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Abstract: The evaluation of software architectures is crucial to ensure that the de-
sign of software systems meets the requirements. We present a generic methodical
framework that enables the evaluation of component-based software architectures. It
allows to determine system characteristics on the basis of the characteristics of its con-
stituent components. Basic prerequisites are discussed and an overview of different
architectural views is given, which can be utilised for the evaluation process. On this
basis, we outline the general process of evaluating software architectures and provide
a taxonomy of existing evaluation methods. To illustrate the evaluation of software
architectures in practice, we present some of the methods in detail.

1 Introduction

An important goal of the software engineering discipline, which has been pursued since
the first software engineering conferences in the 1960s [NR69], is to support the devel-
opment of software systems that reliably (i.e. by construction) conform to the functional
and non-functional requirements. The introduction of software architecture as a special
software engineering concept is a major step towards ensuring the consistency between
requirements and detailed software design. This allows the evaluation of software designs
with respect to their functional and non-functional characteristics [SG96].

Nowadays, by using components [SGM02] as the building blocks of software systems, it
is conceivable to improve the evaluation of software architectures. Then, characteristics
of a system (i.e. an assembly) may be algorithmically deduced from the characteristics
of its constituent parts [WSHK01]. Note that—conforming to the ISO 9126-1 standard
[ISO03a]—the term property is used for more abstract concepts like performance, while
the term characteristic is used to denote a metric (which is directly assessable) for a spe-
cific property. Thus, the properties of component-based software systems can be predicted

163



precisely (instead of using some heuristic), provided the characteristics of its components
are sufficiently known. Moreover, system characteristics can be deduced based solely on
the architecture and thus before the constituent components have been implemented or
acquired.

The contributions of this paper are a generic methodical framework for the evaluation of
component-based software architectures, and a discussion on how system characteristics
can be deduced from the properties of its constituent components. The framework consists
of the definition of a set of architectural views, the description of the general process of
evaluating component-based architectures, and a taxonomy of evaluation methods.

The value for industrial practice of such a framework is to support the selection of an
appropriate evaluation method. A software architect, who has to decide which evaluation
methods to use for the next projects, can find comprehensive literature on various methods
for architecture evaluation. However, while these methods provide scientific advance-
ments for specific evaluation tasks, most of them have not been integrated in an approach
applicable in industrial practice. Although this shows scientific activity in this area, it es-
pecially hinders the selection and hence the application of evaluation methods in industrial
projects.

To provide an overview of applicable methods, we classify a variety of approaches. Several
classification dimensions are proposed to better support the selection process. In particu-
lar, the introduced taxonomy is based on the set of architectural views that each evaluation
method uses. Once we have refined the taxonomy to reflect necessary inputs of the meth-
ods in more detail, such a classification will be particularly helpful for practitioners. The
taxonomy allows them either to decide which evaluation approach fits to the way of archi-
tectural specification they are accustomed to, or to adapt their way of specifying software
architectures according to the evaluation technique selected. As a first step to support
the latter, this paper briefly describes some evaluation approaches and references relevant
literature.

This paper contributes to the scientific advancement in the area of component-based ar-
chitecture evaluation by enabling the comparison of evaluation methods. The ability to
compare various evaluation methods is a precondition to a deeper understanding of the
problem area, to cross-validating different approaches and to constructing improved eval-
uation methods based on these findings. The taxonomy presented in this paper focuses on
the information needs of evaluation methods as a first step. Classifying methods by the
characteristics they evaluate in more detail and pointing out how their predictions differ is
subject to future work.

This paper is organised as follows: first, the deduction of system characteristics from those
of its constituent parts is discussed as a conceptual basis in the following section. We
argue that component-based software architectures are superior to others in satisfying this
prerequisite. In section 3, several architectural views that can be used to evaluate system
characteristics are introduced. The views are used as the basis of the generic framework for
evaluating component-based software architecture, which is elaborated in section 4. Some
examples of evaluation methods for system characteristics are elaborated on in section 5.
A discussion of related work and an outlook on an integrated method that supports the
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predictable assembly of components concludes this paper.

2 Prerequisites

First of all, the success of a method that computes a characteristic of a system from the
characteristics of its constituent parts depends on the availability of a “divide-and-conquer”
strategy to reduce the evaluation complexity [Wal03]. Similar to verification approaches
that support compositional or modular reasoning [dR98, Wal03], such a strategy allows
the architect to shift the effort required for the evaluation from the complex system level
to the parts level. System characteristics are then computed by composing independently
specified (and certified) characteristics of its constituent parts.

However, the formal prerequisites of applying compositional or modular reasoning tech-
niques—the independence of characteristics among the different parts (their so-called
compositionality) being the most important—cannot be satisfied when analysing a soft-
ware architecture in most cases[Wal03]. Component technology ensures compositionality
with respect to the construction of software systems. It provides some means to connect
components in such a way that they can interact with each other [SGM02]. This also en-
sures the compositionality of the characteristics of architectural parts, which is required
for the analysis of software architectures.

Component-based software architectures are superior to the class-based architectures (i.e.,
based on object-oriented technology) with respect to the support for compositional and
modular reasoning techniques, because components are encapsulated units of software.
Class-based architectures, on the contrary, make use of connecting classes to each other by
implementation inheritance, which actually breaks the principle of encapsulation [Sny87]
and creates complex interdependencies that usually affect functional as well as non-func-
tional characteristics. For this reason, classes cannot be regarded as independent, compo-
sitional pieces of software and are difficult to analyse as architectural units.

In addition, components are coarse-grained units of software with only a few, clearly de-
fined ports of interaction that can be connected using connectors (see figure 1) [SG96].
Due to the coarse granularity of components, the architectural structure resulting from
component composition is simpler than those of class-based software architectures and,
thus, easier to analyse.

Finally yet importantly, we consider as components only such entities which provide more
detailed interface specifications that not only include provided and required interfaces,
but also contain annotations regarding the supported interaction protocol as well as non-
functional characteristics [Bro00, Ove04]. Especially this additional information, which
is unavailable for classes and objects, is an important basis to analyse the characteristics
of software architectures (cf. section 4).

However, even when component-based software architectures are used, system charac-
teristics cannot always be deduced from component characteristics using formal modular
reasoning techniques. Such a deduction is impossible [Wal03] because the characteris-
tics of the individual components often influence each other and are thus interdependent.
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Figure 1: Conceptual Port-Connector Model to describe software architectures (based on [SG96]).

Consequently, formalising a compositional theory to compute system characteristics from
those of the individual components may still not be possible.

Ignoring these interdependencies between component characteristics leads to simplified
theories for analysis that may not be completely accurate, but produce useful results in
many cases. To stress the fact that often simplified theories are used to deduce system
characteristics, the term “evaluation” is used instead of “analysis” throughout this paper.

3 Architectural Views

Specifying software architectures is a complex task and usually achieved by describing
different aspects of the system design. Existing approaches differ with respect to the as-
pects that are described as well as the notations that are used. Nevertheless, in general four
different types of architectural views can be identified [SG96, CBB+03]:

Structural Views These explicate the constituent parts of an architecture (i.e. the individ-
ual components) as well as the connections between components. Structural views
are used to illustrate the logical structure of a software system and its decomposi-
tion. In the Unified Modelling Language (UML 2.0) [OMG03], the logical structure
can be represented using Component Diagrams or Class Diagrams (when not using
inheritance).

Resource Mapping Views The components described in a structural view have to be
mapped (a) to hardware units (such as processors, network connections, or specific
devices, such as printers, etc.) and (b) to organisational entities, such as developers,
teams or third-party vendors. In the UML 2.0, resource mappings of the former kind
can be represented using Deployment Diagrams [OMG03].

Dynamic Views They describe the dynamic behaviour of a system at run-time. The term
“dynamic” does not necessarily refer to dynamic changes of the structural view.
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The dynamic views are concerned with the flow of control through the system’s
structure. This may or may not result in dynamic changes of the structure, e.g., if
components are created or destroyed dynamically. In the UML 2.0, dynamic views
can be represented using Sequence Diagrams, State Machine Diagrams, or Activity
Diagrams [OMG03].

Domain Views Domain views are concerned with information referenced in all of the
above-mentioned views. For example, a glossary with definitions or clarified con-
cepts of the application domain may be part of the domain view. Additionally, the
domain views may contain information more specific to the implementation domain
[JRvdL00] like domain-specific patterns or architectural styles or, most importantly
for reliability analysis, information about exceptions and error types (e.g., transient
or permanent errors).

Regarding the domain views, one may argue that such information should be established
during requirements analysis and thus is not part of an architecture. Although the in-
formation is gathered during requirements analysis, it is essential for implementing and
evolving the architecture. This information should therefore be made explicit and should
be associated with the architecture to ensure its consistency with the gathered requirements
[DW99].

This set of view types emphasises the fact that an architecture is not just defined by struc-
tural information, but consists of several views. This is different from other approaches
that use connectors (as first-class entities) to include behavioural dynamic information in
structural diagrams [SG96, MT00].

4 Evaluating Software Architectures

The usefulness of the specification of a software architecture can be considered from dif-
ferent points of view. The architecture is used to support the communication between the
stake-holders of a project, to distribute the development work between the organisational
units, or to evaluate certain properties of the resulting system. In this paper, we focus
on the latter, which is an active field of current research. Several methods use represen-
tations of software architectures as input data to evaluate characteristics of the resulting
system. Some examples of evaluation methods used today are presented in more detail in
the section 5.

This section is further divided into three subsections. Firstly, general considerations with
respect to the input data needed for an evaluation are presented. Secondly, the process of
applying evaluation methods is discussed, with a special focus on the importance of a feed-
back mechanism. Finally, a rough overview on the input data needed by some evaluation
methods is presented.

167



4.1 Views for architectural evaluation

Before starting an evaluation of a software architecture, it is important to check whether
the necessary specifications are available and if the evaluation is worth the effort. When
developing a small application, for instance, a cost-benefit analysis can easily show a
negative result. Therefore, the overall information needs and basic considerations are
presented in the following. A summary of the important elements of the general evaluation
process is depicted in figure 2.

Figure 2: Generic evaluation method (static view)

Evaluating a software system with respect to all of its properties is inconceivable. Before
performing an evaluation, the set of properties of interest must be determined, e.g. one
might be interested in Quality of Service properties or the development costs of the system.
In other words, there has to be an evaluation goal first.

Once an evaluation goal has been defined, there usually is a variety of different evaluation
methods available to perform the actual evaluation. Typically, several characteristics cor-
respond to a given property. Since every characteristic is considered to be associated with
at least one evaluation method, several evaluation methods exist to predict each property.

Most evaluation methods use some kind of formal model internally, each of which has
certain advantages and disadvantages in a specific context. In an ideal setting each of
the methods is supported by tools hiding the internal formalism. Then, the user of the
specific method needs no additional knowledge of the application of the underlying formal
methods.

One of the deficiencies of existing evaluation methods is that each of them considers only
one specific characteristic, and thus only one property. But often there are interdepen-
dencies among the properties. For example, a high performance system might not be as
reliable as a system which performs worse. On the other hand, one might be more costly
than the other. The characteristics of the interdependency often depend on the architecture
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of the system to be built but also on its usage profile [BR04].

When given a goal and a method, it is possible to determine the extent of input data the
method requires. As the focus of this paper is on the evaluation of software architectures,
an evaluation method is always applied to a specific architecture. Most methods expect the
architecture to be annotated with certain method-specific attributes. While software archi-
tectures are specified according to the views presented in section 3, the required annota-
tions usually can be obtained from the specifications of the single components [Ove04].

By definition, the architectural specification is created at design time. As some of the
properties an analyst might be interested in are runtime properties, e.g. performance, ad-
ditional input that is not contained in the architectural specification is required, e.g. in the
form of a usage profile. The influence of the usage profile on the evaluation becomes
obvious when considering Quality of Service properties like performance or reliability.
For instance, processing the tenfold amount of data requires more time than processing
the single amount; a system failure is also more probable in the former case . However,
despite the obvious dependency of some properties on the usage profile, there are few eval-
uation methods incorporating the usage profile in their computation comprehensively, e.g.
parameter values are often neglected.

It is important to consider the consistency of the specification, because the quality of an
evaluation is restricted by the quality of its input data. There are two different kinds of
inconsistency problems: inconsistencies in a single view, and inconsistencies between
views.

Inconsistencies in a single view often result from specification mistakes, e.g. connecting
two components which are incompatible with each other, draft a sequence diagram which
is inconsistent with the protocol of at least one component, breaking the preconditions of a
component or deploying a component on an incompatible hardware or software platform.
Note that these inconsistencies are specifically addressed by certain evaluation methods,
e.g., a method of analysing component interoperability problems. Nevertheless, other eval-
uation methods assume that the specified views of an architecture are consistent. Consider,
for example, a cost estimation method. It is very unlikely that such a method will gain a
reasonable result if the analysed architecture cannot be consistently implemented.

Inconsistencies between views are even worse for most of the evaluation techniques. In-
consistencies between views are caused by mistakes during the specification process, but
also by changes to the architecture. This phenomenon is well known to software engineer-
ing practitioners from the context of UML specifications of software systems. In order to
keep all UML views consistent—especially during the development phase—updating all
dependent views requires more time than it takes to perform the primary change. As a
result, the consistent update of the UML views is often postponed in practice or the neces-
sary updates to the models are performed only in a single view leaving the other views in
an inconsistent state. Specific evaluation methods can be used to discover certain kinds of
inconsistencies, but more often, an evaluation method assumes that the views are pairwise
consistent with each other.
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4.2 Evaluation Process

In figure 3, the process of performing an architectural evaluation is depicted as a UML 1.x
activity diagram.

Design Architecture

Start

Collect Annotations Negotiate Usage Profile Perform evaluation

Interpret Results

Negotiate further steps

[Question not satisfied]

[Usage Profile renegotation]

Redesign Architecture

[Architectural change decided]

[Question satisfied]

Figure 3: Generic evaluation method (dynamic view)

Before applying an evaluation method, the necessary input data has to be gathered. Again,
for the application of a method in an industrial setting it is very important to have tool sup-
port during that stage. When all necessary specifications (architectural views and annota-
tions) are available, a negotiation phase takes place, as part of which the architect and the
customer (or the users of the software) agree on the usage profile the architecture should
be able to support. Once this phase is completed, the actual evaluation is performed.

After the evaluation, mapping the results of the specific evaluation is often necessary to
give hints or answers to the original question which the evaluation was supposed to solve.
Such a mapping is necessary because the model used by the formal evaluation methods
differs from the original architecture. Therefore, it is necessary to interpret the results of
the methods in the context of the original input data to get useful conclusions.

Based on the interpreted figures a decision is made on whether the results satisfactorily
resolve the question or not. If not, there is a choice: either one can change the architecture
or re-negotiate the usage profile with the customer.

The whole process is repeated as long as the evaluation question is not satisfied. When the
architecture satisfies the requirements of the customer, the process ends.

4.3 A taxonomy of evaluation methods

The structure of the table depicted in figure 4 stresses the inter-relationships of the eval-
uation properties, the evaluation methods and their input data. Based on the discussion
in this section, an overview of well-known evaluation methods is given. They are classi-
fied according to the required input data which is represented by the views discussed in
section 3.
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Property Method Reference Domain Static Dynamic
Resource
Mapping

CB-SPE [BM04] ✔ ✔ ✔

UML-PSI [BGM03] ✔ ✔ ✔

LQN [PW00] ✔ ✔ ✔
Performance

Cap. Planning [MAA01] ✔ ✔ ✔

Cheung [Che80] ✔ ✔

Wang et al. [WWC99] ✔ ✔ ✔

Ledoux [Led99] ✔ ✔ ✔

Krishnamurthy
et al.

[KM97] ✔ ✔
Reliability

Xie et al. [XW95] ✔

Zaremski [ZW97] ✔
Interoperability

Yellin [YS97] ✔ ✔

COCOTS [ABC00] ✔

COCOMO [BCH+95] ✔Cost
ACSPM [Pau01] ✔

Figure 4: Overview of evaluation methods and their input data

Although the overview is not complete, it can be seen as a guide for practitioners and
researchers to understand the information needs of various evaluation methods, which
affect the costs to obtain the required data. Each view contributes at least some information
which is as such not provided by any other view but may heavily influence a property.
Thus, neglecting one view necessarily restricts the precision of the evaluation.

5 Architectural Evaluation Methods

In this section some of the more common properties are elaborated by means of an example
evaluation method. The specification needs and the evaluation result are characterised
respectively.

5.1 Interoperability Checking

Interoperability checking is an important problem at assembly time of a component based
software architecture. While it is one aim of Component-based Software Engineering to
reuse as many existing components as possible, reusing components as they are is often
difficult. This is sometimes considered a non-issue when components are always built to
fit in a certain context. But in practice, software architects often have to deal with legacy
systems which have to be integrated in a software architecture [HRJ+04]. The business
value of these systems disallows rebuilding them from scratch. When analysing a software
architecture the architect has to ensure that the components chosen to realise the desired
domain functionality are cooperating in the desired way.

Interoperability problems can emerge on different levels of the system’s specification (see
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[BOR04]). In general, the more information is available, the more problems are detectable
already during architectural design.

Static views on the architecture can be used to detect problems related to signature or syn-
tax. A method which can be applied to these is proposed by Zaremski and Wing [ZW97].
It tries to match services and well known requirements, which result from required inter-
faces of components. Often simple interoperability problems can be overcome by con-
version routines using simple transformations. When contra-variant use of parameters or
signatures should be allowed, an evaluation method has to deal with sub-typing during
matching.

When using the information available in the dynamic view, protocol interoperability prob-
lems are detectable and sometimes resolvable. The work of Yellin and Strom [YS97] is
often used in this context. Problems in protocol adaptation are often related to the way
component protocols are specified. A formalism often used in the context of architectural
evaluation is the model of finite state machines (FSMs) because of its algorithmic prop-
erties. On the other hand, FSMs have limited expressiveness, so that several extensions
and other models are used, including Petri Nets, linear timed logics (LTLs) or process al-
gebras (PAs). The latter are also applied during interoperability checking, for example in
[BBC02].

If domain related architectural views are available, it is also possible to detect domain
related interoperability problems which arise often by a differing use of domain terminol-
ogy and concepts. Especially the usage of components developed by different vendors
is precarious if all components conform to common domain standards or standardised
component frameworks. Often a manual check of the terms used and their definitions is
required to decide on domain-related interoperability.

Taking into account the sum of all architectural views, it is also possible to check the
interoperability regarding non-functional properties on the levels discussed above. As this
topic is subject to current research, a detailed look at methods for such evaluations is
beyond the scope of this subsection.

5.2 Performance Evaluation

Performance is a property for which quite a large variety of architectural evaluation meth-
ods are available. Performance is always an important issue during the design phase of a
software development project. Nowadays the fix-it-later approach is often used, i.e., per-
formance is neglected during the early development phases and performance is evaluated
later. If the final performance is insufficient, critical parts of the system are identified using
a profiling tool and an attempt is undertaken to speed them up.

Since costs of changes to a software system increase with the progress in development,
it is desirable to use architectural specifications to shift the performance evaluation to the
early stages of the development process. The CB-SPE approach [BM04] aims to adapt the
established SPE method [Smi90] for component based systems. The method is presented
here in more detail as an example.
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The input data needed for the evaluation process is taken from UML diagrams. These
diagrams are annotated with specifications from the UML Profile for Schedulability, Per-
formance, and Time [OMG02] which is also used by several other methods for perfor-
mance evaluation. This method uses several types of UML diagrams [OMG03]: Class
Diagrams model the static view, the dynamics are extracted from Sequence Diagrams, and
Deployment Diagrams model the mapping of software components to hardware resources.
Additionally, the method takes the usage profile into account by weighting use cases taken
from UML Use Case Diagrams.

The method is exemplary of evaluation methods of quality properties of software architec-
tures. The above-mentioned input specification is transferred as a XMI data file to a cus-
tom transformation tool which transforms the input data into the required formal model.
In the case of CB-SPE, the specification is used to build a queueing network model which
is solved by a standard queueing network model solver, showing among others response
times and average queue loads.

These results are then interpreted and re-transformed into meaningful statements about
the original software architecture. For this, CB-SPE adds tagged values to the XMI data
exchange file. This file can be reloaded into a UML modelling tool to visualise the results.
The results can then be evaluated to identify performance bottle necks.

5.3 Reliability Estimation

Architecture-based approaches to reliability estimation consider white-box models of soft-
ware, following a long tradition of reliability estimation techniques that considered soft-
ware systems as monolithic blocks. The classification of Goševa-Popstojanova and Trivedi
[GPT03] distinguishes state-based, path-based and additive reliability estimation methods.
State-based methods use various kinds of Markov chains and model components as states.
Note, however, that the concept of a component is used in a very general sense in the
context of reliability estimation. In particular, it is often used synonymously to that of
a module. Path-based models are based on execution traces which have components as
their elements. Additive models assume knowledge of the failure behaviour of individual
components only.

The state-based model by Cheung [Che80] is one of the most thoroughly applied, since
the model is used in the Cleanroom software engineering method [PMM93]. It requires
knowledge of the probabilities of transitions between components (and thus at least im-
plicit knowledge of the structural dependencies between components) and the individual
components’ reliabilities. The model is extended by Wang et al. [WWC99] and adapted to
specific architectural styles, thus incorporating domain knowledge.

A model that applies to reactive systems is described by Ledoux [Led99]. Based on
[Lit75], it requires knowledge of both component and interface failure rates. The model
distinguishes primary and secondary failures specific to continuously running, reactive
systems.

The path-based model by Krishnamurthy et al. [KM97] requires as input the reliabilities
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of individual components and a set of component traces. The traces are acquired experi-
mentally by executing test cases in [KM97], but they could in principle be taken from a
specification of allowed traces.

The additive model by Xie et al. [XW95] describing individual component reliability and
overall system reliability by modelling their failure intensities as non-homogeneous Pois-
son processes. The component failure intensities have to be known. Further input is not
used, in particular structural aspects of the analysed system are neglected.

5.4 Cost Estimation

In the following, some examples of cost estimation methods based on architectural infor-
mation are presented. A well known method is the COCOMO or COCOMO II model
respectively [BCH+95]. Based on this model, the COCOTS method was introduced as an
advancement. COCOTS is a method to evaluate the integration costs of commercial of the
shelf components. Costs for the search or development of single components are disre-
garded. COCOTS includes the costs for assessment, tailoring or adaptation, development
of glue code and system volatility costs (this type of costs capture how often a component
is updated, e.g., by bug-fix releases).

Architecture-centric software project management (ACSPM) by Paulish [Pau01] includes
an architecture based approach for software cost estimation. This approach uses bottom-
up estimates: for each component the responsible developer is asked to predict the costs
of developing this component. The costs of all components are summed up and an addi-
tional amount for costs of software integration is added. The approach therefore uses the
structural view of an architecture.

Although no additional support for the prediction of component costs or the estimation of
integration costs is given, one could apply other estimation techniques for that. Examples
are object point analysis [BKK92] or various size estimation techniques, and historical
cost data, such as proposed in [Hum94, pp. 97]. The results of bottom-up estimation are
used to create the project schedule which itself influences the software development plan.
This plan is used to create the schedules for each developer.

6 Related Work

As outlined in this paper, developing methods to evaluate component-based software ar-
chitectures is still a field of intensive research. Current research projects often focus
on developing specialised methods to evaluate a specific characteristic of software ar-
chitectures, which, for example, help to predict the performance of software systems
[BM04, BIM98, BGM03, PW00, MAA01, BMDI04, BMIS04], the reliability of software
systems [SM02], the interoperability of individual components [ZW95, ZW97, YS97], or
the development costs of software systems [ABC00, BCH+95, Pau01]. A general intro-
duction to evaluating these and other system properties based on software architectures
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can be found in [Bos00].

The evaluation methods primarily focus on evaluating a single characteristic of a software
system. In the long run, however, it is desirable to have a mix of methods which sup-
ports the evaluation of multiple system characteristics simultaneously. While this currently
remains a vision, a variety of integrated methods for evaluating software architectures
is already emerging. Notable among these are SAAM (Software Architecture Analysis
Method) and ATAM (Architecture Tradeoff Analysis Method) [CKK01] as well as PACC
(Predictable Assembly from Certifiable Components) [Wal03, HMSW02].

The set of architectural views in section 3 is not fully consistent with the three view types
defined in [CBB+03]. The module view type and the component-connector view type are
concerned with structural views, while the allocation view type matches with the resource
mapping views. Besides that, it differs from the four views described by Hofmeister et
al. [HNS99]. Hofmeister’s conceptual and module views can be considered as structural
views. Hofmeister’s code and execution views partially model information that belongs
to the dynamic view (or are at least strongly influenced by that information). Finally,
Hofmeister’s execution view includes information of the resource mapping view.

7 Conclusions

In this paper, we present a generic methodical framework which illustrates the prerequi-
sites and the overall process of evaluating software architectures in order to deduce func-
tional and non-functional characteristics of software systems. It provides a taxonomy of
methods to deduce specific characteristics and explains some of them in detail.

The paper illustrates that a variety of architecture evaluation methods exists, which can be
used to deduce specific system characteristics. The above-mentioned methods primarily
cover reliability and performance of systems, which can be measured using well-defined
metrics [ISO03b]. Research into evaluation of other quality properties like maintainability
[BB01], security, or privacy is still only emerging.

As a result, many system properties of interest nowadays cannot be predicted using archi-
tecture evaluation methods. The outlined framework thus remains incomplete. However,
even by only applying the above-mentioned methods, significant improvements in soft-
ware development (and architecture management) could be achieved. To this end, the
outlined framework may serve as a guideline to introduce architecture evaluation into the
process of software development. Additionally, we structure the field of architecture eval-
uation and thereby also highlight unresolved issues that motivate further research.
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[GPT03] K. Goševa-Popstojanova and K. S. Trivedi. Architecture-based approaches to software
reliability prediction. Computers & Mathematics with Applications, 46(7):1023–1036,
October 2003. Special Issue on Applied Stochastic System Modelling.

[HMSW02] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C. Wallnau. Packag-
ing Predictable Assembly. In Judy M. Bishop, editor, Component Deployment, IFIP/ACM
Working Conference, CD 2002, Berlin, Germany, June 20-21, 2002, Proceedings, volume
2370 of Lecture Notes in Computer Science, pages 108–124. Springer, 2002.

[HNS99] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture. Ad-
dison-Wesley, Reading, MA, USA, 1999.

[HRJ+04] W. Hasselbring, R. H. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and
S. Krieghoff. The Dublo Architecture Pattern for Smooth Migration of Business In-
formation Systems. In Proceedings of the 26rd International Conference on Software
Engeneering (ICSE-04), Los Alamitos, California, May23–28 2004. IEEE Computer So-
ciety.

[Hum94] Watts S. Humphrey. A Discipline for Software Engineering. Addison-Wesley, Reading,
MA, USA, 1994.

[ISO03a] ISO/IEC Standard. Software Engineering – Product Quality – Part 1: Quality Model. ISO
Standard 9126-1, ISO/IEC, 2003.

[ISO03b] ISO/IEC Standard. Software Engineering – Product Quality – Part 2: External Metrics.
ISO Standard 9126-2, ISO/IEC, 2003.

[JRvdL00] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software Architecture for
Product Families: Principles and Practice. Addison-Wesley, Reading, MA, USA, 2000.

[KM97] Saileshwar Krishnamurthy and Aditya P. Mathur. On the Estimation of Reliability of a
Software System Using Reliabilities of its Components. In Proc. 8th Intl. Symp. Software
Reliability Eng. (ISSRE’97), pages 146–, September 1997.

[Led99] J. Ledoux. Availability modeling of modular software. IEEE Transactions on Reliability,
48(2):159–168, 1999.

177



[Lit75] B. Littlewood. A reliability model for systems with Markov structure. Applied Statistics,
24(2):172–177, 1975.
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