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Abstract: Refinement type systems have been proposed by a number of researchers
to sharpen the guarantees of existing type systems. Examples are systems that distin-
guish empty and non-empty lists by type, taint tracking and information flow control,
dimension analysis, and many others. In each case, the type language is extended
with annotations that either abstract semantic properties of values beyond the capabil-
ities of the underlying type language (e.g., empty and non-empty lists) or they express
extrinsic properties that are not locally checkable (e.g., taintedness, dimensions).

Gradual typing emerged as an approach to combine static and dynamic typing in
a single language. Recent work considered a number of variations on gradual typing
that are not directly related to dynamic typing, like gradual information flow, gradual
typestate, and gradual effect systems. Instead of considering entire types as static or
dynamic, these systems focus on gradualizing type refinements.

This proliferation of gradual systems begs the question if there is a common under-
lying structure. In this work, we give a partial answer by outlining a generic approach
to “gradualize” existing annotated type systems that support annotations on base types.

We illustrate the usefulness of gradual annotation typing with the example of gradual di-
mension annotations. Type systems with dimensions prevent the programmer to mix up
measurements of different dimensions that are represented with a common numeric type.
For illustration we consider an ML-like language with simple types where numbers carry
a dimension annotation. The following function, calculating an estimated time to arrival,
is well-typed in this language.

fun eta (dist : float[m]) (vel:float[m/s]) : float[s] =
dist / vel

The annotated type float [u] represents an integer of dimension u where u ranges over
the free abelian group generated by the SI base dimensions: m, s, kg, and so on.

Each gain in safety costs flexibility. For example, a straightforward definition of the power
function on meters fails to type-check in a system based on simple types.'

fun pow_m (x : float[m]) (y : int[l]) =
if vy == 0 then 1[S(1l)] else x » pow_m x (y — 1)

IThe annotation S (1) indicates a statically checked dimensionless number.
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Polymorphism over dimensions does not help, because the dimension of the result depends
on the parameter y as in £loat [m¥Y]. A gradual annotation for such functions avoids the
complexity of a dependent type system and preserves some guarantees about the annota-
tion. In our system, an implementation of the function pow_m could be provided with the
gradual type float [m] —int[1] —float[?]. The annotation “?” marks the dimen-
sion of the result type as dynamic and indicates that the run-time system needs to check
the consistent use of the dynamic dimension of the value. The programmer has to insert
casts of the form e : ¢ ~» t/, where ¢ is the type of e and ¢’ is the destination type. Casts
only switch type annotations from static to dynamic or vice versa. They do not modify the
underlying structure of the type. Here is the gradualized implementation of pow_m:

1 fun pow_mg (x : float[m]) (y : int[1l]) =
2 if y == 0 then 1[D(1)]
3 else (x : float[m] ~ float[?]) * pow_mg x (y — 1)

The cast x : float[m] ~»float[?] inline 3 converts x of type £loat [m] to destina-
tion type £loat [ ?] with a dynamic dimension. At run time, values of dynamic dimension
are marked with a D, as illustrated in line 2. The dynamically annotated result can be rein-
tegrated into statically verified code by casting the dynamic annotation to a static one:

fun volume (d : float[m]) : float [m3] =

(pow_mg 3 d) : float[?] ~» float[m®]
For example, the expression (pow.mg 3 2[m]) : float[?] ~» float [m?]
evaluates to 8 [D (m®) ] : float[?] ~float [m?]. As the computed dimension D (m®)

is incompatible to the expected dimension m?, the cast fails and stops a computation with
a potentially flawed result.

In our ESOP paper [FT14], we generalize the approach sketched above to arbitrary anno-
tations a € A by giving an annotation Algebra A with carrier A that provides an operation
@4 for each operation & on base types. The type system checks static annotations us-
ing @ 4 and enforces that values typed with dynamic annotations carry a value annotation
D(a) that can be checked at run time. We further extend the system described in the paper
to annotations on type constructors like arrows, sums and products, and to polymorphic
annotations.

For lack of space, we refer to our original paper on gradual annotation typing for a de-
tailed discussion of prior work on gradual typing and annotated type systems, respectively
[FT14].
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