
’Beowulf Cluster’ for High-performance Computing Tasks
at the University: A Very Profitable Investment.

High performance computing at low price

Manuel J. Galan, Fidel García, Luis Álvarez, Antonio Ocón, and Enrique Rubio

CICEI.
Centro de Innovación en Tecnologías de la Información . University of Las Palmas de Gran Canaria.

1 Introduction
1.1 Concurrency and Parallelism

Regarding program execution, there is one very important distinction that needs to be
made: the difference between ”concurrency” and ”parallelism”. We will define these two
concepts as follows:

– ”Concurrency”: the parts of a program that can be computed independently.
– ”Parallelism”: the parallel parts of a program are those ”concurrency” parts that are

executed on separate processing elements at the same time.

The distinction is very important, because ”concurrency” is a property of the program and
efficient ”parallelism” is a property of the machine.

Ideally, ”parallel” execution should result in faster performance. The limiting factor in par-
allel performance is the communication speed (bandwidth) and latency between compute
nodes.

Many of the common parallel benchmarks are highly parallel and communication and la-
tency are not the bottle neck. This type of problem can be called ”obviously parallel”.
Other applications are not so simple and executing ”concurrent” parts of the program in
”parallel” may actually cause the program to run slower, thus offsetting any performance
gains in other ”concurrent” parts of the program. In simple terms, the cost of communica-
tion time must pay for the savings in computation time, otherwise the ”parallel” execution
of the ”concurrent” part is inefficient.

Now, the task of the programmer is to determining what ”concurrent” parts of the pro-
gram should be executed in ”parallel” and what parts should not. The answer to this will
determine the efficiency of the application.

In a perfect parallel computer, the ratio of communication/processing would be equal to
one and anything that is ”concurrent” could be implemented in ”parallel”. Unfortunately,
real parallel computers, including shared memory machines, do not behave ”this well”.

1.2 Architectures for Parallel Computing

Hardware Architectures

There are three common hardware architectures for parallel computing:

’Beowulf Cluster’ for High-performance Computing Tasks 329

– Shared memory machines, SMP, that communicate through memory, i.e. MPP (Mas-
sively Parallel Processors, like the nCube, CM5, Convex SPP, Cray T3D, Cray T3E,
etc.). This king of configuration is sustained on dedicated hardware. The main char-
acteristics is a very high bandwidth between CPUs and memory.

– Local memory machines that communicate by messages, i.e. NOWs (Networks of
Workstations) and clusters. In this category each workstation maintains its individu-
ality, however there is a tight integration with the rest of the members of the cluster.
So we can say they constitute a new entity known as ”The Cluster”. In our proposal
we will focus on a particular kind of cluster called ”Beowulf Cluster” (see [3]).

– Local memory machine that integrate in a loosely knit collaborative network. In this
category we can include several collaborative Internet efforts which are able to share
the load of a difficult and hard to solve problem among a large number of computers
executing an ”ad hoc” client program. We can mention the SETI@home(see [4]),
Entropia Project (see [5]), etc.

The formed classification is not strict, in the sense that it is possible to connect many shared
memory machines to create a "hybrid" shared memory machine. These hybrid machines
"look" like a single large SMP machine to the user and are often called NUMA (non
uniform memory access). It is also possible to connect SMP machines as local memory
compute nodes. The user cannot (at this point) assign a specific task to a specific SMP
processor. The user can, however, start two independent processes or a threaded processes
and expect to see a performance increase over a single CPU system. Lastly we could add
several of this hybrid system into some collaborative Internet effort bulding a super hybrid
system.

Software Architectures

In this part we will consider both the ”basement” software (API) and the application issues.

Software API (Application Programming Interface)

There are basically two ways to "express" concurrency in a program:

– Using Messages sent between processors: A Message is simple: some data and a
destination processor. Common message passing APIs are PVM (see [6]) or MPI (see
[7]). Messages require copying data while Threads use data in place. The latency and
speed at which messages can be copied are the limiting factor with message passing
models. The advantage to using messages on an SMP machine, as opposed to Threads,
is that if you decided to use clusters in the future it is easier to add machines or scale
up your application.

– Using operating system Threads: They were developed because shared memory SMP
designs allowed very fast shared memory communication and synchronization be-
tween concurrent parts of a program. In contrast to messages, a large amount of copy-
ing can be eliminated with threads. The most common API for threads is the POSIX
API. It is difficult to extend threads beyond one SMP machine, It requires NUMA
technology that is difficult to implement.

330 Manuel J. Galan, Fidel García, Luis Álvarez, Antonio Ocón, and Enrique Rubio

Other methods do exist, but the former are the most widely used.

Application Issues

In order to run an application in parallel on multiple CPUs, it must be explicitly broken
into concurrent parts. There are some tools and compilers that can break up programs,
but parallelizing codes is not a ”plug and play” operation. Depending on the application,
parallelizing code can be easy, extremely difficult, or in some cases impossible due to
algorithm dependencies.

1.3 Definition of Cluster

Cluster is a collection of machines connected using a network in such a way that they be-
have like a single computer. Cluster is used for parallel processing, for load balancing and
for fault tolerance. Clustering is a popular strategy for implementing parallel processing
applications because it enables companies to leverage the investment already made in PCs
and workstations. In addition, it’s relatively easy to add new CPUs simply by adding a new
PC or workstation to the network.

1.4 The Beowulf Cluster

Beowulf is not a special software package, new network topology or the latest Linux kernel
hack. It is a kind of cluster built primarily out of commodity hardware components, run-
ning an OSS (Open Source Software) operating system like Linux or FreeBSD, intercon-
nected by a private high-speed network, dedicated to running high-performance computing
tasks.

One of the main differences between a Beowulf Cluster and a COW (Cluster of Work-
stations) is the fact that Beowulf behaves more like a single machine rather than many
workstations. The nodes in the cluster don’t sit on people’s desks; they are dedicated to
running cluster jobs. It is usually connected to the outside world through only a single
node.

While most distributed computing systems provide general purpose multi-user environ-
ments, the Beowulf distributed computing system is specifically designed for single user
workloads typical of high end scientific workstation environments.

Beowulf systems have been constructed from a variety of parts. For the sake of perfor-
mance some non-commodity components (i.e. produced by a single manufacturer) have
been employed. In order to account for the different types of systems and to make discus-
sions about machines a bit easier, It has been propose the following classification scheme:

CLASS I: This class of machines built entirely from commodity ”off-the-shelf” parts. We
shall use the ”Computer Shopper” certification test to define commodity "off-the-shelf"
parts. (Computer Shopper is a 1 inch thick monthly magazine/catalog of PC systems and
components). A CLASS I Beowulf is a machine that can be assembled from parts found in
at least 3 nationally/globally circulated advertising catalogs.

’Beowulf Cluster’ for High-performance Computing Tasks 331

The advantages of a CLASS I system are: Hardware is available form multiple sources
(low prices, easy maintenance), no reliance on a single hardware vendor, driver support
from O.S. commodity, usually based on standards (SCSI, Ethernet, etc.).

The disadvantages of a CLASS I system are: Best performance may require CLASS II
hardware.

CLASS II: This class is simply any machine that does not pass the Computer Shopper
certification test.

The advantages of a CLASS II system are: Performance can be quite good

The disadvantages of a CLASS II system are: Driver support may vary, reliance on single
hardware vendor, may be more expensive than CLASS I systems.

One class is not necessarily better than the other. It all depends on your needs and budget.
In the last times we are seeing an increment in the number CLASS II Beowulf Clusters us-
ing 64-bit ALPHA Processors due to the large performance increase that can be achieved.

1.5 Evolution of the Beowulf Cluster: State of the Art

The first Beowulf-class computers that achieved the gigaflops goal appeared at Supercom-
puting ’96 in Pittsburgh. One of those came from a collaboration between Caltech and
the Jet Propulsion Laboratory and the other from Los Alamos National Laboratory. Both
systems consisted of 16 200-megahertz Pentium Pro processors and were built for about
$50,000 in the fall of 1996. One year later, the same machines could be built for about
$30,000.

In a paper for the 1997 supercomputing meeting – simply called SC97 – Michael Warren of
Los Alamos and his colleagues wrote: ”We have no particular desire to build and maintain
our own computer hardware. If we could buy a better system for the money, we would be
using it instead.”(see [8]).

Finally we can mention that the Avalon, which is a co-operative venture of the Los Alamos
National Laboratory Center for Nonlinear Studies and Theoretical Division, built as a 140
64-bit processors Alpha Beowulf Cluster machine appears as the 265th in the list of the
fastest computer systems in the word (see [9]).

There are a lot of Beowulf Cluster spread around the word dedicated to every kind of
computationally intensive task. Among them we can mention:

– Stone SouperComputer Oak Ridge National Lab (ORNL) a 126 node cluster at zero
dollars per node The system has already been used to develop software for large-scale
landscape analysis (see[10]).

– The SuperAbacus is an implementation in the CityU Image Processing Lab at City
University of Hong Kong. to support multimedia signal processing (see[11]).

– LoBoS Supercomputer for Molecular Graphics and Simulation Laboratory, National
Institutes of Health NIH, (see[12]). This cluster is dedicated to study more complex
biological systems using computational methods.

332 Manuel J. Galan, Fidel García, Luis Álvarez, Antonio Ocón, and Enrique Rubio

Beowulf Clusters are also deployed in our country (Spain), they are used also for intensive
computation. The most mature projects could be:

– HIDRA University of Barcelona’s UB-UPC Dynamical Systems Group dedicated to
several projects that require a huge amount of computations (i.e., numerical simula-
tions of continuous and discrete systems, bifurcation analysis, numeric and symbolic
computation of invariant manifolds, etc.) (see[13]).

– LAMA’s Materials Laboratory at UPV/EHU running Monte Carlo simulations of
phase transitions in condensed matter physics (see[14]).

1.6 Characteristics of the Beowulf Cluster

Commodity networking, especially Fast Ethernet, has made it possible to design
distributed-memory systems with relatively high bandwidths and tolerably low latencies
at low cost.

Free operating systems, such as Linux, are available, reliable, and well-supported, and are
distributed with complete source code, encouraging the development of additional tools
including low-level drivers, parallel file systems, and communication libraries.

With the power and low prices of today’s off-the-shelf PCs and the availability of
100/1.000 Mb/s Ethernet interconnect, it makes sense to combine them to build High-
Performance-Computing and Parallel Computing environment.

With free versions of Linux and public domain software packages, no commercially avail-
able parallel computing system can compete with the price of the Beowulf system.

The drawback to this system is, of course, that there will not exist any ”support center”
to call when a problem arises (anyway, ”support centers” are many times only marketing
hype and do not provide real support). We can say that the Open Source Support Center
is the whole Internet, in the sense that there does exist a wealth of good information
available through FTP sites, web sites and newsgroups. Besides that you can also since
a maintenance agreement with any of the increasing number of companies that provide
commercial support to these installations.

Another key component contributing to forward compatibility is the system software used
on Beowulf. With the maturity and robustness of Linux, GNU software and the "standard-
ization" of message passing via PVM and MPI, programmers now have a guarantee that
the programs they write will run on future Beowulf Clusters, regardless of who makes the
processors or the networks.

That said the main characteristics a Beowulf Cluster can be summarized in the following
points:

– Very high performance-price ratio.
– Easy scalability.
– Recycling possibilities of the hardware components.
– Guarantee of usability / upgradeability in the future.

’Beowulf Cluster’ for High-performance Computing Tasks 333

2 Our proposal of Beowulf Cluster for the University of Las Palmas.

All the good characteristics of the Beowulf Cluster justify its deployment in any organ-
isation that require high computational power. In the case of an academic institution we
can say that it is not only advisable but imperative. The Beowulf cluster is not only a won-
derful tool to provide high computing power to the University but, at the same time, is a
very interesting objects of study ”per se”. The evaluation of its performance, adaptability,
scalability, it behaviour regarding the parallelization of procedures, etc. is a field of study
that we suspect full of findings.

2.1 System Description

Our system has a hardware part and a software part. Hardware part consists in eight PCs
connected by a Fast Ethernet switch at 100 Mb/s. One of this PCs is the cluster’s console
that controls the whole cluster and is the gateway to the outside world (master node).
Nodes are configured and controlled by the master node, and do only what they are told
to do.

The proposed node configuration consists of an AMD single processor based PC at 750
Mhz, with 256 megabytes of RAM and including a local IDE hard disk drive of 8GB
capacity. They have also a non expensive video card and floppy disk drive. Besides they
will be provided with a Fast Ethernet network interface card.

The master node is provided with a larger hard disk drive (24 MB) and a better graphics
video card, besides it has a second network interface and also CD-ROM drive, medium
sized monitor and keyboard and mouse to be able to perform the controlling tasks for the
cluster.

The proposed Fast Ethernet switch will have 24 autosensing ports and will be SNMP
capable.

In the description of the hardware we can see that only one node needs input/output de-
vices. The second network interface card in the master node is used to connect the Intranet
to the Internet. The switch has a number of port bigger than strictly necessary to can
enlarge the cluster in the future.

The logical part will be built using GNU / Linux operating system according to the dis-
tribution ”Extreme Linux CD” with additional OSS software such as kernel modifications:

– PVM: Parallel Virtual Machine: PVM is a software package that permits a heteroge-
neous collection of Unix / Linux or NT computers hooked together by a network to
be used as a single large parallel computer. It is freely-available, portable, message-
passing library generally implemented on top of sockets. It is clearly established as
the de-facto standard for message-passing cluster parallel computing (see [6]).

– MPI libraries: Message Passing Interface: Communication between processors on a
Beowulf Cluster is achieved through the Message Passing Interface (MPI). This is
a standardized set of library routines. Both the C and the Fortran programming lan-
guages are supported (see [7]).

334 Manuel J. Galan, Fidel García, Luis Álvarez, Antonio Ocón, and Enrique Rubio

Additionally we will be proceed to the installation of several configuration, management
and monitoring tools which make the Beowulf architecture faster, easier to configure, and
much more usable.

2.2 Basic Software Installation and Configuration

As previously stated the installations pathway will run along the ”Extreme Linux CD”.
The following steps will be taken:

The first step we will installing the Master Server which involves the following tasks:

– Partition sizes; installing Red Hat Linux; network configuration; setting up DNS; net-
work file configuration: ”/etc/hosts”, ”/etc/resolv.conf” and ”/etc/hosts.equiv”; local
file configuration: ”.cshrc”; clock synchronization.

After the installation of the master server we will precede to the installation and configura-
tion of the client nodes:

– Installing the operating system on one client; cloning clients; configuring clients.

The third step will be installation of basic application software:

– Compilers; communication Software: PVM and MPI; conversion Software; System
Monitoring Software: bWatch, httpd and CGI scripts, Netpipe, netperf, NASA parallel
Benchmarks, CMS.

Finally we will attend the security concerns both in the master sever and client nodes.

3 Fields of Application

There are a lot of OSS software packages optimized to run in clusters like Beowulf. We
can mention the following:

– MP_SOLVE, Parallel Sparse Irregular System Solvers solving large, irregular, sparse,
indefinite systems of equations with multiple excitation vectors on distributed memory
parallel computers using LU factorization (see[15]).

– NAMD is a parallel, object-oriented molecular dynamics code designed for high-
performance simulation of large biomolecular systems (see[16]).

– POV-RAY, The Persistence of Vision Raytracer is a high-quality tool for creating stun-
ning three-dimensional graphics (see[17]).

Nevertheless there are many others applications that can take profit when run in a Beowulf
Cluster their range covers from standard numerical applications, going through high inten-
sive physical and chemical computation, biochemical modeling and multimedia and CAD
applications.

’Beowulf Cluster’ for High-performance Computing Tasks 335

4 Conclusions
In the present paper we have made a quick and succinct overview about the state of dis-
tributed computing, centering our focus on a concrete cluster configuration called ”Be-
owulf Cluster”.

The advantages of this class of cluster configuration are evident for any organization that
requires high computational power ”for the buck”. This is, when we take into account the
performance/price ratio, easy scalability and upgradeability and recycling properties of
the hardware components. If this is true for any organization, we are convinced that it is
imperative for an academic institution like our University. Therefore we make a proposal
of deployment of such a device starting with a schematic installation to be eventually
enlarged and improved.

References
[1] Phil Merkey: CESDIS. 2.000http://cesdis.gsfc.nasa.gov/
[2] Jim Fischer: ESS Project Overview. 2.000 http://sdcd.gsfc.nasa.gov/ESS/overview.html
[3] Donald Becker and Phil Merkey: The Beowulf Project. 2.000 http://www.beowulf.org/
[4] Mick Evans: HOME SETI@HOME Pages.2.001 http://www.kevlar.karoo.net/seti.html
[5] EntropiaInc.: Entropia: High performance Internet Computing. 2.000 http://www.entropia.com
[6] Jack Dongarra & al.: Parallel Virtual Machine. 2.000 http://www.epm.ornl.gov/pvm/pvm_

home.html
[7] Lam Team: LAM / MPI Parallel Computing. 2.001 http://www.mpi.nd.edu/lam
[8] Michael Warren: ”Pentium Pro Inside” . 1.997
[9] Netlib: TOP 500 Supercomputer Sites. 2.000 http://www.netlib.org/benchmark/top500/top500.

list.html
[10] Forrest M. Hoffman, William W. Hargrove, and Andrew J. Schultz: The Stone SouperCom-

puter. 1.997 http://stonesoup.esd.ornl.gov/
[11] Super Abacus: Super Abacus. 2.001 http://abacus.ee.cityu.edu.hk/
[12] NIH Computational Biophysics Section: The LoBoS Supercomputers. 2.000 http://www.lobos.

nih.gov/
[13] Joaquim Font, Àngel Jorba, Carles Simó, Jaume Timoneda: HIDRA: a home-assembled par-

allel computer. 1.998 http://www.maia.ub.es/dsg/hidra/index.html
[14] S. Ivantchev: LAMA BEOWULF CLUSTER. 2.000 http://lcdx00.wm.lc.ehu.es/~svet/

beowulf/
[15] New Mexico State University: MP_SOLVE. 1.998 http://emlab2.nmsu.edu/mp_solve/
[16] University of Illinois: NAMD Scalable Molecular Dinamycs. 2.001 http://www.ks.uiuc.edu/

Research/namd/
[17] POV-Ray Inc.: POV-Ray. 2.000 http://www.povray.org/
[18] Jacek Radajewski and Douglas Eadline: ”Beowulf Installation and Administration

HOWTO”. 1.999 http://www.beowulf-underground.org/doc_project/BIAA-HOWTO/
Beowulf-Installation-and-Administration-HOWTO.html

