
cba

Gesellschaft für Informatik (Hrsg.): SKILL 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

Asynchronous and Decentral Group Management in
Messengers with Delegated Proof of Stake

Andreas Hellenbrand1

Abstract: Mobile messaging applications are used widely for group communication using group
chats. Most messenger platforms rely on their centralized infrastructure to maintain the group states.
This can imply privacy issues and allow potential misuse by the messenger providers. To resolve this
privacy implications, a decentral approach can be implemented. The decentral protocol presented in
this work is based on the Delegated Proof of Stake consensus protocol and uses a blockchain to store
the groups state. The main focus of this work is the optimization of the protocol to be able to deal
with the asynchronous environment of mobile applications.

Keywords: Blockchain; DPoS; Group Chats

1 Introduction

Group Chats are an essential feature of mobile messenger applications, such as WhatsApp,
Signal and Telegram. In order to add or remove members from a group, management is
needed. Most messenger systems rely on centralized management by storing the groups
state gr on the system server. 2

gr = (id,M,M∗, info) (1)

Table 1 defines the components of the four tuple introduced in equation 1.
id := Unique group identifier
M := Set of members/users
M∗ := Set of admins withM∗ ⊆ M
info := Meta information (e.g. name, icon, description, ...)

Tab. 1: Group state

Signal recently published a paper that introduced an end-to-end encrypted, centralized
group management [CPZ19], ditching their previously used decentral system [Ma14]. Other
systems store the group information unencrypted, as they distribute group messages from
1 Hochschule RheinMain, Wiesbaden, Germany andeas.hellenbrand@student.hs-rm.de
2 The notation of equation 1 was introduced by Rösler et al. in their analysis of group messaging protocols

[RMS17].

https://creativecommons.org/licenses/by-sa/4.0/
mailto:andeas.hellenbrand@student.hs-rm.de

2 Andreas Hellenbrand

the server [Te; Wh17]. In Signal group messages are processed like direct messages, such
that the server does not need to know the groups members.

The unencrypted, central storage of group information violates the user’s privacy. Even in
Signals encrypted handling of group information, the existence of a group is disclosed to the
service and may allow the server to return incorrect information about the group [CPZ19].

The goal of this work is to provide a decentral group management system, that can be
used in the asynchronous environment of mobile messengers, where clients are not always
connected and the users only open the application from time to time.

1.1 Delegated Proof of Stake

Delegated Proof of Stake (DPoS) is a consensus algorithm used for the blockchains of EOS
and BitShare [Bi18; EO18]. Compared to Proof of Work systems like Bitcoin [Na09], DPoS
does not rely on a competition to find hashes which requires a high computational effort.
Instead all stakeholders (e.g. the coin holders) can elect delegates, who then can build and
distribute new blocks. These blocks contain transactions and votes and are authenticated by
the signature of a currently elected delegate. Every x blocks, the votes are recounted and the
set of delegates is updated if needed [Bi].

The order in which the delegates sign new blocks is defined by a fixed or randomized
schedule and all delegates who share a valid block in their assigned time slot are rewarded
with new tokens [EO18].

1.2 Related Work

In [He19] a group management system based on the DPoS protocol was presented. Instead
of relying on a central service to maintain and distribute the state gr , group members share
messages between each other to manage the group.

In this work, several requirements for a group management system where defined.

Same State All members m in a group with state gr use the same local state grm.

∀m ∈ M (grm = gr)

Confidentiality by Group Management Only admins m ∈ M∗ should be able to update
the group state gr (e.g. add or remove members).

Privacy Only the members m ∈ M of a group should know that the group exists.

Group Managment with DPoS 3

Each group is defined by its own blockchain that is distributed between the members. The
members of the group elect delegates, which are able to sign suggestions. Suggestions, such
as add or remove member and info, can be shared by all members and are confirmed if an
elected delegate shares a new block, including the suggestions. If no delegate builds such a
block, the suggestion is ignored and not applied to the group. Suggestions can be seen as
the transactions of traditional DPoS systems, beside being optional to confirm.

[He19] describes several shortcomings regarding the chosen voting process to elect delegates
and the handling of forks. Members can start Voting Windows in which every member can
share votes if they get online during this time frame. This implies that members which did
not get online are excluded from the vote, as a synchronous component is introduced in
the asynchronous environment of messenger applications. After collecting all votes, the
members need to confirm to each other, that they computed the same election result. This
introduces a second step and increases the protocols complexity. Forks are resolved by
dropping the branch that does not get continued, this leads to information loss and violates
the same state requirement for the time the fork exists.

The presented protocol also does not take delivery issues like delayed or lost messages
into account. As these are expected in an asynchronous mobile environment, the group
management protocol needs to be resilient against delivery issues.

This initial work also contains a security analysis of the protocol and an introduction to
alternative solutions that are used by messenger applications.

2 Group Management with DPoS

The following section introduces an updated version of the protocol with focus on the new
voting and forking system.

2.1 Notation

Table 2 shows some additional notations, which will be used in the following section.

More on Merkle trees can be found in [Me88].

2.2 Protocol

The blockchain Bgr that is distributed between the membersMgr describes the current
state of a group gr = (id,Mgr,M

∗
gr, info). If a new block BS with a suggestion S is added

to Bgr , the group state is updated according to the action a of S (gr ′ = Update(gr, a)).

Bgr + BS → gr ′ = Update(gr, a) (2)

4 Andreas Hellenbrand

[x1, ..., xn] List of the items x1 to xn
Bgr The Blockchain of the group gr
B−1 The latest block of a Blockchain Bgr
hash(x) → byte[] Hash for x
sig(uid, x) → byte[] Signature for x from signer uid
verify(uid, sig, data) → boolean Verifies a Signature
MerkleRoot([x1, ..., xn]) → byte[] Merkle root of a Merkle tree over the list [x1, ... ,

xn]
MerklePath(xi, [x1, ..., xn]) → [byte[]] Merkle Verification Path to the leaf xi with 1 ≤

i ≤ n of a Merkle tree over the list [x1, ..., xn]
verify(xi,mvp) → boolean Verifies a Merkle path

Tab. 2: Additional Notation

2.2.1 Suggestion

A suggestion S can be shared by any member m ∈ M at any time.

S = (uid, action, value, bid, bhash, sig) (3)

Table 3 defines the components of the suggestion tuple introduced in equation 3.
Definition Comment

uid := m ∈ M Sender
action := add ‖ remove ‖ info The action to perform
value := uid ‖ info The user or new info
bid, bhash := Block Reference Block id and the blocks hash
sig := sig(S \ sig) Signature

Tab. 3: Suggestion

Each suggestion includes a block reference (bid, bhash), which links it to a specific block in
Bgr . This prevents the suggestions to be included in a different blockchain and allows the
members to check the assumptions the sender makes about the current groups state gr . This
mechanism is known as Transactions as Proof of Stake (TaPOS)[EO18].

If a suggestion is applied, its action updates the group according to table 4.
(action, value) Update
(add, uid) M ′ =M

⋃
{uid}

(remove, uid) M ′ =M \ {uid}
(info, i) info′ = i

Tab. 4: Suggestion actions

A suggestion S is valid for the blockchain B with the latest block B−1 and can be confirmed

Group Managment with DPoS 5

if the conditions in table 5 hold. Suggestion can expire if they reference a block, that is to
far down the chain.

a = remove ∧ value ∈ M Only remove members
a = add ∧ value <M Only add users that are not already a member
∃b ∈ B (hash(b) = bhash ∧ b.bid = bid) Referenced block is in B
bid ≥ B−1.id − n Referenced block is not older than n blocks
verify(uid, sig, S \ sig) Valid Signature

Tab. 5: Valid Suggestion

2.2.2 Block

A suggestion block BS can be shared by the delegates m ∈ M∗. As soon as a delegate gets
online and receives a suggestion S he likes to confirm, he can sign and share a block, as
long as S is not already confirmed by a block from another delegate. Unlike a traditional
DPoS systems, a specific order does not need to be followed by the delegates. This allows
the group management to work in the asynchronous messenger environment as it is not
requierd for them to be online at a specific time.

BS = (bid, pbh, S, sig, uid,MVP,VMR, nVMR, votes) (4)

Table 6 defines the components of BS introduced in equation 4.
Definition Comment

bid := B−1.bid + 1 Latest bid + 1
pbh := hash(B−1) Hash of the previous/latest block
S := Suggestion Confirmed suggestion
uid := m ∈ M∗ Delegate / Signer
MVP := MerklePath(uid,M∗) Delegate proof
VMR := MerkleRoot(M∗) Delegate proof
nVMR := MerkleRoot(M∗

′

) Merkle root ofM∗ with the new votes
votes := [vote] List of new votes
sig := sig(uid,Block \ sig) Block signature

Tab. 6: Block

Delegate Proof When building and sharing a new block, the block signer uid needs to
proof that he is indeed a currently elected delegate (uid ∈ M∗). To do so he creates a
delegate proof with the Merkle root VRM and a Merkle verification path MVP from the
Merkle tree overM∗. The VRM can be used to verify that the block signer used the correct
set of delegates and by providing a valid MVP from his uid to the VRM, he can proof that
uid ∈ M∗.

6 Andreas Hellenbrand

The nVRM is used to updateM∗ if the new votes change the election result. This process is
explained in section 2.3.

Confirmation Blocks S can also be empty. Such a block is called Confirmation block, as
it confirms the current group state gr without updating it. These blocks are shared by the
delegate that first gets online after a time x since the last block and no new suggestions are
available for confirmation, to add new votes to the blockchain.

Block Verification After a block B is received, each member validates the block in relation
to the latest/previous block B−1 ∈ B. The block is accepted if the conditions from table 7
hold:

Condition Comment
bid = B−1.bid + 1 Latest bid + 1
pbh = hash(B−1) Latest hash matches
Valid(S) Valid suggestion
verify(uid, sig,B \ sig)) Valid signature
verify(uid,MVP) Valid Merkle path
VMR = B−1.nVRM Merkle root matches the latest nVMR
nVMR = MerkleRoot(M∗

′

) Next Merkle root is for the updateM∗
∀v ∈ votes (Valid(v)) All votes are valid

Tab. 7: Block verification

2.3 Elections

Votes can be sent by every member m ∈ M at every time.

Vote = (uid,Vuid , sig, bid, bhash) (5)

Table 8 defines the components of a Vote introduced in definition 5.
Definition Comment

uid := m ∈ M Sender of the Vote
Vuid := [v1, . . . , vn] with vi ∈ M The votes (List of users)
sig := sig(uid,Vote \ sig) Signature
bid, bhash := B−1.bid, hash(B−1) Block reference

Tab. 8: Vote

Like suggestions, votes also include a block reference as TaPOS.

Group Managment with DPoS 7

A shared vote must be added to the next block a delegate builds. Unlike suggestions, votes
must not be ignored. For each block BS that includes votes, the signing delegate needs
to compute the new election result. First the last votes are retrieved from the blockchain,
including the new block (B + BS). Each users votesVi = [v1, . . . , vn] are stored in the set
V = [Vu1, . . . ,Vum].

A vote V is valid for the blockchain B with the latest block B−1 and can be confirmed if the
conditions in table 9 hold.

Condition Comment
∃b ∈ B (hash(b) = bhash ∧ b.bid = bid) Referenced Block is in B
bid ≥ B−1 − n Referenced block is not older than n blocks
verify(uid, sig,Vote \ sig) Valid Signature
∀v ∈ Vuid (v ∈ M) Voted users are inM

Tab. 9: Valid Vote

In the next step, for each member uid the received votes are computed using equation 6.
Each user has one vote. If he chooses to vote for multiple users, the vote is distributed
equally between his choices (1

|Vi |
).

xuid =
|V |∑
i=0

{
1
|Vi |

, if uid ∈ Vi

0 , else
for all uid ∈ M (6)

nVRM of the new block is set to the Merkle root of the list of uid’s of the |
√
M| members

with the highest votes xuid . If nVRM , VRM this step updates the set of delegatesM∗.

2.4 Forks

Forks can occur if delegates share new blocks that are linked to the same previous block.
In this case the blockchain opens into multiple branches. Most systems resolve forks by
only using the longest chain, e. g. the branch that gets continued first. This approach is not
suitable for group management, as it can temporarily break the same state requirement as
members are on different branches.

Forks can be prevented if messages get a Server-Side-Timestamp (SST). Members then can
compare which block was shared first and only use this block. In figure 1 the block 1339
with timestamp 13:45 gets chosen over the block with 13:46.

The SST is attached to every message m by the messaging services server (m′ = (m, SST)).
It’s assumed that the connection between the users and the server is protected.

8 Andreas Hellenbrand

A1337 1338

1339 1340

133912:30 13:30

13:46

13:45 15:00

Fig. 1: Fork with Server-Side-Timestamp

3 Asynchronous Messaging

In the mobile environment of messenger applications it can occur that messages are not
received or received in the incorrect order. A distributed group management system needs
to compensate these cases.

The correct recpetion of messages is only critical for block messages, as only these messages
directly affect the state. Suggestion and vote messages can be either confirmed by a delegate
that received the message or need to be resent.

A lost or delayed block can be detected if another block with a bid greater than the latest
local bid + 1 is received. Such blocks need to be stored in a local cache. If the missing block
is received (due to a delay), the cached block can be added to the chain after the delayed
block. If no block is received after a time X, the member sends a Sync(bid) to a random set
of members M

′

⊆ M, which reply with the blocks {bid, ..., blatest } ⊂ B. The requesting
member then compares the responses and rebuilds his local blockchain accordingly.

4 Example

Figure 2 shows several messages to a group, and how the votes, suggestions and blocks
affect the group state.

Incoming messages to the group (uid, type, content) can be of type Suggestion S, Vote V
or Block B. For simplication, some fields of the messages are left out. New blocks are
appended to the blockchain and the state is updated accordingly. The state contains the
group name, the member list and the election results (uid : recieved votes (own votes)).
The elected delegates are color coded together with the VMR and nVRM.

Group Managment with DPoS 9

Messages Group Blockchain State

1337
(Add, 4)
(MVP, VMR, nVMR)

[]
(2, Signature)

pBH

Hash

1338
Conf.
(MVP, VMR, nVMR)

[(4: (3,2)),
(3: (2,3,4))]

(1, Signature)

pBH

Hash

1339
(info, "Cats")
(MVP, VMR, nVMR)

[(1: (1,3))]
(2, Signature)

pBH

Hash

(1, S, (Add, 4))

(2, B, (Add, 4), [])

(4, V, (4: (3,2)))

(3, V, (3: (2,3,4)))

(1, B, Conf, [4, 3])

(3, S, (info, "Dogs"))

(1, S, (info, "Cats"))

(2, B, (info, "Cats"),[1])

(1, V, (1: (1,3)))

"Hello World"
[1, 2, 3, 4]
[1: 2 (1,2),
 2: 1 (1),
 3: 0 (1,2)]

"Hello World"
[1, 2, 3, 4]
[1: 1,5 (1,2),
 2: 1,3 (1),
 3: 0.8 (2,3,4),
 4: 0.3 (3,2)]

"Cats"
[1, 2, 3, 4]
[1: 1,5 (1,3),
 2: 0.8 (1),
 3: 1.3 (2,3,4),
 4: 0.3 (3,2)]

(3, B, Conf.)
1340
Conf.
(MVP, VMR, nVMR)

[]
(3, Signature)

pBH

Hash

"Cats"
[1, 2, 3, 4]
[1: 1,5 (1,3),
 2: 0.8 (1),
 3: 1.3 (2,3,4),
 4: 0.3 (3,2)]

Fig. 2: Example Group

10 Andreas Hellenbrand

5 Security Considerations

As [He19] covers the security analysis of the initial protocol, this work only focuses on the
parts affected by the updates introduced above.

Two adversaries are described, malicious server and malicious member. Malicious user and
network attacker are not covered, as the attack surface for these adversaries is not affected
by the updated protocol.

5.1 Malicious Server

A malicious server attacks the connection between client and server or obtains control over
the server. This adversary can modify and forge all communication that is only protected on
the transport layer or drop messages.

The server-side-timestamp, used for fork prevention (2.4), can be altered by such an adversary.
As the message content is assumed to be end-to-end encrypted, the malicious server is
not able to target a specific group, as it cannot be distinguished between one-to-one and
group management messages. The server can either run a general attack and set invalid
timestamps on all messages from an user (this can be prevented by using Signals Sealed
Sender technology [Lu18]) or on all message towards a specific user. On the later, the user
can be tricked to add the wrong block. With the receival of the next management message
referencing the latest block, this can be detected and the user can request a sync (3) to
recover from the attack.

5.2 Malicious Member

A malicious user is a user with knowledge of the protocol and that is a member of the group
he wants to attack.

[He19] described an attack where this adversary could use the forking mechanism to drop
and override the latest block. This involved creating a fork and directly extending the own,
malicious, branch. In the updated protocol this attack is no longer possible, as forks can not
be triggered by a delegate.

Malicious member can still send different messages for blocks, votes and suggestions to
different members of the group. As new blocks cannot be added after such a forged block is
received, the member would request a sync. As the different blocks send by the attacker are
visible trough commparing the received chains, this attack can be detected and the group
can react trough a rollback to the latest valid state. As for votes and suggestions, this attack
is not an issue, as only the version of the message added to the blockchain is relevant.

Group Managment with DPoS 11

6 Results and Conclusion

The updated protocol is implemented and tested using a dotnet core application, that
simulates a group chat. Multiple instances connect to a RabbitMQ message server 3, which
forwards the messages and acts as the messenger service. Asynchronicity is simulated by
random sleep times of the clients. Delivery issues are also simulated by the clients through
randomly dropping or delaying incoming messages. To keep the group alive, random
suggestions or votes are sent if the client gets online/wakes up.

In this simulated environment the described protocol was able to maintain a stable group.
The updated protocol solves the described shortcomings and introduces a mechanism to deal
with message delivery issues. However this results allow no assumptions about real world
performance, as the results strongly depend on the parameters chosen for the simulation. E.g.
the range of random sleep times together with the probability of sending and confirming
suggestions affect the average block times. The probability assigned to each suggestion type,
such as adding or removing members, affects if the group grows or stays stable in size. The
amount of dropped and delayed messages affects the group stability as clients often needs
to request syncs from other members, which might also be in an uncertain state.

The new voting system is less complex and more resilient to delivery issues. It also provides
a better representation of the users votes, as they do not need to be online at a specific time
in order to share their vote and the set of delegates is directly updated if needed.

While an external clock resolves the forking issue, the SST might not be a suitable solution,
as every message needs to be touched. Due to the end-to-end encryption, the server cannot
only tag block messages. This increases the load on the delivery system. This could be
resolved by a more sophisticated system, where delegates can anonymously request a signed
timestamp from the service. This timestamp can than be included in the block before
sending.

7 Outlook

In further work, the properties of the proposed protocol can be compared to existing
solutions, to figure out how the decentral approach performs regarding scalability, stability
and security of group chats.

Finally the protocol can be integrated in an open source messenger like Signal, to test it
under real world conditions.
3 https://www.rabbitmq.com/

https://www.rabbitmq.com/

12 Andreas Hellenbrand

References

[Bi] BitShares: Delegated Proof of Stake (DPOS), Accessed July 18, 2020, url:
https://docs.bitshares.org/en/master/technology/dpos.html.

[Bi18] BitShares: BitShares Whitepaper, Accessed July 18, 2020, 2018, url: https:
//github.com/bitshares- foundation/bitshares.foundation/blob/

master/download/articles/BitSharesBlockchain.pdf.
[CPZ19] Chase, M.; Perrin, T.; Zaverucha, G.: The Signal Private Group System and

Anonymous Credentials Supporting Efficient Verifiable Encryption, Cryptology
ePrint Archive, Report 2019/1416, 2019, url: https://eprint.iacr.org/
2019/1416.

[EO18] EOS: TechnicalWhitePaper, Accessed July 18, 2020, 2018, url: https://
github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md.

[He19] Hellenbrand, A.: Decentral Group Management in Messengers with Del-
egated Proof of Stake, 2019, url: https : / / github . com / AndHell /
DPoSGroupchatManagement/blob/master/BachelorThesis/thesis.pdf.

[Lu18] Lund, J.: Technology preview: Sealed sender for Signal, Accessed Juni 18, 2020,
2018, url: https://signal.org/blog/sealed-sender/.

[Ma14] Marlinspike, M.: Private Group Messaging, Accessed July 18, 2020, 2014, url:
https://signal.org/blog/private-groups/.

[Me88] Merkle, R. C.: A Digital Signature Based on a Conventional Encryption Function.
In (Pomerance, C., ed.): Advances in Cryptology — CRYPTO ’87. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 369–378, 1988, isbn: 978-3-540-
48184-3.

[Na09] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, 2009, url:
http://www.bitcoin.org/bitcoin.pdf.

[RMS17] Rösler, P.; Mainka, C.; Schwenk, J.: More is Less: On the End-to-End Security
of Group Chats in Signal, WhatsApp, and Threema, Cryptology ePrint Archive,
Report 2017/713, 2017, url: https://eprint.iacr.org/2017/713.

[Te] Telegram: Telegram FAQ, Accessed July 18, 2020, url: https://telegram.
org/faq.

[Wh17] WhatsApp: WhatsApp Security Whitepaper, Accessed July 18, 2020, 2017, url:
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.

pdf.

https://docs.bitshares.org/en/master/technology/dpos.html
https://github.com/bitshares-foundation/bitshares.foundation/blob/master/download/articles/BitSharesBlockchain.pdf
https://github.com/bitshares-foundation/bitshares.foundation/blob/master/download/articles/BitSharesBlockchain.pdf
https://github.com/bitshares-foundation/bitshares.foundation/blob/master/download/articles/BitSharesBlockchain.pdf
https://eprint.iacr.org/2019/1416
https://eprint.iacr.org/2019/1416
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/AndHell/DPoSGroupchatManagement/blob/master/BachelorThesis/thesis.pdf
https://github.com/AndHell/DPoSGroupchatManagement/blob/master/BachelorThesis/thesis.pdf
https://signal.org/blog/sealed-sender/
https://signal.org/blog/private-groups/
http://www.bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2017/713
https://telegram.org/faq
https://telegram.org/faq
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

