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Abstract: In undersea surveillance, active sonar systems are commonly used to de-
tect submarines. These sonar systems allow high detection ranges, but the interaction
of sound with the sea bottom may lead to a high number of false alarms as well, es-
pecially in shallow-water environments. Therefore, automatic detection and tracking
procedures are needed to provide helpful assistance to sonar operators. The Multi-
Hypothesis Tracking approach presented in this paper is one of these procedures. It is
based on nonlinear Kalman Filtering.
In Kalman Filtering the assumption on underlying target dynamics is essential and has
considerable impact on the overall tracking performance. As targets usually maneu-
ver, their dynamics are varying and hidden. To include variable target dynamics, a
Multi-Hypothesis tracking algorithm is adapted to consider target maneuvers by es-
timating and adjusting the process-noise level in the Kalman Filter equations. The
level of process noise is determined for every track hypothesis individually based on
the estimated velocities of the target. The impact on the tracking result is shown by
applying the presented approach to different multistatic sonar datasets and comparing
it to results gained by tracking with one global level of process noise. Tracking results
are quantified by several tracking-performance metrics.

1 Introduction

Active sonar systems are used in Anti-Submarine Warfare (ASW) to detect submarines.
Sonar contacts may include a high number of false alarms mainly due to the interaction
of sound with the sea bottom and the sea surface, especially in shallow-water environ-
ments. To provide helpful assistance to sonar operators, automatic detection and tracking
techniques are applied. Data association in the presented tracking approach is realised by
Multi-Hypothesis Tracking (MHT) where a single track is represented by a set of weighted
track hypotheses with the weight denoting the probability that the respective hypothesis
is the true target track. The estimation of a target's state within the single hypotheses is
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realised by applying the Unscented Kalman Filter (UKF) [JU04]. In Kalman Filtering the
assumptions on the underlying target dynamics are essential. In many tracking approaches
the target's dynamics are modelled as a target travelling with a constant velocity, known as
the Nearly Constant Velocity (NCV) model. Deviations of the target's behaviour from this
assumption are modelled as process noise, usually set a priori and fixed. But since targets
usually change their dynamic behaviour regularly, a fixed process noise does not lead to
optimal tracking results. In this paper a method is proposed to estimate and adapt the level
of process noise. The determination of the level of process noise is based on the estimated
velocities of the track-state hypotheses. To show the impact of an adaptively chosen level
of process noise the algorithm is applied to different multistatic datasets with maneuvering
as well as non-maneuvering targets. If a sonar system operates in a multistatic geometry,
received data can be fused appropriately to improve tracking performance. In this case a
centralised fusion strategy is applied [SSH10].

2 MHT Algorithm

Tracking using the MHT scheme as described in [KKU06] is done in the Cartesian plane.
Thus, state vectors x are defined as Cartesian vectors with information on position and
velocity. Assuming a linear dependency of the subsequent states, the underlying system
can be described in matrix notation:

xk+1 = A · xk +wk (1)

with the system matrix A, w is a Gaussian distributed random variable modelling the
process noise (compare section 3). Sonar contacts z which are processed by the MHT
contain information on range r, angleϕ between contact and receiver and, if a Doppler can
be extracted, the range rate ṙ. The vectors z are nonlinearly dependent on the state vectors
x according to the measurement function h and distorted by additiveWhite Gaussian noise
v. To process the nonlinear measurements for updating existing hypotheses, the UKF
is used applying an Unscented Transform [JU04] in the filtering step where hypotheses
states are transformed to allow for an appropriate update of the hypotheses states. To
limit the number of hypotheses, gating, pruning and merging [BP99] are applied to the
MHT algorithm. Furthermore, sequential track extraction [vK98] is included in the track
management of the algorithm to confirm and delete tracks.

3 Dynamic Model and Process Noise

In Kalman filtering, sequential estimation of the conditional probability density function
p(xk|Z

k) of a state xk at the discrete point of time k is performedwithZk = {z1, z2, ..., zk}
denoting all measurements processed until time k. The prediction step utilises the assump-
tions on target dynamics specified by the matrixA in (1) for linear dynamics. The random
variable wk models the uncertainties of the assumed target dynamics as a Gaussian dis-
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tributed random variable with zero-mean and covariance matrix

Qk = E[wk ·w
T
k ] (2)

with E denoting the expectation operator. The predicted state (x̂−

k , P̂
−

k ) is determined
by the previous state (x̂k−1, P̂k−1) and the matrices A and Q, specified by the system
model. Due to relatively low measurement rates used in active sonar (e.g. sampling period
T = 60s) an appropriate estimate of the acceleration is impossible. Thus, a dynamic
model that does not include any acceleration in the target state should be chosen [BSB00]
and an appropriate choice for the motion model in submarine tracking is a NCV model.
The covariance matrixQ of the discretised process noise modelling accelerations is

Q =




T 3/3 0 T 2/2 0
0 T 3/3 0 T 2/2

T 2/2 0 T 0
0 T 2/2 0 T


 · q, (3)

with q denoting the continuous-time process noise intensity, which is derived by the auto-
correlation function [BSRLK01]

E[ṽ(t)ṽ(t− τ)] = q · δ0(τ). (4)

As a guideline for the choice of the intensity of the process noise, q should be set such that
changes of the target's velocity during one sampling period T are of the order

ΔvT ≃
√
qT ⇔ q ≃

Δv2T
T

. (5)

These guidelines are now used for a maneuver-adaptive tracking approach. The target
states x include velocities estimated during Kalman Filter processing. Since velocities are
estimated in x− and y−direction of the Cartesian coordinate plane separately, a level of
process noise for each of these directions can be determined individually. The levels of
process noise qx(k,N) and qy(k,N) are determined applying (5) as an average using the
last N estimated velocities with their corresponding time stamps t based on [Sch09]

qx(k,N) =

N∑
n=1

(ẋk−(n−1) − ẋk−n)
2

tk−(n−1) − tk−n
·
1

N
, (6)

adequately for qy(k,N).
In MHT, every track consists of several track hypotheses including the current Cartesian
velocities. Thus, (6) is applied to every track hypothesis to estimate an individual level
of process noise. Only tracks that have already been confirmed are subject to an adap-
tive estimation of process noise. Due to small association gates, a low level of process
noise might lead to a missed association of a contact to a true track, especially when target
maneuvers appear after a period of non-maneuvering. The MHT prevents gates from be-
coming such small that missed association due to starting maneuvers occur. If no contact
can be associated to an already extracted track, its level of process noise is significantly
increased.
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4 Tracking Results

To show the influence of the presented method to adjust the level of process noise adap-
tively, it has been included in theMHT-tracking algorithm and applied to different datasets.
Results are expressed by several tracking-performance metrics [CdT06] and compared to
metrics obtained by processing the data with a fixed level of process noise. In both datasets
the sonar sensors used are buoy systems with a fixed source and two separate receivers op-
erating bistatically leading to a multistatic geometry. The multistatic processing of the
data requires an appropriate data fusion. For this paper a centralised fusion strategy as
presented in [SSH10] is performed.

4.1 ARL:UT

In the ARL:UT sonar dataset two simulated targets were injected into real experimental
sonar data [CCL06], [LC07]. The targets feature two different, but constant velocities.
Target 1 is a slowly moving target (approximately 2 knots) and target 2 is a faster moving
target (approximately 10 knots). Table 1 summarises the tracking results separately for
target 1 and target 2. The value for a fixed process noise level for further analysis is set
to q = qx = qy = 0.01m2/s−3. If no contact can be associated to an already extracted
track when applying an adaptive level of process noise, qx and qy are increased to qx =
qy = 0.1m2/s−3. The value N , determining the number of preceding track hypothesis
states used to calculate the qx and qy according to (6) is set to N = 1 in a first step. Both
approaches yield higher quality tracks for the slowly moving target. The track probability
of detection (TPD), the ratio of the time the target is tracked to the time the target is
present, is higher in case of slowly moving targets. The same holds true for the track
localisation error (TLE) and the latency (LAT), the number of pings needed to extract the
track . Moreover, it is obvious, that for the ARL:UT data, an adaptively estimated level
of process noise does not influence the tracking performance significantly. The track false
alarm rate (TFAR) only increases slightly. The TLE is hardly changed for both targets.
This is due to the fact that the dynamics of the target trajectories follow the assumption of
targets travelling with a constant velocity precisely. In this case, filtered target states are
close to optimum and cannot be improved by an adaptation of the process noise.

Table 1: Tracking performance metrics for a fixed and an adaptive level of process noise applied to
the ARL:UT data.

Process Noise q
Fixed Adaptive

TPD [slow/fast] 0.95/0.77 0.95/0.77
TFAR 0.38 0.43

TLE[slow/fast] 35.10/105.54 35.13/104.79
LAT [slow/fast] 2/13 2/13
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4.2 SEABAR07 Run A01

From the SEABAR07 trial, conducted by the NATO Undersea Research Center in 2007,
run A01 supplies the data for this paper. During this run the target is performing maneu-
vers.
The positive influence of an adaptive determination of process noise on the localisation
accuracy can be read from table 2, which lists certain tracking-performance metrics for
comparison. The TPD is equal for both approaches. TFAR is slightly increased for the

Table 2: Tracking performance metrics for a fixed and an adaptive level of process noise applied to
the SEABAR'07 data.

Process Noise q
Fixed Adaptive

TPD 0.93 0.93
TFAR 0.29 0.30
TLE [m] 155.49 110.44

LAT [pings] 5 5

adaptive approach. Applying an adaptively estimated level of process noise influences the
track localisation accuracy positively. The TLE decreases considerably.

5 Conclusions and Outlook

The presented approach of including an adaptively estimated level of process noise within
a Nearly Constant Velocity model has potential to increase the performance of a Multi-
Hypothesis Tracking algorithm. The level of process noise is determined individually
for every track hypothesis by using past and current filtered target states from which a
deviation in the estimated velocities is calculated. Based on the deviation, the level of
process noise is derived.
Tracking results obtained for two different datasets show that results for targets which
are travelling with a constant velocity are hardly influenced because there targets already
follow the Nearly Constant Velocity model precisely. But besides, maneuvering targets
are tracked with a higher localisation accuracy. Thus, the presented approach effects the
algorithm in such a way that localisation accuracy can be improved. A higher localisation
accuracy is achieved nearly without influencing the tracking quality considering further
performance metrics.
In this paper the level of process noise has been determined using changes in the estimated
velocities directly. A further development could be to model the level of process noise as a
target state and include it in the Kalman Filtering algorithm. Thus, estimation errors would
be considered and past information would be included in the estimation process. To apply
the presented approach to further datasets, including moving transmitters and receivers
(e.g. Low Frequency Active Sonar (LFAS) systems), and analyse the influence of certain
parameters within the tracking algorithm in more detail is subject to future work.
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