Challenges in evolving Metamodels

Misha Strittmatter, Robert Heinrich
Karlsruhe Institute of Technology (KIT)
{strittmatter | heinrich }@kit.edu

Abstract

Like every other software artifact, metamodels are
subject to change even in later phases of the soft-
ware life cycle. In this problem description paper, we
first classify metamodel changes. We then elaborate
on the challenges of metamodel evolution. The main
challenges are the tight coupling of code to metamod-
els and the pervasiveness of metamodel dependencies.
As this is a problem description paper, we will only
present a brief overview of possible solutions.

1 Introduction

Metamodels started out as a way to define models of
software (e.g. the UML metamodel). With the rise
of the Eclipse Modeling Framework (EMF) [12], the
usage of metamodels spread and was applied to other
purposes. Now, software engineers use metamodels as
a basis for analysis and simulation. They are further
used for code generation, serve as an abstraction of
the storage layer, are used simply as a data container
and as a means of persisting data.

There are several characteristics, where the mainte-
nance of metamodels differs from maintenance of code
or software systems in general. When metamodels are
used in software systems, they tend to be central ar-
tifacts. I.e., many other software artifacts depend on
them or are even generated from the metamodel. Fur-
ther, metamodels have no interfaces through which
they could be used. Therefore, dependent code is
coupled tightly to the metamodel. While there are
extensibility mechanisms for code (plug-ins, patterns,
inheritance ...), extension as an evolution technique is
not very established with metamodels. Further, the
way to modularize code (usually by functionality and
responsibility) is very different from structuring meta-
models, where many modularization options exist.

This paper is concerned with Essential Meta-
Object Facility (EMOF) [11] conforming metamod-
els (e.g. instances of EMF’s Ecore meta-metamodel).
However, many aspects can be transferred to meta-
models, which are conceptually similar. This paper
covers metamodels of arbitrary purpose, as long as the
purpose implies code being dependent on the meta-
model. This includes code generation, analysis, simu-
lation and editor-based graphical notations.

This paper is structured as follows: the remainder

of the introduction will outline the state of the art
in metamodel evolution and subsequently explain the
foundations of metamodeling. Section 2 gives a brief
overview of metamodel changes and their types of
causes. Section 3 states the challenges of metamodel
maintenance. Section 4 presents our experiences with
the evolution of a specific metamodel: the Palladio
Component Model (PCM) [1]. Section 5 points out
possible ways to mitigate the problems of metamodel
maintenance. Section 6 concludes the paper.

Regarding state of the art, much work deals
with the evolution of metamodels [2, 3] and the co-
evolution of models and metamodels [6, 4, 10]. How-
ever, the impact on the surrounding software system
is often out of scope. Iovino et al. [7] present an ap-
proach to assess the impact of metamodel changes in
Model-driven Engineering by using mega models. In
an attempt to automate the evolution of the depen-
dent software artifacts as much as possible, Di Ruscio
et al. [5] propose a rule-based evolution support tool.

A metamodel defines and constrains the set of its
instances (i.e. models). In the sense of EMOF, a
metamodel consists of metaclasses, which in turn con-
tain relations and attributes. If the elements of a
model conform to the definitions in the metamodel,
the model is an instance of the metamodel. EMOF-
conforming metamodels are similar to UML class dia-
grams. The differences are that they have to be com-
plete and have to form a containment tree.

The relations that can be defined in a metamodel
connect two metaclasses. Attributes of metaclasses
have only primitive types. Metaclasses are able to in-
herit from each other. A special case of a relation is
the containment relation. Each element of a model,
except the root, has to be contained in another ele-
ment. A metamodel can be subdivided into packages.
A metamodel may also reference metaclasses of an-
other metamodels. Constraints can be defined (e.g.
using the Object Constraint Language (OCL)).

Usages of metamodels are manifold. From the def-
inition of a metamodel, model code can be generated.
During runtime, this code can be instantiated to build
or load models (i.e. the metamodel’s instances). Rudi-
mentary editors can also be completely generated. For
more advanced graphical or textual editors, libraries
and frameworks can be used (e.g. GMF, Graphiti [16]
or Sirius [17]). Model transformation engines can be



used to alter models or transform them into another
form. E.g. in model-driven software development, the
code of a product is partially generated.

2 Overview of Metamodel Changes

There are several types of causes for metamodel
changes. If new (functional) requirements arise after
the metamodel has been specified, content may have
to be added. This is also the case, if requirements did
not actually change, but have not been met. Fixing
an error or implementing the change of a requirement
may also necessitate metamodel changes.

Changes to metamodels can be classified into two
categories: modifications and extensions. A mod-
ification changes (rename, deletion, move, property
change) the content of a metamodel, while an exten-
sion adds new content (i.e. metaclasses, relations or
attributes). A modification can either be imple-
mented intrusively in the metamodel or as a branch.
Sometimes, intrusive modifications are unavoidable,
especially if errors have to be fixed in the meta-
model. The benefit of intrusive modification is, that
the shared metamodel is kept identical for all depen-
dent software. However, the change also affects all de-
pendent software artifacts, which have to be adapted
to be again compatible to the metamodel. In contrast,
creating a branch and applying the modification only
to that branch has the benefit that only the software
has to be adapted that is of interest to that mod-
ification. The development of the branch is decou-
pled from the development cycle of the main branch.
Changes in the main branch’s metamodel do not im-
pose any modifications of the software which works
on the separate branch. However, this has the huge
disadvantage, that the branch and software that uses
it gradually get more and more incompatible to the
main branch.

An extension can also be implemented intrusively,
in a branch or externally in a new metamodel (a meta-
model extension). External extensions have the ad-
vantage that the original metamodel is not altered.
They are therefore the preferred approach. Techni-
cally, external extensions are always possible. How-
ever, in some cases, the original metamodel is not de-
signed to support a particular extension (e.g. it re-
quires extension points which are not present). In
such cases, the extension cannot be implemented in
a conceptually clean way but only as a workaround.
The original metamodel could be changed to solve this
problem.

The effort caused by metamodel changes increases
the later the changes are carried out. E.g. it is easy
to change a metamodel while it is being designed or
initially implemented. It gets more and more costly
to change it after it has been implemented and fur-
ther software is developed on top of it. Thus, de-
laying refactorings has dormant consequences. If

changes are not carried out, new functionality cannot
be supported and bugs cannot be fixed which leads to
increase in technical (metamodel) debt.

3 Challenges in Metamodel Mainte-
nance and Evolution

By the nature of metamodels, software that is depen-
dent on it is tightly coupled with it. From the outside,
every metaclass of a metamodel can be referenced and
every concrete metaclass can be instantiated. This
means that in principle, each intrusive modification of
a metamodel has implication onto external code. The
more code depends on the metamodel, the higher the
impact of the change.

The challenge of tight coupling is intensified by the
fact, that in metamodel-centric systems, many mod-
ules or programs are dependent on the metamodel.
When changing the metamodel intrusively, all these
programs have to be adapted. Depending on the type
of program, this can be done with relatively little ef-
fort, if the programs logic is oriented heavily on the
structure of the metamodel (e.g. editors, validators).
However, if an external functionality is implemented
(e.g. a model is interpreted), the change impact can
be grave. External extensions do not break dependent
code. They simply are not supported until the needed
functionality is implemented.

As with each software artifact, historically growing
metamodels degrade structurally over time (due to in-
trusive extensions and modifications). It is possible
to foresee and plan for future extensions to provide
extension points. However, not all possible extension
scenarios are known beforehand and some modifica-
tions cannot be avoided. Degradation of structure
hinders all: intrusive extensions and modifications,
branches as well as external extensions.

A further problem that plays into the degradation
of structure over time is the loss of knowledge. If a
metamodel is modified, the developer who carries out
the change should have sufficient knowledge of the
metamodel or else the change could be implemented
incorrectly. If he has no prior knowledge, he has to
spend time to learn and understand the metamodel.
As developer teams change, rationale knowledge of
the metamodel’s design is lost. Decisions that have
been intentionally made at one point may later seem
counter intuitive to someone else. If the modeling is
then changed or a workaround implemented, the ini-
tial good intention is lost and the stringency of the
metamodel impaired. Loss of knowledge impedes all
evolution types.

A hindering factor towards evolving metamodels
are modifications made to generated code (model
code, editor code ...). For changes of the metamodel
to take effect, it is necessary to regenerate the code
from the metamodel. In general, manual changes to
the generated code are lost, as soon as the code is re-



generated from the metamodel. These changes then
have to be reapplied to the generated code. The more
changes have been made to the generated code, the
more of a burden it becomes to regenerate and reap-
ply the changes. This can go as far that the pro-
cess of regeneration is delayed until a certain amount
of changes to the metamodel has accumulated. It is
even possible that changing the metamodel is avoided
at all. As a workaround, it is possible to automate the
reapplication of the changes. However, this reapplica-
tion is dependent on the metamodel structure. If the
structure changes, the reapplication mechanism has to
be co-evolved. Problems with regeneration encumber
intrusive extensions, modifications and branches.

A further challenge is caused by remnant generated
code. When regenerating, only existing classes are re-
generated (they overwrite existing code). However,
if a metaclass is deleted or renamed from the meta-
model, the deleted class or the class with the old name
is not deleted in the model code. When not aware of
this, external code is still able to compile, but will not
incorporate the metamodel changes and use outdated
classes. Resulting errors are masked by the outdated
code and thus are not easily identified. Remnant code
interferes with intrusive modifications and branches.

Another challenge in metamodel design as in main-
tenance is finding the right compromise between a
clean and clear metamodel and on the other side incor-
porating auxiliary content for tooling. A metamodel
that only contains the necessary information to model
a certain subject matter is precise, easy to understand
and to evolve. However, the complexity and the effi-
ciency of tooling which works on the metamodel can
be improved by including utility content in the meta-
model (e.g. additional attributes or relations for eased
navigation). This should not be overdone, as there is
the risk to encumber the metamodel. Furthermore, if
a metamodel becomes too tool specific, there is the
risk to impede its usability for specific tooling or its
reusability in other contexts. Implementing the right
degree of tooling information is a challenge in intru-
sive modification, branches and the initial design. In
some cases, however, it can be factored out into ex-
ternal extensions.

Another trade-off which the metamodel developer
has to tackle, even in maintenance, is implementing
the right degree of extensibility and generality. Some
extension scenarios have to be provided with exten-
sion points beforehand to be able to implement them
in a conceptually clean way. A metamodel for a very
specific purpose may be very precise. However, as
requirements change, such a precise metamodel may
turn out to be inflexible and not well suited for ex-
tension. On the other side, too many predefined ex-
tension points increase the complexity of the meta-
model. Making a metamodel too general makes it too
abstract, which impedes its use- and reusability. The

extensibility trade-off is a challenge for all evolution
types.

4 Palladio Component Model

In our research group, we face the challenges of evolu-
tion and maintenance [14, 13] of the Palladio Compo-
nent Model (PCM) [1]. We present this case as a con-
crete example. However, most insights in this paper
are applicable to metamodel-centric software systems
in general. The PCM is a modeling language (defined
by a metamodel) to describe component architectures
of software systems. It is the centerpiece of the Pal-
ladio Approach [1]. The PCM is modeled in Ecore.
In the versioning system, its files can be traced back
to 2006. There are editors for the PCM as a graph-
ical notation. Several simulations and analyses exist,
which operate on PCM models. Most of them perform
performance prediction, as this is the PCM’s origi-
nal focus. There are also some which are concerned
with security analyses, reliability, maintainability etc.
There are extensions to the PCM, which enrich it by
further information like: requirements, patterns, de-
sign decisions. There are editors for PCM models,
transformations to and from other languages as well
as model extractors.

The concerns that were central to the original pur-
pose of the PCM were incorporated directly in the
metamodel. However, as the focus broadens, these
concerns are irrelevant for certain new purposes. The
package structure evolved historically. So its internal
structure is not optimal. Concerns are spread over
packages and packages contain multiple concerns. The
dependencies between packages have grown wild. In-
trusive extensions were implemented. Branches exist,
where separate developments were continued.

The main challenge that we face in evolving the
PCM is the amount of software that is dependent on
it. Changing the metamodel implies changes in many
dependent components. This is amplified by the tight
coupling to the metamodel, as there is no extra ab-
straction layer to decouple code from the metamodel.
As the PCM has reached a certain age, the loss of
knowledge, especially about design decision rationale,
is also affecting us.

5 Solutions and Best Practices in
Metamodel Evolution

As it is not the focus of this problem description pa-
per, we will only give an overview of possible ways
to overcome the challenges of metamodel evolution.
Some of these approaches, techniques and best prac-
tices also work preventatively. They reduce the need
to modify a metamodel.

Of course, a (1) good initial design and a proper
(2) assessment of the requirements can prevent the
need for evolution to a degree. Foreseen extensibil-
ity should be regarded in the design. Implementing



new content as (3) external extensions (e.g. aspect-
oriented extension [8]) mitigates many of the draw-
backs from intrusive extension. However, not all
extensions can be foreseen. The right amount of
(4) modularity helps in giving extensions a clean base
where they can build upon. A well designed (5) struc-
ture of packages and extensions is important to main-
tain long-living metamodels properly. It is important
to decide the order of modularization criteria con-
sciously. An explicit (6) reference structure helps in
making the structure explicit (e.g. for quality-aware
ADLs [15]). A conscious decision for a (7) migration
strategy is important (slow iterative vs. big bang).
The implications of the big bang migration method
can be somewhat mitigated with a transformation be-
tween the old and new metamodels. Clear (8) conven-
tions (especially about extension), good knowledge of
metamodeling (9) best practices and rigorous (10) doc-
umentation (especially tracing of design decisions and
requirements) are important. Monitoring (11) metrics
(similar to regression testing in continuous integra-
tion) can help in detecting detrimental modifications.
(12) Ezplicit treatment of dependencies between pack-
ages helps in keeping dependencies correct and pre-
cise. If a new dependency is introduced between two
packages that are not yet dependent in that direction,
it should be reviewed for bad smells and correctness.
Dependency cycles between packages (and extensions)
should be avoided.

The problem of (13) regeneration can be tackled
in multiple ways. Some but not all frameworks allow
separation of generated and manual code. This is the
case with the Ecore generator and Spray [18], a gen-
erator for the Graphiti editor framework [16]. When
regenerating, only the generated code is overwritten.
The Sirius editor framework [17] performs its GMF
generation transparently for the user. User defined
free-form functionality can be added using generic ex-
tension points. The availability of these solutions,
however, is limited to specific frameworks. To har-
ness them for code generation in general, they have to
be implemented in the corresponding generator.

There are further possible solutions that are, how-
ever, subject to research and are currently not us-
able for Ecore. (14) Visibility of abstract metaclasses
could be restricted to prohibit illegitimate inheritance.
Proper support of a (15) extension mechanism will
improve reuse. If matured, (16) synchronization ap-
proaches for models and code [9] could be used to
keep metamodels and generated code consistent with-
out losing manual code on metamodel changes.

6 Conclusion

In this problem description paper, we have given
a brief overview and classification of metamodel
changes. We presented the challenges of metamodel
maintenance and evolution, as well as briefly outlined

possible solutions.

In conclusion, the potential effort caused by meta-
model evolution is grand. How to best prevent or
handle it is still an open question. Tackling these
problems as early as possible is important, as the re-
quired effort increases over time. Proper assessment
of requirements can alleviate some problems. Extensi-
bility should be regarded in the design of metamodels.
For future research, promising approaches are modu-
lar metamodels, domain specific reference structures,
metamodel interfaces and visibility constraints within
and between metamodels.

Acknowledgments

This work was partially funded by the Helmholtz Asso-
ciation of German Research Centers. We’d like to thank
Michael Langhammer, Philipp Merkle and Kiana Rostami
for their input. We also thank Marco Konersmann, Emre
Taspolatoglu and the peer reviewers for their feedback.

References

[1] Reussner et al. Modeling and Simulating Software
Architectures — The Palladio Approach. MIT Press,
2016. to appear.

[2] Burger and Gruschko. A Change Metamodel for the
Evolution of MOF-Based Metamodels. Modellierung
2010, 285-300. GI.

[3] Burger and Toshovski. Difference-based Conformance
Checking for Ecore Metamodels. Modellierung 2014,
97-104. GI.

[4] Cicchetti et al. Automating co-evolution in model-
driven engineering. EDOC 2008, 222-231. IEEE.

[5] Di Ruscio et al. What is needed for managing co-
evolution in MDE? IWMCP 2011, 30-38. ACM.

[6] Favre. Meta-model and model co-evolution within the
3D software space. ELISA 2003, 98-109.

[7] Iovino et al. On the impact significance of metamodel
evolution in MDE. JOT 2012, 11(3):3-1.

[8] Jung et al. A method for aspect-oriented meta-model
evolution. VAO 2014, 19-22. ACM.

[9] Kramer et al. View-centric engineering with syn-
chronized heterogeneous models. VAO 20183, 5:1-5:6.
ACM.

[10] Narayanan et al. Automatic domain model migra-
tion to manage metamodel evolution. MODELS 2009,
706-711. Springer.

[11] Object Management Group. MOF 2.4.2 Core Speci-
fication, 2014.

[12] Steinberg et al. EMEF: eclipse modeling framework.
Pearson, 2008.

[13] Strittmatter and Langhammer. Identifying seman-
tically cohesive modules within the palladio meta-
model. SSP 2014, 160-176. UB Stuttgart.

[14] Strittmatter et al. Towards a modular palladio com-
ponent model. SSP 2013, 49-58. CEUR.

[15] Strittmatter et al. A modular reference structure for
component-based architecture description languages.
ModComp 2015, 36-41. CEUR.

[16] Graphiti homepage. https://eclipse.org/graphiti/.

[17] Sirius homepage. https://eclipse.org/sirius/.

[18] Spray homepage. http://eclipselabs.org/p/spray/.



