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Abstract:

This paper addresses the optimization of a dynamic Traveling Salesman Problem
using the Ant Colony Optimization algorithm. Ants are social insects with limited
skills that live in colonies able to solve complex problems. The intelligence of the
global society arises from self organization mechanisms, based on the indirect com-
munication between individuals through pheromones. The routing problem here pre-
sented is a typical case that requires a self organization type of algorithm, in order
to cope with the problem dynamics. The simulation results show how the ant colony
optimization is able to solve the different possible routing cases.

1 Introduction

The social insect metaphor has been increasingly used in the last ten years for solving
different types of engineering problems [BDT99]. This approach emphasizes the distri-
bution, communication, flexibility and robustness of simple agents, capable of achieving
a form of collective artificial intelligence. The individual agents are not able to solve the
problem by themselves, but a solution emerges from the cooperative behavior of all asso-
ciated individuals. This is particularly interesting at a time where systems are becoming
more and more complex and the design of a single control system able to cope with all the
objectives is virtually impossible.

Individual insects living in colonies, such as ants, bees or wasps do their own specific
task and yet the colony is very organized and it does not require any kind of supervi-
sion. This is calledself organization(SO). Theories of self organization [NP77], origi-
nally developed in the context of physics and chemistry can be extended to social insects
to explain how the complex behavior emerges from the interaction among individuals that
exhibit simple behavior [DGFP91]. The mechanism that allows the SO in insect colonies
is thestimergy which consists of the indirect communication between pairs of individuals
through the change of some environment property; in the ant colonies case, this property
is the pheromone concentration.
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The daily problems solved by an insect colony includes finding food, building or extend-
ing a nest and feeding the brood. These problems have counterparts in engineering and
computer science areas, like routing optimization, data clustering, robotics, etc [BDT99].
Ant Colony OptimizatiofACO) is an optimization algorithm inspired in the collective
foraging behavior of ants to find and exploit the food source that is closest to the nest. The
first application was th&raveling Salesman Proble(MSP) [DMC96], which can be seen

as a direct translation of the food search problem. Soon, the metaphor was extrapolated
for different types of routing problems, like the vehicle routing problem [GrTA99].

The problem we have to solve here is a special case of a routing problem, with a common
topology to the TSP problem, but with dynamic constraints. This makes the ACO an
appealing approach for this problem, since it uses pheromone trails that keep track on the
optimization steps. In cases of changes, the algorithm does not need to restart the complete
procedure, but only to adapt the results to the new conditions.

2 The Traveling Salesman problem for Cash Machines

Cash MachinegCM) are computer terminals operated by banks from which the clients
of any bank can withdraw money. From time to time, a cash logistics company visits
the machine and changes the money containers. This routing problem can be modeled
as a Traveling Salesman Problem, where the location of each CM is a city and the cash
logistics company starts and ends the distribution always at the central bank office.

For the banks in charge of the CM, there are two contradictory situations to avoid: having
empty CM or full CM, caused by machine service rates different from the cash replacement
rate of the logistics company. In the first case the bank customers are not satisfied with the
quality of service, and in the second case the bank loses interests for the stocked money.

After each transaction each machine reports its money sfotikthe bank. The money
stocks are one criterion for the decision which CMs should be recharged. If a machine
still has a lot of money, it makes no sense to recharge it at all; if the CM is not empty yet,
but will possibly be before the next distribution, it might be considered to be recharged.
This decision depends on another criterion: the location of the machines. There is a cost
for visiting a machine and maybe this cost is higher than the cost of having a machine
empty for one or two days before the next distribution. But if this machine is very near to
another machine that is going to be recharged, the cost of recharging this one also is very
small. More than the absolute location of the machine, the decision therefore depends on
the relative location to other CMs.

The distribution planner has to take into consideration both the money levels of the ma-
chines and their relative locations. This routing problem is a special case of the TSP: there
are several locations to visit and the travel begins and ends at the same location. However
there are two additional constraints:

e If the machine stock is high, i.¢; > 60%, the machine is not visited.

¢ If the machine stock is low, i.ef; < 60% and the product of the stock levgl and
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the distance to travel is higher tha6% of the maximum distance to travel, i.e.
dij X fi > 0.2 mgx{dik}, (1)

then the machine is not visited. This constraint depends on the planned route, there-
fore it is a dynamic constraint.

The first constraint can be evaluated before routing, but the second constraint depends on
the solution. This is a case where the use of a self organization algorithm like the ACO
is most interesting. The ACO is a construction algorithm. The solution is built step by
step, and in each step the algorithm can check the constraint for empty machines: in case
the distance is smaller than the constraint, the machine is included in the tour, if not, it
is excluded. Notice that with other types of planners using e.g. simulated annealing or
genetic algorithms this is not possible, since the solutions are constructed in one single
step and cannot deal with the dynamics of this problem.

3 Ant colony optimization

The meta heuristic Ant Colony Optimization (ACO) is an optimization algorithm success-
fully used to solve many NP hard optimization problems introduced in [DMC96]. ACO
algorithms are a very interesting approach to find minimum cost paths in graphs especially
when the connection costs in the graphs can change over time, i.e. when the problems are
dynamic. The artificial ants have been successfully used to solve the (conventional) Trav-
eling Salesman Problem (TSP) [DMC96], as well as other NP hard optimization problems,
including applications in quadratic assignment [SHOQ] or vehicle routing [GrTA99].

The algorithm is based on the fact that ants are always able to find the shortest path between
the nest and the food sources, using information of the pheromones previously laid on
the ground by other ants in the colony. When an ant is searching for the nearest food
source and arrives at several possible trails, it tends to choose the trail with the largest
concentration of pheromones with a certain probabilityp. After choosing the trail,

it deposits another pheromone, increasing the concentration of pheromones in this trail.
The ants return to the nest using always the same path, depositing another portion of
pheromone in the way back. Imagine then, that two ants at the same location choose two
different trails at the same time. The pheromone concentration on the shortest way will
increase faster than the other: the ant that chooses this way, will deposit more pheromone
in a smaller period of time, because it returns earlier. If a whole colony of thousands of
ants follows this behavior, soon the concentration of pheromone on the shortest path will
be much higher than the concentration in other paths. Then the probability of choosing any
other way will be very small, and only very few ants among the colony will fail to follow

the shortest path. There is another phenomenon related with the pheromone concentration.
Since it is a chemical substance, it tends to evaporate, so the concentration of pheromones
vanishes along the time. In this way, the concentration of the less used paths will be much
lower than that of the most used ones, not only because the concentration increases on the
other paths, but also because its own concentration decreases.
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The artificial ants mimic this behavior in a disjunctive graph environment, with nodes and
arcs between the nest and the food source. They can be uploaded with more characteristics,
e.g. memory and heuristic information of the problem. If the pheromone expresses the
experienceof the colony in the job of finding the shortest path, memory and heuristic
information express usefihowledgeabout the problem the ants are solving. In this way,

the probability of choosing the next trail is given by:

o ﬁ m o ﬁ A .
pfj (t) = { le 771] / k%“ Tik " Mik J ¢ (2)
0 otherwise

wherer;; is the pheromone concentration in the p@tly), 7;; is aheuristic functiorandI

is atabu list The heuristic functiom conducts the search with some valuable information

of the problem under optimization. The tabu lists a list that contains all the trails that

the ant has already passed and must not be chosen again, acting as the memory of the ant.
The parametera and measure the relative importance of trail pheromone (experience)
and local heuristic (knowledge), respectively.

At each iteration, a new colony gfants is released. After finding their own way, the ants
deposit pheromones on the paths, usually at the end of one tdowr /& a complete route
between the nest and the food source anideaation ¢ is a step from to j done by all the

g ants. The update of the pheromone concentration in the trails is given by

g
Tij(t+mxg):Tij(t)X(l_p)+ZATikj (3)
k=1

wherep € [0, 1] expresses the pheromone evaporation phenomenor}, 4nd Ari’} are
pheromones deposited in the traiis;) followed by all theg ants after a complete tour,
which are defined as

1 . ..

A~ if the arc(i, j) was used by ant

AT { 0" otherwise @

where fj, is the value of an evaluation function for edclant in a minimization problem.

With real ants, time acts as a performance index, but artificial ants use all the same time to
perform the task, whether they choose a short path or not. In this way, the global update is
biased by the solution found by each individual ant. Notice that the time interval taken by
the g ants to do a complete tourdst m x g iterations. In everyNV*" of the N maximum
number of tours, a newnt colonyis released. The algorithm runs@(m x g x N) =~

O(N?) time. The general algorithm for the ant colonies is described in Fig. 1.

In our application, which is a particular case of TSP, each node represents the location of a
CM. The difference between the TSP and this problem is that not all locations are visited.
As explained before, some of the machines are not empty, so it is not always necessary to
recharge them. It only pays off a visit if the relation between the emptiness of the CM and
the traveling time is smaller than a certain value (1). The heuristic fungtiarthis case

is the inverse of travelling time between two machines. In general in the TSP problem, the
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procedure Ant colony algorithm

Set for every pai(i, j): 7i; = Tmaa

Place thegy ants

Fori=1toN:

Build a complete tour
Forj=1tom
Fork=1tog

Choose the next node usipfj in (2)
Update theabu list T’

end

end

Analyze solutions
Fork=1tog

Compute performance indef
Update globallyr;; (t + m x g) using (3)
end
end

Figure 1: Ant Colonies Optimization Algorithm

Euclidean distance between two locatielsis used as heuristic. However, within a city,
the traveling time;; between two machines is more relevant than distance, due to traffic
reasons. Therefore, the heuristic function is givemby (t;; — timin)/(tmaz — tmin),
wheret;; is the estimated traveling time between locatioend locationj andt,,;, =
mint,;; andt,,q, = maxt;; are the minimum and maximum traveling times considered.
In this way, the heuristic matri® entries are always restricted to the interiéall].

The objective function to minimizet*(¢), is simply the sum of traveling time between all
the visited locations:

S S
PO =232t 5)

At the end of each iteration, when all tlgeants have visited all the machines the cost
function is evaluated and the paths followed by the best ant are updated following the rule
in (3).

The algorithm presented here is the ACO implementation cdled Min Ant System
(MMAS) [SHOO0]: only the best ant updates the trails in every cycle (see (4)); the pheromone
trail is limited to an interval7,,,in, Tmaz), iN this case to the intervé, 1]. However, un-

like the MMAS, the pheromone update mechanism callegotiezomone trail smoothing

is not used here. The set of parameters is tuned using a trial and error approach. The
number of ants ig = 5 and the number of iterations i§ = 100. The heuristic function

is normalized to the interval, 1]. The pheromone trails are initialized with the value of
Tmae @nd the valuea = 1 andj3 = 5 are used. Since bothandn are defined in thé, 1]
domain, a small value af will indicate a higher relative weight to the pheromones trail.
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Ant solution - 5 hours 26.9 minutes
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Figure 2: Case 1: All CM are empty

The evaporation coefficient js= 0.2.

4 Simulation results

In this section, we simulate the problem described in section 2, where 9 CMs from a
specific bank in the city of Frankfurt are maintained by a specific cash logistics company.
Once a week, the bank provides the distributer with the information about the money levels
of the machines, and the distributer has to decide which machines to visit. As explained,
every machine with a money level lower thas can be visited by the logistics company,

as long as the dynamic constraint regarding stock level and distance is respected (see (1)).
The routing planner was developed in Matlab. To show how the algorithm works, we will
present three situations: the case where all the machines are completely empty, which
turns out to be the generic TSP problem; the case where the money level influences the
solution; and finally the case where the solution is mainly biased by the relative location
of the CMs.

In the first case, when all the CMs are empty, the routing planner solves a generic TSP
problem: all the machines have to be visited and the distribution vehicle starts and ends at
the same location. The routing results are presented in Figure 2. The ants have found the
path with the shortest traveling time. In the figure, it is obvious that the traveling time is
not directly proportional to the Euclidean distance, otherwise, the optimal path could not
have crossing arcs.

In the second case the money level is the dominant optimization criterion. In the example
depicted in Figure 3, there are five machines to be visited: machine 1, 2, 3 and 4 with
f1 = fa = fs = f1 = 10% and machine 5 withfs = 40%. Although the distance
between the 3 and 2 machines and 3 and 5 are similar, machine 5 is not included in the trip
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Ant solution - 2 hours 31.4 minutes Ant solution - 3 hours 12.9 minutes
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Figure 3: Money level as dominant criterion

(see Fig. 3a). However, if the money level of machine 5 drops te 10%, the machine
has to be visited and it is included in the trip, as shown in Fig. 3b.

The typical case to be solved by the routing planner is the case where the machines have
different money levels/;, i.e. when the relative location is the dominant criterion. In

the example in Figure 4, 6 machines are considered with the respective money levels:
f1 = 10%, fo = 15%, f3 = 20%, f5 = 25% and f4 = fs = 40%. Figure 4a shows

that the solution is to visit only machinés2, 3 and5, since the cost of traveling further

to visit machines that aré0% full is higher than not visiting the machines at all. The
situation is similar to the one described in the previous case. However, if machine 4 has
a stock level offy = 10% and machine 6 remains witfy = 40%, the machine 4 has

to be visited. Then, since machine 4 and 6 are so close to each other, the cost of visiting
machine 6 becomes sufficiently small, so all the six machines are recharged, as Figure 4b
shows.

5 Conclusions

In this paper, we presented an application of the Ant Colony Algorithm to a Traveling
Salesman Problem with dynamic constraints. It models the routing problem of a cash
logistics company that has to recharge cash machines of a certain bank. The logistics
company only visits machines that are empty or when the relation between money level
and travel time is sufficiently small. The ACO is an optimization algorithm based on self
organization effects of individual agents and it was particularly suited for this application,
since one of the optimization constraints depends on how the solution is constructed. The
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Ant solution - 2 hours 41.2 minutes Ant solution - 3 hours 43.1 minutes
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Figure 4: Relative location as dominant criterion

simulation results show how the ants dynamically find different solutions based on the
distances between the machines and the money level, minimizing always the traveling
time.
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