
Cooperative Android App Analysis with CoDiDroid

Felix Pauck1, Heike Wehrheim2

Abstract: Novel Android app analysis tools as well as improved versions of available tools are
frequently proposed. These proposed tools often tackle a specific single issue that cannot be handled
with existing tools. Consequently, the best analysis possible should use the advantages of each and
every tool. With CoDiDroid we present an analysis framework that allows to combine analysis tools
such that the best out of each tool is used for a more comprehensive and more precise cooperative
analysis. Our experimental results show indeed that CoDiDroid allows to setup cooperative analyses
which are beneficial with respect to effectiveness, accuracy and scalability.

Keywords: Android Taint Analysis; Tools; Cooperation; Precision

1 Cooperative Analysis

Combinations of different Android app analysis tools have been used before to enhance

existing analysis. One well-known example is IccTA, a tool that beneficially combines IC3

with FlowDroid. Thereby the intra-component analysis of FlowDroid is lifted-up to inter-

component level. However, this combination is hard-coded in the tool itself. Its components

cannot be swapped out and the analysis cannot be extended by including another tool without

adapting IccTA. In a cooperative analysis as proposed by Pauck and Wehrheim [PW19] it is

possible to combine arbitrary analyses. The following example illustrates what a cooperative

analysis is capable of. The section thereafter introduces the framework required to compose

a cooperative Android app analysis, namely CoDiDroid [Pa19].

Example

The example depicted in Figure 1 shows two taint flows that leak sensitive information.

A taint flow describes the connection of a source and a sink. A source extracts sensitive

information. In the example the device identification number represents the extracted

sensitive data which is read in statement 𝑠1 (see Figure 1). Two sinks (𝑠4, 𝑠7) may leak this

information via logging or sending an SMS. In order to detect both leaks an analysis tool

must be (1) lifecycle-aware, (2) able to resolve reflection, (3) analyze native code and (4)

successfully handle Inter-App-Communication (IAC). Sadly, there exists no such analysis

tool. However, FlowDroid is able to perform an intra-component, lifecycle-aware taint

analysis, DroidRA is able to resolve reflection, NOAH can discover sources and sinks in

native code, IC3 allows to gather information about an app’s exit and entry points which

can be used by PIM to find connections between those that are realized via intents (IAC).

1 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany fpauck@mail.uni-paderborn.de
2 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany wehrheim@uni-paderborn.de

cba doi:10.18420/SE2021_30

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 83

https://creativecommons.org/licenses/by-sa/4.0/
mailto:fpauck@mail.uni-paderborn.de
mailto:wehrheim@uni-paderborn.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_30

DroidRA NOAH IC3 FlowDroid PIM

Fig. 1: Example: Two taint flows that include reflection, IAC and a native method call

Most of these tools were designed as standalone tools without having cooperation in mind.

Nonetheless, CoDiDroid allows to compose a single analysis that not least successfully

analyzes the described example by detecting both taint flows. The figure visualizes which

parts of these taint flows are detected by which tool.

2 The CoDiDroid framework

The cooperative (and distributed) analysis framework CoDiDroid takes (1) a task in form

of a query as input, (2) generates subtasks to answer each part of the query, (3) distributes

these subtasks onto tools available in its configuration and in the end (4) merges tool answers

to respond to the initial query. The Android App Analysis Query Language (AQL) and its

execution system (AQL-System) is extensively used to do so. Along with CoDiDroid we

thus proposed AQL-WebServices that allow to execute tools in different environments and

exchange results. Also by employing the AQL, ReproDroid [PBW18] could be used to

evaluate CoDiDroid against the state-of-the-art, revealing that cooperative analysis pays

off by outperforming standalone tools with respect to effectiveness, scalability and accuracy

in terms of precision, recall and F-measure.

Note, detailed evaluation results and all the reference of the mentioned tools can be found

in the original paper [PW19].

Bibliography

[Pa19] Pauck, Felix: , CoDiDroid, 2019. https://FoelliX.github.io/CoDiDroid last
accessed 11/16/2020.

[PBW18] Pauck, Felix; Bodden, Eric; Wehrheim, Heike: Do Android taint analysis tools keep their
promises? In: Proceedings of ESEC/FSE 2018, Lake Buena Vista, FL, USA. ACM, 2018.

[PW19] Pauck, Felix; Wehrheim, Heike: Together strong: cooperative Android app analysis. In:
Proceedings of ESEC/FSE 2019, Tallinn, Estonia. ACM, 2019.

84 Felix Pauck, Heike Wehrheim

https://FoelliX.github.io/CoDiDroid

