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A Survey of Constraint Transformation Methods

Sven Löffler, Ilja Becker, Franz Kroll, Petra Hofstedt1

Abstract: The solution performance of finite domain (FD) constraint problems can often be improved
by either transforming particular constraints or sub-problems into other FD constraints like binary,
table or regular membership constraints, or by transformation of the complete FD problem into an
equivalent problem but of another domain, e.g. in a SAT problem. Specialized constraint solvers (like
binary or SAT solvers) can outperform general constraint solvers for certain problems. However, this
comes with high efforts for the transformation and/or other disadvantages such as a restricted set of
constraints such specialized solvers can handle or limitations on the variables domains. In this paper
we give an overview of CSP and constraint transformations and discuss applicabilibty and advantages
and disadvantages of these approaches.

Keywords: Constraint Programming; CSP; Refinement; Optimization; Regular Membership Con-
straint; Regular CSPs; Table Constraint; SAT; Binary Constraint

1 Introduction

Constraint programming (CP) is a powerful method to model and solve NP-complete
problems in a declarative way. Typical applications of CP are among others rostering, graph
coloring, optimization, resource management, planning, scheduling and satisfiability (SAT)
problems [Ma98].

Because the search space of constraint satisfaction problems (CSPs) and constraint satisfac-
tion optimization problems (CSOPs or COPs) is immensely big and the solution process
often needs an extremely large amount of time we are always interested in improving the
solution process. In practice there are often various ways to describe a CSP and consequently
the problem can be modeled by different combinations of constraints, which results in
the differences in resolution speed and behavior. For example, there is the possibility to
represent a CSP with constraints, which are of the same kind. Thus we have the possibility to
use a solver, solver settings or search strategies which are optimized for the used constraints.

The rest of this paper is structured as follows. In Section 2, we introduce the necessary
definitions of constraint programming. In Sections 3, 4, and 5 we give a survey of existing
transformations of a general CSPs into binary, boolean, and table and regular CSPs.
Furthermore, in each of these three sections we show examples of transformations and
discuss advantages and disadvantages. Finally, in Section 6 we summarise and explain
future steps in our researches.
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2 Preliminaries

In this section we introduce basic definitions and concepts of constraint programming (CP)
and present the relevant constraints, which are used in the rest of the paper. We consider
CSPs, which are defined in the following way.

A constraint satisfaction problem (CSP) is defined as a 3-tuple 𝑃 = (𝑋, 𝐷,𝐶) where
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a set of variables, 𝐷 = {𝐷1, 𝐷2, . . ., 𝐷𝑛} is a set of finite domains
where 𝐷𝑖 is the domain of 𝑥𝑖 and 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} is a set of constraints. At this,
constraint 𝑐 𝑗 = (𝑋 𝑗 , 𝑅 𝑗 ) is a relation 𝑅 𝑗 , which is defined over a set of variables 𝑋 𝑗 ⊆ 𝑋

[De03b; RBW06].

The scope of a constraint 𝑐 𝑗 = (𝑋 𝑗 , 𝑅 𝑗 ) indicates the set of variables, which is covered by
the constraint 𝑐 𝑗 : 𝑠𝑐𝑜𝑝𝑒(𝑐 𝑗 ) = 𝑋 𝑗 [De03b].

The relation 𝑅 of a constraint 𝑐 = (𝑋, 𝑅) represents a subset of the Cartesian product of
the domain values 𝐷1 × ... × 𝐷𝑛 of the corresponding variables 𝑋 = {𝑥1, ..., 𝑥𝑛}. This
can be expressed implicitely by a mathematical formula or (for FD constraints) explicitely
by enumeration of the allowed tuples of domain values. In the following, we will use the
explicit representation of constraints, i.e. by sets 𝑇 of tuples of an ordered set of variables
𝑋 . A CSP can only have a finite number of solutions because the number 𝑛 of variables and
the domain sizes are finite. Thus, it is possible to finitely enumerate all solutions of a CSP

Finally, we introduce two definitions of constraints relevant in this paper. Let a CSP
𝑃 = (𝑋, 𝐷,𝐶) and a subset 𝑋 ′ of variables 𝑋 of the CSP 𝑃 be given.

For an ordered subset of variables 𝑋 ′ = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝑋 , a positive 𝑡𝑎𝑏𝑙𝑒 constraint
𝑡𝑎𝑏𝑙𝑒(𝑋 ′, 𝑇) restricts any solution of the CSP to be compatible to the one of the given
domain tuples of𝑇 . (For a negative constraint 𝑡𝑎𝑏𝑙𝑒𝑛 (𝑋 ′, 𝑇) a solution must be incompatible
to all the given tuples in 𝑇 .)

We use the notation of a 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 constraint as a synonym for 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝

respectively 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 constraint. The 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 constraint and its
propagation [HPB04; Pe01; Pe04] is based on deterministic finite automatons (DFAs)
[HU79]. Let 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) be a DFA, let 𝑋 ′ = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝑋 be an ordered set
of variables with domains 𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑛}, ∀𝑖 ∈ {1, . . . , 𝑛} : 𝐷𝑖 ⊆ Σ. The regular
constraint 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 (𝑋 ′, 𝑀) defines the allowed domain value tupes as:

{(𝑤1, . . . , 𝑤𝑛) | ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑤𝑖 ∈ 𝐷𝑖 , (𝑤1𝑤2 . . . 𝑤𝑛) ∈ 𝐿 (𝑀)}[HK06]

So, the concatenation of the values 𝑤𝑖 of the variables 𝑥𝑖 ,∀𝑖 ∈ {1, ..., 𝑛} must be accepted
by the automaton 𝑀 .

Based on the definition of the table and the regular constraint, we define a table CSP
respectively a regular CSP as a CSP which contains only table or regular constraints.
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Furthermore, there are binary CSPs which contain only constraints covering two or less
variables and boolean CSPs (SAT problems) which contain only boolean variables and
logical clauses of the form (

∨
𝑗 (¬)𝑥𝑖 𝑗 ) as constraints.

3 Transformations into Binary CSPs

Two common possibilities to transform FD-CSPs into binary CSPs are the dual [DP89] and
the hidden transformations [Pe60; RPD90; SF94]. The goal of these transformations is to
receive binary CSPs, i.e CSPs to which algorithms like path consistency (PC-1 und PC-2 in
[De03a]) can be applied. Establishing path consistency is possible in polynomial time, but
depending on the given CSP much transformation time is needed.

3.1 Dual Transformation

For the dual transformation of a CSP 𝑃 = (𝑋, 𝐷,𝐶) into a dual CSP 𝑃𝑑𝑢𝑎𝑙 = (𝑋𝑑 , 𝐷𝑑 , 𝐶𝑑)
for each constraint 𝑐𝑖 = (𝑋𝑖 , 𝑇𝑖) ∈ 𝐶 of the original CSP 𝑃 a new dual variable 𝑥𝑑

𝑖
∈ 𝑋𝑑 is

created. The domain of each such variable contains all allowed tuples𝑇𝑖 of the corresponding
constraint 𝑐𝑖 . For each pair of original constraints 𝑐𝑖 and 𝑐 𝑗 ∈ 𝐶, which cover at least one
shared variable, a new binary dual constraint 𝑐𝑑

𝑖, 𝑗
= ({𝑥𝑑

𝑖
, 𝑥𝑑

𝑗
}, 𝑅𝑑

𝑖, 𝑗
) ∈ 𝐶𝑑 is created. The

relation 𝑅𝑑
𝑖, 𝑗
defines all allowed tuples, which satisfy 𝑐𝑖 and 𝑐 𝑗 .

It follows a formal definition of the dual transformation and an example, which illustrates
the transformation of a CSP into a dual CSP.

Definition 1 (Dual transformation). The dual transformation of a CSP 𝑃 = (𝑋, 𝐷,𝐶) is
defined by 𝑃𝑑𝑢𝑎𝑙 = (𝑋𝑑 , 𝐷𝑑 , 𝐶𝑑), with:

𝑋𝑑 = {𝑥𝑑1 , ..., 𝑥
𝑑
𝑚} is a set of dual variables, where each variable 𝑥𝑑

𝑖
represents a constraint

𝑐𝑖 ∈ 𝐶 of 𝑃.

𝐷𝑑 = {𝐷𝑑
1 , ..., 𝐷

𝑑
𝑚}, with 𝐷𝑑

𝑖
= 𝑇𝑖 is the set of domains for the dual variables. For every dual

variable 𝑥𝑑
𝑖
∈ 𝑋𝑑 holds 𝐷𝑑

𝑖
= 𝑇𝑖 , where 𝑇𝑖 is the list of admissible tuples of 𝑐𝑖 = (𝑋𝑖 , 𝑅𝑖).

𝐶𝑑 is a set of dual constraints over the dual variables. For each pair of constraints
𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶 with 𝑐𝑖 ≠ 𝑐 𝑗 and 𝑠𝑐𝑜𝑝𝑒(𝑐𝑖) ∩ 𝑠𝑐𝑜𝑝𝑒(𝑐 𝑗 ) = 𝑋𝑖, 𝑗 ≠ ∅ of 𝑃 a dual constraint
𝑐𝑑
𝑖, 𝑗

= ({𝑥𝑑
𝑖
, 𝑥𝑑

𝑗
}, 𝑇𝑑

𝑖, 𝑗
) ∈ 𝐶𝑑 is created. Each tuple (𝑎𝑖 , 𝑏 𝑗 ) ∈ 𝑇𝑑𝑢𝑎𝑙

𝑖, 𝑗
contains a tuple 𝑎𝑖 ∈ 𝑇𝑖

and a tuple 𝑏 𝑗 ∈ 𝑇𝑗 , which have equal projections to their shared variables [Ba02].

Example 1 (Dual transformation). Given is the CSP 𝑃1 𝑃1 = (𝑋, 𝐷,𝐶) with

𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}
𝐷 = {𝐷1 = {0, 1}, 𝐷2 = {0, 1}, 𝐷3 = {0, 1, 2}, 𝐷4 = {0, 1, 2}}
𝐶 = {𝑐1 = (𝑥1 ≠ 𝑥2), 𝑐2 = (𝑥1 < 𝑥3), 𝑐3 = 𝑐𝑜𝑢𝑛𝑡 ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, 2, 1)}

Constraint Transformation Methods 1109
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The 𝑐𝑜𝑢𝑛𝑡-constraint 𝑐3 demands that the value 1 is assigned to 2 of the variables 𝑥1, . . . , 𝑥4.

When tranforming 𝑃1 into a dual CSP, for each constraint 𝑐1, 𝑐2, 𝑐3 ∈ 𝐶 a dual variable
𝑋𝑑 = {𝑥𝑑1 , 𝑥

𝑑
2 , 𝑥

𝑑
3 } is created. The allowed tuples of 𝑐1, 𝑐2 and 𝑐3 are enumerated for the

domains of 𝑥𝑑1 , 𝑥
𝑑
2 , and 𝑥

𝑑
3 . For example 𝐷

𝑑
1 = {(0, 1), (1, 0)}.

Each pair 𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶 with at least one shared variable yields a new binary dual constraint
𝑐𝑑
𝑖, 𝑗
. For example we get 𝑐𝑑𝑢𝑎𝑙1,2 = ({𝑥𝑑𝑢𝑎𝑙1 , 𝑥𝑑𝑢𝑎𝑙2 }, 𝑇𝑑𝑢𝑎𝑙

1,2 ), where tuple list 𝑇𝑑
1,2 represents

the projection of the allowed tuples of 𝑐1 and 𝑐2, such that the shared variable 𝑥1 has the
same value: 𝑇𝑑

1,2 = {((0, 1), (0, 1)), ((0, 1), (0, 2)), ((1, 0), (1, 2))}. It follows an excerpt
of the resulting dual CSP 𝑃𝑑𝑢𝑎𝑙 = (𝑋𝑑 , 𝐷𝑑 , 𝐶𝑑) with

𝑋𝑑 = {𝑥𝑑1 , 𝑥
𝑑
2 , 𝑥

𝑑
3 }

𝐷𝑑 = {𝐷𝑑
1 = {(0, 1), (1, 0)},

𝐷𝑑
2 = {(0, 1), (0, 2), (1, 2)},

𝐷𝑑
3 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 2, 1), (0, 1, 1, 0), ..., }}

𝐶𝑑 = {𝑐𝑑1,2 = ({𝑥𝑑1 , 𝑥
𝑑
2 }, {((0, 1), (0, 1)), ((0, 1), (0, 2)), ((1, 0), (1, 2))}),

𝑐𝑑1,3 = ({𝑥𝑑1 , 𝑥
𝑑
3 }, {((0, 1), (0, 1, 0, 1)), ((0, 1), (0, 1, 2, 1)),

((0, 1), (0, 1, 1, 0)), ..., ((1, 0), (1, 0, 1, 2)), ...})
𝑐𝑑2,3 = ({𝑥𝑑2 , 𝑥

𝑑
3 }, {((0, 1), (0, 0, 1, 1)), ((0, 1), (0, 1, 1, 0)),

((0, 1), (0, 1, 1, 2)), ((0, 2), (0, 1, 2, 1)), ...})}

3.2 Hidden Transformation

Regarding the hidden transformation of a CSP 𝑃 = (𝑋, 𝐷,𝐶) into a hidden CSP 𝑃ℎ𝑖𝑑𝑑𝑒𝑛 =

(𝑋 ∪ 𝑋ℎ , 𝐷 ∪ 𝐷ℎ , 𝐶ℎ), the hidden variables 𝑋ℎ and their domains are created analogously
to the dual variables in the above transformation. The hidden constraints 𝐶ℎ are binary
constraints, each between an original variable 𝑥𝑖 ∈ 𝑋 and a hidden variable 𝑥ℎ

𝑗
∈ 𝑋ℎ such

that the constraint 𝑐 𝑗 ∈ 𝐶, now represented by the hidden variable 𝑥ℎ
𝑗
, contains the variable

𝑥𝑖 , i.e. 𝑥𝑖 ∈ 𝑠𝑐𝑜𝑝𝑒(𝑐 𝑗 ). In this way, a bipartite graph with the two sets of nodes 𝑋 and 𝑋ℎ

is created. The hidden constraints 𝐶ℎ guarantee that every variable is only assigned values,
which fulfill the initial constraints, in which this variable involved.

Definition 2 (Hidden transformation). Given a CSP 𝑃 = (𝑋, 𝐷,𝐶), the hidden transforma-
tion yields a CSP 𝑃ℎ𝑖𝑑𝑑𝑒𝑛 = (𝑋ℎ ∪ 𝑋, 𝐷ℎ ∪ 𝐷,𝐶ℎ), where 𝑋ℎ and 𝐷ℎ are created as 𝑋𝑑

and 𝐷𝑑 by the dual transformation. 𝐶ℎ is the set of binary hidden constraints, where each
connects a hidden variable 𝑥ℎ ∈ 𝑋ℎ with a variable 𝑥 ∈ 𝑋 of the initial CSP 𝑃.

For every hidden variable 𝑥ℎ
𝑗
∈ 𝑋ℎ and for every initial variable 𝑥𝑖 ∈ 𝑋 , which are connected

via the initial constraint 𝑐 𝑗 = (𝑋 𝑗 , 𝑇𝑗 ) (𝑥𝑖 ∈ 𝑠𝑐𝑜𝑝𝑒(𝑐 𝑗 )), a hidden constraint 𝑐ℎ
𝑖, 𝑗

∈ 𝐶ℎ

exists in 𝐶ℎ. Any such hidden constraint 𝑐ℎ
𝑖, 𝑗

= ({𝑥𝑖 , 𝑥ℎ𝑗 }, 𝑅𝑖, 𝑗 ) specifies the admissible
tuples 𝑡 ∈ 𝑇𝑗 when a value 𝑎 is assigned to the variable 𝑥𝑖 (𝑅𝑖, 𝑗 := 𝑡 [𝑥𝑖] = 𝑎) [Ba02].
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Example 2 (Hidden transformation). Given is again the CSP 𝑃1, which is supposed to be
transformed into a hidden CSP. For each of the three constraints 𝑐1, 𝑐2 and 𝑐3 a hidden
variable 𝑋ℎ = {𝑥ℎ1 , 𝑥

ℎ
2 , 𝑥

ℎ
3 } and domain 𝐷ℎ = {𝐷ℎ

1 , 𝐷
ℎ
2 , 𝐷

ℎ
3 } is created as by the dual

transformation.

A new, binary hidden constraint 𝑐ℎ
𝑖, 𝑗
must be generated for every pair of variables

𝑥𝑖 ∈ 𝑋 and 𝑥ℎ
𝑗
∈ 𝑋ℎ with 𝑥𝑖 ∈ 𝑠𝑐𝑜𝑝𝑒(𝑐 𝑗 ). We get the following constraints: 𝑐ℎ1,1 =

({𝑥1, 𝑥ℎ1 }, 𝑇
ℎ
1,1), 𝑐

ℎ
2,1 = ({𝑥2, 𝑥ℎ1 }, 𝑇

ℎ
2,1), 𝑐

ℎ
1,2 = ({𝑥1, 𝑥ℎ2 }, 𝑇

ℎ
1,2), 𝑐

ℎ
3,2 = ({𝑥3, 𝑥ℎ2 }, 𝑇

ℎ
3,2),

𝑐ℎ1,3 = ({𝑥1, 𝑥ℎ3 }, 𝑇
ℎ
1,3), 𝑐

ℎ
2,3 = ({𝑥2, 𝑥ℎ3 }, 𝑇

ℎ
2,3), 𝑐

ℎ
3,3 = ({𝑥3, 𝑥ℎ3 }, 𝑇

ℎ
3,3) and 𝑐ℎ4,3 =

({𝑥4, 𝑥ℎ3 }, 𝑇
ℎ
4,3).

The lists of tuples 𝑇ℎ
𝑖, 𝑗
result as given above, e.g. 𝑇ℎ

1,1 = {(0, (0, 1)), (1, (1, 0))} associates
with the first tuple the value 0 for 𝑥1 with the valuation (0, 1) for constraint 𝑐1 (and
1 for 𝑥1 with (1, 0) for 𝑐1 with the second tuple). This results in a new hidden CSP
𝑃ℎ𝑖𝑑𝑑𝑒𝑛 = (𝑋 ∪ 𝑋ℎ , 𝐷 ∪ 𝐷ℎ , 𝐶ℎ) with:

𝑋 ∪ 𝑋ℎ = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥ℎ1 , 𝑥
ℎ
2 , 𝑥

ℎ
3 }

𝐷 ∪ 𝐷ℎ = {𝐷1 = {0, 1}, 𝐷2 = {0, 1}, 𝐷3 = 𝐷4 = {0, 1, 2},
𝐷ℎ
1 = {(0, 1), (1, 0)}, 𝐷ℎ

2 = {(0, 1), (0, 2), (1, 2)},
𝐷𝑑
3 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 2, 1), (0, 1, 1, 0), ..., }}

𝐶ℎ = {𝑐ℎ1,1 = ({𝑥1, 𝑥ℎ1 }, 𝑇
ℎ
1,1}), 𝑐ℎ2,1 = ({𝑥2, 𝑥ℎ1 }, 𝑇

ℎ
2,1}),

𝑐ℎ1,2 = ({𝑥1, 𝑥ℎ2 }, 𝑇
ℎ
1,2}), 𝑐ℎ3,2 = ({𝑥3, 𝑥ℎ2 }, 𝑇

ℎ
3,2}), ...}

where 𝑇ℎ
1,1 = {(0, (0, 1)), (1, (1, 0))}, 𝑇ℎ

2,1 = {(0, (1, 0)), (1, (0, 1))},
𝑇ℎ
1,2 = {(0, (0, 1)), (0, (0, 2)), (1, (1, 2))}, 𝑇ℎ

3,2 = {(1, (0, 1)), (2, (0, 2)), (2, (1, 2))}, ...

Advantages and Disadvantages of Binary Transformations. Both approaches have the
advantage, that they allow the use of algorithms which require binary constraints, e.g. path
consistency algorithms (PC-1 and PC-2 in [De03a]). On the other side both approaches have
the disadvantages, that they are only reasonable when the whole CSP is transformed and
they need to list all solutions of all constraints, which is mostly extremely time consuming.

The hidden transformation has the advantage over the dual transformation that the original
variables remain. This allows a direct read off a solution, no variable transformation from
hidden variables is necessary. The advantage of the dual transformation is that it needs less
variables and constraints than the hidden transformation, in most cases.

Constraint Transformation Methods 1111
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4 Transformations into SAT Problems

SAT problems are capable of representing every other FD-CSP. This requires the transforma-
tion of all non-boolean variables into boolean ones, as well as a translation of all constraints
based upon these new variables. The main advantage of this approach is the ability to
leverage the power of modern SAT solvers. A variety of algorithms for the transformation
of FD-CSPs into boolean CSPs is desribed in [Ga07; Pe15a; Wa00]. Following we describe
some exemplary selected methods.

4.1 Direct Encoding

The direct encoding approach creates a new variable for each possible variable assignment.
Depending on whether an original variable is assigned a certain value, the corresponding
value variable is 𝑇𝑟𝑢𝑒 (1) or not. For each illegal assignment of values to the variables 𝑋𝑖

according to a constraint 𝑐𝑖 = (𝑋𝑖 , 𝑅𝑖) a clause over the previously created boolean values is
generated, that rules out this assignment. Additional constraints are introduced that ensure,
that only one value assignment representing variable per original variable can be true at a
time.

Definition 3 (Direct encoding). Given a CSP 𝑃 = (𝑋, 𝐷,𝐶) we define its direct encoding
to be 𝑃𝑑𝑒 = (𝑋𝑑𝑒, 𝐷𝑑𝑒, 𝐶𝑑𝑒) where:

𝑋𝑑𝑒 = {𝑥𝑑𝑒
𝑖, 𝑗

| 𝑖 ∈ {1, ..., |𝑋 |}, 𝑗 ∈ {1, ..., |𝐷𝑖 |}}, is a set of boolean variables where each
variable 𝑥𝑑𝑒

𝑖, 𝑗
represents, whether the original variable 𝑥𝑖 is assigned the 𝑗-th value of the

domain 𝐷𝑖 or not (𝑥𝑖 = 𝑑 𝑗 ↔ 𝑥𝑑𝑒
𝑖, 𝑗

= 1).

𝐷𝑑𝑒 = {𝐷𝑑𝑒
𝑖, 𝑗

= {0, 1} | 𝑖 ∈ {1, ..., |𝑋 |}, 𝑗 ∈ {1, ..., |𝐷𝑖 |}} is the set of the boolean domains
of the newly created variables.

𝐶𝑑𝑒 is the set of constraints over the newly created boolean variables 𝑋𝑑𝑒. For each
constraint 𝑐 = (𝑋,𝑇) ∈ 𝐶 of the original CSP 𝑃, with 𝑋 = {𝑥1, ..., 𝑥𝑛}, a constraint
𝑐𝑑𝑒 ∈ 𝐶𝑑𝑒 can be given in boolean form, that is equivalent to 𝑐. For each viable tuple
𝑡𝑙 = (𝑣𝑙,1, ..., 𝑣𝑙,𝑛) ∉ 𝑇 of the constraint 𝑐 a clause ¬𝑥𝑑𝑒1,𝑣𝑙,1 ∨ ¬𝑥𝑑𝑒2,𝑣𝑙,2 ∨ ... ∨ ¬𝑥𝑑𝑒𝑛,𝑣𝑙,𝑛 is
generated.

To ensure that the variables 𝑋𝑑𝑒
𝑖

= {𝑥𝑑𝑒
𝑖, 𝑗

| ∀ 𝑗 ∈ {1, ..., |𝐷𝑖 |}} represent the possible variable
assignments for 𝑥𝑖 , one needs to ensure that exactly one variable in 𝑋𝑑𝑒

𝑖
becomes true

(1). To that for each variable 𝑥𝑖 so-called 𝑎𝑑𝑑𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒 clauses
∨

𝑣∈𝐷𝑖
𝑥𝑑𝑒
𝑖,𝑣

, as well as
𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒 clauses ¬𝑥𝑑𝑒

𝑖,𝑣1
∨ ¬𝑥𝑑𝑒

𝑖,𝑣2
,∀𝑣1, 𝑣2 ∈ 𝐷𝑖 with 𝑖 ≠ 𝑗 are added [Pr09].

Example 3 (Direct encoding). The CSP 𝑃1 is transformed into a boolean CSP using direct
encoding. For each variable 𝑥1, 𝑥2, 𝑥3 and 𝑥4 and for each of its domain values a new boolean
variable must be created.
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For each invalid tuple 𝑡𝑖 ∉ 𝑇𝑖 of each constraint 𝑐𝑖 , 𝑖 ∈ {1, 2, 3} a clause is generated that
excludes this tuple. From the invalid tuples (0, 0) and (1, 1) for 𝑐1 therefore follow the
clauses 𝑐1,1 = ¬𝑥𝑑𝑒1,0 ∨¬𝑥𝑑𝑒2,0 and 𝑐1,2 = ¬𝑥𝑑𝑒1,1 ∨¬𝑥𝑑𝑒2,1. The other constraints are transformed
analogously.

Finally the 𝑎𝑑𝑑𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒 and 𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒 constraints for the variables 𝑥1, . . . , 𝑥4 need
to be created. E.g. for the original variable 𝑥1 ∈ 𝑋 the resulting constraints are
𝑎𝑑𝑑𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒(𝑥1) = (𝑥𝑑𝑒1,0 ∨ 𝑥𝑑𝑒1,1) and 𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒(𝑥1) = {(¬𝑥𝑑𝑒1,0 ∨ ¬𝑥𝑑𝑒1,1)}.

The direct encoding of CSP 𝑃1 leads to the boolean CSP 𝑃𝑑𝑒 = (𝑋𝑑𝑒, 𝐷𝑑𝑒, 𝐶𝑑𝑒) where:
𝑋𝑑𝑒 = {𝑥𝑑𝑒1,0, 𝑥

𝑑𝑒
1,1, 𝑥

𝑑𝑒
2,0, 𝑥

𝑑𝑒
2,1, 𝑥

𝑑𝑒
3,0, 𝑥

𝑑𝑒
3,1, 𝑥

𝑑𝑒
3,2, 𝑥

𝑑𝑒
4,0, 𝑥

𝑑𝑒
4,1, 𝑥

𝑑𝑒
4,2}

𝐷𝑑𝑒 = {𝐷𝑑𝑒
1,0 = 𝐷𝑑𝑒

1,1 = 𝐷𝑑𝑒
2,0 = ... = 𝐷𝑑𝑒

4,0 = 𝐷𝑑𝑒
4,1 =𝐷

𝑑𝑒
4,2 = {0, 1}}

𝐶𝑑𝑒 = {𝑐1,1 = (¬𝑥𝑑𝑒1,0 ∨ ¬𝑥𝑑𝑒2,0), 𝑐1,2 = (¬𝑥𝑑𝑒1,1 ∨ ¬𝑥𝑑𝑒2,1)
𝑐2,1 = (¬𝑥𝑑𝑒1,0 ∨ ¬𝑥𝑑𝑒3,0), 𝑐2,2 = (¬𝑥𝑑𝑒1,1 ∨ ¬𝑥𝑑𝑒3,0), 𝑐2,3 = (¬𝑥𝑑𝑒1,1 ∨ ¬𝑥𝑑𝑒3,1),
𝑐3,1 = (¬𝑥𝑑𝑒1,0 ∨ ¬𝑥𝑑𝑒2,0 ∨ ¬𝑥𝑑𝑒3,0 ∨ ¬𝑥𝑑𝑒4,0), ...},

𝑎𝑑𝑑𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒:
∪ {(𝑥𝑑𝑒1,0 ∨ 𝑥𝑑𝑒1,1), (𝑥

𝑑𝑒
2,0 ∨ 𝑥𝑑𝑒2,1), (𝑥

𝑑𝑒
3,0 ∨ 𝑥𝑑𝑒3,1 ∨ 𝑥𝑑𝑒3,2),(𝑥

𝑑𝑒
4,0 ∨ 𝑥𝑑𝑒4,1 ∨ 𝑥𝑑𝑒4,2)}

𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒:
∪ {(¬𝑥𝑑𝑒1,0 ∨ ¬𝑥𝑑𝑒1,1), (¬𝑥

𝑑𝑒
2,0 ∨ ¬𝑥𝑑𝑒2,1), (¬𝑥

𝑑𝑒
3,0 ∨ ¬𝑥𝑑𝑒3,1), (¬𝑥

𝑑𝑒
3,0 ∨ ¬𝑥𝑑𝑒3,2),

(¬𝑥𝑑𝑒3,0 ∨ ¬𝑥𝑑𝑒3,3), (¬𝑥
𝑑𝑒
3,1 ∨ ¬𝑥𝑑𝑒3,2), (¬𝑥

𝑑𝑒
3,1 ∨ ¬𝑥𝑑𝑒3,3), (¬𝑥

𝑑𝑒
3,2 ∨ ¬𝑥𝑑𝑒3,3), ...}

4.2 Logarithmic Encoding

The idea behind logarithmic encoding is to encode the index of an assigned value for a
variable in a binary representation with boolean variables. For each variable 𝑥𝑖 ∈ 𝑋 of
the original CSP 𝑃, exactly 𝑟 = d𝑙𝑜𝑔2 |𝐷𝑖 |e variables 𝑥𝑙𝑒𝑖,𝑟 , ..., 𝑥𝑙𝑒𝑖,1 are created, where the
assignment for the variables 𝑥𝑙𝑒

𝑖,𝑟
, ..., 𝑥𝑙𝑒

𝑖,1 represents the index of a value in the domain 𝐷𝑖 of
the original variable 𝑥𝑖 in binary form.

Definition 4 (Logarithmic encoding). Given a CSP 𝑃 = (𝑋, 𝐷,𝐶) we define its logarithmic
encoding to be 𝑃𝑙𝑒 = (𝑋 𝑙𝑒, 𝐷𝑙𝑒, 𝐶𝑙𝑒) where:

𝑋 𝑙𝑒 = {𝑥𝑙𝑒
𝑖, 𝑗

| 𝑖 ∈ {1, ..., |𝑋 |}, 𝑗 ∈ {1, .., 𝑟}} with 𝑟 = d𝑙𝑜𝑔2 |𝐷𝑖 |e is a set of boolean variables
where each series of variables 𝑥𝑙𝑒

𝑖,𝑟
, ..., 𝑥𝑙𝑒

𝑖,1 represents, that the original variable 𝑥𝑖 is
assigned the 𝑘-th value of the domain 𝐷𝑖 . The assignments 𝑏𝑖,𝑟 ...𝑏𝑖,1 of the variables
𝑥𝑙𝑒
𝑖,𝑟
, ..., 𝑥𝑖,1 correspond to the binary representation of 𝑘 .

𝐷𝑙𝑒 = {𝐷𝑖, 𝑗 = {0, 1} | 𝑖 ∈ {1, ..., |𝑋 |}, 𝑗 ∈ {1, ..., d𝑙𝑜𝑔2 |𝐷𝑖 |e}} is the set of the boolean
domains of the newly created variables.

𝐶𝑙𝑒 is the set of constraints over the newly created boolean variables 𝑋 𝑙𝑒. For each original
constraint 𝑐 = (𝑋,𝑇) ∈ 𝐶 with 𝑋 = {𝑥1, ..., 𝑥𝑛}, a constraint 𝑐𝑙𝑒 ∈ 𝐶𝑙𝑒 can be given in
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boolean form that is equivalent to 𝑐. For each tuple 𝑡𝑙 = (𝑣𝑙,1, ..., 𝑣𝑙,𝑛) ∉ 𝑇 , that violates a
constraint 𝑐, the following clause is created:

𝑐𝑙𝑒𝑙 = ∨𝑖∈{1,...,𝑛}, 𝑗∈{ d𝑙𝑜𝑔2 |𝐷𝑖 | e,...,1}

{
¬𝑥𝑙𝑒

𝑖, 𝑗
𝑏𝑖, 𝑗 = 1

𝑥𝑙𝑒
𝑖, 𝑗

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The values 𝑏𝑖,𝑟 ...𝑏𝑖,1 encode the binary representation of the index of the value 𝑣𝑙,𝑖 in 𝐷𝑖 .

Additionally one needs to ensure that for each domain whos size is not divisible by two, the
binary representations of indices that do not correspond to values in the domain are invalid.
For this each of these indices can be represented by a one-dimensional, negative tuple and
be transformed into a clause accordingly [Ga07; IM94; Wa00].

Example 4 (Logarithmic encoding). Following the CSP 𝑃1 will be transformed into a
boolean CSP using logarithmic encoding. For the variables 𝑥1 and 𝑥2, whose domain sizes
are two, it suffices to create new variables 𝑥𝑙𝑒1,0 and 𝑥

𝑙𝑒
2,0 respectively. For the variables 𝑥3

and 𝑥4 two variables 𝑥𝑙𝑒3,1 and 𝑥
𝑙𝑒
3,0, and 𝑥

𝑙𝑒
4,1 and 𝑥

𝑙𝑒
4,0 respectively, are created accordingly to

their domain size of three. The domains of all created variables equal {0, 1}. Because the
original variables 𝑥3 and 𝑥4 cannot be assigned to value 3, it is necessary to add the two
negative tuple clauses 𝑐𝑛3,3 = ¬𝑥𝑙𝑒3,0 ∨ ¬𝑥𝑙𝑒3,1, 𝑐

𝑛
4,3 = ¬𝑥𝑙𝑒4,0 ∨ ¬𝑥𝑙𝑒4,1.

For each of the three constraints 𝑐1, 𝑐2 and 𝑐3 a boolean constraint based on their respective
negative tuple lists is created. For 𝑐1 we get the negative tuple list 𝑇 ′

1 = {(0, 0), (1, 1)},
from which the constraints 𝑐𝑙𝑒1,1 = 𝑥𝑙𝑒1,0 ∨ 𝑥𝑙𝑒2,0 and 𝑐

𝑙𝑒
1,2 = ¬𝑥𝑙𝑒1,0 ∨ ¬𝑥𝑙𝑒2,0 are derived. The

other constraints can be obtained analogously. Following is an excerpt of the transformed
CSP 𝑃𝑙𝑒 = (𝑋 𝑙𝑒, 𝐷𝑙𝑒, 𝐶𝑙𝑒) with:

𝑋 𝑙𝑒 = {𝑥𝑙𝑒1,0, 𝑥
𝑙𝑒
2,0, 𝑥

𝑙𝑒
3,1, 𝑥

𝑙𝑒
3,0, 𝑥

𝑙𝑒
4,1, 𝑥

𝑙𝑒
4,0}

𝐷𝑙𝑒 = {𝐷𝑙𝑒
1,0 = 𝐷𝑙𝑒

2,0 = 𝐷𝑙𝑒
3,1 = 𝐷𝑙𝑒

3,0 = 𝐷𝑙𝑒
4,1 = 𝐷𝑙𝑒

4,0 = {0, 1}}
𝐶𝑙𝑒 = {(𝑐𝑛3,3 = ¬𝑥𝑙𝑒3,0 ∨ ¬𝑥𝑙𝑒3,1), (𝑐

𝑛
4,3 = ¬𝑥𝑙𝑒4,0 ∨ ¬𝑥𝑙𝑒4,1),

(𝑐𝑙𝑒1,1 = 𝑥𝑙𝑒1,0 ∨ 𝑥𝑙𝑒2,0), (𝑐
𝑙𝑒
1,2 = ¬𝑥𝑙𝑒1,0 ∨ ¬𝑥𝑙𝑒2,0)

(𝑐𝑙𝑒2,1 = 𝑥𝑙𝑒1,0 ∨ 𝑥𝑙𝑒3,1 ∨ 𝑥𝑙𝑒3,0), (𝑐
𝑙𝑒
2,2 = ¬𝑥𝑙𝑒1,0 ∨ 𝑥𝑙𝑒3,1 ∨ ¬𝑥𝑙𝑒3,0), ...},

4.3 Support Encoding

The support encoding approach utilizes the same mechanism as direct encoding for
transforming variables and domains, but models the original constraints with clauses that
represent the valid tuples. Further more, support encoding is only applicable on binary
CSPs. After the definition follows an example that shows the application of the support
encoding on the dual CSP 𝑃𝑑𝑢𝑎𝑙 of 𝑃1.
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Definition 5 (Support encoding). Given a CSP 𝑃 = (𝑋, 𝐷,𝐶) we define its support encoding
to be 𝑃𝑠𝑒 = (𝑋𝑠𝑒, 𝐷𝑠𝑒, 𝐶𝑠𝑒) where 𝑋𝑠𝑒 and 𝐷𝑠𝑒 are created like 𝑋𝑑𝑒 and 𝐷𝑑𝑒 in the direct
encoding. 𝐶𝑠𝑒 is the set of constraints over the newly created boolean variables 𝑋𝑠𝑒.

For each pair of variables 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 with 𝑖 ≠ 𝑗 of each original constraint 𝑐 = (𝑋,𝑇),
𝑋 = {𝑥1, ..., 𝑥𝑛}, (𝑥𝑖 , 𝑥 𝑗 ∈ 𝑠𝑐𝑜𝑝𝑒(𝑐) = 𝑋) and each value 𝑣 ∈ 𝐷𝑖 a new clause ¬𝑥𝑖,𝑣 ∨∨

𝑤 ∈𝐴 𝑥 𝑗 ,𝑤 is created. The set 𝐴 ⊆ 𝐷 𝑗 contains all values 𝑣𝑘 ∈ 𝐷 𝑗 which 𝑥 𝑗 can be
instantiated to, such that at least one assignment 𝑥𝑖 = 𝑣 and 𝑥 𝑗 = 𝑣𝑘 exists and satisfies 𝑐.

For each original variable 𝑥𝑖 ∈ 𝑋 also the 𝑎𝑑𝑑𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒
∨

𝑣∈𝐷𝑖
𝑥𝑑𝑒
𝑖,𝑣

and 𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒

clauses ¬𝑥𝑑𝑒
𝑖,𝑣

∨ ¬𝑥𝑑𝑒
𝑖,𝑤

,∀𝑣, 𝑤 ∈ 𝐷𝑖 𝑖 ≠ 𝑗 must be added too [Ge02].

Example 5 (Support encoding). Given is the binary CSP 𝑃𝑑𝑢𝑎𝑙 . First the variables
𝑋𝑑 are transformed into boolean variables 𝑋𝑠𝑒. The resulting variables are 𝑋𝑠𝑒 =

{𝑥𝑠𝑒1,1, 𝑥
𝑠𝑒
1,2, 𝑥

𝑠𝑒
2,1, 𝑥

𝑠𝑒
2,2, 𝑥

𝑠𝑒
2,3, 𝑥

𝑠𝑒
3,1, 𝑥

𝑠𝑒
3,2, ...}, where each assignment of 1 to a variable 𝑥

𝑠𝑒
𝑖, 𝑗
repre-

sents, that the dual variables 𝑥𝑑
𝑖
gets assigned the 𝑗-th value of its domain. Thus, 𝑥𝑠𝑒3,2 being

assigned the value 1 represents the dual variable 𝑥𝑑3 being assigned the tuple (0, 1, 0, 1).

For each variable 𝑥𝑑 ∈ 𝑋𝑑 of the dual problem the 𝑎𝑑𝑑𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒 and 𝑎𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒 clauses
are created. For the variable 𝑥𝑑2 the resulting clauses are 𝑥

𝑠𝑒
2,1 ∨ 𝑥𝑠𝑒2,2 ∨ 𝑥𝑠𝑒2,3, as well as

¬𝑥𝑠𝑒2,1 ∨ ¬𝑥𝑠𝑒2,2, ¬𝑥
𝑠𝑒
2,1 ∨ ¬𝑥𝑠𝑒2,3 and ¬𝑥𝑠𝑒2,2 ∨ ¬𝑥𝑠𝑒2,3. The clauses for 𝑥

𝑑
1 and 𝑥𝑑3 are created

analogously.

Finally the constraints 𝐶𝑑 need to be transformed. The original domains 𝐷𝑑
𝑖
∈ 𝐷𝑑 are

replaced by the domains 𝐷 ′
𝑖
∈ 𝐷 ′, which only contain the indices of the domain values

instead of the actual domain values (𝐷 ′
𝑖
= {0, 1, ..., |𝐷𝑑

𝑖
| −1},∀𝑖 ∈ {1, ..., 3}. The constraint

𝑐𝑑1,2 is transformed exemplary as follows. For each value 𝑣 ∈ 𝐷 ′
1 of the dual value pair 𝑥

𝑑
1 , 𝑥

𝑑
2

the clause ¬𝑥𝑠𝑒1,𝑣 ∨
∨

𝑤 ∈𝐴 𝑥
𝑠𝑒
1,𝑤 is created. The resulting clauses are 𝑐1,1 = ¬𝑥𝑠𝑒1,0 ∨ 𝑥𝑠𝑒2,0 ∨ 𝑥𝑠𝑒2,1

and 𝑐1,2 = ¬𝑥𝑠𝑒1,1 ∨ 𝑥𝑠𝑒2,2. Since both directions need to be taken into account, we also need
to generate clauses for the variable pair 𝑥𝑑2 , 𝑥

𝑑
1 . This gives the clauses 𝑐1,3 = ¬𝑥2,0 ∨ 𝑥1,0,

𝑐1,4 = ¬𝑥2,1 ∨ 𝑥1,0 and 𝑐1,5 = ¬𝑥2,2 ∨ 𝑥1,1.

4.4 More SAT Encodings

Additionally to the previously discussed encoding mechanisms there are more known
transformations, that cannot be discussed in detail here. Following we provide brief
summaries as well as references.

Minimal Support Encoding. The minimal support encoding was defined in [Ar08]
and transforms a CSP into a SAT problem. Generally, the approach follows the methods
of support encoding, the difference being that for each constraint 𝑐 over the variables
𝑠𝑐𝑜𝑝𝑒(𝑐) = {𝑥1, 𝑥2} the support clauses are only given for one variable, 𝑥1 or 𝑥2.

Constraint Transformation Methods 1115



10 Sven Löffler, Ilja Becker, Franz Kroll, Petra Hofstedt

Regular Encoding. Another method to transform binary CSPs into boolean CSPs is
regular encoding [AM04]. The main concept behind regular encoding is to replace each
variable 𝑥𝑖 ∈ 𝑋 of the original CSP with its domain being 𝐷𝑖 = {0, ..., 𝑚} with a unary
vector of boolean variables

−→
𝑈𝑖 = [𝑥𝑟𝑒

𝑖,1, ..., 𝑥
𝑟𝑒
𝑖,𝑚

]. Each vector −→𝑈𝑖 is restricted so that a
variable 𝑥𝑟𝑒

𝑖, 𝑗
can only become 1 if all variables 𝑥𝑟𝑒

𝑖,𝑘
with 𝑘 < 𝑗 also become 1. Each of these

variables 𝑥𝑟𝑒
𝑖, 𝑗
is called a regular variable.

Therefore each vector 𝑈𝑖 takes the form [1, 1, ..., 1, ∗, ∗, ∗, ..., ∗, 0, 0], where 1 represents
variables that are assigned the value 1, ∗ represents variables that weren’t assigned a value
yet, and 0 represents variables that were assigned 0. The number of 1s in

−→
𝑈𝑖 needs to be

equal to 𝑑𝑖 ∈ 𝐷𝑖 , which corresponds to the variable 𝑥𝑖 .

A survey of the previously discussed encodings and further methods can be found in Chapter
4 of “Bridging Constraint Satisfaction and Boolean Satisfiability” [Pe15b].

Advantages and Disadvantages of SAT Transformations. All introduced SAT trans-
formations have the advantage, that they allow the use of very well researched and fast
SAT solvers. Also all transformations have the disadvantage, that they need much time
for the transformation. This follows from the fact that in all approaches either all allowed
tuples or all disallowed tuples must be processed. Even though a lot of information about
the original CSP instance is usually lost during the translation stage and a large set of
propositional clauses is produced, often needing much time in the process, SAT solvers
sometimes outperform conventional CSP solvers [Pe15b].

It follows a discussion of the differences of the introduced transformations. Comparing
support encoding with minimal support encoding, the first needs more constraints than the
latter, but reaches arc-consistency if unit propagation is enforced on the transformed CSP.
Logarithmic encoding needs less boolean variables than the other approaches, which is
effectively noticeable if the domain sizes of the original CSP are very big. On the other
hand, logarithmic encoding needs many more literals in the clauses, which slows down the
solving speed of the SAT solver. The direct encoding approach and support encoding are
usually inefficient in practice, since they often produce very large sets of clauses [Pe15b].
Thus, sometimes it is promising to use regular encoding which can represent equalities and
inequalities with less clauses than the previously mentioned methods.

On the other hand, direct and logarithmic encoding both need to handle every tuple which
does not satisfy a constraint, while support encoding needs to handle every tuple which does
satisfy a constraint. Thus, direct and logarithmic encoding are more promising if the number
of satisfying tuples of the constraints is small, while support encoding looks promising if
the number of satisfying tuples of the constraints is small.

In contrast to support encoding, minimal support encoding does not reach arc-consistency if
unit propagation is enforced. On the other hand, it can reduce the number of clauses. In the
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end, the decision which transformation is the best one for a CSP depends on the structure,
properties and connections of the used constraints.

5 Transformations into table and regular CSPs

For the transformation of a CSP 𝑃 = (𝑋, 𝐷,𝐶) into a table CSP or regular CSP every
admissible tuple of each constraint must be listed and transformed. However, an important
difference to the previous approaches is that now a constraint or subset of constraints is
substituted by one single constraint, which reaches generalized arc consistency (GAC). This
can strengthen the propagation without changing the underlying solver.

The transformation of CSPs into table CSPs is called tabulation. Let be 𝑇𝑗 the tuple list,
which contains the tuples which satisfy the constraint 𝑐 𝑗 = (𝑋 𝑗 , 𝑇𝑗 ) ∈ 𝐶. The constraint
𝑡𝑎𝑏𝑙𝑒(𝑋 𝑗 , 𝑇𝑗 ) (cf. Sect. 2) is the tabulation of the constraint 𝑐 𝑗 . So you can transform all
constraints in 𝐶 to receive a table CSP [Ge07].

The transformation of CSPs into regular CSPs is called regularization. Analogously to
tabulation, let be 𝑇𝑗 the tuple list, which contains the tuples which satisfy the constraint
𝑐 𝑗 = (𝑋 𝑗 , 𝑇𝑗 ) ∈ 𝐶. A deterministic finite automaton (DFA) 𝑀 𝑗 can be created from the
tuple list 𝑇𝑗 . The constraint 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 (𝑋 𝑗 , 𝑀 𝑗 ) (agan cf. Sect. 2) is the regularization of the
constraint 𝑐 𝑗 . So you can transform all constraints in 𝐶 to receive a regular CSP [LLH19].

Advantages and Disadvantages of table and regular Transformations. Both approaches
have the advantage, that no prior transformations are needed. Because the table and regular
constraint both reach generalized arc consistency (GAC), the regularization and the tabulation
can increase the consistency level, if the constraint(s) to be substituted has/have a lower
consistency level. Further advantages are, that no variables or domains must be transferred
and it is not necessary to transform the whole CSP (partial transformations are possible).
Thus, slow parts of a CSP can be transformed selectively. If the complete CSP is transformed
a specialized table or regular solver can be used.

But both approaches in their basic version have the same disadvantage (as well as the
aforementioned approaches), as all solutions of all constraints must be listed, which can
be very time consuming. The regularization has one big advantage over every other
here discussed transformation approach: For many global constraints there are direct
transformations into regular constraints. For example the count constraint in our example
CSP 𝑃1 can be substituted directly by an DFA 𝑀3 as represented in Figure 1, which can be
created as explained in [De15; LLH18]. Using direct transformations allows us to avoid
the enumeration of all admissible tuples of a constraint and, thus, leads to much faster
transformation.

Furthermore, when comparing tabulation with regularization, tabulation has the advantage
that a tabular constraint propagates faster if regularization can not find a small and compact
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𝑞0

𝑀3 =

𝑞1,0
0

𝑞1,1

1
𝑞2,0

0

𝑞2,1

1

0

𝑞2,2

1

𝑞3,1

1

0,2

𝑞3,2

1

0,2
𝑞4,2

1

0,2

𝑥1 𝑥2 𝑥3 𝑥4

Fig. 1: The DFA 𝑀3 which is equivalent to the count constraint 𝑐3 of the original CSP 𝑃1.

DFA. On the other hand, if regularization finds a small and compact DFA, then regularization
is applicable for more and bigger CSPs and propagates faster than a tabulated CSP.

6 Summary and Future Work

We presented and compared different transformations for the conversion of arbitrary CSPs
into special CSPs, illustrated these by examples and discussed advantages and disadvantages.

The use of transformations usually leads to an acceleration of the search for a solution (due
to the use of specific solvers or propagation algorithms). However the time needed for the
transformations must be considered as well. Often the time needed for the transformation
exceeds the time savings, that specialized algorithms can achieve. However, for certain CSPs
the transformations can lead to considerable time savings. The following questions arise for
future research: 1) How can the transformations be sped up? 2) How can one determine
ahead of time, which transformations are reasonable for a certain CSP?

The direct transformation of global constraints into respective target constraints could be a
solution with regard to the first question. For the transformation into regular CSPs exist
direct transformations, which avoid the processing of all valid and invalid constraints. In
many cases, this can reduce the time needed for the transformation dramatically.

Machine learning could be one approach for the recognition of a suitable transformation for
a given CSP (question 2). In [LBH21], we show first promising steps towards an automated
prediction, as to whether the original constraint or the transformation into a regular or
tabular constraint is more promising.
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