
Context-aware Services Composition based on
AI Planning

Lirong Qiu1,2 Zhongzhi Shi1

1 Key Laboratory of Intelligent Information Processing, Institute of Computing
Technology, Chinese Academy of Sciences, P.O. Box 2704-28, Beijing 100080 China

2 Graduate School of the Chinese Academy of Sciences, Beijing, China
qiulr@ics.ict.ac.cn

Abstract. AI planning technologies has proven to be useful for services
composition. By treating service as an action, planners do various sorts of
reasoning about how to combine services into a plan. However, planners
typically support only limited reasoning capabilities which cannot han-
dle the enormous size of the data involved in the planning process over
Web. In parallel, the field of context-aware computing has been focusing
on providing information that can be used to characterize the situa-
tion of an entity, and thereby using context can filter the inappropriate
candidate services and adapt to user’s preference. The major technical
contributions of this paper are: (1) We propose an OWL-SC model for
the context-aware composition of Web services.(2) We propose context-
aware plan architecture and thus is more scalability and flexibility for
the planning process, and thereby improving the efficiency and preci-
sion. (3) We propose a hybrid approach to build a plan corresponding to
a context-aware service composition, based on global planning and local
optimization, considering both the usability and adoption. solution.
Key Words: Semantic Web Service, AI planning, Context-awareness,
OWL-S

1 Introduction

A Web service is a set of related functionalities identified by URIs that can be
advertised, located, and triggered by other applications and humans through the
Web [1]. Currently, human beings perform Web service composition by reading
information provided on service’s Web pages. With the ever increasing number
of Web services being made available on the Web, it is already beyond the
human ability to analysis them and generate the composition process manually.
This has triggered an active area of research and development on Web service
composition [2].

By describing a Web service as an action, which is specified by its precondi-
tion and effects, many researchers propose their composition approach based on
AI planning techniques. However planning is a costly computational approach
and the size of the data involved in the planning process over Web will be much

345



bigger than the ones encountered in classical planning problems. The number of
component services selected in the composite service maybe large, and the num-
ber of Web services being considered from which these component services are
selected is likely to be even larger. Therefore, the performance and applicability
to this complex composition problem of planners are still being debated.

While context information, which is the important element to be considered
during selecting and combining services, can increase the effectiveness and ac-
ceptance of composition. A service composition model that can integrate, and
make use of context information to derive the optimal component services of the
composite service is still an ongoing research problem.

In this perspective, utilizing a means of context aware, AI planning method
to services composition is the motivation and central foundation of our work. The
remainder of this paper is structured as follows. Section 2 provides extensions
to OWL-S as regards support for describing context information. In Section 3
we present our system architecture and we test our approach on a simple, but
realistic example. The related work and conclusions will be given in Section 4.

2 Extending OWL-S with Context Elements

OWL-S is a set of OWL ontologies supporting the rich description of Web
services, thus facilitating the automation of service composition. OWL-S com-
prises three interrelated subontologies, known as the profile, process model, and
grounding. In short, Service Profile ontology describes capabilities of Web ser-
vices by specifying the input and output types, preconditions and effects, namely
IOPE. The Process Model describes how the service works. The Service Ground-
ing specifies the information necessary for service invocation and execution. The
OWL-S has an extensible service parameter mechanism which allows the addi-
tional description of non-IOPE attributes of services. Therefore, we can extend
the OWL-S with context attributes.

There are various categories of context knowledge that are pertinent to both
the user and the service. Due to evolving nature of services, completely formaliz-
ing all context information is likely to be an in-surmountable task. To ascertain
the quality of the composition, three types of context are defined to track the
user, the service, and the environment. Figure 1 shows the OWL-S based context
model for U-Context, E-Context and W-Context.

U-Context: A user’s context should leverage knowledge about who the user
is, where the user is and what the user is doing. Then, we divide the information
into two types of contexts: User static context: specified in a user’s profile and
describes information interests and preferences. User dynamic context: a user’s
location, current activity and task.

W-Context encompasses a number of non-functional properties of services,
such as execution price, execution duration, availability, reliability, and reputa-
tion. In Short, W-Context is much like the QoS model. Many of the ideas of
QoS modeling proposed to track the service context could be integrated into our
approach.

346



Fig. 1. OWL-SC:Adding Context to Service Description

E-Context comprises the information about where the user is, such as the
weather, the date, and some kind of surrounding situation.

3 Context-based AI planning for Service composition

3.1 System Architecture

The diagram shown in Figure 2 gives an overview of the pivotal components of
the system. Context Proxy retrieves context information and generates context

Fig. 2. System Architecture

conditions that must hold for this composition request. Context Repository is
a component that stores the explicit context representations of users, services
and environment based on the definition of OWL-SC ontology. How to sense the
current context and deliver it to the application is also a hot research domain.
Typical techniques are used in many context-aware applications, which is not

347



the point of this paper. Context Spec. stored predefined rules with associated
context conditions, which is the judging rules for filtering actions considering
the current states and situation.

The core of the composition framework is the planner, takes user’s request,
and uses the domain definition, available context information, to identify a se-
quence of actions that can be executed in order to achieve the desired request.
In the Plan Library, there stored many classified plan schemas defined off-line
by users or can be learned from the execution. The diagram represents the main
motivation behind our method: global planning (search plan library and find a
plan template) and local optimization (generate DAG dynamically and select an
execution path).

It worth noting that Web services will be grouped according to different
domains classified by context attributes. Thus, we can define different plan sce-
narios to represent typical domain cases. For each scenario, the pertinent context
elements is specified which can deduce actions.

3.2 Global AI Planning Algorithm

A composite service is specified as a collection of generic service tasks described
in terms of service ontologies and combined according to DL-based reasoning. In
AI domain, researchers exploited AI planning techniques for automatic service
composition by treating service composition as a planning problem, given a
representation of services based on OWL-S.

Definition 1 (Planning Domain) A planning domain corresponds to a par-
ticular domain to be planned, provided with states, actions, and functions. Each
Planning domain D is described as a tuple:

D = (S,A, C, I, Γ, Υ )

(1) S is the set of states.
(2) A is the set of actions(services).
(3) C is the set of context elements.
(4) I is the set of initial states and I ⊆ S;
(5) Γ is the transitional function, S ×A → 2s, which associates to each current
state s ∈ S and to each action a ∈ A the set Γ (s,a) ∈ S of next states;
(6) Υ is the context function, S ×C → A, which associates to a state s ∈ S and
a context c ∈ C, an action a ∈ A to be executed, Υ (s, c) ∈ A.

A state can be represented as a conjunction of positive literals. For example,
At(Beijing, Zhang)∧Destination(Shanghai).

An action a ∈ A is defined as �Pre,Eff�, Pre ∈ S defines the precondition
must hold before the action can be executed, and ensue when it execute; effects
Eff ∈ S defines the execution outcome.

There are three kinds of context elements in C defined in the above section.
User may define his preference in advance. For example, if the user wants to

348



find a restaurant to eat, and he emphasizes to save time. Then if current state is
Hungry(Zhang) and current context is At(Y ayuncun, Zhang), then the action
finding a restaurants in the vicinity of Y ayuncun is selected.

A plan task in a planning domain D is defined as a three-tuple T = (S1, Sn, D),
where S1 ∈ I denotes the initial states of the planner; Sn denotes the goal state
the planning system attempted to reach; D is a domain description.

A plan in a planning domain D for a planning problem T = (S1, Sn, D) is
defined as a sequence of actions (or services) that will achieve Sn from S1 in
D. In brief, by taking T = (S1, Sn, D) as input, the planner will return a plan
P = (a1, a2, . . . , an).

There are some plan schemas stored in Plan Library classified by different
domains. Those plan schemas are represented in UML statechart [3], which have
many advantages in composite service specification, such as possessing a formal
semantics, easily integration into the Unified Modeling Language and suitable
for expressing typical control-flow dependencies. To simplify the discussion, we
initially assume all the startcharts involved in this paper are acyclic.

Definition 2 (Planning Process in Statechart) The decomposition of a Plan-
ning Task T = (S1, Sn, D) of a statechart is a sequence of states [S1, S2, . . . , Sn],
such that S1 is the initial state, Sn is the final state, and for every state Si(1 <
i < n):
(1) Si is a direct successor of one of the states in [S1, . . . , Si−1] and is not a
direct successor of any of the states in [Si−1, . . . , Sn].
(2) �Sj ∈ [S1, . . . , Si−1] where Sj and Si belong to OR-states of the statechart.
(3) if an initial state of one of the concurrent regions of an AND-state execute,
then all the other branches of this AND-state are executed.

Many planning methods already exist and we choose HTN planning method
as our global planning algorithm to build statechart. The key to the global
planning algorithm is the construction of a plan library. This process is a kind
of off-line planning, thus can alleviate the issue of performance efficiency.

3.3 Local Optimization based on Context Configuration

If a statechart contains OR-states, it has multiple paths from the initial state to
the final state. Each path represents a different plan to complete a compound
service execution. Hence, it is possible to execute different path of a statechart by
allocating different Web service to the basic states in the path. How to structure
and maintain execution paths play a key role in supporting efficient planning.

A directed acyclic graph (DAG) can be used to represent a set of actions,
which gives an allowable (total) order for carrying out the basic actions one at
a time.

Therefore in this paper, we using Directed Acyclic Graph (DAG) to represent
an execution plan. DAG, G = G(V, E), where V = {v1, · · · , vn} is a set of actions
and E is a set of weighted directed edges (arcs) identify the dependencies. We
list the detailed definition of the weighted DAG as follows:

349



Definition 3 (DAG representation of Task Accomplishment Path) Given
a task decomposition statechart [S1, S2, . . . , Sn], the DAG G = G(V, E), repre-
sentation of the plan is a graph based as follows:
(1)The DAG has at least two nodes Start and Finish.
(2)ai= (ai1, ai2, . . . , ait) is the action set for state Si in ST and Eff(ai) ⊇ Si

(3)The DAG has one node for each action (a1, a2, . . . , an).
(4) The DAG contains an edge from action ai to action aj iff Sj is a direct
successor of Si.
(5) The edge from ai to aj is weighed by the context elements c ∈ C and
Υ (Si, c) → ai.

To note that there are some edges have no weighed attributes in the DAG,
which demonstrate that the action ai can be executed in state Si no matter what
current context is. The empty plan contains just the Start and Finish actions.

The local optimization process can be guided by following methods: (1) do-
main control knowledge; (2) Utility function; (3) User input.

3.4 Case Study

To illustrate the application domain and to derive requirements, we describe a
particular example happened in Olympic Games 2008 Scenario.

At the Olympics, different user groups such as athletes, coaching teams,
organizers, spectators, journalists and other groups of people from all over the
world need a broad range of information services and transactional services.
These users may have different purposes range form network stored information
retrieval to user shopping and communication.

A foreigner, who has never been to China before, decides to attend the
Olympic Games in Beijing and to combine it with some sightseeing. He reg-
istered in the Digital Olympic Services via his mobile phone and put forward his
preference and the personal information demand. Context information such as
the actual position of the user, the actual time can be stored using our method.

The detailed scenario is as follows: He is in Beijing China and wants to watch
a game in Qingdao. He requires a service of ”Travel Plan”. In his preference, he
defined his transportation preference is train if it’s rain. The composite request
can be achieved using our method presented above.

Firstly, according to users preference, update the context repository and con-
text spec. A rule R1 : (S,C) → ai is stored in the context function set Υ , where
S is BookTraffic, C is the weather information,
(BookTraffic, Sunny) → AirlineBooking,
(BookTraffic, Cloudy) → TrainBooking

Then Planner will search Plan Library to find the task statechart using global
planning algorithm. This gives us a consistent plan, represented in UML state-
chart as shown in Figure 3(a).

If there are four actions listed as follows:
a21 : China−Airline−Booking; a22 : Japan−Asia−Airline−Booking
a23 : China− Train −Booking; a24 : Japan−Asia− Ship −Booking

350



According to the location context, service a21, a23 is pick out, and according
to the rules in Υ , if acquired current weather is sunny, then a21 is selected, else
a23 is selected.

(a) task statechart for attending a conference in plan
library

(b) Optimizing process (c) Final execution path in
DAG

Fig. 3. the Planning process of ”Participating Conference” Example

3.5 Implementation

In short, the overall process consists of three steps: Firstly, Gets the user’s request
and context information. Secondly, the planner searches Plan Library to find the
statecharts template to determine subgoals. Then, selects the applicable path
according to context elements and generates DAG execution path.

We developed a prototype OntoService used to validate the feasibility and
benefits of the proposed approaches. Currently, the system OntoService has been
implemented as a platform that provides tools for: (1) defining plan scenarios
and represent in UML statechart; (2) building service ontologies and checking
its consistency; (3)demonstrating DAG execution path graphically;(4) modeling
and reasoning context information based on RDQL.

In addition, we are developing a website applied for Olympic Games 2008
based on OntoService. We have developed application scenarios for different
user groups, e.g. a visitor or a journalist, to identify typical use cases and to
derive requirements on platform functionality and services to be integrated. And
according to different user groups, we put forward different user profile template.

For user context modeling we envisage the approach that is still under devel-
opment. At the time being we restrict ourselves to the use of time and location
information that can be automatically gathered and of a manually maintained
information about a user’s mode of activity.

351



4 Related Work and Conclusion

Various efforts have been done to apply AI planning to services composition.
Nahrstedt [4] proposed global planning algorithms for dynamic composition.
Zeng [5] provided a QoS-driven service composition model. In this work, the
authors propose statecharts and DAG to represent the execution plans and exe-
cution paths. The issues of context-aware service composition have been widely
discussed in pervasive and mobile computing domain [6]. Sonia Ben Mokhtar [7]
presents an approach for context-aware service composition based on workflow
integration in pervasive computing environments.

Despite the relatively large related work in service composition domain and
context computing domain, few efforts have specifically addressed the topic of
Context-based service composition using AI planning technology.

In this paper, we propose a framework for composing context-aware Web
services. The work of this paper is a part of our ongoing research work. Future
work includes extending learning plan scenarios during planning process based
on user’s feedback and considering context modeling and context reasoning based
on Description Logics.

Acknowledgements

Our work is supported by the National Science Foundation of China (No.60435010),
the national 973 Project (No.2003CB317004) and the Nature Science Foundation
of Beijing (No.4052025).

References

1. G. Alonso, F. Casati, H. Kuno, and V.Machiraju. Web Services. Springer-Verlag,
2003.

2. A. Sheth and J.Miller. Web services: technical evolution yet practical revolution.
IEEE Intelligent systems, 18(1):78–80, 2003.

3. D. Harel and A. Naamad. The statemate semantics of statecharts. ACM transactions
on Software Engineering and Methodology, 5(4):293–333, 1996.

4. K. Nahrstedt, D. Xu, D. Wichadakul, and B.Li. Qos-aware middleware for ubiqui-
tous and heterogeneous environments. IEEE Communications magazine, 39(11):2–
10, 2001.

5. Zeng Liang-Zhao, Benatallah B., Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services compo-
sition. IEEE Tranctions on Software Engineering, 30(5):311–327, 2003.

6. Ariel Pashtan. Mobile Web Services, chapter Ontology of mobile user context. Com-
bridge unversity press, 2005.

7. Sonia Ben Mokhtar, Nikolaos Georgantas, and Valeriae Issarny. Ad hoc composi-
tion of user tasks in pervasive computing environments. In Proceedings of the 4th
workshop on software composition, 2005 LNCS3628.

352


