
Refactoring Support for the Ruby Development Tools

Thomas Corbat, Lukas Felber, Mirko Stocker

Abstract: We present our refactoring plug-ins for Eclipse’s Ruby Development Tools
IDE. Refactoring is a very important technique for every software engineer and a cor-
nerstone of agile software development. In a term project and diploma thesis, we have
implemented several automated refactorings for example Rename Variable and Extract
Method.

1 Introduction

Refactoring is a very useful concept for every software engineer. Martin Fowler, the author
of the prominent book Refactoring [Fow99], says:

”Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure.”

During software development, the programmer often has to modify the existing code to
make it more robust and less error-prone. While this does not change the functionality
of the product, it certainly improves the maintainability, understandability and testability.
This process is called refactoring. Doing refactoring by hand is often quite tedious and
generally engineers are afraid of changing working code. A more recent and very popular
automated refactoring implementation can be seen in Eclipse’s JDT. These tools offer
many automated refactorings which assist the programmer and make his life easier.

Examples of common used refactorings are:

• Renaming of classes, methods and variables.

• Moving code, for example methods or variables.

• Extracting parts of code into other methods or even classes.

The Ruby Development Tools are an IDE for Ruby based on the Eclipse platform. Al-
though they are having a lot of features they didn’t support automated refactorings. The
goal of this project had been to implement refactoring support for the Ruby Development
Tools.

In Ruby the main difficulty is also one of its greatest language features: dynamic typ-
ing. Dynamic typed languages offer a lot of freedom to the programmer, however, it is

313



hard and sometimes even impossible for an IDE to figure out the type of an object. Thus
refactorings with a large scope, like the renaming of public methods, are a real challenge.

2 Implemented Refactorings

During a term project and a diploma thesis, we implemented the following refactorings:

• Override Method

• Extract Method and Class

• Rename Class, Method, Field and Local Variables

• Inline Class, Method and Temp

• Convert Local Variable to Field

• Split Temporary Variable

• Move Method and Field

• Generate Accessors, Contructor

• Merge Class Parts

We tried to follow the list of refactorings from the JDT and adapted them for the Ruby
language.

2.1 Example: Extract Method

Extract Method removes a block of instructions out of an existing method and creates a
new one. The new method will be called from the existing method where the instructions
had been removed. The local variables from the existing method that are used in the
affected code block are passed to the new method as parameters. If any of those local
variables are set inside the selected block they will be returned from the new method as
return values. Fortunately, Ruby supports multiple return values and multiple assignment
of variables. An example of the Extract Method refactoring is shown in figure 1.

3 Results

The plug-ins are now integrated into the official RDT repository and will be part of the
next release. We also plan to maintain and extend the plug-ins to keep up with the latest

314



Figure 1: Extract Method Refactoring

developments in JRuby and RDT. A possible extension of our refactorings could be the
integration into RadRails, so you could rename your controllers or views and the file names
were automatically changed too.
The term project and the diploma thesis were rewarded with the grade six, which is the
maximum in Switzerland. We even won a price for one of the best diploma theses in our
year.

4 Procedure

The project was done in a fourteen-week long term project and an additional eight-week
diploma thesis. During the term project we worked about 20 hours per week and 45 during
the diploma thesis. A lot of the time from the term project was spent on foundation work,
like understanding the existing code base, bug fixing and implementation of functionality
we needed for our main tasks, the refactorings. A lot of this time wasn’t planned and
messed up our initial time plan, so we had to adjust it a lot over time. The diploma
thesis in contrary went quite different, thanks to our previous knowledge. We created a
milestone for each week and a task for each refactoring. During the weekly meetings with
our supervisor, we reviewed our progress. rescheduled the remaining tasks and set up a
goal for the next week.
We used a very pragmatic process. Before each new refactoring task we spent some time
researching the features and special cases of the Ruby language and started writing tests
and code immediately. If we came to new knowledge we refactored and built up the
architecture of the plug-ins this way. Up front design wouldn’t have worked for us, we
simply hadn’t the experience and knowledge about the domain and we believe the results
speak for themselves.

References

[Fow99] Martin Fowler. Refactoring. Addison-Wesley Professional, 1999.

315



316




