line 2) to obtain those books
of the library that have such a list. These indirectly responsible books can be retrieved by a
query that is automatically derived from the invariant and shown in Listing 3.

Both example versions illustrate cases in which invariant parameters are needed in addition
to contexts. First, there are cases in which an invariant only has to hold for instances with
incoming references from the context element: The simplified invariant does not have to
hold for books that are not in the reading room. Second, there are cases where a single
context as in OCL is not enough because several elements may lead to a violation: Violations
of the complete invariant can be resolved by manipulating books or lists of editions.

4.3 Obtaining a Custom Expression Tree Suited for our Transformation

Currently, the XOCL4Inv grammar specifies that invariant constraints can be arbitrary
Xbase expressions. Therefore, we obtain an Abstract Syntax Tree (AST) of XExpressions
from the parser generated with Xtext. The transformation algorithm defines rules based
on much finer distinctions. For instance, all method calls result in a XMemberFeatureCall
in Xbase, but method calls have to be transformed in a method-specific way. Calls to the
methods select or forall, for example, have to be transformed differently. Therefore,
we use a custom expression tree that differentiates between node types that have to be
transformed differently and unifies node types that can be treated identically. This makes
it possible to define transformation rules exactly for these node types and to focus on
properties that are relevant for the transformation. The metamodel for the nodes of the
custom expression tree is shown in Figure 2. A constraint in Xbase syntax is converted into
an expression tree that consists of these custom nodes. The nodes’ metaclasses are listed in
Table 3, along with the XExpression and example expressions from which they are parsed.

The last benefit of a custom tree model are references to parent and child nodes, which are
essential for the traversal of the expression tree during the transformation process. These
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Node

FeatureNode

feature:String

BlockNode AbstractBinaryNode

operation:String

AndNodeBinaryNode OrNode

NotNode

FunctionNode

parameters:Map<String,JvmReferenceType>

AbstractOperationNode

operation:String

IterateNodeOperationNode

IntermediateIterateNode

MapNode SelectNode

TerminalIterateNode

ForallNode ExistsNode

parent0..11..*
children

1

1..*

left1

1

right 1

1

child

1

1

expression 1

1

target1

1

arguments 1

0..*

functionNode

1

1

Figure 2: Custom node metamodel for expression trees

references are not contained in XExpressions and make it easier to create, copy, substitute,
and modify nodes to apply individual transformation rules.

Currently, the following expressions cannot be transformed because we did not yet define
custom node types and transformation rules: type casts, control structures, and variable
declarations. Our prototype provides extension methods to transform equivalent constraints
that use them instead of the unsupported expressions. In future work, these node types and
transformation rules will be added and these extension methods will no longer be needed.

The expression tree for the running example invariant is presented in Figure 3. To obtain the
pretty-printed expression shown in Listing 2, an in-order traversal is performed on the tree.

Forall[]

Function[editions] Binary[>]
Operation[reduce]

Function[e1,e2] Binary[+]
Operation[copies] Feature[e1]

Operation[copies] Feature[e3]
Feature[editions]

Feature[3]

Map[]

Function[it] Operation[filter]
Function[it] Operation[referenceCopy] Feature[it]

Operation[editions] Feature[it]

Select[]

Function[b] Not[!] Operation[closed] Operation[stack] Feature[b]

Operation[books] Feature [self]

Figure 3: The custom expression tree that is obtained for the complete example invariant
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Node type Example expressions Corresponding XExpression
ForallNode forall XMemberFeatureCall

ExistsNode exists XMemberFeatureCall

SelectNode select XMemberFeatureCall

MapNode map XMemberFeatureCall

OperationNode self.getBooks(), edition.copies XMemberFeatureCall

AndNode && XBinaryOperation

OrNode || XBinaryOperation

BinaryNode <, +, /, ... XBinaryOperation

NotNode ! XUnaryOperation

FeatureNode self, editions, b, it, 3 XFeatureCall or Literal
FunctionNode [a|expression(a)] XClosure

BlockNode {...} XBlockExpression

Table 3: The classification of nodes that are used to build the expression tree

4.4 Matching Parameters to Iterator Nodes

In order to transform the invariant expressions for each specified invariant parameter, the
algorithm first matches every parameter to its corresponding iterator node. More precisely,
the expression tree is traversed with in-order depth-first search to find all nodes of type
IterateNode. If the lambda function of an iterator node specifies an iterator that has the same
name as the invariant parameter, the node is a name match candidate. In order to provide
only unambiguous matches, both invariant parameter names and iterator variable names
have to be unique within the complete invariant constraint.

A name match candidate is only a parameter match if the type of the iterator variable is
assignment-compatible to the type of the invariant parameter. This ensures that the resulting
query retrieves elements that can be bound to the statically typed invariant parameter. In
the running example (Listing 2), the name of the invariant parameter b (line 2) matches the
iterator variable of the select operation (line 3). Both have the same type and therefore
the algorithm can proceed. In general, the algorithm finds a matching iterator node for each
invariant parameter and transforms a separate invariant copy into a query to retrieve the
violations. The required transformation rules are presented in the next section.

4.5 Transforming Iterator Nodes to Queries

Once the expression tree is generated and the matching iterator node is found for a specified
invariant parameter, the tool transforms a copy of the expression tree into a tree for a query
that selects the desired elements. This transformation is executed independently for every
specified unique invariant parameter. The root of this tree is a SelectNode which selects the
invariant-violating elements from the invariant context.

Given the constraint expression tree and an iterator node matching an invariant parameter,
the algorithm recursively applies transformation rules. It starts top-down at the root node
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and transforms child nodes until the iterator node is converted into the desired SelectNode.
The query expression is finally obtained by performing an in-order traversal on the resulting
query expression tree. The tool uses the transformed expression to bind the elements
responsible for a specific constraint violation to the invariant parameter.

In the next paragraph, we explain the individual transformation rules for all transformable
node types. The algorithm transforms the parent nodes recursively before transforming the
actual node. Therefore, the transformation rules are not isolated but take the transformation
result of the parent node into account.

For NotNodes rules of standard predicate logic are applied: Negated conjunctions (AndNode)
and disjunctions (OrNode) are transformed by applying DeMorgan’s laws. The nodes are
replaced with their negated counterparts by pushing the negation inwards. A negated uni-
versal quantification (ForallNode) is replaced with an existential quantification (ExistsNode)
for the negated predicate, and vice versa.

The ForallNode specifies that all elements in the target collection have to satisfy a given
predicate. Therefore, the resulting query selects all elements that do not satisfy the predicate
and thus violate the constraint.

coll.forall[e | predicate(e)]

coll.select[e | !predicate(e)]

The ExistsNode specifies a predicate that has to be satisfied by at least one element in the
target collection. If the constraint is violated, then all elements in the target collection are
responsible as none of them satisfies the predicate. But if one element satisfies the predicate,
then no elements have to be retrieved even if some of them may not satisfy the predicate.

coll.exists[e | predicate(e)]

coll.select[!coll.exists[e | predicate(e)]]

A SelectNode only occurs with a parent node or as the result of a prior transformation.
First, the parent node is transformed by applying the appropriate transformation rule to
it. The result is a SelectNode for the parent. Then, the predicate of this parent SelectNode
is conjunct with the predicate of the current SelectNode and the iterator variables are
substituted accordingly to form a single resulting SelectNode.

coll.select[e | predicate(e)].select[p | parentPredicate(p)]

coll.select[e | predicate(e) && parentPredicate(e)]

A MapNode applies a function to each element of the target collection. On this mapped
collection, further iterate operations may be used. First, these operations are transformed
into a SelectNode. Then, the mapping is inlined into the SelectNode: The MapNode is
replaced by the SelectNode and all occurrences of the iterator variable are replaced with an
application of the function that was specified in the MapNode.

coll.map[e | function(e)].select[p | predicate(p)]

self.select[e | predicate(function(e))]

An AndNode combines an expression that contains the unique iterator variable matching the
invariant parameter with another expression. For the resulting query, elements referenced
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by this iterator variable have to be retrieved if the expression with the matched variable
evaluates to false. Whether the other expression without the matched variable also evaluates
to false has no influence on the elements to be retrieved. Therefore, the transformation
algorithm removes the expression without the matched variable and only transforms the
expression with the matched variable. The order of the expressions does not matter. A
swapped invariant otherExpression && self...e... is transformed the same way.

coll.forall/exists[e | predicate(e)] && otherExpression

coll.select[e | predicate(e)]

An OrNode combines a parameterized expression and another predicate similar to an
AndNode. But in contrast to the transformation for the conjunction, the other predicate of
the disjunction cannot be ignored. If the expression evaluates to false but the other predicate
holds, then the constraint is not violated. Therefore, the retrieved elements of the child
expression may only be selected in the query if the other predicate is violated.

coll.forall/exists[e | predicate(e)] || otherPredicate

coll.select[e | predicate(e) && !otherPredicate]

4.6 Transformation Example

To illustrate the transformation we come back to the running example shown in Listing 2
and 3. In order to transform the SelectNode printed in bold in Figure 3 with the invariant
parameter Book b, the algorithm recursively transforms the parent nodes printed in italics.
It starts at the ForallNode and transforms it into:

...select[editions|!(editions.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

The algorithm continues with the transformation of the MapNode. The previously obtained
SelectNode is substituted with the following expression:

...select[!(it.editions.filter[it.referenceCopy]

.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

Last, the SelectNode with the invariant parameter is transformed by incorporating the parent
node’s predicate and substituting the iterator variable:

...select[Book b | !b.stack.closed &&!(b.editions.filter[it.referenceCopy]

.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

The final result is the query presented in Listing 3. It retrieves all books that transitively
violate the constraint and is bound to the invariant parameter Book b by our tool.

5 Evaluation and Discussion

We evaluated the correctness of the language and of the invariant transformation in two
stages: In the first stage, we used synthetic test cases to ensure that invariants formulated
in our language produce the same results as the equivalent OCL invariants and that the
transformation algorithm produces queries that retrieve the correct elements. In the second
stage, we used 88 out of 444 real invariants of the Eclipse metamodel for the UML to check
that the language and the transformation algorithm fulfill these properties on them as well.
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5.1 Evaluation of the Invariant Language

Our XOCL4Inv language is strongly aligned to OCL, which is commonly used for the
specification of metamodel constraints. Therefore, it is necessary that OCL invariants can
be expressed in a similar way in XOCL4Inv and produce identical results. We created
19 synthetic language test cases to compare OCL and XOCL4Inv expressions for every
operation defined in tables 1 and 2. Each test case provides the same input models to an
OCL expression and an XOCL4Inv expression containing Xbase or extension methods and
verifies that they retrieve the same results.

In addition to these basic synthetic tests, we also evaluated XOCL4Inv using real invariants
from the UML metamodel. It contains 444 constraints, which we categorized individually.
24 constraints have only a textual description, leaving 420 invariants in OCL notation. 175
of these compare attributes or properties of the context element and could be expressed in
XOCL4Inv. Further 79 invariants compare sizes of collections from multi-valued properties
of the context element. These constraints use the Xbase size or empty operations. In
general, it is not possible to determine the elements that cause an invariant violation for
these cardinality constraints because they may be part of the collection or not.

Most importantly, 88 constraints of the UML metamodel contain iterators that can be
transformed, i.e. expressions containing forall, exists, select, or map. We formulated
each of these invariants in XOCL4Inv, as described in the next subsection. A last set of
78 invariants cannot be assigned to any of the previous categories the invariants contain
nested combinations of multiple operations or calls to unsupported operations, such as
allInstances. These nested operations may contain nested invariant parameters, i.e. pa-
rameterized iterate operations within the predicate of other iterate operations, which are
currently not supported by our prototype. Our approach is able to transform only the 88
invariants that contain non-nested iterate operations that specify an iterator variable. We are
currently working on nested expressions by transforming non-nested and nested expressions
separately and combining them afterwards.

5.2 Evaluation of the Binding Transformation

In order to test the correctness of the transformation, we checked for 19 additional synthetic
transformation test cases that the tool generates the correct query for a given invariant with a
parameter and that this query retrieves the correct model elements. For each test, input-output
pairs verify that the retrieved elements are equal to the expected ones. The synthetic tests
cover all node-operation combinations and the following numbered expression categories:

1-2 Unchained parameterized forall and exists invariants
3-4 A select with the invariant parameter followed by forall (3) or exists (4)
5-6 A parameterized map followed by forall or exists
7-8 Both && and || combining a parameterized forall with a second predicate

9-16 The negation of 1-8
17-19 The operations forall and exists as well as conjunctions and disjunctions in

combination with parent nodes
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The transformative approach is evaluated on all 88 invariants of the UML metamodel
that contain iterators that can be transformed or rewritten to be transformed. For each
invariant, we provide an equivalent formulation in XOCL4Inv and manually checked that
the generated query equals the expected outcome of the transformation algorithm.

5.3 Discussion

The language and transformation evaluation results for the UML metamodel are promising
but have to be complemented by evaluations on further metamodels and further invariants.
We demonstrated successfully that we can express and transform 88 invariants of a popular
UML metamodel, but it is unclear whether all other Ecore metamodels and OCL invariants
can be processed. Therefore, additional invariants should be used to confirm that the
language and transformation also work for OCL expressions that are not used in the UML
invariants and for structural patterns that do not occur in the UML metamodel.

Furthermore, the transformation evaluation for the UML invariants is based on a manual
inspection of the obtained query. In future work this inspection should be automated in
order to ensure systematically that the obtained query retrieves the correct elements for
several input models. It is, however, an open question whether some of these input models
and the sets of elements to be returned for violations can be generated or whether they have
to be created manually and can only be automatically compared.

If the transformation is extended in order to transform further expressions, this extension
should be evaluated using some of the 78 invariants of the UML metamodel that can
currently not be transformed, but also using further invariants of other metamodels. A
formal proof of correctness could be done for each transformation rule, but as it mainly
realizes well-known predicate logic the benefit of such proofs is disputable.

6 Related Work

Sigma [KC12] is a hybrid model transformation library or internal domain-specific lan-
guage for Scala. It supports declarative transformation rules and imperative validation
and transformation code. Sigma groups constraints in validation contexts and provides
facilities to define severity levels for invariant violations, error messages and repair actions.
If model elements that caused an invariant validation are used in such repair actions, then
the computation of these elements has to be explicitly defined in addition to the definition of
the invariant check [cf. KCF14, p.1613, ll.19–22]. Parts of the checking of an invariant can,
of course, be factored out and be reused for retrieving model elements. For most invariants
this is, however, much more verbose than specifying constraint parameters in our approach.

The Epsilon Validation Language (EVL) [KPP09] of the Epsilon framework is similar to
OCL but overcomes several shortcomings of it. Similar to Sigma, it supports the definition
of fix procedures for invariants. These fixes are tightly coupled to a constraint, so that it is
not possible to write several fixes for a single constraint without repeating it. In contrast to
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our approach, parameters that are defined in invariant checks cannot be reused directly in
fixes. They have to be defined and computed again in fixes [cf. KPP09, p.215, ll.47–63].

Furthermore, both Sigma and EVL do not separate the definition of invariant checks from
fixes. This may be crucial if different fixes are to be defined for different editors, transfor-
mations, development projects, or customers while some of the corresponding invariants
may be defined for a metamodel regardless of its usage. We are planning to support such a
reuse of invariants in the domain-specific language for model consistency [Kra15], which
will integrate the invariants language presented in this paper.

EMF-IncQuery [Ber+12; Ujh+15] is a framework for declarative model queries. It performs
incremental graph pattern matching based on Rete networks. IncQuery provides a live
validation service that can report constraints validations directly after the modification that
lead to it. An annotation can be used to turn an ordinary graph pattern into constraints and
to define severity levels or error messages for it. Parameters of a constraint pattern can be
designated as keys to identify a violation which is a pattern match. These constraint keys
are equivalent to the invariant parameters of the presented approach: They also provide
elements that lead to a violation based on explicit constraint parameters and do not force
developers to repeat parts of the constraint checking logic in order to obtain these elements.
The main difference to our approach is, however, the relation to OCL: If elements that cause
an invariant violation shall be computed for pre-existing OCL invariants, the transition to our
approach based on an OCL-aligned language should require less effort than implementing
these invariants again with IncQuery. In projects where such invariants exists and where
developers are already familiar with OCL but not with IncQuery, our approach may be
more appropriate. To further ease such a use for legacy OCL invariants we are currently
working on a automated conversion from OCL to XOCL4Inv. There is a translation from
OCL queries to graph patterns that can be queried using EMF-IncQuery [bergmann2014a].
With this approach, it would be possible to modify the patterns that result from an OCL
invariant in order to obtain wanted elements that violate the invariant. The goal of the
translation was, however, better performance. Therefore, a conceptual mapping from the
resulting patterns to the initial OCL invariant may not always be straightforward, in contrast
to our approach.

7 Conclusion

In this paper, we have presented an OCL-aligned language for invariants with explicit
parameters and an algorithm to bind elements causing an invariant violation to these
parameters. First, we have explained why an automated computation of such elements
from a redundancy-free invariant definition is important to document or resolve invariant
violations without unnecessary effort. Then, we have introduced the XOCL4Inv language
that combines the style of OCL invariants with the extensibility and power of the expression
language Xbase. We have presented an algorithm that obtains queries that compute elements
causing an invariant violation by recursively applying transformation rules for invariant
expressions. Last, we have discussed how we evaluated the correctness of our language and
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transformation algorithm with a prototypical implementation and invariants taken from a
popular UML metamodel.

In future work, we are going to evaluate the language and algorithm with invariants of
additional case studies. We are also planning to add transformation rules for invariant
expressions and parameters that cannot yet be processed. Finally, we are going to reduce
the amount of false alarms for side-effects in invariants.
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Model Validation and Verification Options

in a Contemporary UML and OCL Analysis Tool

Martin Gogolla1, Frank Hilken1

Abstract: Modern systems and their architectures are getting more complex than ever. Develop-
ment strategies, like model-driven engineering (MDE), help to abstract architectures and provide a
promising way to deal with the complexity. Thus, the importance for the underlying models to be
correct arises. Today’s validation and verification tools should support the developer in generating test
cases and provide good concepts for fault detection. In this contribution, we introduce and structure
essential use cases for model exploration, validation and verification that help developers find faults
in model descriptions. Along with the use cases, we demonstrate the model validator of the USE tool,
a modern instance finder for UML and OCL models based on an implementation of relational logic
and present the results and findings from the tool.

1 Introduction

Model-driven engineering (MDE) takes a view on system development focusing rather on
models than on code. A model catches a system by abstracting its complexity through reduc-
tion of information, however preserving properties relative to a given set of concerns. Today,
modeling languages, such as the UML (Unified Modeling Language) which comprises
the OCL (Object Constraint Language), have found their way into mainstream software
development. Models are the central artifacts in MDE because other software elements
like code, documentation or tests can be derived from them using model transformations.
Common model quality improvement techniques are model validation (“Are we building
the right product?”) and verification (“Are we building the product right?”) [Bo89]. Among
the different aspects of a system to be caught, structural aspects represented by class and
object diagrams are of central concern.

The tool USE (UML-based Specification Environment) [GBR07] supports the develop-
ment of UML models enhanced by OCL constraints. USE offers class, object, sequence,
statechart, and communication diagrams. It facilitates class and state invariants as well as
pre- and postconditions for operations and transitions formulated in OCL. It allows the
modeler to validate models and to verify properties by building test scenarios. One USE
component that is in charge for this task is the so-called model validator that transforms
UML and OCL models as well as validation and verification tasks into the relational logic of
Kodkod [TJ07], performs checks on the Kodkod level, and transforms the obtained results
back in terms of the UML and OCL model. The modeler works on the UML and OCL level
only without a need for expressing details on the relational logic level, i.e., on the Kodkod
level.
1 University of Bremen, Computer Science Department, E-Mail: {gogolla,fhilken}@informatik.uni-bremen.de
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The starting point for our current approach is a structural UML model (class diagram)
enriched by OCL invariants. With a small, but versatile running example, we discuss various
use cases for model validation and verification: model consistency, property reachability,
constraint implication, constraint independence, solution interval exploration, and partial
solution completion. For example, model consistency means that classes and associations
considered together with the OCL constraints can be instantiated in form of an object
diagram, or solution interval exploration means that not only a single instantiation in form
of objects and links is examined but all instantiations are taken into account and may be
inspected for validation and verification.

The running example here is rather small, but we have already checked that some use
cases work for larger models as well [Go15]. Additionally, all presented use cases do not
only benefit the USE tool, but also other verification engines [CCR14, Wi08, Br10, QT06]
can be used to perform these tasks. Usually, some modifications to the model constraints
or additions of such constraints is enough to adopt the tasks. In comparison to the other
approaches, however, our current method has the highest coverage of OCL features and
offers the most high-level interactions for the use cases.

The rest of the paper is structured as follows. Section 2 gives background information
and recaps application areas of UML and OCL models, introduces our running example,
shows the basic functionality of USE, and sketches relational logic and Kodkod. The central
Sect. 3 discusses the main validation and verification use cases that can be realized, among
them how to check model consistency and consequences from stated constraints. Section 4
puts our approach into the context of known work. The paper ends with a conclusion and
future work in Sect. 5.

2 Preliminaries

2.1 Application Areas for UML and OCL

UML together with OCL have been succesfully used for system modeling in numerous
industrial and academic projects. Here, we refer to only three example projects trying to
indicate the wide spectrum of application options. In our own early work [ZG03], we have
specified safety properties of a train system in the context of the well-known BART case
study (Bay Area Rapid Transit, San Fransisco). In [Al11], central aspects of an industrial
video conferencing system developed by Cisco have been studied. In [OM13], UML and
OCL are employed for the specification of the UML itself by introducing the so-called
UML metamodel in which fundamental well-formedness rules of UML are expressed as
OCL constraints.

2.2 Example UML and OCL Model in USE

The screenshot in Fig. 1 shows how the running example employed here is represented in
USE. The class diagram in the top right contains one class Person having a first name, a
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Fig. 1: Parenthood Example class and object diagram.

last name and the year of birth as attributes. The association Parenthood resembles the
parent-child relationship with at most two parents and arbitrary many children per person.

The model may be employed to present family trees as UML object diagrams. To enforce
rational family trees three simple invariants are employed, thereby restricting the set of
allowed system states, that is defined by the class diagram. These OCL constraints ensure
unique names for all persons, prevent cycles in the parenthood relationships and require
parents to be at least 15 years older than their children.
context p1 , p2 : Person inv nameUnique:

p1<>p2 implies (p1.fName <>p2.fName or p1.lName <>p2.lName)
context p : Person inv acyclicParenthood:

p.parent ->closure(parent)->excludes(p)
context p : Person inv parentOlderChild:

p.child ->forAll(c | p.yearB +15<=c.yearB)

The object diagram in the center of Fig. 1, showing several Person objects and Parenthood
links, illustrates a system state of the model showing the family tree as present in the movie
Godfather. In the lower left, OCL is employed for an ad-hoc query that returns all offsprings
of jimmy. Arbitrary OCL expressions can be used here to analyze the system state. The
present system state satisfies all three invariants and model inherent constraints, such as
multiplicity constraints.

2.3 Relational Logic and Kodkod

The verification engine used in this paper, the USE model validator, is based on the relational
logic of Kodkod [TJ07]. Kodkod defines a problem to consist of a universe, i.e., a set of
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Fig. 2: Validation and verification use cases.

uninterpretable atoms, a set of relation declarations and a relational formula. The universe is
defined by the underlying class diagram together with the configuration. The configuration
specifies the number of objects available in a solution including primitive data types like
Integer and String. For these types, a minimum and maximum number of instances
is defined and specific values for class attributes can be specified. Finally, the relational
formula is constructed from (1) UML structural constraints, (2) OCL class invariants and
again (3) the configuration. The translation process is based on [KG12].

Given a class diagram and a configuration, the USE model validator generates all three
aspects required for Kodkod to solve the problem instance with an off-the-shelf SAT solver.
If a valid instantiation is found, the USE model validator generates the corresponding object
diagram from the solution instance given by Kodkod. Otherwise, no instance exists for the
given model together with the configuration and optionally1, a counterproof is presented,
hinting at possible problems in the model.

3 Validation and Verification Use Cases

The recent validation and verification options in USE will be demonstrated as shown in
Fig. 2 by six use cases for central analysis tasks: model consistency, property reachability,
constraint implication, constraint independence, solution interval exploration, and partial
solution completion.

Figure 3 shows the uses cases from Fig. 2 and the primary input and output artifacts. The
distinction between expected and unexpected output parts is as follows: for a use case
one typically has in mind a particular expectation for the output of the main flow that
is displayed in the upper half of the circle, whereas the output for an alternative flow is
pictured in the lower half of the circle. For example, for the constraint implication use

1 Whether a proof is generated depends on the employed SAT solver.
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Fig. 3: Use case input and use case output for main and alternative flow.

case the expected output is that no object model is found, whereas a found object model
represents a counter example for the suspected constraint consequence.

3.1 Model Consistency

Model consistency is a crucial property. In the context of a class diagram, it guarantees
that the UML association multiplicities together with the explicit OCL invariants are not
contradictory and that the class diagram can be instantiated with a system state, i.e., an
object diagram. Within the context of a UML class diagram, sometimes this property is
referred to as class liveness. Finding classes that are not live means that they cannot be
instantiated and thus might be unusable in the model.

Model consistency can be proved by handing over to the model validator a configuration
that describes the possible populations of classes, associations and attributes in terms of
so-called bounds. In technical terms, model consistency is realized through the command mv
-validate <PropertyFile>2. The model validator tries to construct within the specified
bounds a valid system state (object diagram). If successful, the system state can be inspected,
and if not, the model validator reports that the class diagram cannot be instantiated within
the specified bounds. Such an analysis process realizes a verification task for a finite domain.
The bitwidth used by the underlying solver for integer arithmetic can be configured in the
model validator through the command mv -config bitwidth:=<NumBits>.

In the following configuration file used for the consistency use case, exactly 10 persons
and 11 parenthood links together with attribute values from the stated enumerations are
employed3. The object and link numbers and datatype values are exactly as in Fig. 1. The
particular datatype values are not bound to particular objects, but the assignment is done by
the model validator.
Person_min = 10; Person_max = 10;

2 Commands, which are newly introduced, are displayed in a black-on-gray style.
3 The syntax in the configuration files is partly slightly different. We have decided to use this self-explanatory

notation.
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Fig. 4: Generated instantiation for model consistency.

Person_fName = Set{’Lucy ’,’Jimmy ’,’Vito ’,’Carmela ’,’Sonny ’,
’Michael ’,’Kay ’,’Vincent ’,’Anthony ’,’Mary ’};

Person_lName = Set{’Corleone ’,’Adams ’,’Mancini ’};
Person_yearB = Set {1891 ,1897 ,1900 ,1916 ,1920 ,1924 ,1923 ,1948 ,1951 ,1953};
Parenthood_min = 11; Parenthood_max = 11;

The following protocol shows how USE is fed with the model. The bitwidth configuration
in the model validator (mv -config command) is necessary due to the desirable realistic
year numbers, however it slows down the underlying SAT solver. The validation process is
kicked off with the mv -validate command, and the constructed object diagram is shown
in Fig. 4, which is different from Fig. 1, because the model validator has chosen from the
many possible solutions satisfying the specified bounds and datatype values one particular
solution.

use > open parenthood.use
use > mv -config bitwidth :=12

ModelValidatorConfiguration: Set bitwidth to 12
use > mv -validate corleone.properties

ModelTransformator: Translation time: 234 ms
ModelValidator: SATISFIABLE

Translation time: 359 ms Solving time: 5351 ms

The three time specifications refer to the time needed (a) to translate the class diagram
including the invariants into the relational logic of Kodkod, (b) to translate the relational
formula and configuration into SAT (this step is performed by Kodkod), and (c) to solve the
translated relational formula by the underlying SAT solver. Setting the bitwidth is required
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Fig. 5: Generated instantiation for property reachability.

due to the large integers for the years of birth and is necessary in the following scripts, as
well. However, we will not repeat all commands below.

3.2 Property Reachability

Property reachability is another verification task that proves that a specific property can
be established by object diagrams that are also valid with regard to the original model
without having to modify it. Thus the object diagrams of the newly formulated property
are a subset of the original object diagrams. The properties are arbitraray OCL expressions
that must hold in the generated system state. Additionally, negative properties can be
formulated to verify the absence of, e.g., dangerous or illegal system states, or simply
unwanted constellations in the system.

In technical terms, property reachability is realized by adding another invariant to the
model and by asking the model validator to instantiate the enriched model on the basis of
a configuration. constraints -load <constraintFile> adds the constraint from the
file to the current model. After starting the model validator with the original model enriched
by the additional invariant employing the given configuration, the expected result should be
a system state that satisfies the original model and the additional specific property.

The following invariant shows that the Parenthood model allows object diagrams that
constitute perfectly balanced, binary trees. OCL allows to catch the essentials in condensed
form.
context p:Person inv balancedBinaryTree:

---------------------------------------- balance , binary
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(p.child ->size=0 or p.child ->size =2) and
--------------------------------------------------- root
Person.allInstances ->one(r | r.parent ->size=0 and

Person.allInstances ->excluding(r)->forAll(p2 |
p2.parent ->size =1)) and

------------------------------------------------ balance
p.child ->forAll(c1 ,c2 | c1.child ->closure(child)->size =

c2.child ->closure(child)->size)

In the following configuration, exactly 15 person objects are specified, whereas the number
of Parenthood links is left open. The model validator finds out that exactly 14 Parenthood
links are needed.
Person_min = 15; Person_max = 15;
Person_fName = Set{’Ada ’, ’Bob ’, ’Cyd ’, ’Dan ’, ’Eve ’};
Person_lName =

Set{’Alewife ’, ’Baker ’, ’Cook ’, ’Digger ’, ’Eggler ’};
Person_yearB = Set{1905, 1920, 1935, 1950, 1965, 1980, 1995};
Parenthood_min = 0; Parenthood_max = *;

Specifying exact bounds for Parenthood (min 14, max 14) would dramatically speed up
the solving process. The following protocol adds the above invariant to the model. The
resulting object diagram is shown in Fig. 5. The generated system state confirms the claim,
that the property does in fact hold in the running example.
use > constraints -load balancedBinaryTree.invs

Added invariants: Person :: balancedBinaryTree
use > mv -validate balancedBinaryTree.properties

ModelTransformator: Translation time: 296 ms
ModelValidator: SATISFIABLE

Translation time: 1576 ms Solving time: 16396 ms

3.3 Constraint Implication

Typically, the modeler specifies a bunch of central properties directly in terms of constraints.
However, the modeler often has in mind that the constraint set guarantees that a more global
property also holds, i.e., that the global property is an implication of the specified model. In
order to formally check the intuitively present global property against the model, the global
property is formulated as an invariant, and it is tested whether the suspected implication
formally holds.

In technical terms, checking constraint implication is realized by adding the global property
to the model. Then that property is logically negated with the command constraints

-flags <Invariant> +n, and the model validator is asked on the basis of a configuration
to instantiate the model. If the global property is an implication from the original model,
then the model cannot be instantiated in this situation as the global, implied property
has been added in logically negated form. Then the expected result is that the model is
unsatisfiable. Otherwise, the model validator will construct a counter example that explains
that the suspected invariant is not a model implication.

In the example, the invariant implication which we expect to hold is that a grandparent is at
least 30 years older than the grandchild, formulated here as an additional OCL invariant.
context gp : Person inv grandparentOlderGrandchild:

gp.child.child ->forAll( gc | gp.yearB +30 <= gc.yearB )
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Fig. 6: Status of original and loaded invariants.

The following configuration binds the number of persons to at most 6. The Parenthood
links are not restricted. Possible attribute values are as above.
Person_min = 0; Person_max = 6;
Person_fName = Set{’Ada ’, ..., ’Eve ’};
Person_lName = Set{’Alewife ’, ..., ’Eggler ’};
Person_yearB = Set{1905, ..., 1995};
Parenthood_min = 0; Parenthood_max = *;

The protocol to follow adds the previously defined invariant grandparentOlder-

Grandchild to the model and logically negates it. The status of the invariants can be
checked either on the command shell or in the USE GUI as shown in Fig. 6. The model
validator reports that under the stated configuration the model including the additional
negated invariant is unsatisfiable. One could increase the number of possible objects in
class Person (Person_max=7, 8, 9, ...), however this will not change the resulting
report. Being convinced that we have performed enough checks, we assume now that the
suspected invariant is indeed an implication from the stated model.
use > constraints -load grandparentOlderGrandchild.invs

Added invariants: Person :: grandparentOlderGrandchild
use > constraints -flags Person :: grandparentOlderGrandchild +n
use > constraints -flags

-- active class invariants:
Person :: acyclicParenthood
Person :: grandparentOlderGrandchild (negated)
Person :: nameUnique
Person :: parentOlderChild

use > mv -validate grandparentOlderGrandchild.properties
ModelTransformator: Translation time: 296 ms
ModelValidator: UNSATISFIABLE

Translation time: 171 ms Solving time: 2590 ms

3.4 Constraint Independence

Constraint independence is a property of the complete set of constraints. Its goal is to check
whether the constraints are independent from each other, i.e., no single constraint is an
implication from the other constraints. This property may also be regarded as a kind of
minimality property for the constraint set: in this case no single invariant can be removed
without changing the set of object diagrams for the class diagram. Independence may or
may not hold for the stated constraints. In any case it is interesting to know whether this
property holds, for example, in the context of model slicing it will be crucial to reduce the
model complexity by identifying a minimal set of needed invariants.
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With regard to technical realization, the model validator is started with the option mv

-invIndep <PropertyFile> all. The result will be a statement for each individ-
ual invariant whether it is independent from the other invariants or not. Internally the
model validator is started as many times as there are invariants in the model, and in
each model validator run exactly one invariant is passed in logically negated form. As a
variation of the already discussed invIndep option, mv -invIndep <PropertyFile>

<singleInvariant> (without the keyword all) is available in order to construct the
example for independence of the single invariant. If an invariant cannot be shown to be in-
dependent, further analysis can be performed by deactivating invariants with constraints

-flags <singleInvariant> +d4.

Concerning the example, the property file for the independence use case is the same
as for the constraint implication use case. Below you see the protocol for calling the
model validator with the independence option. You see that the invariants are indeed not

independent. As detailed in the protocol and shown in Fig. 7, a further analysis with two
checks, which deactivate one invariant, reveal that the invariant parentOlderChild is
implying acyclicParenthood.
use > mv -invIndep invIndep.properties all

InvIndepCheck:
Person :: acyclicParenthood: Not Independent
Person :: nameUnique: Independent
Person :: parentOlderChild: Independent

----------------------------------------------
-- nameUnique => acyclicParenthood ?
-- parentOlderChild => acyclicParenthood ?
----------------------------------------------
use > reset
use > constraints -flags Person :: acyclicParenthood -d +n

Person :: nameUnique -d -n
Person :: parentOlderChild +d -n

use > mv -validate invIndep.properties
ModelValidator: SATISFIABLE

----------------------------------------------
use > reset
use > constraints -flags Person :: acyclicParenthood -d +n

Person :: nameUnique +d -n
Person :: parentOlderChild -d -n

use > mv -validate invIndep.properties
ModelValidator: UNSATISFIABLE

3.5 Solution Interval Exploration

There may be circumstances during validation in which the modeler is not only interested
in a single solution in terms of a system state, but the modeler wants to obtain an overview
on all solutions. Naturally this will be feasible only if the solution interval is relatively
small. By choosing reasonable small bounds for classes and association and by restricting
attribute values, interesting results can be achieved: “Even a small scope defines a huge
space, and thus often suffices to find subtle bugs.” [Ja06, p. 16].

The technical option for the exploration of a solution interval is accessible in the model
validator with the command mv -scrollingAll <PropertyFile> in combination with
4 On the USE command shell, deactivating and negating invariants can be combined.
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Fig. 7: Invariant status for independence and generated counterexample.

the additional succeeding commands mv -scrollingAll [prev|next|show(<N>)].
The first command computes all solutions with regard to the property file. The following
commands allow to scroll through the solution interval or to access a solution with the
respective solution number (referring to the order in which the solutions have been found).

In the example, the configuration file restricts the number of possible Person objects and
names to three and the number of age values and parenthood links to two.
Person_min = 3; Person_max = 3;
Person_fName = Set{’Ada ’, ’Bob ’, ’Cyd ’};
Person_lName = Set{’Alewife ’};
Person_yearB = Set{1950, 1965};
Parenthood_min = 2; Parenthood_max = 2;

The protocol shows that the model validator finds six solutions which are displayed in
Fig. 8. These object diagrams represent the complete search space, i.e., all allowed object
diagrams of the running example, for the (admittedly and purposely) small configuration.
use > mv -scrollingAll scrollingAll.properties

ModelTransformator: Translation time: 234 ms
ModelValidator: SATISFIABLE

Translation time: 1872 ms Solving time: 187 ms
...
ModelValidator: UNSATISFIABLE

Translation time: 1622 ms Solving time: 328 ms
ModelValidator: Found 6 solutions

use > mv -scrollingAll show (1) -- show (2) ...
ModelValidator: Show solution 1

We repeat our warning remark with respect to large solution intervals described in the
property file when employing the scrollingAll option: there may be many solutions; in
the example, if the configuration offers one more year (e.g., in total the years 1950, 1965,
1980), then the number of solutions grows from 6 to 36.

If it is too complex to explicitly construct the complete solution interval, one can approx-
imate the interval by computing the next solution in a stepwise manner. The command
mv -scrolling <PropertyFile> finds a first solution, and following solutions can be
obtained by mv -scrolling next.
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Fig. 8: Solution interval with 6 object diagrams.

Fig. 9: Completions of partially specified solutions.
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3.6 Partial Solution Completion

The last option for a validation and verification task is the completion of a partially specified
solution. When one has already constructed objects, attribute values and links (which taken
together do not necessarily have to yield a valid system state), one may ask the model
validator to complete such a partial system state to a valid solution. If a valid completion
with regard to the configuration can be found, a valid system state containing the partially
specified system state is constructed. If no valid completion can be found, this is reported
to the modeler. An example is shown in Fig. 9.

In terms of the technical realization, the model validator must be explicitly directed
to consider the already existing objects and links through specifying mv -config

objExtraction:=on before the partial system state is asked to be completed. This option
may be turned off later, if not needed any more.

The property file fixes the number of Person objects to three and the number of Parent-
hood links to two.
Person_min = 3; Person_max = 3;
Person_fName = Set{’Ada ’, ’Bob ’, ’Cyd ’, ’Dan ’, ’Eve ’};
Person_lName =

Set{’Alewife ’, ’Baker ’, ’Cook ’, ’Digger ’, ’Eggler ’};
Person_yearB = Set{1905, 1920, 1935, 1950, 1965, 1980, 1995};
Parenthood_min = 2; Parenthood_max = 2;

The protocol file shows the construction of the three objects and fixes their attributes. The
links however are not explicitly fixed, but are left as the central construction task for the
model validator. The extraction of already existing objects together with their attributes is
combined here with the scrolling option.
use > mv -config objExtraction :=on

ModelValidatorConfiguration: Enable object extraction
use > !new Person(’ada ’)
use > !set ada.fName := ’Ada ’
use > !set ada.lName := ’Alewife ’
use > !set ada.yearB := 1965
use > !new Person(’bob ’)
use > ... -- bob , cyd analogously
use > mv -scrollingAll completion.properties

ModelTransformator: Translation time: 202 ms
ObjectDiagramModelEnricher: Extraction successful
ModelValidator: SATISFIABLE

Translation time: 62 ms Solving time: 16 ms
...
ModelValidator: UNSATISFIABLE

Translation time: 16 ms Solving time: 0 ms
ModelValidator: Found 3 solutions

use > mv -scrollingAll show (1) -- show (2) ...

Figure 9 reveals that three structurally different solutions are found by the model validator.
In all three solutions the objects and their attribute values coincide.

Our techniques can also be employed for fault detection. If, for example, a new
requirement would be that a person has to have two parents or no parents at all,
then adding the constraint Person.allInstances->exists(parent->size<>2 and

parent->size<>0) and employing the property reachability use case, would lead to
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a counterexample disproving the faulty assumption that the new requirement is already
granted by the current model.

4 Related Work

The transformation of UML and OCL into formal specifications for validation and veri-
fication is a widely considered topic. The approach in [BKS02] presents a translation of
UML and OCL into first-order predicate logic to reason about models utilizing theorem
provers. Another, similar tool is UML-RSDS [LKR10], which allows for the validation of
UML class diagrams.

Verification tools use such transformations to reason about models and verify test objectives.
UMLtoCSP [CCR14] is able to automatically check correctness properties for UML class
diagrams enhanced with OCL constraints based on Constraint Logic Programming. The
approach operates on a bounded search space similar to the model validator. In [An10],
UML2Alloy is presented. A transformation of UML and OCL into Alloy [Ja06] is used to
be able to automatically test models for consistency with the help of the Alloy Analizer.
Another approach based on Alloy is presented in [MJOR11]. In particular, limitations of
the previous transformation are eliminated by introducing new Alloy constructs to allow
for a transformation of more UML features, e.g., multiple inheritance. In [Wi08], OCL
expressions are transformed into graph constraints and instance validation is performed by
checking models against the graph constraints. Additionally, in [Ca10], a transformation of
OCL pre- and postconditions is presented for graph transformations.

The work in [Br10] describes an approach for test generation based on a transformation of
UML and OCL into higher-order logic (HOL). With the HOL-TestGen tool, test cases(model
instances) are generated and validated. In [QT06], a transformation of UML and OCL
into first-order logic is described and test methods for models are shown, e.g., class
liveliness (consistency) and integrity of invariants (constraint independence). A different
approach is presented in [CGR15]. The authors suggest to use Alloy for the early modeling
phase of development due to its better suitability for validation and verification.

Finally, the USE model validator is to a certain degree the successor of the ASSL (A Snapshot
Specification Language) [GBR05]. ASSL allows the specification of generation procedures
for objects and links of each class and association. ASSL searches for a valid system state
by iterating through all combinations defined by the procedures. In comparison, the USE
model validator translates all model constraints into a SAT formula, which allows for a more
efficient generation of a system state, due to detecting bad combinations earlier. Some of the
use cases proposed here have been discussed employing ASSL in earlier work [GKH09].
However, the explicit options for formulating the use cases are new, and we employ a new
underlying validation engine (Kodkod). In [GBR05] the use case functionalities had to be
explicitly formulated in the (programming-like language) ASSL. Now the use cases are
basically formulated in terms of (descriptive) configurations.

The approaches mentioned above either already support a subset of the concepts as in the
USE model validator or can be used to manually achieve results like constraint indepen-
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dence or scrolling. However, the degree of automation in the current approach is much
higher. Without such a high level of automation, validation and verification is a cumbersome
task: constraints have to be formulated manually, e.g., in the case of the scrolling use case,
one constraint has to be added for every system state found to make sure a different state is
generated next. Furthermore, the degree of UML and OCL concept coverage is typically
lower in the mentioned approaches.

5 Conclusion and Future Work

In this paper, we have presented techniques to utilize a modern instance finder for a
wide range of model validation and verification as well as fault detection methods in
UML and OCL models. Examples are shown with the USE model validator using the
six use cases: model consistency, property reachability, constraint implication, constraint
independence, solution interval exploration, and partial solution completion. The techniques
are useful from early development phases to explore models up to testing phases where
model properties are verified. For example, the solution interval exploration has proven
useful to present example instantiations of a model.

Future work should also concentrate on optimizing the verification tasks by providing
help with determining bounds specifically for the presented techniques. Optimizations
of the USE model validator itself includes support for more UML features and a more
sophisticated handling of strings and large integers. Additionally, not all use cases have
a high-level interface for the modeler to use. To make the use cases readily available
for everyone, including non-experts, such high-level functions, like mv -invIndep for
invariant independance, is desirable for all use cases. Finally, larger case studies have to
further evaluate the individual methods presented.
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TUnit – Unit Testing For Template-based Code Generators

Carsten Kolassa1 Markus Look1, Klaus Müller1, Alexander Roth1, Dirk Reiß2 , Bernhard
Rumpe1

Abstract: Template-based code generator development as part of model-driven development (MDD)
demands for strong mechanisms and tools that support developers to improve robustness, i.e., the
desired code is generated for the specified inputs. Although different testing methods have been pro-
posed, a method for testing only parts of template-based code generators that can be employed in
the early stage of development is lacking. Thus, in this paper we present an approach and an im-
plementation based on JUnit to test template-based code generators. Rather than testing a complete
code generator, it facilitates partial testing by supporting the execution of templates with a mocked
environment. This eases testing of code generators in early stages of development as well as test-
ing new or changed parts of a code generator. To test the source code generated by the templates
under test, different methods are presented including string comparisons, API-based assertions, and
abstract syntax tree based assertions.

Keywords: Model-Driven Development; Partial Code Generator Testing; Template-based Code
Generation

1 Introduction

With the increasing adoption of model-driven development (MDD) in research and in-
dustry [Hu11, Li14], code generation - systematic transformation of compact models to
detailed code [FR07] - is gaining importance. To support code generator developers in
constructing robust code generators, i.e., code generators that produce the desired code
for the specified input, sophisticated mechanisms and tools are required. They have to be
integrable into the development process and especially for agile development processes
they need to enable partial testing of code generators. Such testing as an essential activity
is, however, challenging [St07].

Current approaches for testing code generators (cf. [St07, Jö13, SWC05, Ra10, St06]) re-
quire an initial integration effort of the testing procedure, are based on string comparisons
only, or are designed to test the code generator as a whole. Other code generator testing
approaches employ formal methods [BKS04]. Setting up such tests is time-consuming and
once set up they are hard to maintain in an evolving environment, because small changes
in the code generator may lead to larger changes in the tests. Consequently, existing testing
approaches for code generators are not so easy to use in an agile development environment,
where either the code generator does not yet generate complete code artifacts that the tests
can validate or only the increment in functionality is to be tested. In summary, exisiting
work lacks approaches for partial code generator testing.
1 RWTH Aachen University, Software Engineering, Germany, http://www.se-rwth.de
2 TU Braunschweig, Institute for Building Services and Energy Design, Germany
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Focusing on template-based code generation, the goal of this paper is to present an ap-
proach for testing individual components of template-based code generators that can be
employed in early development stage of code generators. We introduce TUnit, an extension
of JUnit [JU15] based on the MontiCore [KRV10, Gr08, KRV08] language workbench to
support unit testing of code generator templates. In our case, testing a code generator or
parts of it means to answer the following questions: Is the set of specified inputs accepted

by the code generator template, e.g., code is generated? Does the code generator template

produce syntactically valid source code? Are the target language context conditions valid

for the generated source code? Executing a TUnit test case will run the template under
test with a mocked context (e.g. mocked variables, mocked templates, or mocked helper
functionality) on (parts of) an input model. This approach allows for testing the output of a
single template under test that is part of the overall output of the code generator, rather than
testing the whole output of a code generator run. To validate that the template output meets
the testers expectations, TUnit provides different kinds of assertion mechanisms including
abstract syntax based comparisons and abstract syntax API-based assertions. Additionally,
because string comparisons are widely used and sometimes practical, TUnit provides sup-
port for such comparisons as well. However, this approach is not robust, as the template
output can change on a regular basis, e.g., due to new or deleted whitespaces.

The contributions of this paper are: (a) an understanding of a template engine context (b)
concepts for mocking a template’s context with nested templates to allow for partial code
generator testing in early stage of the development cycle, (c) concepts for abstract syntax
based testing of the partial generated source code, and (d) an implementation of these
concepts within a widely used testing framework.

The paper is structured as follows: at first, we present an overview of related work (Sec-
tion 2) and point out their shortcomings. Next, we introduce MontiCore (Section 3), a
framework for language processing and code generation, that has been used to implement
parts of TUnit. By starting with a basic TUnit test, we point out how template-based code
generators can be unit-tested and which challenges need to be solved (Section 4). These
challenges are addressed in Section 5. Finally, we conclude our paper in Section 6.

2 Related Work

With the emerging importance of MDD, code generation has received growing attention.
In order to support code generator development and ensure code generator robustness,
different code generator testing approaches have been proposed and are presented in more
detail in [SWC05]. In the remainder of this section, we point out the main ideas of the
different testing approaches that target testing of complete code generators.

CoGenTe is a tool for testing code generators [Ra10]. It takes a syntactic and a semantic
meta-model of the input language and a test specification, which is a coverage criterion
over the meta-model. A generator creates a test-suite that can test any code generator
for the particular input language. The generated test-suite is derived using a constraint
generator, an inference tree generator, and a constraint solver. Each test-suite comprises
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several input models and expected outputs in the target language. To test a code generator,
the test-suite input models are passed to the code generator and the generated output is
compared to the expected output of the test-suite. In contrast to this approach, we present
an approach to test parts of a code generator for predefined input models.

Another approach to test code generators has been proposed in [St06, St07]. It is based on
a formal specification of the code generator transformation as a graph rewriting rule and
comprises three steps. In the first step - model-in-the-loop - the test model is transformed
into an executable model that is simulated. In the second step - software-in-the-loop -
the generated model is transformed by the code generator into executable code. Both,
the execution results of the simulated model and the execution results of the executed
code are finally compared. Existing approaches can be applied to extend this approach by
automatically generating the input test-cases [Ze06, Sa08]. In contrast to this technique,
our approach uses an instance of the input languge rather than a formal specification.
Furthermore, no intermediate model is used for simulation. Our proposed approach works
directly on the input model and not only strings but also abstract syntax trees (ASTs) can be
compared. Furthermore, an AST-based API is provided that allows to check the generated
output.

An instance of the above code generator testing approach to generate JUnit tests has been
proposed in [Jö13]. Code generators are modeled as services from atomic service inde-
pendent building blocks (SIBs). Such SIBs are used to model test cases, which are part of
test suites. A code generator transforms the test cases into JUnit test scripts. The execution
footprint - basically a string of the SIBs that have been executed - of direct execution of
the test data and the execution footprint of the generated and compiled code are compared.
The test is successful if the footprints are equal. In this paper, we focus on partial testing
of code generators and use, e.g., AST comparisons for validating the generated output.

3 Language Processing and Code Generation with MontiCore

The MontiCore framework [KRV10, Gr08, KRV08] is the foundation for all aspects of
language definition, language processing, and template-based code generation in TUnit.
In the remainder of this paper, we regard a model as an instance of a language that is
processed by the MontiCore framework and used for code generation. The basic struc-
ture of the MontiCore framework is shown in Figure 1. The components depicted in the
upper left corner including Grammar, MontiCore, Symboltable Entries, Model,

Parser+Infrastructure and AST are used for language definition and language pro-
cessing, i.e., processing an input model. All other components and the components Symbol-
table Entries and AST are used for code generation.

The MontiCore framework uses a grammar defining the language to be processed and gen-
erates a parser and infrastructure for language processing, which are used to parse models.
Each input model needs to conform to the grammar. When reading and processing models,
the parser creates an AST that represents their internal structure. This abstract represen-
tation of the input model is used for both: further language processing steps and code
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Fig. 1: Overview of MontiCore components for language processing and code generation [Sc12].

generation. Besides the AST, MontiCore uses the Symboltable Entries component to
create symbol table entries for each symbol of the processed models. Each symbol table
entry contains information about the model structure, an element’s name, and context in-
formation. This stored information is used for referencing symbols in different models and
can be used to extend the language processing by defining constraints for the input model
or for code generation to retrieve additional information on model symbols.

3.1 Template-based Code Generation with MontiCore

The MontiCore code generation process is based on a template mechanism. Templates
written in FreeMarker [Fr15] describe what is to be generated. These templates, which
are hierarchically structured via sub-templates, contain target code and FreeMarker ex-
pressions that finally produce target code. An overview of a template and its context is
depicted in Figure 2. The result of the code generation process is the actual output labeled
generated code in the figure.

Generated CodeGenerated CodeGrammatikGrammatikTemplates
«generates»

«uses»

GrammatikGrammatikVariables GrammatikGrammatikHelpers GrammatikGrammatikSymboltable
Entries

AST

«uses» «uses»

Generated Code

«calls»

called templates are
part of the template
engine context too

«uses»
template engine context

Fig. 2: Elements of the template engine context for template-based code generation in MontiCore.
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Each code generation process is started by invoking a root template, which usually calls
one or more sub-templates. A template has access to its template engine context object,
which contains variables, helper objects, called templates, and symbol table entries, as
depicted in Figure 2. A simplified example of a FreeMarker template is given in List. 1.
For a better presentation of the template engine context, this listing shows two variables,
the ast, and one helper.

FreeMarker

1 // Variables: paramType , paramName

2 // Helpers: methodHelper

3 public ${ast.returnType} ${ast.name}

4 (${paramType} ${paramName })

5 ${methodHelper.printThrowsDecl(ast)}

List. 1: The (simplified) template for generating a Java method.

The primary input for templates is the AST which is constructed by processing a model
file. For presentational reasons, we primarily focus on class diagrams as an input model,
i.e., the AST describes the abstract syntax of a class diagram and AST elements are ele-
ments from class diagrams including classes, associations, methods, interfaces, and enu-
merations [Sc12]. A template is called with an AST element of the corresponding model
and, in our case, generates Java source code. This AST element can be accessed through
the context variable ast as shown in an excerpt of a template in List. 1. In this listing,
the method name of the corresponding AST class is invoked in line 3 to return the name
of the model element which is represented by the AST element. This is denoted by the
FreeMarker specific syntax ${...}. Additionally, the template excerpt in List. 1 shows
how variables (paramName and paramType) and helpers (methodHelper) are used. The
meaning of variables and helpers is explained in more detail in the following.

A template may define local variables, which can be used and modified inside the template.
The value for each variable is set when the template is called. For example, the template
outlined in List. 1 expects that the values for the variables paramName and paramType

are set when the template is called. The values of these variables are accessed in line 4 to
introduce the name and the type of the method parameter into the generated code.

According to the principle of separation of concerns, templates contain target code and
simple computations including string concatenations, loops and if-else conditions. In ad-
dition to that, further functionality can be implemented in helper classes in Java which are
invoked from templates. When a template is called, an instance of the helper class is passed
to the template and can be accessed through a helper variable. In List. 1, methodHelper
in line 5 is a helper variable and it is used to invoke the helper method printThrowsDecl

which returns the Java throws declaration of the method. The AST is a special kind of
helper variable, as it can be used to invoke specific methods from the AST classes.

In order to test templates in isolation, we need to be able to replace either all or only some
of the variables and helpers in a template’s context with mocked ones. For instance, it
might be desirable to apply a specific mock helper class instead of the helper class which
would be used by default. Or it might be desired to set the variables to specific values.



226 Markus Look, Klaus Müller, Alexander Roth, Dirk Reiß, Bernhard Rumpe

4 Code Generator Template Testing with TUnit
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Fig. 3: Overview of our code generator testing approach.

A template-based code generator typically comprises multiple code generator templates in
order to generate source code from an input model. For ease of presentation we assume
that a code generator accepts one class diagram as input and generates Java source code. In
addition, each code generator has access to a symbol table, where the symbols of all sym-
boltable models are stored to identify referenced symbols. Figure 3 depicts an overview
of our white-box approach to test code generator templates. In our approach TUnit test
cases define the tests, symboltable models used in tests, and the templates under test. Us-
ing this input, the templates under test are executed but only for the elements of the model
that have been predefined in the TUnit test case. The generated output may then either be
compared to the expected output or the TUnit’s AST API can be used to define assertions.
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«calls»

Fig. 4: An example of a code generator’s template hierarchy to generate a Java class.

To give a more detailed understanding of how our testing approach works, we assume that
the code generator’s templates are structured as depicted in Figure 4 and that we want to
test the JavaAttribute template from the template hierarchy. Its FreeMarker source code
is listed in List. 2. For each class diagram attribute that is passed as input to this template
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the template generates a Java variable declaration with public visibility. For instance,
by passing the AST of the class diagram attribute “int attributeName = 5;” the template
generates the Java variable declaration statement “public int attributeName = 5;”. Here,
the value 5 is the default value. Line 1 of List. 2 generates the variable declaration and line
2 generates the variable instantiation by checking if a value has been defined in the input
model. Finally, a semicolon is used to close the Java variable declaration.

FreeMarker

1 public ${ast.printType ()} ${ast.name}

2 <#if ast.value??> = ${ast.printValue ()} </#if>

3 ;

List. 2: The (simplified) template for generating a Java attribute.

4.1 Unit Testing Templates

To present the testing concepts for template-based code generators, we extended the JUnit
testing framework to support the different testing approaches for code generator templates.
Subsequently, we introduce the resulting TUnit and the realized concepts for early stage
unit testing templates.

Java

1 @RunWith(de.se.rwth.tunit.TUnitRunner.class)

2 @TemplateUnderTest(templateName="JavaAttribute",

3 type = ASTCDAttribute.class)

4 public class TUnitTestClass {

5 @Test

6 @InputModel(fileName = "src/test/" +

7 "resources/input/JavaAttribute.cd")

8 public void templateTestMethod () { ... }

9 }

List. 3: Skeleton of a TUnit test class with one test method.

In JUnit, test runners are used to execute the test methods implemented in a test class. As
TUnit introduces custom annotations that are used for configuration purposes, the default
JUnit runner is not appropriate to execute the template tests properly. Due to this, TUnit
integrates its own test runner that is aware of the semantics of the annotations and knows
how to execute the template tests. Thus, each TUnit test class has to be annotated with
the TUnit specific test runner as shown in line 1 in List. 3. This listing shows a complete
skeleton for a simple TUnit test class.

Three crucial aspects that are relevant when testing template-based generators are: Which

template is under test? Which input model is used for the template under test? Which parts

of the input model are relevant for the test? TUnit introduces two annotations that define
the template under test and the test input model.
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The mandatory annotation @TemplateUnderTest is used to define the template under test
and is used for all test methods of the test class. The annotation provides two mandatory
attributes: templateName and type. In templateName, the path to the template under
test and its name have to be defined. In type, the type of the AST node that is handled
by the template has to be stated so that the template is only invoked for the specified type.
When executing a template test, each test method is executed by first parsing the specified
input model.The created AST is then traversed and the template under test is executed for
each AST element that is of the specified type. Finally, the test method is actually called.
List. 3 shows the TUnit test for the JavaAttribute template. This template is invoked
for AST nodes of type ASTCDAttribute.

The input model – defined with the mandatory @InputModel annotation – can either be
defined on test class level, then the given input model is used in all test methods, or on test
method level, then the input model is only used for that particular test method. In each test
method, the template under test will be applied for the corresponding input model.

4.2 Referencing Generated Output by Model Elements

Defining which template and model elements are under test is the first step to test tem-
plates. A further essential step in testing templates is to validate that the template output
meets the testers expectations. In JUnit, such expectations are expressed using assert meth-
ods. For instance, the assert method assertEquals ensures that two values are equal or
the assert method assertNotNull ensures that a specific value is not null.

Input Model

MontiCore
Parser

«creates»
TUnit test

runner
2

1

:ASTCDClass

m:ASTCDMethod

a:ASTCDAttribute

b:ASTCDAttribute

1

2

AST

a.attr

b.attr

piece of
Java code

Fig. 5: For each element that fits the specified type of the TUnit test, the template is called and the
output is stored in a file.

A prerequisite for being able to formulate such assert statements is that the tester can
access the output produced by the template. As explained in Section 4.1, the input model
is first parsed when executing a test method. The resulting AST is then traversed and
the template is executed for each AST element of the specified type. The output of each
template application is stored individually in a distinct file. As the input model for the
template may contain multiple elements of the specified type, it is possible that multiple
output files are created when executing one test method. Figure 5 shows how TUnit handles
the output generated by a template. In this figure, it is assumed that the input model is
a class diagram consisting of methods and attributes and that the template under test is
defined for AST nodes of type ASTCDAttribute. According to Figure 5, the input model
contains a class with two attributes. As a result, TUnit creates one file which contains
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the output of the template application to the first attribute (a.attr) and another file for the
output of the template application to the second attribute (b.attr).

In a concrete test case, a tester usually wants to validate the expectations concerning a
specific output, e.g. the output produced for the first attribute in Figure 5. To accomplish
this, one option for a tester would be to construct the name of the output file by himself.
This is possible as TUnit creates the output files according to a specific naming convention.
However, a disadvantage is that it becomes more laborious to define tests. Moreover, the
names of the output files will change as soon as the input model will be updated. Testers
would need to update the statically referenced output files after each input model update.

To cope with this problem, TUnit (a) traces which output file was created for which AST
element and (b) provides an API that allows to retrieve a particular AST element and that
returns the corresponding generated file. In Figure 5, the traceability is depicted by the
numbers. Thus, the testers can use the API to uniquely identify a specific AST element
and the generated file is returned without expecting the testers to construct the concrete
path to the output file on their own. Currently, this API is restricted to class diagram input
models. Additionally, the API can only be used to address single model elements only, i.e.,
a model element can be specified in a fully qualified way.

In order to create a test case for a generator template, we subsequently present two asser-
tion variants that both rely on defining the complete expected output.

4.3 Assertions for Code Generator Templates

The most basic approach is to perform a simple string comparison between the actual
output and an expected string. The tester has to define the complete string that is expected
as a result of the template application. A disadvantage of this approach is that the testers
are forced to denote the complete expected string, which can be quite laborious and error-
prone. Moreover, this approach is rather fragile, as every two varying characters will result
in a failing test, e.g., whitespace issues. To cope with the latter problem, TUnit offers a
more flexible string comparison method which can be configured to neglect specific types
of differences, e.g. differences concerning tabulator characters or indentation.

A more advanced method of creating assertions is to perform an AST comparison. In
the course of this comparison, it can be ensured that two AST nodes are (not) equal by
including not only the AST node itself but also children elements of the AST node. For
this purpose the tester has to define the expected output, which needs to be parsed to build
the corresponding AST. Moreover, the template output needs to be parsed to build the AST
as well. The AST comparison can then be performed based on these two ASTs. It has to
be taken into account that the template output can contain only parts of complete files, e.g.
a variable declaration. Due to this, a prerequisite for this approach is a parser for the target
language and target language constructs.

Comparing two ASTs means to traverse both ASTs and compare the contained objects.
Figure 6 illustrates the comparison of a generated and an expected AST. The one on the
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left-hand side has been generated by the FreeMarker template shown in List. 2 for the
class attribute int attributeName = 5;. The AST on the right-hand side of Figure 6 is
the AST which was built out of the expected template output. An AST comparison of the
generated and the expected AST will reveal the unmatching parts. In Figure 6, this is the
variable name and the variable type. As a result, the TUnit assertion will report an error
indicating this. A side effect of an AST-based comparison is that the AST of the target
language is at hand. This AST can be used to check target language context conditions
that may check, e.g. if a variable has been defined before usage. In this way a primary step
towards semantically checking the generated code is performed.

:ASTJavaVariableDecl

String name = „attributeName“

OD

generated AST
expected AST

name does
not match

type does
not match

:ASTModifier

boolean isPublic = true

:ASTIntLiteral

int value = 5
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:ASTJavaVariableDecl
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:ASTPrimitiveType

Type atype = Types.DOUBLE

OD

Fig. 6: A comparison of the generated AST (left) and the expected AST (right).

By explicitly stating which template is under test, which input models are used for testing
and how the assertions should be handled, template unit testing can be enabled up to the
point when the template’s context is of relevance for the test. In the following section, the
challenge of testing templates that rely on context information is addressed.

5 Context-Aware Unit Testing Code Generator Templates

A code generator template that is under test is not always fully self-contained and thus
independent of the template engine context. In other words, it requires certain inputs or
values to be accessible during execution. For MontiCore code generators such a context
may contain variables, helpers, symbol table entries, and template references. Figure 7
shows the same template hierarchy as Figure 4 but the template under test changed to the
JavaMethod template, which needs extra context information.
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Fig. 7: Testing a code generator template with context.



TUnit – Unit Testing For Template-based Code Generators 231

FreeMarker

1 // Variables: paramType , paramName

2 // Helpers: methodHelper

3 public ${ast.printReturnType ()} ${ast.printName ()}

4 (${paramType} ${paramName })

5 ${methodHelper.printThrowsDecl(ast)}

6 ${tc.include (" cd2data.core.templates.JavaMethodBody", ast)}

List. 4: The (simplified) template for generating a Java method.

Assuming that the template under test is the JavaMethod template, List. 4 shows the
FreeMarker source code, which is an extended version of the template excerpt shown be-
fore in List. 1. For example, to generate a Java method the template JavaMethod is ex-
ecuted with the input “void methodName(String param){};”, which is stated in the
class diagram. The variable ast is used to access the elements of the method declara-
tion - in this case the return type of the method and the method name. The parameter
type and parameter name are passed to the template as variables. Additionally, the helper
methodHelper is used to print Java throws declarations. An instance of this helper is
passed as well to the template. In addition, a sub template (see line 6 in List. 4) is called to
print the body of the method.

While variables, helper, and symbol table entries of a template under test can easily be
mocked to provide enough context for the template to be executed in a test, mocking
template references influences the depth of the test with respect to the template hierarchy,
i.e., the more templates are mocked, the less templates of the overall template hierarchy are
tested. For instance, the JavaMethod template, which is currently under test, references
the JavaMethodBody template, i.e., this sub-template is called and its generated code is
embedded in the generated code of the parent template. We refer to the mocking of sub-
templates as pruning the sub-templates of the template under test.

5.1 Mocking Helpers and Template Variables

In order to mock calls to helper methods, TUnit provides the annotation @InitHelpers.
This annotation can be used to annotate at most one method in the test class and TUnit
expects this method to return a map of strings as keys and objects as values. The strings
denote the names of the helper variables and the objects the associated instances of the
helper classes. Thus, the tester can define the object to be used when accessing a particular
helper variable. He can also implement mocks for helper classes and assign mock objects
to the helper variables.

A template can rely on multiple variables that need to be set when calling that template.
TUnit supports mocking of variables by providing the annotation @InitVariables. At
most one method in the test class can be annotated with @InitVariables and this method
must return a map of strings and strings. The keys of this map denote the variable names
to be mocked. The associated values will be used as the variable value when calling the
template. In this way, the tester can easily define values for variables needed by a template.
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5.2 Mocking Symbol Table

As the symbol table stores information about referenced symbols and is part of the code
generator template context, it needs to be mocked for testing as well. For mocking symbol
tables, TUnit provides the @SymbolTablePath annotation for each test class. The overall
idea is to provide a set of symbol table models to define all references that are possible and
then to create a test model referencing these symbols.

GrammatikGrammatikSymboltable
Entries

«creates»

Reference Models

Model Template Under Test

«uses»

«uses»
«references»

Fig. 8: Overview of the symbol table mocking approach.

In order to extend or mock the symbol table for testing, the testers need to create one or
multiple models conforming to the input language of the code generator template, e.g.,
class diagram language. By annotating a TUnit test class with the @SymbolTablePath

annotation, the path to the input models that should be used for building the set of symbol
table entries is defined. TUnit loads each model and stores all symbols in one symbol
table that is provided to the code generator template during execution. An overview of this
approach is presented in Figure 8.

This approach of providing symbol table entry information to the template under test is
inline with the TUnit’s overall approach to separate context information that need to be
provided and defining inputs for the template under test. Consequently, context informa-
tion and in particular symbol table models can be reused for varying inputs.

5.3 Mocking Sub-Template Calls

A TUnit test case may not fail for all defined inputs but the overall code generator may
still produce invalid code. This is due to embedded sub-template calls in templates under
test. The mentioned example of the invalid code produced by the code generator may hap-
pen if the embedded sub-template calls are mocked. In contrast, without pruning the sub-
templates, creating the TUnit test may be time-consuming, because all helpers, variables,
symbol table entries, and template references need to be considered. Clearly, without prun-
ing any sub-templates, the test coverage, i.e., the amount of templates that are executed in
one TUnit test, is higher.

When to prune sub-templates depends on the template and the testing strategy. A testing
strategy that can be used is to always try to neglect pruning sub-templates if the sub-
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templates do not generate a crucial part of the overall generated code. If the sub-templates
are crucial, they should be pruned and tested in a separate TUnit test. Obviously, the term
crucial depends on the tester and the context.

To allow a tester to test templates in isolation, i.e., by abstracting away from the results
of sub-templates, TUnit provides the annotation @TemplateSubstitutionPolicy that
has to be defined at the test class level. With this annotation, the tester can configure the
strategy on how to mock sub-template calls:

• Replace with empty: Every sub-template call is replaced with the empty string. This
imitates the situation that no sub-templates are called at all.

• Replace all with template: Instead of calling the sub-templates, every time a self-
defined template is called. The output of applying this template is inserted instead
of the original template.

• Replace with string: In this case, a string is defined that is returned instead of the
result of calling the sub-templates.

• Provide method: This strategy is the most flexible strategy, as it allows for configur-
ing which specific sub-template call is replaced by which specific string or template.
This has to be implemented in a method annotated with @InitSubtemplates.

If the template substitution policy is not specified for a test class, the sub-template calls are
not mocked and the results of the sub-template calls are inserted into the template output
as usual.

5.4 Checking Failures with Assertions

One deficiency of the assertion mechanisms presented in Section 4.3 is that the testers have
to denote the complete expected output. In case a template generates a large file but only
small parts of the output should be checked, applying either of them is too laborious.

In the following, a further variant is proposed, which allows for performing checks for
dedicated parts of the AST resulting from the template application. In essence, TUnit
provides an API that contains assert methods for different kinds of AST nodes. In the
following, a few class diagram specific examples are given:

• assertHasClass(ASTCompilationUnit, String): Ensures that the given com-
pilation unit contains a class with a specific name.

• assertHasAttribute(ASTClass, String, Type): Validates that the given class
contains an attribute with the given name and a given type.

• assertHasMethod(ASTClass, String, Type, List<Type>): Ensures that the
passed class contains a method with the specified name, return type, and the given
list of parameter types.
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Java

1 // Retrieval of template output omitted here

2 String testOutputPath = ...

3

4 ASTMethodDeclaration actMethodDecl =

5 PartialParsing.parseMethodDeclaration(

6 new File(testOutputPath));

7

8 ASTJavaAssert.assertMethodReturnTypeEquals(

9 actMethodDecl , "void");

10

11 ASTJavaAssert.assertMethodNameEquals(

12 actMethodDecl , "methodName");

13

14 ASTJavaAssert.assertMethodHasParameter(

15 actMethodDecl , "String", "param");

List. 5: Example for AST-based API assertions.

List. 5 shows an example for using the AST-based API. As in the previous example, the
actual template output needs to be parsed to create the AST. In the course of this, the parser
reports an error, if the code does not represent a valid method declaration. Subsequently,
it is at first checked, whether the return type of the parsed method declaration equals the
expected return type (line 8 to 9). After that, it is checked that the method name of the
parsed method declaration equals the expected name (line 11 to 12) and that the method
has a particular parameter (line 14 to 15).

The main advantage of this strategy is that it is usually less laborious to apply it compared
to the previously introduced assertion mechanisms as the testers do not have to denote the
complete expected result string. Furthermore, this strategy is usually less fragile as the
test results are not necessarily affected by every single character change. One potential
downside is that the offered API focuses on high-level checks. Hence, it is not well suited
to check for all kinds of fine-grained details. Moreover, the API is bound to a particular
target language. Consequently, a new API has to be provided in case a new target language
is used.

In the presented example of the template under test in List. 4, we have not considered the
case that a sub-template may generate a file rather than a string that is embedded in the
parent template. These generated files can also be checked with TUnit; however, the testers
need to manually consider such “side effects” by manually extending the test to consider
the generated artifacts.
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6 Conclusion and Future Work

The use of code generators in MDD demands for strong testing concepts to develop robust
code generators. Most existing approaches to test code generators rely on testing the code
generator as a whole, by executing the complete code generator. Testing only selected
templates or validating fragments of code is not easily possible in these approaches.

In this paper, we have presented a method and TUnit– an extension of JUnit – as corre-
sponding tool support for testing code generators. It can be employed early in the devel-
opment of code generators where no complete source code artifacts are generated. Since
templates are executed in a context that includes helpers, variables, symbol table refer-
ences, and template references, TUnit provides means to mock specific parts of this con-
text. TUnit takes input models for a code generator and executes the template under test on
selected parts of these models. To validate the template output, three assertion strategies
have been presented. First, a string comparison between the actual output and the expected
output, which needs to be defined explicitly. Second, an AST comparison based on the in-
put model AST and an expected AST. Third, an AST-based API comparison that allows for
executing checks on dedicated parts of the AST that is created from the template output.

Currently, the input model has to be a complete class diagram. In future work we plan
to support pieces of class diagrams, e.g. a class only or a method declaration. Besides
comparing ASTs to find assertion violations, it is also possible to employ transformation
languages. Assuming that a transformation language for the generated language exists
[WR11, We12], assertions can be defined by defining patterns that need to be matched in
the generated code. If a pattern cannot be found, then the assertion is violated. Otherwise,
the assertion is correct. Finally, a general question to be addressed is the efficiency of the
proposed approach.
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Knowledge Management

P-146 Markus Bick, Martin Breunig, 
Hagen Höpfner (Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme – Entwicklung, 
Implementierung und Anwendung 
4. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2009)

P-147 Witold Abramowicz, Leszek Maciaszek, 
Ryszard Kowalczyk, Andreas Speck (Eds.)  
Business Process, Services Computing 
and Intelligent Service Management 
BPSC 2009 · ISM 2009 · YRW-MBP 
2009

P-148 Christian Erfurth, Gerald Eichler, 
Volkmar Schau (Eds.) 
9th International Conference on Innovative 
Internet Community Systems 
I2CS 2009

P-149 Paul Müller, Bernhard Neumair,  
Gabi Dreo Rodosek (Hrsg.) 
2. DFN-Forum 
Kommunikationstechnologien  
Beiträge der Fachtagung

P-150 Jürgen Münch, Peter Liggesmeyer (Hrsg.) 
Software Engineering  
2009 - Workshopband

P-151 Armin Heinzl, Peter Dadam, Stefan Kirn,  
Peter Lockemann (Eds.) 
PRIMIUM  
Process Innovation for  
Enterprise Software

P-152 Jan Mendling, Stefanie Rinderle-Ma, 
 Werner Esswein (Eds.)
 Enterprise Modelling and Information 

Systems Architectures
 Proceedings of the 3rd Int‘l Workshop 

EMISA 2009

P-153 Andreas Schwill,  
Nicolas Apostolopoulos (Hrsg.) 
Lernen im Digitalen Zeitalter  
DeLFI 2009 – Die 7. E-Learning 
Fachtagung Informatik

P-154 Stefan Fischer, Erik Maehle  
Rüdiger Reischuk (Hrsg.) 
INFORMATIK 2009 
Im Focus das Leben

P-155 Arslan Brömme, Christoph Busch, 
Detlef Hühnlein (Eds.)  
BIOSIG 2009:  
Biometrics and Electronic Signatures 
Proceedings of the Special Interest Group 
on Biometrics and Electronic Signatures

P-156 Bernhard Koerber (Hrsg.) 
Zukunft braucht Herkunft  
25 Jahre »INFOS – Informatik und 
Schule«

P-157 Ivo Grosse, Steffen Neumann,  
Stefan Posch, Falk Schreiber,  
Peter Stadler (Eds.) 
German Conference on Bioinformatics 
2009

P-158 W. Claupein, L. Theuvsen, A. Kämpf, 
M. Morgenstern (Hrsg.) 
Precision Agriculture 
Reloaded – Informationsgestützte 
Landwirtschaft

P-159 Gregor Engels, Markus Luckey, 
Wilhelm Schäfer (Hrsg.) 
Software Engineering 2010

P-160 Gregor Engels, Markus Luckey, 
Alexander Pretschner, Ralf Reussner 
(Hrsg.) 
Software Engineering 2010 – 
Workshopband 
(inkl. Doktorandensymposium)

P-161 Gregor Engels, Dimitris Karagiannis 
Heinrich C. Mayr (Hrsg.) 
Modellierung 2010

P-162 Maria A. Wimmer, Uwe Brinkhoff, 
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer,  
Andreas Wiebe (Hrsg.) 
Vernetzte IT für einen effektiven Staat 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und  
Fachtagung Rechtsinformatik (FTRI) 2010

P-163 Markus Bick, Stefan Eulgem,  
Elgar Fleisch, J. Felix Hampe,  
Birgitta König-Ries, Franz Lehner,  
Key Pousttchi, Kai Rannenberg (Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme 
Technologien, Anwendungen und 
Dienste zur Unterstützung von mobiler 
Kollaboration

P-164 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2010: Biometrics and Electronic 
Signatures Proceedings of the Special 
Interest Group on Biometrics and 
Electronic Signatures



P-165 Gerald Eichler, Peter Kropf,  
Ulrike Lechner, Phayung Meesad,  
Herwig Unger (Eds.) 
10th International Conference on 
Innovative Internet Community Systems 
(I2CS) – Jubilee Edition 2010 –

P-166 Paul Müller, Bernhard Neumair,  
Gabi Dreo Rodosek (Hrsg.) 
3. DFN-Forum Kommunikationstechnologien 
Beiträge der Fachtagung

P-167 Robert Krimmer, Rüdiger Grimm (Eds.) 
4th International Conference on  
Electronic Voting 2010 
co-organized by the Council of Europe,  
Gesellschaft für Informatik and  
E-Voting.CC

P-168 Ira Diethelm, Christina Dörge, 
Claudia Hildebrandt,  
Carsten Schulte (Hrsg.) 
Didaktik der Informatik 
Möglichkeiten empirischer 
Forschungsmethoden und Perspektiven 
der Fachdidaktik

P-169 Michael Kerres, Nadine Ojstersek 
Ulrik Schroeder, Ulrich Hoppe (Hrsg.) 
DeLFI 2010 - 8. Tagung  
der Fachgruppe E-Learning  
der Gesellschaft für Informatik e.V.

P-170 Felix C. Freiling (Hrsg.) 
Sicherheit 2010 
Sicherheit, Schutz und Zuverlässigkeit

P-171 Werner Esswein, Klaus Turowski,  
Martin Juhrisch (Hrsg.) 
Modellierung betrieblicher 
Informationssysteme (MobIS 2010) 
Modellgestütztes Management

P-172 Stefan Klink, Agnes Koschmider 
Marco Mevius, Andreas Oberweis (Hrsg.) 
EMISA 2010 
Einflussfaktoren auf die Entwicklung 
flexibler, integrierter Informationssysteme 
Beiträge des Workshops 
der GI-Fachgruppe EMISA 
(Entwicklungsmethoden für Infor- 
mationssysteme und deren Anwendung) 

P-173 Dietmar Schomburg,  
Andreas Grote (Eds.) 
German Conference on Bioinformatics 
2010

P-174 Arslan Brömme, Torsten Eymann, 
Detlef Hühnlein,  Heiko Roßnagel, 
Paul Schmücker (Hrsg.) 
perspeGKtive 2010  
Workshop „Innovative und sichere 
Informationstechnologie für das 
Gesundheitswesen von morgen“

P-175 Klaus-Peter Fähnrich,  
Bogdan Franczyk (Hrsg.) 
INFORMATIK  2010 
Service Science – Neue Perspektiven für 
die Informatik  
Band 1

P-176 Klaus-Peter Fähnrich,  
Bogdan Franczyk (Hrsg.) 
INFORMATIK  2010 
Service Science – Neue Perspektiven für 
die Informatik  
Band 2

P-177 Witold Abramowicz, Rainer Alt,  
Klaus-Peter Fähnrich, Bogdan Franczyk, 
Leszek A. Maciaszek (Eds.) 
INFORMATIK  2010 
Business Process and Service Science – 
Proceedings of ISSS and BPSC

P-178 Wolfram Pietsch, Benedikt Krams (Hrsg.)
 Vom Projekt zum Produkt
 Fachtagung des GI-

Fachausschusses Management der 
Anwendungsentwicklung und -wartung 
im Fachbereich Wirtschafts-informatik 
(WI-MAW), Aachen, 2010

P-179 Stefan Gruner, Bernhard Rumpe (Eds.) 
FM+AM`2010 
Second International Workshop on 
Formal Methods and Agile Methods

P-180 Theo Härder, Wolfgang Lehner,  
Bernhard Mitschang, Harald Schöning,  
Holger Schwarz (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 
14. Fachtagung des GI-Fachbereichs 
„Datenbanken und Informationssysteme“ 
(DBIS)

P-181 Michael Clasen, Otto Schätzel,  
Brigitte Theuvsen (Hrsg.) 
Qualität und Effizienz durch 
informationsgestützte Landwirtschaft,  
Fokus: Moderne Weinwirtschaft

P-182 Ronald Maier (Hrsg.) 
6th Conference on Professional 
Knowledge Management 
From Knowledge to Action

P-183 Ralf Reussner, Matthias Grund, Andreas 
Oberweis, Walter Tichy (Hrsg.) 
Software Engineering 2011  
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-184 Ralf Reussner, Alexander Pretschner, 
Stefan Jähnichen (Hrsg.) 
Software Engineering 2011 
Workshopband 
(inkl. Doktorandensymposium)



P-185 Hagen Höpfner, Günther Specht, 
Thomas Ritz, Christian Bunse (Hrsg.) 
MMS 2011: Mobile und ubiquitäre 
Informationssysteme Proceedings zur  
6. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2011) 

P-186 Gerald Eichler, Axel Küpper,  
Volkmar Schau, Hacène Fouchal,  
Herwig Unger (Eds.) 
11th International Conference on 
Innovative Internet Community Systems 
(I2CS)

P-187 Paul Müller, Bernhard Neumair, 
Gabi Dreo Rodosek (Hrsg.) 
4. DFN-Forum Kommunikations- 
technologien, Beiträge der Fachtagung 
20. Juni bis 21. Juni 2011 Bonn

P-188 Holger Rohland, Andrea Kienle, 
Steffen Friedrich (Hrsg.) 
DeLFI 2011 – Die 9. e-Learning 
Fachtagung Informatik 
der Gesellschaft für Informatik e.V. 
5.–8. September 2011, Dresden

P-189 Thomas, Marco (Hrsg.) 
Informatik in Bildung und Beruf 
INFOS 2011 
14. GI-Fachtagung Informatik und Schule

P-190 Markus Nüttgens, Oliver Thomas,  
Barbara Weber (Eds.) 
Enterprise Modelling and Information 
Systems Architectures (EMISA 2011)

P-191 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2011  
International Conference of the 
Biometrics Special Interest Group

P-192 Hans-Ulrich Heiß, Peter Pepper, Holger 
Schlingloff, Jörg Schneider (Hrsg.) 
INFORMATIK 2011 
Informatik schafft Communities

P-193 Wolfgang Lehner, Gunther Piller (Hrsg.) 
IMDM 2011

P-194 M. Clasen, G. Fröhlich, H. Bernhardt,  
K. Hildebrand, B. Theuvsen (Hrsg.) 
Informationstechnologie für eine 
nachhaltige Landbewirtschaftung 
Fokus Forstwirtschaft

P-195 Neeraj Suri, Michael Waidner (Hrsg.) 
Sicherheit 2012 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 6. Jahrestagung des 
Fachbereichs Sicherheit der  
Gesellschaft für Informatik e.V. (GI)

P-196 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2012 
Proceedings of the 11th International 
Conference of the Biometrics Special 
Interest Group

P-197 Jörn von Lucke, Christian P. Geiger, 
Siegfried Kaiser, Erich Schweighofer, 
Maria A. Wimmer (Hrsg.) 
Auf dem Weg zu einer offenen, smarten 
und vernetzten Verwaltungskultur 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 
Fachtagung Rechtsinformatik (FTRI) 
2012

P-198 Stefan Jähnichen, Axel Küpper,  
Sahin Albayrak (Hrsg.) 
Software Engineering 2012 
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-199 Stefan Jähnichen, Bernhard Rumpe,  
Holger Schlingloff (Hrsg.) 
Software Engineering 2012 
Workshopband

P-200 Gero Mühl, Jan Richling, Andreas 
Herkersdorf (Hrsg.) 
ARCS 2012 Workshops

P-201 Elmar J. Sinz Andy Schürr (Hrsg.) 
Modellierung 2012

P-202 Andrea Back, Markus Bick,  
Martin Breunig, Key Pousttchi,  
Frédéric Thiesse (Hrsg.) 
MMS 2012:Mobile und Ubiquitäre 
Informationssysteme

P-203 Paul Müller, Bernhard Neumair, 
Helmut Reiser, Gabi Dreo Rodosek (Hrsg.) 
5. DFN-Forum Kommunikations-
technologien 
Beiträge der Fachtagung

P-204 Gerald Eichler, Leendert W. M. 
Wienhofen, Anders Kofod-Petersen, 
Herwig Unger (Eds.) 
12th International Conference on 
Innovative Internet Community Systems 
(I2CS 2012)

P-205 Manuel J. Kripp, Melanie Volkamer, 
Rüdiger Grimm (Eds.) 
5th International Conference on Electronic 
Voting 2012 (EVOTE2012) 
Co-organized by the Council of Europe, 
Gesellschaft für Informatik and E-Voting.CC

P-206 Stefanie Rinderle-Ma,  
Mathias Weske (Hrsg.) 
EMISA 2012  
Der Mensch im Zentrum der Modellierung

P-207 Jörg Desel, Jörg M. Haake,  
Christian Spannagel (Hrsg.) 
DeLFI 2012: Die 10. e-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. 
24.–26. September 2012



P-208 Ursula Goltz, Marcus Magnor, 
Hans-Jürgen Appelrath, Herbert Matthies, 
Wolf-Tilo Balke, Lars Wolf (Hrsg.) 
INFORMATIK 2012

P-209 Hans Brandt-Pook, André Fleer, Thorsten 
Spitta, Malte Wattenberg (Hrsg.) 
Nachhaltiges Software Management

P-210 Erhard Plödereder, Peter Dencker, 
Herbert Klenk, Hubert B. Keller,  
Silke Spitzer (Hrsg.) 
Automotive – Safety & Security 2012 
Sicherheit und Zuverlässigkeit für 
automobile Informationstechnik

P-211 M. Clasen, K. C. Kersebaum, A. 
Meyer-Aurich, B. Theuvsen (Hrsg.)
Massendatenmanagement in der  
Agrar- und Ernährungswirtschaft 
Erhebung - Verarbeitung - Nutzung 
Referate der 33. GIL-Jahrestagung 
20. – 21. Februar 2013, Potsdam

P-212 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2013 
Proceedings of the 12th International 
Conference of the Biometrics                   
Special Interest Group 
04.–06. September 2013 
Darmstadt, Germany

P-213 Stefan Kowalewski, 
Bernhard Rumpe (Hrsg.) 
Software Engineering 2013 
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-214 Volker Markl, Gunter Saake, Kai-Uwe 
Sattler, Gregor Hackenbroich, Bernhard Mit  
schang, Theo Härder, Veit Köppen (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 2013 
13. – 15. März 2013, Magdeburg

P-215 Stefan Wagner, Horst Lichter (Hrsg.)
Software Engineering 2013 
Workshopband 
(inkl. Doktorandensymposium) 
26. Februar – 1. März 2013, Aachen

P-216 Gunter Saake, Andreas Henrich, 
Wolfgang Lehner, Thomas Neumann, 
Veit Köppen (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 2013 –
Workshopband 
11. – 12. März 2013, Magdeburg

P-217 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.) 
6. DFN-Forum Kommunikations- 
technologien 
Beiträge der Fachtagung 
03.–04. Juni 2013, Erlangen

P-218 Andreas Breiter, Christoph Rensing (Hrsg.) 
DeLFI 2013: Die 11 e-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. (GI) 
8. – 11. September 2013, Bremen

P-219 Norbert Breier, Peer Stechert,  
Thomas Wilke (Hrsg.) 
Informatik erweitert Horizonte 
INFOS 2013 
15. GI-Fachtagung Informatik und Schule 
26. – 28. September 2013

P-220 Matthias Horbach (Hrsg.) 
INFORMATIK 2013 
Informatik angepasst an Mensch, 
Organisation und Umwelt 
16. – 20. September 2013, Koblenz

P-221 Maria A. Wimmer, Marijn Janssen, 
Ann Macintosh, Hans Jochen Scholl,  
Efthimios Tambouris (Eds.) 
Electronic Government and  
Electronic Participation 
Joint Proceedings of Ongoing Research of 
IFIP EGOV and IFIP ePart 2013 
16. – 19. September 2013, Koblenz

P-222 Reinhard Jung, Manfred Reichert (Eds.)
 Enterprise Modelling 

and Information Systems Architectures  
(EMISA 2013)

 St. Gallen, Switzerland  
September 5. – 6. 2013

P-223 Detlef Hühnlein, Heiko Roßnagel (Hrsg.) 
Open Identity Summit 2013 
10. – 11. September 2013 
Kloster Banz, Germany

P-224 Eckhart Hanser, Martin Mikusz, Masud 
Fazal-Baqaie (Hrsg.) 
Vorgehensmodelle 2013 
Vorgehensmodelle – Anspruch und 
Wirklichkeit 
20. Tagung der Fachgruppe 
Vorgehensmodelle im Fachgebiet 
Wirtschaftsinformatik (WI-VM) der 
Gesellschaft für Informatik e.V.  
Lörrach, 2013

P-225 Hans-Georg Fill, Dimitris Karagiannis, 
Ulrich Reimer (Hrsg.) 
Modellierung 2014 
19. – 21. März 2014, Wien

P-226 M. Clasen, M. Hamer, S. Lehnert,  
B. Petersen, B. Theuvsen (Hrsg.) 
IT-Standards in der Agrar- und 
Ernährungswirtschaft Fokus: Risiko- und 
Krisenmanagement 
Referate der 34. GIL-Jahrestagung 
24. – 25. Februar 2014, Bonn



P-227 Wilhelm Hasselbring, 
Nils Christian Ehmke (Hrsg.) 
Software Engineering 2014 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 
25. – 28. Februar 2014 
Kiel, Deutschland

P-228 Stefan Katzenbeisser, Volkmar Lotz,  
Edgar Weippl (Hrsg.) 
Sicherheit 2014 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 7. Jahrestagung des 
Fachbereichs Sicherheit der 
Gesellschaft für Informatik e.V. (GI) 
19. – 21. März 2014, Wien

P-230 Arslan Brömme, Christoph Busch (Eds.)
 BIOSIG 2014
 Proceedings of the 13th International 

Conference of the Biometrics Special 
Interest Group

 10. – 12. September 2014 in
 Darmstadt, Germany

P-231 Paul Müller, Bernhard Neumair, 
Helmut Reiser, Gabi Dreo Rodosek 
(Hrsg.) 
7. DFN-Forum  
Kommunikationstechnologien 
16. – 17. Juni 2014 
Fulda

P-232 E. Plödereder, L. Grunske, E. Schneider,  
D. Ull (Hrsg.)

 INFORMATIK 2014
 Big Data – Komplexität meistern
 22. – 26. September 2014
 Stuttgart

P-233 Stephan Trahasch, Rolf Plötzner, Gerhard 
Schneider, Claudia Gayer, Daniel Sassiat, 
Nicole Wöhrle (Hrsg.)

 DeLFI 2014 – Die 12. e-Learning
 Fachtagung Informatik
 der Gesellschaft für Informatik e.V.
 15. – 17. September 2014
 Freiburg

P-234 Fernand Feltz, Bela Mutschler, Benoît 
Otjacques (Eds.)

 Enterprise Modelling and Information 
Systems Architectures

 (EMISA 2014)
 Luxembourg, September 25-26, 2014

P-235 Robert Giegerich,  
Ralf Hofestädt, 

 Tim W. Nattkemper (Eds.)
 German Conference on
 Bioinformatics 2014
 September 28 – October 1
 Bielefeld, Germany

P-236 Martin Engstler, Eckhart Hanser, 
Martin Mikusz, Georg Herzwurm (Hrsg.)

 Projektmanagement und 
Vorgehensmodelle 2014 

 Soziale Aspekte und Standardisierung
 Gemeinsame Tagung der Fachgruppen 

Projektmanagement (WI-PM) und 
Vorgehensmodelle (WI-VM) im 
Fachgebiet Wirtschaftsinformatik der 
Gesellschaft für Informatik e.V., Stuttgart 
2014

P-237 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
 Open Identity Summit 2014
 4.–6. November 2014
 Stuttgart, Germany

P-238 Arno Ruckelshausen, Hans-Peter 
Schwarz, Brigitte Theuvsen (Hrsg.) 
Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Referate der 35. GIL-Jahrestagung 
23. – 24. Februar 2015, Geisenheim

P-239 Uwe Aßmann, Birgit Demuth, Thorsten 
Spitta, Georg Püschel, Ronny Kaiser 
(Hrsg.)  
Software Engineering & Management 
2015 
17.-20. März 2015, Dresden

P-240 Herbert Klenk, Hubert B. Keller, Erhard 
Plödereder, Peter Dencker (Hrsg.) 
Automotive – Safety & Security 2015 
Sicherheit und Zuverlässigkeit für 
automobile Informationstechnik 
21.–22. April 2015, Stuttgart

P-241 Thomas Seidl, Norbert Ritter,  
Harald Schöning, Kai-Uwe Sattler, 
Theo Härder, Steffen Friedrich,  
Wolfram Wingerath (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2015) 
04. – 06. März 2015, Hamburg

P-242 Norbert Ritter, Andreas Henrich,  
Wolfgang Lehner, Andreas Thor, 
Steffen Friedrich, Wolfram Wingerath 
(Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2015) –  
Workshopband  
02. – 03. März 2015, Hamburg

P-243 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.)

 8. DFN-Forum 
Kommunikationstechnologien  
06.–09. Juni 2015, Lübeck



P-244 Alfred Zimmermann,  
Alexander Rossmann (Eds.) 
Digital Enterprise Computing  
(DEC 2015) 
Böblingen, Germany June 25-26, 2015

P-245 Arslan Brömme, Christoph Busch ,            
Christian Rathgeb, Andreas Uhl (Eds.) 
BIOSIG 2015 
Proceedings of the 14th International 
Conference of the Biometrics Special 
Interest Group 
09.–11. September 2015 
Darmstadt, Germany

P-246 Douglas W. Cunningham, Petra Hofstedt, 
Klaus Meer, Ingo Schmitt (Hrsg.) 
INFORMATIK 2015 
28.9.-2.10. 2015, Cottbus

P-247 Hans Pongratz, Reinhard Keil (Hrsg.) 
DeLFI 2015 – Die 13. E-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. (GI) 
1.–4. September 2015 
München

P-248 Jens Kolb, Henrik Leopold, Jan Mendling 
(Eds.) 
Enterprise Modelling and Information 
Systems Architectures 
Proceedings of the 6th Int. Workshop on 
Enterprise Modelling and Information 
Systems Architectures, Innsbruck, Austria 
September 3-4, 2015

P-249 Jens Gallenbacher (Hrsg.) 
Informatik  
allgemeinbildend begreifen 
INFOS 2015 16. GI-Fachtagung 
Informatik und Schule 
20.–23. September 2015

P-250 Martin Engstler, Masud Fazal-Baqaie, 
Eckhart Hanser, Martin Mikusz, 
Alexander Volland (Hrsg.) 
Projektmanagement und 
Vorgehensmodelle 2015 
Hybride Projektstrukturen erfolgreich 
umsetzen 
Gemeinsame Tagung der Fachgruppen 
Projektmanagement (WI-PM) und 
Vorgehensmodelle (WI-VM) im 
Fachgebiet Wirtschaftsinformatik 
der Gesellschaft für Informatik e.V., 
Elmshorn 2015

P-251 Detlef Hühnlein, Heiko Roßnagel,  
Raik Kuhlisch, Jan Ziesing (Eds.) 
Open Identity Summit 2015 
10.–11. November 2015 
Berlin, Germany

P-252 Jens Knoop, Uwe Zdun (Hrsg.) 
Software Engineering 2016 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 
23.–26. Februar 2016, Wien

P-253 A. Ruckelshausen, A. Meyer-Aurich,  
T. Rath, G. Recke, B. Theuvsen (Hrsg.) 
Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Fokus: Intelligente Systeme – Stand der 
Technik und neue Möglichkeiten 
Referate der 36. GIL-Jahrestagung 
22.-23. Februar 2016, Osnabrück

P-254 Andreas Oberweis, Ralf Reussner (Hrsg.) 
Modellierung 2016 
2.–4. März 2016, Karlsruhe
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