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Abstract:
The window-based stream join is an important operator in all data streaming sys-

tems. It has often high resource requirements so that many efficient sequential as well
as parallel versions of it were proposed in the literature. The parallel stream join op-
erators recently gain increasing interest because hardware is getting more and more
parallel. Most of these operators, however, are only optimized for processors with ho-
mogeneous execution units (e.g., multi-core processors). Newly available processors
with heterogeneous execution units cannot be exploited whereas such processors pro-
vide typically a very high peak performance. In this paper, we propose an initial variant
of a window-based stream join operator that is optimized for processors with hetero-
geneous execution units. We provide an efficient load balancing approach to utilize all
available execution units of a processor and further provide highly-optimized kernels
that run on them. On our test machine with a 4-core CPU and an integrated graphics
processor, our operator achieves a speedup of 69.2x compared to our single-threaded
implementation.

1 Introduction

The window-based stream join is a fundamental operator in all data streaming systems. It

joins tuples that fulfill certain predicates from two or more windows, which move contin-

uously over input data streams. Depending on the size of the windows, the operator has

high performance requirements so that many optimized versions have been proposed for

it. This includes sequential stream join operators [VNB03, GO03], which exploit various

index data structures (e.g., hash tables) for a faster processing as well as parallel stream

join operators [GYB07, TM11], taking advantage of different types of parallelism. The

parallel operators are gaining increasing interest because hardware nowadays is getting

more and more parallel.

Besides increasing the number of parallel execution units (e.g., cores, vector instruction

width) in modern multi-core processors, one interesting trend is the development of het-

erogeneous processors where circuits for different purposes are placed on one chip. On

the one hand, each new processor generation provides new instruction sets like Streaming

SIMD Extensions (SSE) or Advanced Vector Extensions (AVX) that provide specialized
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instructions for video encoding, string processing, or data encryption. On the other hand,

also different types of execution units are placed on a single chip. Examples for such pro-

cessors with heterogeneous execution units are the IBM Cell processor, AMD processors

of the Fusion brand, and Intel’s Sandy Bridge or Ivy Bridge processors. The AMD and

Intel processors, for example, host CPU and GPU cores on a single chip. Although hetero-

geneous processors typically provide a better peak performance than traditional multi-core

processors, it is more demanding to develop algorithms that exploit this performance.

In this paper, we propose a window-based stream join operator that is tailor-made for

processors with heterogeneous execution units. Our stream join processes tuples from

windows of two input streams using a band predicate [DNS91]; the operator creates join

tasks (i.e., batches of tuples from both streams) of which each is processed by one of the

available execution units. A dynamic load balancer is used to evenly distribute the load.

We implement the operator using OpenCL and provide three optimized OpenCL-kernels.

On our test machine, which comprises CPU and GPU cores, we achieve high speedups

of up to 70x compared to a single-threaded implementation and 20x compared to a multi-

threaded implementation that both do not exploit the heterogeneous cores of the system.

2 Preliminaries

Our aim is to speed up window-based stream joins by partitioning the work and running

the partitions on multiple devices within a heterogeneous environment. In the following,

we present the window-based stream join and a way to run the join in a parallel fashion.

We also give an introduction to OpenCL as a framework to program device code (called

kernel) that is able to run on different hardware devices without further modifications.

2.1 Stream Joins with Band Conditions

The stream join is a important operation to concatenate and filter data streams. Stream

joins are performed on two or more streams in which tuples are continuously arriving. In-

stead of holding all the data, the continuous stream is partitioned in stream windows, for

which the join is executed. There exists many variants and optimizations for this opera-

tor. Aggarwal [Agg06] provides an excellent overview about these variants and respective

sequential optimizations.

Recently, parallel stream join operators gained much attention. This includes stream join

implementations for FPGAs and NUMA systems [TM11] as well as for the cell processor

[GYB07]. In the latter, chunks of tuples are transferred to the 8 co-processors of the

cell processor and these cores perform a nested-loop like operation. The authors chose

the nested-loop join because it has no intermediate state that needs to be updated with

every new tuple. It is also the best choice for implementing band conditions. A band join

between relation R and S is a join, where the values of the join attribute on R need to fall in

a predefined band of the join attribute values in S to be joined together. An example could
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be found in position tracking. Two position sensors stream data and the join on a time

window is done to find cases, where both sensors are close to each other. The definition of

close is done by the band conditions, e.g., a radius. There are approaches to do a efficient

sort-merge join [LT95] or hash join [Sol93] with band conditions but the nested-loop join

is a straightforward approach, which is also easy to parallelize.

In this paper, we focus on a stream join with band condition as an important derivation of

the stream join. Based on the stream join running on the cell processor, we port the algo-

rithm to work efficiently on the GPU (Graphics Processing Unit) as well as on the CPU.

Furthermore, we exploit both computing devices for parallel execution using OpenCL.

Previous work has been done for database join algorithms on multi-core CPUs [SD89] as

well as join algorithms on the GPUs [HYF+08, KLMV12]. In the latter, the join data is

copied to and from the GPU device through the PCI express interface and the join execu-

tion was done completely on the GPU.

2.2 Open Computing Language (OpenCL)

We chose the Open Computing Language (OpenCL)[Gro] to implement our join for het-

erogeneous hardware environments. OpenCL is standardized by the Khronos Group and

implemented by hardware vendors for their specific hardware. It allows to run the same

code on different hardware platforms including x86-CPUs and most of the modern GPUs.

With a pre-installed driver, OpenCL programs can use all supported computing devices

available in a system. These could be multiple CPUs, GPUs, FPGAs, or different kinds

of accelerators. To use the OpenCL framework, a programmer has to write host code and

device code. The host code is written in C or C++ (or other languages using wrappers). It

is used to initialize the different hardware devices, to manage data transfers to and from

the devices, and to enqueue device code (kernel) executions. For the execution of a ker-

nel, the host has to specify the arguments for the kernel and the dimensions the kernel is

executed in. The arguments could be single values or pointer to arrays of data, which need

to be transfered before kernel execution. The dimensions define the logical positioning of

work-items, e.g., in a two dimensional array. Work-items can query their position (index

in each dimension) during execution. It is possible to group work-items into work-groups.

Synchronization between work-items is only possible within work-groups.

OpenCL devices are physically partitioned in compute units, which again are partitioned

in processing elements. Each processing element can execute one or more work-items.

Kernels are written in a subset of C, which is extended by mathematic, relational, and

vector functions. All started work-items execute the same kernel. Such kernels read data,

do computation, and store a result. While all work-items execute the same kernel, the

difference between them is that they load data and put the results to different positions in

memory. If used on a GPU, the kernels should be highly parallel.

In OpenCL, the main memory of the device is called global memory. For most compute

devices, global memory is the largest memory but also the memory, which takes the most

time to access. Some devices also have local memory (shared memory), which is faster
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but smaller. Local memory can be shared between work-items in one work-group. When

sharing memory, the work-group synchronization features are needed to avoid inconsistent

data. There is also private memory, which can only be accessed by a corresponding work-

item. When supported in hardware, private memory is implemented with fast registers.

3 Parallel Stream Join Execution

For a fast stream join implementation on multiple devices, efficient load balancing is

needed as well as optimized device friendly code. In the following, we present our ap-

proach to achieve dynamical load balancing and we further discuss the implementation

details of our OpenCL kernels as well as two CPU variants as our basis of comparison.

3.1 Dynamic Load balancing

In OpenCL it is possible to run kernels on specific devices. If the system has multiple

devices of the same or a different kind, then kernel and load distribution is needed. One

way would be to distribute individual kernels, which are adapted to the device properties

together with dedicated data chunks for this kernel. Another way is a unified kernel that is

deployed to all devices and load balancing is done through partitioning the data.

In this paper, we build an unified kernel that works with partitioned data. Such a kernel

does not need information about the devices at compile time and all OpenCL devices are

supported. Hence, our focus is on a good data partitioning and load balancing. For efficient

load balancing, we apply a job queue approach. We implemented a task queue where each

task holds the attributes of a number of join tuples from two stream windows. There is

also a placeholder for the results of the join. The data for filling the tasks could come from

hypothetical endless streams, which keep filling the queue with tasks. Join windows are

taken from the streams to create a task for the queue. The windows of one stream could

be overlapping or distinct. We choose the distinct variant for this work. This is equal to

a batch-wise stream join operation. A batch of new values for one stream is joined with

a join window of another stream and vice versa. Only the data stored in a task is joined

together. The OpenCL devices pick the tasks from the front of the queue and mark it as

’in-work’. Only tasks not ’in-work’ and not ’done’ are picked. A task is executed on a

device and the result is written back to the result placeholder. The task is then marked as

’done’ and can be further processed (e.g., streamed out to the next node). The device then

selects the next free task to execute.

The queuing setup is illustrated in Figure 1. With the job queue, it is possible to have a

dynamic load balancing because every device executes the tasks as fast as possible and

without being idle, selects a new task from the queue. This way it would be easy to add

more devices to the environment even if they have different processing capabilities.

One single task execution involves copying the needed data to the device, execution of

the kernel with the given data, and copying the data from the device back to the result
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Figure 1: Queuing approach for a heterogeneous environment with a CPU and a GPU, both executing
tasks from the same queue. The width of the task boxes within the devices symbolize their runtime.

placeholder. Taken a CPU with integrated Graphic Processor, for example, there are two

devices, the CPU and GPU both on one processor chip. In OpenCL, copying the data to

the CPU is nearly free because no data is copied physically. The data for the CPU is only

referenced and the kernel is therefore working on the original data. Since the original data

is not modified, there is no conflict with further processing steps. For the GPU, however,

the data has to be physically copied. For the processors we aim for, the GPU shares the

main memory with the CPU and thus the data copying takes a similar time to the memcpy

instruction. If the GPU is connected through an external PCIe interface, then data copying

is likely to be more time consuming.

3.2 Kernel Implementations

An OpenCL kernel is a code fragment, which can be run on all devices supporting OpenCL.

To evaluate the performance of our stream join, we implemented 3 different kernels in

OpenCL and 2 implementations not using OpenCL.

The first of our two non-OpenCL implementations is a single-threaded implementation,

which processes the tasks sequentially and also performs the nested-loop comparisons

within a task in sequential order. The single-threaded version runs only on the CPU.

The second non-OpenCL implementation is a multi-threaded version for the CPU, imple-

mented with OpenMP. This version also processes the tasks sequentially but parallelizes

the nested-loop implementation within a task. We also tested running the tasks in parallel

with OpenMP but we did not see a performance benefit.

The three OpenCL kernel work all in a similar way: each kernel is executed N times,

where N is the number of rows in a join column. Each instance of the kernel has an

unique ID. The ID is used by the kernel instance to determine the row in the first column it

has to access. This row will then be compared to all entries in the second column. In this

stage of our work, the kernel only counts the join partners found and does not return the

join tuple. This way we know that the result is only one number per kernel instance and

space for the result can be pre-allocated.



22

AMD A10-5800K APU with Radeon HD Graphics

OpenCL device CPU AMD A10-5800K GPU AMD Radeon HD 7660D

OpenCL compute units 4 6

Max parallel work-items 4 (cores) 384 (Shader)1

Global mem size 30,108 MB 1024 MB

Frequency 3.8 GHz 0.8 GHz

Table 1: Test platform with two compute devices and their properties.

The kernels differ in the way how they evaluate the join predicates and and increment the

number of result tuples. BranchedCL works like explained above. During the kernel

execution, the sum of join partners is incremented using a branch that evaluates whether

the join predicate is true for two tuples.

The second kernel version is called NoBranchCL. In this kernel, we remove the branch

using predication. The comparison result, which is either 0 or 1, is directly added to the

sum with every comparison. This results in much more write operations but branching is

avoided, which may beneficial for the CPU and GPU. The CPU could benefit from a better

usage of the instruction pipeline. With branching the CPU has to guess which branch will

be used next and wrong predictions could lead to performance loss. With a branch free

algorithm this performance loss is avoided. The GPU can only execute in SIMD (Single

Instruction Multiple Data) fashion. This means one instruction is run on all the data and

then the next instruction is processed. When the execution is branched, the kernel instances

not entering the branch are waiting idle for the kernel instances entering the branch. This

idle time could be avoided with branch free algorithms.

Our final kernel is called VectorizedCL. Here, we use the branch free algorithm but in-

stead of doing one compare operation at a time (in a kernel instance), we use OpenCL

build-in SIMD instructions to compare 4 values at one time. This is done with vectors

holding 4 values. Our first vector holds the search key on all positions. This vector is

compared periodically with a second vector, which holds data from the second column. If

the hardware supports SIMD instructions, the vector comparison can be done in the same

amount of clock cycles as a normal comparison, resulting in an optimal speedup of 4x.

Our test platform presented in Table 1 supports SIMD instructions on both devices.

4 Evaluation

We implemented the stream join algorithm in OpenCL with our dynamic load balancing

approach. For a detailed evaluation, we use the 5 kernels as stated before. We are aware

that in most scenarios with GPUs, the memory bandwidth of the PCIe bus is a limiting

factor. But new hardware trends tend to include a graphic processor in the main processor.

This could bring speedups in the data transfer rates because the GPU is accessing portions

1There are 6 SIMD units with each 16 thread processors with each 4 ALUs (Shader).
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of the system main memory. Two current CPUs with integrated graphics are the Intel Ivy

Bridge Processor and the AMD Trinity APU (Accelerated Processing Unit). We choose the

AMD Trinity APU for our first tests, because the architecture seems to be more optimized

for heterogeneous algorithms. The specifications of our test system are shown in Table 1.

All tests presented were done on this system. We also tested our implementation on other

systems with similar results.

In our implementation, we are able to select specific devices that access the job queue. We

therefore tested our kernels on the CPU only, on the GPU only and both together. Having

the tests limited to one specific device, it is possible to observe the performance differences

of the kernels on these devices. For all our tests we used the same test parameters, which

are shown in Table 2.

Property Value

Initial No. of tasks 500

Task consists of column1, column2, Spaceholder for result

Task size 300 KB (100 KB each)

No. of values per column 25,600

Comparisons per task 655.36 million

Started work-items in OpenCL 25,600 per task

Table 2: Overview on test parameters.

Our first test was done on the CPU and the results are illustrated in Figure 2. We have

the single-threaded kernel (1 thread) and the OpenMP kernel on the left side of the fig-

ure. The OpenMP kernel achieves a speedup of 3.5x compared to the single-threaded ap-

proach, which is as expected for a 4-core CPU system. The right side of Figure 2 shows the

OpenCL kernels run on the x86 CPU. The BranchedCL kernel runs similar to the OpenMP

kernel. The overhead of OpenCL is responsible for the slightly worse performance. We

can see, that the CPU benefits from avoiding branching and has a speedup of 1.9x com-

pared to the kernel using branching. This is caused by a better instruction pipelining

through avoided branch misses. Using SIMD with vectorized comparisons gives a further

speedup of 3.6x, which is close to the expected optimal speedup for hardware supported

SIMD instructions. The speedup is not 4x because of setup costs for the vectors. The vec-

torized OpenCL kernel on the CPU has a speedup of 21.3x compared to the single-threaded

version.

Figure 3 shows the same test as before but here the OpenCL kernels were executed on the

GPU. The time measurement for the GPU kernel includes all data transfers needed. We see

a much higher speedup for the initial BranchedCL kernel. This is caused by the higher core

count of the GPU. More surprising is the worse performance of the NoBranchCL kernel.

We suppose that the additional write costs have a bigger influence on performance than

branching. Having no branching, every comparison results in a write operation to the sum

variable (increasing the value by 0 or 1). Branching on the GPU results in some parts of

the work-item waiting for the work-items that are branching and staying idle. We suspect

that incrementing the sum variable is a relatively fast operation, so that the idle time for the

not branching work-items is small. Also without branching, all work-items have to write
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Figure 2: All implementations run on the CPU. The best performing OpenCL kernel has a speedup
of 21.3x compared to single-threaded performance.

their sum variable while with branching some work-items would simply wait. Anyway

the branch free algorithm is needed for the vectorization, which then brings a speedup of

2.4x compared to the not vectorized branch free algorithm and a final speedup of 47.5x

compared to the single-threaded kernel.
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Figure 3: The first two implementations run on the CPU, the other three on the integrated GPU. The
best performing OpenCL kernel has a speedup of 47.5x compared to single-threaded performance.

The final test was running our implementation using CPU and GPU for the OpenCL ker-

nel. Here we only tested the vectorized version as the version with the most performance

on both devices. Figure 4 illustrates the results. The first 4 bars are taken from previ-

ous tests and the last bar shows the performance of the VectorizedCL kernel running on

both devices simultaneously. We see that the performance of both devices is added to a

final processing throughput of 69.2 tasks per second (meaning 27 billion nested-loop com-

parisons per second, including transfer times). The final speedup to the single-threaded

version is 69.2x and compared to the OpenMP variant the speedup is 19.8x.

5 Open Issues for Future Work

Having good performance results, still we left some issues open for discussion. We did not

implement a join that returns result tuples but a join that returns the number of result tuples
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Figure 4: The first two implementations run on the CPU, while the OpenCL vectorized kernel runs
either on the CPU, the GPU or on both devices. Running on both devices shows a speedup of 69.1x
compared to single-threaded performance.

found. Returning a set of result tuples without prior knowledge of the result size, is not

trivial with OpenCL. It is not possible to allocate memory dynamically within an OpenCL

kernel. For our current implementation, the host code only allocates 4 bytes per started

work-item to store the individual results. Besides the stream join, it would be possible to

port other stream algorithms to our dynamic load balancing approach. We hope that our

approach enables various algorithms to efficiently use heterogeneous hardware but we did

not test that yet. Also it is worth thinking about dedicating specific tasks to the specific

devices. While loosing the flexibility in load balancing, the performance could be better

through more hardware specific optimizations. We also leave further testing for future

work. We tested our approach on different AMD processors with integrated GPUs. We

did not test Intel Core third generation chips (Ivy Bridge) or systems with distinct GPUs.

6 Conclusion

In this paper, we presented our novel approach to use a heterogeneous environment with

all it’s computing devices to speed up a stream join with band condition. The join is per-

formed within windows of the stream and scheduled as a task within a queue. New values

can be joined in batches with the window of the other stream. The compute devices se-

lect a task from the queue, execute the task, and return the results before selecting the

next task. Executing a task involves copying the data if needed, the execution of the band

join, and returning of the data. At the moment our implementation is limited to returning

only the amount of join partners, not the joined tuples. With our heterogeneous approach

we achieve a speedup of 69.2x compared to the single-threaded implementation on our

test machine. In our final version, we use 3 levels of parallelization: parallel execution

between devices, parallel execution on devices (between cores, respectively shaders) and

using build-in SIMD instructions for execution of 4 comparisons at once. Also the het-

erogeneous execution is 3.2x faster than the OpenCL implementation only on the CPU

(respectively 1.5x compared to GPU).

Seeing modern processors becoming more and more heterogeneous and proven by our
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results, we believe using these heterogeneous environments effectively can have a big

impact in computing and database acceleration.
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