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Abstract—Besides aspects of HW/SW partitioning, resource
allocation and mapping, also the optimization of the memory
subsystem plays a crucial role during the complex HW/SW
co-design and co-optimization process. Especially for memory
bound applications, like state of the art video codecs, the
memory subsystem has become one of the bottlenecks limiting
the performance gains from parallelization and HW accelerated
approaches. Memory access conflicts, due to the concurrent
access to a shared memory location, are a major source of
this bottleneck. To develop counter strategies and to optimize
the design, an in-depth analysis of all memory access conflicts
is necessary and required. In order to provide this analysis,
we propose a flexible tracing and profiling methodology, which
provides a timing-accurate memory access conflict analysis for
SystemC-based platform simulation models. In a case study this
memory access conflict analysis is performed for a heterogeneous
platform running a parallel high efficiency video coding (HEVC)
intra encoder application. This analysis leads to an optimized
design, which reduces the number of memory access conflicts
and shows significant performance gains for the target video
encoder application.

I. INTRODUCTION

Nowadays the trend in video coding applications goes to-
wards more complex algorithms and more data to process. For
example, the high efficiency video coding (HEVC) standard
supports at its highest level a video resolution of 8K (8192 ×
4320) with 120 frames per second, which results in a raw data
input rate of approx. 6TB 1 per second. A typical approach
to speed up such an application is the parallelization of the
algorithm and/or the acceleration of the most performance
requiring parts of the algorithm by dedicated HW components.
According to Amdahl’s law, the theoretical improvement of
such an approach can be calculated based on the relationship
between improved and not improved portions of the algorithm
but unfortunately most systems did not show the expected
behaviour. One aspect limiting the expected parallelization
improvements can be found in the shared memory, where
the growing number of memory access conflicts increases the
average memory access latency for all components. To avoid
or reduce these memory access conflicts, an analysis of the
developed system and its memory behaviour is an important
requirement.

In order to aid the developer with this optimization task, we
present a performance and memory access analysis tool based
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on the tracing and profiling of SystemC-based simulation
models. This tool can be used in the early design phase of the
HW/SW partitioning, when only a platform simulation model
is available, as well as in later design phases, like the HW/SW
co-optimization and refinement. The tool collects different low
level trace data events and combines these data to analyse
the memory access characteristics, in particular the memory
access conflicts, of an observed platform simulation model. A
demonstration of the tool’s capabilities is given for a video
coding use case where the analysis of the memory access
conflicts leads to an optimized design, which improves the
overall application performance.

II. RELATED WORK

Memory access analysis approaches can be classified into
intrusive and non-intrusive approaches. Intrusive approaches
collect the trace data by executing a modified version of the
analyzed software. This modification changes the execution
of the software, which affects the timing accuracy of the
collected trace data. Contrastingly, non-intrusive approaches
collect the trace data without modifying the software, typically
by the usage of modified hardware components. For this use,
non-intrusive approaches mostly utilize simulation techniques,
which leads to high execution times, especially in comparison
to intrusive approaches, where the instrumented software often
can be executed directly on the host processor.

However, also intrusive approaches may use simulation
techniques to model some part of the target architecture as
proposed for example in [1]. In this approach a cache simulator
is added to the Valgrind framework [2] to model and analyze
cache related metrics, e.g. number of cache accesses and cache
misses for a generic cache implementation. In this context
the Valgrind framework itself provides the infrastructure for
the instrumentation of the observed software, based on a
dynamic binary analysis (DBA) at runtime. A similar trace
data collection approach is presented in [3], which implements
a Valgrind based profiling tool to recognize memory access
patterns in computational kernels. Therefore all memory ac-
cesses are traced, and then the tool checks if the access pattern
of multiple accesses can be matched to a set of classifiers with
predefined memory access characteristics.

Hardware component instrumentation based approaches can
be found in [4], [5] and [6]. All three approaches are using
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the SoCLib [7] system simulation component library to collect
the trace data, either by adding special hardware monitoring
components [6] or by modifying existing hardware compo-
nents [4] and [5]. Hereby, the analysis in [6] is focussed on
the latency of communication channels and their basic data
structures. In comparison, the analysis in [4] is focussed on
tracing memory accesses to detect and identify potential data
races in a parallel algorithm. An extension of this data race
detection tool is proposed in [5]. This tool additionally traces
the memory access latencies to identify portions in the source
code where a certain contention pattern arises.

A more generic instrumentation approach for SystemC
simulation models is presented in [8]. This approach is based
on the aspect oriented programming paradigm to separate the
implementation of the trace data code from the functional code
of the platform simulation model. In a process called aspect
weaving the trace data code is inserted by a pre-processor
into the platform simulation model to trace different events
from the implementation of the hardware components. By
using this instrumentation approach, [9] automatically traces
all transaction level modeling (TLM) connections between
different SystemC modules, to verify different pre-defined
timing conditions for TLM based data exchanges.

In this paper we present an extension of our non-intrusive
tracing and profiling tool [10]. This extension enables the
collection of memory access characteristics and provides a
memory access conflict analysis. Due to the simulation based
approach, the tool can perform a timing-accurate analysis of all
memory accesses. Moreover, the tool is capable of analyzing
heterogeneous platforms and can also incorporate memory
access data from HW only components into the conflict
analysis. In comparison to the other discussed SystemC-based
approaches, the tool does not require the instrumentation of the
platform simulation model to collect the necessary trace data.
Instead, an automatic platform design analysis is performed to
configure the trace data collection module and to provide an
easy adaption mechanism for new platform simulation models.

The remainder of this paper is organized as follows. In
Section III the simulation based memory access conflict
analysis methodology is described. Based on this analysis
methodology, a case study for a heterogeneous and parallel
HEVC intra video encoder is shown in Section IV. Results for
the suggested optimization of the memory layout are discussed
in Section V and finally a concluding summary is provided in
Section VI.

III. MEMORY ACCESS CONFLICT ANALYSIS

A. Non-intrusive Trace Data Collection

Given a software based executable of the platform simu-
lation model, a simple way to collect the trace data is to
instrument this platform simulation model with a set of trace
primitives, which have to be included at appropriate places. A
downside of this approach is the lack of flexibility, because
the instrumentation code has to be maintained, whenever
the implementation is changed. Furthermore introducing new
components or switching to a new platform simulation model

requires from the developer the additional effort to add this
instrumentation code. In case of SystemC, each platform
simulation model is composed of basic standard components,
e.g. SystemC modules, ports and signals, which enables a more
flexible way to collect the required trace data by instrumenting
these standard components directly.

In SystemC different platform components are either con-
nected by a set of signals, in case of bit accurate designs, or
by a TLM socket, in case of a transaction level model (TLM)
design. Based on this observation it is sufficient to instrument
the SystemC signal class and the TLM socket class to trace a
memory access. For this instrumentation we choose the signal
update function in the common SystemC signal base class and
the transaction start/end functions in the common TLM socket
base class. By adding callbacks from these functions to our
trace data collection module, all signal changes and all TLM
access within each SystemC-based simulation model can be
traced.

Of course for complex designs with hundreds or more sig-
nals, it is not feasible and also not required to trace all changes.
To reduce the set of traced events, a set of relevant events
within the platform simulation model has to be identified. This
identification is based on an automatic design analysis, which
is performed at runtime, after the platform simulation model
has been created. After the SystemC elaboration phase, all
instantiated modules and signals are inspected by the trace data
collection module and a map of design elements and their in-
terconnections is created. Additionally the trace data collection
module analyses static C++ design elements, to enable also the
tracing of changes of SystemC module member variables. This
information is relevant to observe also static design elements,
like a program counter or a register set in an instruction set
simulator, which is required to correlate software and hardware
events in the observed system. Based on this automatically
generated map of SystemC modules and their interconnections
only the tracing of memory access signals is enabled inside the
SystemC simulation kernel, without requiring to instrument or
modify the used platform simulation model.

B. Memory Access Conflict Detection

To create memory access traces, it is necessary to collect
information about the accessed memory address, the accessed
size and the duration of this access. But in case the simulation
model utilizes signals to carry out a memory access, this
information has to be extracted from a set of multiple signals,
each playing a specific role during the memory access process.
Based on a meta-data specification of the signal roles for
different data exchange protocols, the traced signal changes
are combined to provide the required memory access infor-
mation. An exemplary signal role configuration for the virtual
component interface (VCI) standard is shown in Fig. 1.

Given the combined memory access traces from multiple
platform components, e.g. processing elements and/or HW
accelerators, the detection of memory access conflicts can
be realized. In this case a conflict is detected, whenever two
different memory accesses from different sources temporally

12



Clock

read

1 2 3 4

write

0x8f56 0x42f0

416

Traced memory access data:

start at clock cycle 91,

target address 0x8f56, size 16Byte, 

duration 7 clock cycles

request valid

request command

request address

request size

response data

response valid

response end of data

start

Signal

r/w

address

size

end

RoleTraced Signal Behaviour

time

90 91 92 93 94 95 96 97 98 99 100 101

Fig. 1. Combining the traced signal changes to collect different memory
access information.

overlap and the execution of at least one of these accesses is
delayed. The implemented conflict detection process is based
on a windowed approach, where each memory access is stored
in a FIFO buffer and removed, when the end time of the access
is below the start time of a newly detected access. Therefore
only the small set of memory accesses in the FIFO has to
be compared with each other to detect all memory access
conflicts during a simulation model run. For the evaluation
of these conflicts each conflict is either attributed to different
data structures by its traced memory addresses or to different
executed program instructions by tracing the current program
counter.

IV. CASE STUDY

A. High Efficiency Video Coding

The HEVC standard is an example of a block-based hybrid
video coding scheme. In this scheme the input frame is split
into a set of smaller blocks called coding units (CUs), and
each CU is encoded by a combination of prediction, transform
and entropy coding algorithms, as shown in Fig. 2. In case
of the HEVC main intra profile the prediction uses only
reconstructed samples from the current frame facilitating the
spatial correlation between adjacent samples.

For a high video compression efficiency it is beneficial to
adapt the CU size (block size) to the input video data content.
Therefore the encoder supports different CU sizes ranging
from 64×64 to 8×8 samples. To adapt the CU size to the
input video data content, the encoder can decide to use either
the whole CU for the compression algorithm or to split the
CU recursively into four smaller CUs, which leads to a tree
like coding structure called coding tree unit (CTU).

Because these different CU size compression stages could
be executed independently from each other, the encoder algo-
rithm has been parallelized internally by using one task for
each CU size compression stage. This results in five parallel
CU compression kernels, which will be denoted by their depth
in the CTU tree by D0 for size 64×64, D1 for size 32×32,
D2 for size 16×16, D3 for size 8×8 and D3.N for size 8×8
with an additional split of the prediction unit. Additionally
different time consuming parts of the algorithm, like transform,
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Fig. 2. HEVC intra encoder model.
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Fig. 3. Instrumented platform simulation model.

quantization, intra prediction or cost calculation, have been im-
plemented as HW-accelerated components, to further speedup
the platform simulation model. Each of these HW accelerator
components has a set of control registers for programming
and a DMA controller for data exchange. A more detailed
description of the used HEVC intra encoder is given in [11].

The implemented platform simulation model for this use
case analysis contains five ARM instruction set simulators
(ISS) for each of the parallel CU size compression stages, five
HW accelerator components, a worm-hole switched network
on chip (NoC) and two memory components, as shown in
Fig. 3. Most commonly used synchronization data structures
are located in the second memory component RAM2, as
described in [11]. The components for this platform simulation
model are cycle accurate and bit accurate (CABA) components
provided by the SoCLib project [7]. In order to detect memory
access conflicts, all outgoing data connections from processing
elements and HW accelerators will be analyzed and evaluated,
as shown in Fig. 3.

B. HEVC Encoder Analysis

To visualize the distribution of the memory access conflicts,
the collected data is sampled at different time intervals and for
different memory regions forming a spatial temporal grid. In
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Fig. 5. Distribution of memory access conflicts per parallel CU compression
stage.

Fig. 4 this sampled data is shown for an exemplary encoder
run, where the first three CTUs have been encoded. As can be
seen in this figure, most conflicts are found in the memory
regions marked by the horizontal lines, which contain the
data structures for each CU compression stage. Furthermore
no conflicts can be found in the initialization phase, because
in this phase only one processing element is allocating and
initializing all data structures. Afterwards, the memory access
conflict pattern is quite similar for each encoded CTU, because
the parallel algorithm has frequent synchronization points
inbetween, which results in a similar conflict behaviour.

A summary of the memory access conflicts distribution
in percent for data structures used only by the different
CU compression stages is given in Fig. 5. As can be seen,
in summary most of the memory access conflicts (approx.
74%) can be contributed to these data structures, with an
increase of conflicts towards the lower depth CU compression
stages. The remaining part Remain contains conflicts in data
structures shared between the CU compression stages, like
video data input, bit-stream data output or the reconstructed
picture buffers.

To visualize the conflicts between the CU compression
stages, Fig. 6 shows a memory access conflict matrix, where
a conflict is registered for each pair of involved memory
addresses. As can be seen, each stage interferes with each
other stage in a similar way, but most conflicts are located at
the beginning and at the end of each CU compression stage
data structure.

In summary most conflicts can be located in the data struc-
tures of each CU compression stage with an increase towards
the lower CU compression stages. These memory structures
are quite small (approx. 512KB) in comparison to the overall
memory footprint of the encoder. Therefore a simple counter
measure to reduce the number of memory access conflicts is,
to add further memory components to the platform and to

Fig. 6. Memory access conflict matrix for CU compression stages.

map the CU compression data structures to each of these new
separate memory components. Due to the NoC interconnect,
multiple concurrent accesses become possible as long as these
accesses are routed to different memory components.

V. EXPERIMENTAL RESULTS

In a first experiment each of the five different CU com-
pression data structures is mapped to a separate memory
component added to the platform simulation model. For each
memory component the access latency is configured in a range
from 5 to 50 clock cycles to model different main memory
access delays. As can be seen in Fig. 7, the speedup between
the basic platform simulation model and the model with the
additional memory components increases for higher memory
access delays. In case the memory access delay is small, which
in terms means a fast main memory, the improvement of
the execution time is small, when adding additional memory
blocks. On the other side, systems with slow main memory
will benefit from adding additional memory blocks, which
means for a final design a trade-off is possible between the
memory access delay and the number of memory components.

As shown in the previous section Sec. IV-B, the number of
memory access conflicts increases for lower CU compression
stages. Therefore in a second experiment only a subset of the
CU compression data structures is mapped to the additional
memory blocks, whereas the memory access latency is fixed
at 20 clock cycles. In one configuration, shown on the left
side of Fig. 8, only one single CU compression component is
mapped to a new memory component. Additionally, in another
configuration, shown on the right side of Fig. 8, the number
of mapped CU compression data structure is successively
increased, starting from the lowest CU compression stage,
until all data structures have been mapped to different memory
blocks.

As expected, mapping the D3.N data structures to a separate
memory component, shows the highest speedup in case only
one separate memory component is available. In case multiple
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Fig. 4. Memory access conflict trace over execution time for encoding three CTUs. Vertical lines depict the beginning of a new encoded CTU. Horizontal
lines mark the memory interval containing CU compression data for each stage.

0

10

20

30

40

50

60

70

0 10 20 30 40 50

S
p

e
e

d
u

p
 [

%
]

Memory Latency [cc]

Fig. 7. Encoder execution time speedup of the optimized platform simulation
model for different memory access latency parameters.

separate memory blocks are available, the distribution of
memory access conflicts can be used to prioritise the mapping
of the different data structures and to explore a trade-off
between performance and HW costs for additional memory
components.

VI. CONCLUSION

This paper presents a simulation based analysis of memory
access conflicts for a heterogeneous multi-core platform. The
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Fig. 8. Encoder execution time speedup of the optimized platform simulation
model for different memory mappings.

memory access trace data is collected non-intrusively from
a SystemC-based simulation model. Therefore the SystemC
simulation kernel has been instrumented, which facilitates a
flexible and generic trace data collection approach. In order to
control the trace data collection module, an automatic design
analysis of the SystemC-based simulation model is performed
at runtime. The analysis of memory access conflicts is based
on the collection of all memory access data from each platform
component, e.g. processing elements and HW accelerators.
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By this approach all sources for memory access conflicts are
observed and also heterogeneous designs can be analyzed.

To show the capabilities of the implemented memory access
conflict analysis, a heterogeneous and parallel HEVC intra
video encoder has been examined in a case study. In this
case study the main sources for memory access conflicts have
been identified, which leads to an optimized platform design.
The speedup of this optimized design depends on the initial
memory access latency but even for small latencies (10cc) a
performance gain of 30% and more could be observed. In
future work we plan to extend the analysis tool to perform
an automatic hotspot analysis and to provide automatically a
segmentation of the involved data structures to derive possible
platform optimizations.
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