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Abstract: A wealth of time series of microarray measurements have become available
over recent years. Several two-sample tests for detecting differential gene expression
in these time series have been defined, but they can only answer the question whether a
gene is differentially expressed across the whole time series, not in which intervals it is
differentially expressed. In this article, we propose a Gaussian process based approach
for studying these dynamics of differential gene expression. In experiments on Ara-
bidopsis thaliana gene expression levels, our novel technique helps us to uncover that
the family of WRKY transcription factors appears to be involved in the early response
to infection by a fungal pathogen.

1 Introduction

Microarray data are a major resource for studying the response of an organism to exter-
nal conditions and stimuli. In the past, the majority of studies considered only a single
measurement in each condition. Recent advances in microarray technology and falling
costs have led to an increasing number of studies where expression levels are measured in
different conditions over time rather than in a single snapshot.

A range of techniques to test for differential expression have been proposed in the com-
putational biology and statistics communities. In statistics, this task is often referred
to as the two-sample problem. The majority of these existing methods are aimed at
identifying differentially expressed genes from static microarray experiments, for exam-
ple (KMCO00, DYCSO02, ETSTO1).

More recent approaches are specifically designed for time series (JGST03; SXL*05;
TS06; CDCMPO07; ACC™08), and a range of desired properties of a two-sample test for
microarray time series have been established. First, the test should explicitly address the
dependencies between consecutive measurements. Second, the method should not make
overly strong assumptions about functions describing the time series, such as assuming a
linear or finite model basis (Yua06). Third, to accommodate data characteristics specific
to the microarray platform, it is beneficial to handle missing values and deal with multiple
replicates. Finally, robustness with respect to outliers has proven useful for reliable results
on microarray datasets (CDCMP07; ACC+08).

To address all of these issues, we defined a robust Bayesian two-sample test for differential
gene expression using Gaussian processes (GP) in (SDW109). In addition to solving
the basic two-sample problem, the presented method can also be used to decide whether
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differential expression occurs at a specific time point in the time series.

However, the test from (SDW109) does not reflect‘smoothness’ between decisions at con-
secutive time points. That is, there can be abrupt switches from non-differential gene
expression to differential gene expression (and vice versa) from one time point to the next.
If one wants to detect meaningful temporal intervals of differential gene expression rather
than individual time steps, it is vital to incorporate this smoothness assumption into the
formulation of the statistical model. This is exactly the goal of this article.

The remainder of this article is organised as follows. We start by reviewing how Gaus-
sian processes can be applied to test for differential expression in microarray time se-
ries (SDWT09). In Section 3, this basic test is extended to a temporal model detecting
intervals of differential gene expression. Finally, in Section 4, we demonstrate how this
additional information can be useful to gain insights into regulatory mechanisms involved
in the response of Arabidopsis to an infection by a fungal pathogen.

2 Gaussian Process-based two-sample test

The task of detecting differential gene expression is defined as follows: Given observed
gene expression levels from two biological replicates that are exposed to different condi-
tions, the goal is to determine whether a given gene probe is differentially expressed in
these conditions or not.

The principle underlying the Gaussian process-based two-sample test (GPTwoSample)
from (SDW09) is the comparison of two models: The first model assumes that the mi-
croarray time series in both conditions are samples drawn from an identical shared distri-
bution. An alternative model describes the time series in both conditions as samples from
two independent distributions. As these distributions need to be defined over functions, a
Gaussian process is an appealing model. A GP incorporates beliefs about smoothness and
allows all model parameters except for a handful of hyperparameters to be integrated out
analytically, allowing for tractable model comparison. The two alternatives, the shared
model (Hs) and the independent model (H;) can then be objectively compared using the
logarithm of the Bayes factor

P(Da,Dp|H)

Score = log —————=,
& P(D4, Dy | Hs)

D

where D4 and Dy are observed expression levels in two conditions A and B. Writing out
the GP models explicitly leads to

P(Y#4 | Hgp, T4, 01)P(YE | Hgp, T2, 0))
P(YAUY®B |Hgp, TAUTE 05)

Score = log

2

where Y4/ are observed expression levels and 74/ are the corresponding time points in
both conditions and 8y, 85 are hyperparameters of both models. For details see (SDW*09).
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Figure 1: Bayesian network for the temporal GPTwoSample model. At observed time
points {¢, }, binary indicator variables {z;, } determine the state of a gate and hence which
expert explains the corresponding observations. If the state of the indicator is 1 the inde-
pendent expert is used, while if the switch is 0, the shared expert is used. The shared
expert uses a single GP f(¢) to model both conditions. The independent expert uses two
GPs f4(t), fB(t). Smoothness of the GP priors is indicated by the thick bands coupling
function values at different time points. A logistic Gaussian process, g(t), incorporates
smoothness over the state of the indicator variables.

3 Detecting intervals of differential gene expression

Once we know that a particular gene is differentially expressed, it is interesting to ask in
which intervals of the time series this effect is present. Such detailed analysis is particu-
larly valuable for longer time series, where differential behaviour might be present only
temporarily or occur after a certain time delay.

To address this question, we propose a mixture model over time, where one mixture com-
ponent (expert) corresponds to the shared model and a second mixture component to the
independent model. A Bayesian network representation of this temporal GPTwoSample
model is shown in Figure 1. The model is closely related to mixtures of Gaussian process
experts (RGO1). The shared expert is a single GP explaining expression levels in both
conditions, while the independent expert uses a separate GP for each condition.

At observed time points binary switches z = {z,, ..., 2, } determine which expert ex-
plains the corresponding expression levels. In the same way that the expression levels vary
smoothly over time, we also believe that the states of the indicators follow a smooth trend,
typically reflecting a transition from the shared expert to the independent expert. This
belief about smoothness is expressed in a gating network, implying a joint probability
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distribution over all indicators P(z| T, 0g).

The coupling of the observed expression levels Y by the GP experts renders inference in
this mixture model difficult. While the latent function values f can be integrated out in
closed form, marginalising over the state of the indicators z yields an exponential sum
over all possible configurations:

P(Y|T,0s,0:,06) = ZP(Z 106) [P(Y (y,:2., 0} | Hs, Ttz 0}, 0s)

XP(Y{yn:ztnzl} | Hh T{tn:zt":l}v 01)} . 3)

The two terms in the sum are the data likelihoods from both GP experts introduced in
Section 2. Here we follow (RGO1) and exploit tractable conditional distributions. Con-
ditioned on a particular configuration of the indicators z, the likelihood factorises into a
product over the two experts, where the data are split between the experts according to the
state of the indicator variables.

A Gibbs sampler is well suited for this inference task. The latent function values of the ex-
perts can be integrated out or collapsed and hence Gibbs sampling steps reduce to updates
of one indicator at a time, conditioning on the current state of all remaining indicators and
data. The conditional distribution over a particular indicator z;, is

P (Zti =s| z\" T,Y, 05,0, QG) xP (Y |z, = s, z\% T, 0, 05)
XP (=1, = 5|2\, 0q) )
with s € {0, 1}. The first term is the conditional data likelihood. Rewriting this term as

P (Y | Zt; = S, Z\ti ’ Ta 0[7 05) :P(ym | Rt = S, Z\tia Y\Utz ’ T)

XP(Y\Z” Z\ti’ T\t,,) 5)

reveals that for Gibbs sampling it is sufficient to calculate the probability of y;, under the
leave-one-out predictive distribution of both GP experts.

The second term in (4) is the probability of the indicator z;, under the predictive distri-
bution of the gating network, given all other indicators. We choose a logistic Gaussian
process as a gating network, where smoothness is expressed by a GP prior on a latent
function g(t) (Figure 1). Bernoulli predictions of an indicator z;, are related to the Gaus-
sian predictive function values by a probit likelihood model (full details in accompanying
technical report),

Pz, = 1|2\, T) Z/ (g1, )N (g1, | p1e,-07,) dge,- (6)

9gt;

The likelihood models of both Gaussian process experts as well as the gating network
are all non-Gaussian and hence predictive distributions are not available in closed form.
Expectation Propagation (EP) (see tech report, (SDW™09)) is applied to all these cases to
obtain tractable approximate predictive densities.
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Sampling of the indicators is repeated for a number of randomised sweeps through all
indicators. After every full sweep, the GP hyperparameters from the GP experts and the
gating function are sampled using Hamiltonian Monte Carlo (e.g. (Mac03)). The complete
sampling scheme is summarized in Algorithm 1.

Algorithm 1 Sampling scheme for the temporal GPTwoSample model

1: forng, =1... N, Gibbs sweeps do

2 forn € 1,..., N measurements do

3: Resample indicator z;, (Equation (4)).

4: end for

5 Sample the hyperparameters s, 81 and O conditioned on z.
6: end for

To identify temporal patterns of differential expression, we are most interested in the in-
ferred states of the indicators. After a burn-in period, the generated samples yield an
empirical posterior distribution over the indicator variables z. Predictions of the gating
network at test times ¢, can be obtained by integrating out z using a set of .S’ samples

S
1 s
Pz, =1|Y,T,t,) ~ EZP(Z* = 1|Y,T,t,,2*),0%)), )

s=1

yielding a mixture of Bernoulli distributions. These marginal predictions ignore the cou-
pling at different time points that is introduced from the sampled states {z(*)}. However,
after a sufficient burn-in period, most of the indicators are constant across samples {z(*)}
and hence marginal predictions are appropriate. The same argument applies to predictions
of the latent function values of the GP experts. These mixtures of Gaussians are well
approximated by a Gaussian predictive distribution.

4 Detecting transition points in Arabidopsis microarray time series

We applied the temporal GPTwoSample model' to detect intervals of differential expres-
sion of gene probes from an Arabidopsis time series dataset.

In this particular experiment, the stress response of interest is an infection of Arabidopsis
thaliana by the fungal pathogen Botrytis cinerea. The ultimate goal is to elucidate the gene
regulatory networks controlling the plant defense against this pathogen. The identification
of intervals of differentially expressed genes is an important first step towards this goal.

Data were obtained from an experiment in which detached Arabidopsis leaves were inocu-
lated with a B. cinerea spore suspension (or mock-inoculated) and harvested every 2 hr up
to 48 hr post-inoculation for a total of 24 time points. B. cinerea spores (suspended in half-
strength grape juice) germinate, penetrate the leaf and cause expanding necrotic lesions.
Mock-inoculated leaves were treated with droplets of half-strength grape juice. At each
time point and for both treatments, one leaf was harvested from four plants under identical

I'Software will be made available with the accompanying tech report.
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Figure 2: An example result produced by the GPTwoSample temporal test. Top: The
posterior probability of differential expression as a function of time. Bottom: Dashed lines
represent replicates of gene expression measurements for control (green) and treatment
(red). Thick solid lines are Gaussian process mean predictions of the latent process traces;
error bars of plus or minus 2 standard deviations are indicated by shaded areas. The
intensity of the shaded areas is modulated by the posterior probability of the respective
Gaussian process expert. The score in the figure title is the Bayes factor of the standard
GPTwoSample test.

conditions (i.e. there were 4 biological replicates). Full genome expression profiles were
generated from these whole leaves covering a total of 30,336 gene probes.

In the experiments, we used our novel test for detecting intervals of differential gene ex-
pression for each of the 30,336 probes. In the computations, a total of 50 Gibbs sweeps
were performed. After every Gibbs sweep 5 Hamiltonian Monte Carlo updates were inter-
leaved. To allow for a burn-in period, posterior parameters were estimated from samples
of the last 25 sweeps.

Figure 2 gives an example result of the temporal GPTwoSample model. The top panel
shows the marginal predictive distribution for the indicator state z(¢), choosing between
the shared, z(t) = 0, and the independent, z(t) = 1, expert. The bottom panel shows the
raw data and marginal predictions of latent function values from both GP experts. For this
particular gene the test identified intervals of clear differential expression that started at
around 22 hr post inoculation and lasted until the end of the time series recording.

Additional results for a representative selection of gene probes are shown in Figure 3.

Delayed differential expression

Applying the temporal GPTwoSample test to a large set of differentially expressed genes,
it is possible to study the distribution of their start and stop times of differential expression.
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(a) CATMA1a64350: Early diff. expr. (b) CATMA2c47710: Delayed diff. expr.
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(c) CATMA1c71184: Transient diff. expr. (d) CATMAS5al4990: Permanent diff. expr.

Figure 3: Example results of the temporal GPTwoSample model applied to the Arabidop-
sis data. Panels (a) and (b) show examples of particularly early and late differential
expression. In (¢) a gene probe is shown for which differential expression appeared to
be transient. Example (d) shows a probe with weak evidence for differential expression
throughout the time series.

For this analysis, the top 6000 genes that had a score suggesting significant differential
expression were used. For each gene the start time of differential expression was de-
termined as the first time point at which the posterior probability of differential expres-
sion, P(z;, = 1), exceeded 0.5, evaluated at a discretisation of 100 points in the interval
[0, 50] hr. Analogously the stop time was deduced as the time point where differential ex-
pression ended, i.e. P(z, = 0) < 0.5. The lower panel in Figure 4 shows the histogram of
the start time for the considered 6000 gene probes. The identification of transition points
for individual gene expression profiles shows that a significant change in the transcrip-
tional program began at around 17 hr post-inoculation. This program of gene expression
change appeared to have two strong waves peaking around 21 hr and 25 hr. For a small
fraction of genes this change in the transcriptional program started at either significantly
earlier or later times; Figures 3a and 3b give examples of such genes. Figure 3d shows re-
sults for one of the approximately 200 genes that were identified as differentially expressed
right from the start of the time series. Most of these genes were weakly expressed and an
offset between the measurements in both conditions triggered the early classification as
differentially expressed.

The top panel of Figure 4 shows the stop time of differential expression for 13 genes for
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Figure 4: Histogram of the most likely start and stop of differential expression for the top
6000 differentially expressed genes. Stop time are shown for a total of 13 genes that appear
to exhibit transient differential expression ending within the observed time window.

which the differential expression program ended within the measured time interval. An
example of one of these genes with transient differential expression is given in Figure 3c.

Interpreting waves of differential expression

It is interesting to understand the causes for the different onset-timings of differential ex-
pression for individual genes. We expect regulators (if involved in the response to the
fungus infection) to be expressed at earlier times than the downstream genes they control.
In the Arabidopsis response to stress, several relevant regulatory mechanisms have been
established in the literature. These include transcription factors (CPG*02; SYS00) as well
as kinases (FFNT06; CRBX05).

Figure 5 shows histograms of the start time of differential expression for groupings of the
6000 genes that correspond to different gene categories. Tentatively, transcription factors
and kinases appeared to be stronger represented in the earlier wave; however application
of a Kolmogorov-Smirnov (KS) test revealed that these differences were not significant
(transcription factors: p = 0.092, kinases: p = 0.964).

The differential expression onset-timing can be broken down further, for instance into sub-
families of transcription factors. The family of WRKY transcription factors is known to
play a role in response to biotic stresses (CPG102). The onset times of transcription factors
in this family appeared to be overrepresented in early differential expression compared to
other transcription factors. A KS-test revealed that this subset of 26 transcription factors
exhibited a significantly different distribution of onset-times than other genes (p = 3.3 -
105). This results demonstrates the usefulness of the time-local two-sample test. By
analysing the onset timing it is possible to narrow down the set of interesting candidate
genes to study. When designing further experiments to elucidate transcriptional networks
mediating the defense response against B. cinerea, regulatory genes whose expression first
changes in the 21 hr wave or earlier would be of particular interest.
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Figure 5: Histogram of the most likely start differential expression for the top 6000 dif-
ferentially expressed genes split up into different gene categories. From top to bottom
the histograms show results for all 6000 genes, kinases , known and putative transcription
factors and WRKY transcription factors.

5 Discussion and outlook

The temporal GPTwoSample model, which we presented in this article, extends the stan-
dard paradigm of the two-sample problem and our previous work (SDW109) to the iden-
tification of smooth intervals of differential expression. The proposed method is compu-
tationally efficient and can be applied to large datasets with thousands of genes using a
standard desktop PC. Experimental results on 6000 differentially expressed Arabidopsis
thaliana gene probes revealed patterns in the timing of the response to a fungal infection
(Figure 3). As an example application we studied the distribution of the start and stop times
of differential expression (Figure 4) that led to insights on waves of differential expression
in Arabidopsis genes (Figure 5).

Several extensions of the method developed in this article would be of interest. First,
the current model does not distinguish between different expression patterns and anti cor-
related genes. Explicit modeling of anti-correlation is an important next step. Second,
extensions to model differential gene expression at a network view rather than at the level
of individual genes are an interesting direction of future development of differential gene
expression models. The presented method provides the required per-gene level model for
such future investigation.
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