Towards Update Relevance Checks in a Context Aware
Mobile Information System

Hagen Hopfner
hoepfner@acm.org
International University in Germany
School of Information Technology
Campus 3, 76646 Bruchsal, Germany

Abstract: In order to reduce transmission cost mobile information system clients often
cache data retrieved in a context aware manner. In the case of updates it may happen
that this data becomes outdated. So, the caches must be invalidated. In this paper we
discuss how to check the relevancy of updates regarding the server database as well as
the client contexts.

1 Introduction and Motivation

Mobile information systems are often client/server systems with mobile clients that re-
quest information via a wireless connection. In order to reduce the communication costs,
mobile devices cache received data. If data on the server changes, one has to inform the
mobile clients that hold or should hold modified data. In [H505, HSS04] we presented ap-
proaches to check the relevancy of updates on the server side. We considered conjunctive
queries with inequalities and focused on the relational data model. But mobile information
systems have to consider the context of their usage. In [HS03a] we discussed a general
context model that allows to hoard data automatically on the mobile client without formu-
lating an explicit query. In this paper we present first ideas of combining both approaches
having regard to the update relevancy check. The long-term objective is a context aware
mobile information system, that handles conjunctive database queries with inequalities.
The vision behind our work was presented in [HS03b].

The remainder of the paper is structured as follows. Section 2 is a summary of the foun-
dations of this paper. In Section 3 we discuss the server side relevancy check for context
aware conjunctive queries with inequalities. Finally the paper closes with a summary,
conclusions and an outlook on ongoing research in Section 4.

2 Foundations

In this section we recapitulate some ideas of the used context model but restrict to aspects
necessary for the understanding.

553

Parts of the databases on the server are enhanced by additional information (e.g. position,
time). These extended parts are called fragments, and the additional information are called
extensions v. The idea is, that the mobile client sends information about its context (e.g.
“I am in London.”), to the server. There they are used for selecting fragments, that relate
to the mobile client. Therefore, we distinguish between server-extensions v;5,,. € Vse
and client-extensions vgo,.. € V.. Both are vectors (e.g. two-dimensional geographic
coordinates vy.(x,y); x,y € R). The fragments on the server are extended by a set of
server-extensions. The difference between client- and server-extensions is the usability
of the parameters (in our last example x and y). On the base station parameter-functions
are allowed for use as parameter. These functions compute the values of the parameters
by querying the database. This way the redundant storage of data, that is already in the
database, is avoided.

Fragments are almost arbitrary segments of one or more relation(s). Formally a fragment
Fis atuple F = (f,V) with a fragmentation-function f and a set of server-extensions
V = {vo,- ,un};n € Ny wg, -+ ,v, € Vs. A fragmentation-function f(r(R)) =
r’(R") with R" C Rand v’ (R’) C 7r/ (r(R)) is a query in the query-language used by the
database management system on the host holding the database (e.g. SQL). In other words:
A fragment is a view that was augmented by V.

Mobile clients use so called replication criteria for specifying their needs. A replication
criterion is a triple and consists of a client-extension and of the minimal postulated and
the maximal allowed tolerance of this criterion, e.g. rky. = ((100,200),0,20), means
that the current position of the client is (100, 200) and the requested data must refer to
a position in the circumference with the radius 20. The minimal postulated tolerance is
useful if the mobile client already holds data and wants to extend its information horizon.
In our example this could be done with rkg. = ((100, 200), 10, 20).

The decision, whether a fragment is of interest for the client or not, is done on the server
using a &-function. If the result of this function is greater than or equal to the minimal
postulated threshold and lower than or equal to the maximal allowed tolerance the respec-
tive fragment is taken into account. In our example such a ¢-function is the Euclidean
distance &ye(Vge,, Vgey) = /(1 — 2)2 + (y1 — y2)2. However, a &-function must not
necessarily have the properties of a distance function, e.g., has not to be symmetric in the
arguments.

Thus it appears that context aware database queries can be formulated as CAQ = Q A
rk*Ark™ ;n € N. In order to query the database, the identifying name of each replication
criterion must be included into the replication criterion values. For our geographical co-
ordinates example!, CQA = (select * from concerts A (gc, (100,200),0,20))
would result in all information of a fragment concerts related to the circumference
20 of the position (100,200). If the fragment concerts was enhanced by a time ex-
tension vyime = (timevalue) too, the context aware query could look like CAQ =
(select * from concerts A (gc,(100,200),0,20) A (time, (11 am), 0, 30)). As-
suming that the tolerance of the time criterion is given as minute values, the previous
result would be additionally restricted to concert information regarding the time inter-

!For simplification we do not use our PSQ-notation of conjunctive queries here but refer to the possibility of
converting PSQ to SQL [H605].

554

val [10.30 am, 11.30 am]. A database query) may also include selections which must
be a conjunction of predicates (in SQL where p; and --- and po;). Assuming that
our example fragment concerts contains the attribute genre a query could be CAQ =
(select * from concerts where genre='rock’ A (gc, (100,200),0,20) A
(time, (11 am), 0, 30)).

3 Update relecvancy checks

Once mobile clients retrieved the answer the data is cached locally. But what happens if the
server data is modified? In our example a bringing forward of the beginning of a concert
can happen. Now the caches on the clients that queried effected fragments are not longer
valid and have to become invalidated. The first question is: How can one detect clients
effected by the update?. On the other hand mobile clients are mobile. So, they may change
their context. Assuming that clients submit their context periodically the second question
is: How to handle context updates?. The third question that arises is: What happens if
the server-extensions changes?. As we pointed out in Section 2, the server-extensions
may use parameter-functions instead of values. So a database update could modify the
fragment definitions as well. We discuss the three problems in the following.

3.1 Database Updates

First we assuming that the update does not effect the server-extensions but the database.
In [H605, HSS04] we discussed a data centric approach to handle this problem. Queries
form a Trie-index that indexes the IDs of the mobile clients. The idea is that queries that
share a prefix of predicates are represented by the same sub-path in the Trie. The relevancy
check traverses the Trie and computes check queries that are performed on the database.
Sup-trees of nodes (predicates) that are recognized to be not effected by the update does
not have to be taken into account in the next step. The result of this algorithm is a set of
the IDs of the effected client. We will not discuss this algorithm here in more detail but
refer to the original papers.

3.2 Context Updates

If the context of a mobile client has changed, answering the same database query might
consider another fragment. So, one have to invalidate clients cache entries. The algorithm
to check whether the context modification implies a fragment changeover or not is based on
the replication criteria and the fragments extensions. The first step is to find the fragments
used for answering the query under the old context. Therefore, we use a simple table, that

555

stores for each tuple? (CID, AID) the used replication criteria and the server-extensions
of the fragments used for answering the query.

| (CID,AID) | replication criteria | used server-extensions |
(1,1) (ge, (100,200),0,20) | (ge, SELECT x,y FROM geocoord
WHERE city='London’

and district=’'Chelsea’)
(2,1) (ge, (700, 500),0,10) | (ge, SELECT x,y FROM geocoord
WHERE city='London’

and district=’Greenwich’)

Table 1: Query-Context-Index

Table 1 illustrates this Query-Context-Index QCZ. At this we have two clients that posted
one query each and used various contexts. As mentioned in Subsection 3.1, the queries are
stored in a Trie. So, context updates relevancy check can be handled by Algorithm 1.

Algorithmus 1: Checking Context Update Relevancy

ENSURE: [INPUT: RK // set of updated replication criteria
CID // ID of the client that changed its context
oCT // Query-Context-Index

01. for each row in QCZ do
02. if C'ID used in row.columnl then // Client posted this query

03. for each rk = (v, ., A A™") ¢ RK do

04. if 3¢ ... € row.column3 then // compatible server extension found

05. AT > e (Vs V) V A™™ < Eparne (Vs 03 then
06. client holds outdated data, so notify client

07. break

3.3 Server-Extension Updates

The third update problem is the modification of data used in server-extensions. As men-
tioned in Section 2 and illustrated in Table 1 server-extensions may use parameter func-
tions. Here it is an SQL-statement that fetches the required geographical coordinates from
the database. So, we have to consider database updates that effect server-extensions. Ob-
viously, checking the update relevancy for a parameter function is similar to Section 3.1

2C1ID is the ID of the mobile client and AID is the ID of the current query. At this, (C1D, AI D) must be
unique.

556

but therefore, we need a “parameter function Trie”. If an update is recognized to be rele-
vant for an parameter function, we have to identify the queries that where answered from
a fragment using this parameter function. Therefore, OCZ can be used. The first step is to
find such rows that contain the considered parameter function in column three. The next
step is to check whether the replication criteria (stored in column two of the same row) se-
lects the updated fragment or not. Therefore, the replication criteria must be reevaluated.
Now, if the minimal postulated or the maximal allowed tolerance are violated, the client
data is outdated and the client must be notified.

4 Summary, Conclusions and Outlook

In this paper we discussed first ideas to combine our approaches for checking the relevancy
of updates for data cached on mobile clients with our context based query model. After a
brief description of the foundations we discussed the kinds of updates that may occur in
such a system and presented algorithms to handle them. The aim is, that mobile clients
become notified if they hold outdated information.

The next step is to combine the both existing implementations in order to evaluate our
combined approach. Furthermore we will consider incomplete contexts. The question here
is, what happens if a fragment uses more or less or other server-extensions than replication
criteria where given.

Remark: This paper does not include a section “related work™ because we wanted to
discuss our own ideas in more detail. However, please have a look at the referenced papers.
We pigeonholed our research there.

References

[Ho05] Hopfner, H.: Relevanz von Anderungen fiir Datenbestdinde mobiler Clients. Disserta-
tion. angenommen durch die Fakultit fiir Informatik der Otto-von-Guericke Universitit
Magdeburg. January 2005. in German.

[HSO3a] Hopfner, H. and Sattler, K.-U.: Semantic Replication in Mobile Federated Information
Systems. In: James, A., Conrad, S., and Hasselbring, W. (Eds.), Proc. of EFIS2003,
Coventry, UK 17th - 18th July, 2003. pp. 36—41. Amsterdam. August 2003. Ios Press Inc.

[HS03b] Hopfner, H. and Sattler, K.-U.: SMoS: A Scalable Mobility Server. In: James, A. and
Younas, M. (Eds.), BNCOD20 Poster Proceedings, Coventry, UK 15th - 17th July, 2003.
pp. 49-52. School of Mathematical and Informational Sciences; Coventry University. July
2003.

[HSS04] Hopfner, H., Schosser, S., and Sattler, K.-U.: An Indexing Scheme for Update Notifi-
cation in Large Mobile Information Systems. In: Lindner, W., Mesiti, M., Tiirker, C.,
Tzikzikas, Y., and Vakali, A. (Eds.), Current Trends in Database Technology - EDBT
2004 Workshops: PhD, DataX, PIM, P2PDB, ClustWeb, Heraklion, Greece, March 14-
18, 2004, Revised Papers. volume 3268 of LNCS. pp. 345-354. Berlin. November 2004.
Springer-Verlag.

557

