
 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
40 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

Farhad Arbab, Frank de Boer, Marcello Bonsangue,
Marc Lankhorst, Erik Proper, Leendert van der Torre

Integrating Architectural Models

Symbolic, Semantic and Subjective Models in
Enterprise Architecture

The diversity of architectural models in enterprise architecture poses a problem to their integration. Without
such integration the effectiveness of these models in the process of architecting enterprises diminishes. In this
paper we make a distinction between three classes of models. We will illustrate how the distinctions can be used
for model integration within the architectural approach. Symbolic models express properties of architec-tures of
systems, semantic models interpret the symbols used in symbolic models, and subjective models are purposely
abstracted conceptions of a domain. Building on results obtained in the ArchiMate project, we il-lustrate how
symbolic models can be integrated using an architectural language, how integrated models can be updated using
the distinction between symbolic models and their visualization, and how semantic models can be integrated using
a new kind of enterprise analysis called semantic analysis.

1 Introduction

In the development of enterprises and information
systems, many different architectural descriptions
are used, usually in the form of architectural models.
However, while companies have long since recog-
nized the need for an integrated architectural ap-
proach, and have developed their own architecture
practice, they still experience a lack of support in the
design and communication of architectures. For
example, when designing architectures, architects
do not have a common, well-defined vocabulary to
avoid misunderstandings and promote clear designs,
that allows for the integration of different types of
architectures related to different domains, and that
is shared with various stakeholders within and out-
side the organization, e.g., management, system
designers, or outsourcing partners. Other disciplines,
for example building and construction, mechanical
engineering, or chemical engineering, also use ab-
stractions such as models to describe an object
being designed, but have a much more limited and
standardized vocabulary and therefore do not seem
to face the problems encountered in information
technology.

The term architecture has been used in the field of
information technology since the 1960’s. In the early

days it was used to refer to the principles underlying
the design of computer hardware and operating
systems. This led to the use of the term computer
architecture. Later, when software applications be-
came larger and larger, researchers such as Mary
Shaw and David Garlan coined the term software
architecture [ShGa96]. This notion of architecture
deals with the key design principles underlying soft-
ware artefacts. A dedicated IEEE working group
[IEEE00] has defined it as follows:

An architecture is the fundamental organi-
zation of a system embodied in its compo-
nents, their relationships to each other, and
to the environment, and the principles guid-
ing its design and evolution.

In the United States of America, certain government
agencies are required by law to have an IT architec-
ture. This is laid down in the so-called Clinger-Cohen
Act1. In this act, architecture is defined as:

The term ‘information technology architec-
ture’, with respect to an executive agency,
means an integrated framework for evolv-
ing or maintaining existing information

1 http://www.cio.gov/Documents/it_management_reform_
act_Feb_1996.html

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 41

technology and acquiring new information
technology to achieve the agency’s strate-
gic goals and information resources man-
agement goals.

The Open Group’s architecture work group2 provides
two definitions of architecture depending on the
context:

 A formal description of a system, or a de-
tailed plan of the system at component
level to guide its implementation.

 The structure of components, their interre-
lationships, and the principles and guide-
lines governing their design and evolution
over time.

Architectures are usually described in terms of mod-
els [IEEE00]; architectural models. These architec-
tural model can either have a design oriented nature
(architectural blueprints, see e.g. [Boar99]) or a
regulative nature (architecture principles, see e.g.
[TaCa93]). What distinguishes an architectural
model from other models, is the role the former
models play (quoting the earlier mentioned IEEE
definition) in expressing the fundamental organiza-
tion of a system embodied in its components, their
relationships to each other, and to the environment,
and the principles guiding its design and evolution.

The work reported in this paper is the result of the
ArchiMate project3, which involved a consortium
comprising ABN AMRO Bank, Stichting Pensioen-
fonds ABP, the Dutch Tax and Customs Administra-
tion, Ordina, Telematics Institute, Centrum voor
Wiskunde en Informatica, Radboud University Ni-
jmegen, and the Leiden Institute of Advanced Com-
puter Science. The aim of the project was to provide
concepts and techniques [JVB+03, JLB+04] to sup-
port enterprise architects in the visualization, com-
munication and analysis of integrated architectures.

Before the ArchiMate project was initiated a survey
was conducted with the industrial partners. The aim
of this survey was to gain an understanding of the
problems these organizations were suffering from
with regards to their use of architectures. Using the
outcome [Bosm02] of this initial survey the goals of
the ArchiMate project were set [Lan+05]. As part of
this survey, it was found that the abstract nature of
both the object being designed and the descriptions
of this design in the form of models leads to at least
the following problems:

2 http://www.togaf.org
3 http://www.archimate.com

 Confusion exists with respect to the distinc-
tion among a model’s presentation, content,
and semantics: what does the model look
like, what elements does it contain, and
what are the relations of these elements to
parts of reality (i.e., of the information sys-
tem)?

 To capture the diverse and abstract nature
of information systems often requires the
use of multiple large, complex, and interre-
lated models providing insight into the sys-
tem from different viewpoints.
Comprehending these in their entirety may
be a daunting task.

 In information technology the technological
building blocks, their abilities and their
boundaries, are not as clear (and stable) as
they are in the other disciplines.

 The architectures are not just referring to
technological phenomena, but also refer to
socio-economical phenomena such as busi-
ness/work processes, etc. This makes it
much harder to come up with a limited set
of architectural descriptions, models and
associated languages.

Due to these reasons it was concluded [Lan+05]
that a more general and flexible approach to the
integration of architectural models was called for. In
doing so, this paper will go beyond the kinds of
model integration studied with a long tradition in
information systems, and elsewhere, by addressing
the following two issues.

 We are not only interested in the static case
where architectural models are related to
each other and should satisfy some coher-
ence criteria, but we are in particular inter-
ested in the dynamic case where models
are updated, and as a consequence other
models are updated as well.

 We are interested not only in syntactic ap-
proaches relating one formalism to another
one, but we also use the semantics of the
models during the integration.

To address these issues, it is essential not to confuse
the various uses of ‘model’ in literature. The collo-
quial use of the term model in enterprise architec-
ture generally refers to a (graphical) symbolic model
(viz. the IEEE standard as presented in [IEEE00],
the use in UML, etc). The interpretation of such a
symbolic model in terms of a formal language (such
as logic or set theory) is referred to as a semantic
model. A semantic model does not have a symbolic
relation to architecture, as it does not contain sym-
bolic references to reality. However, stating that the

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
42 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

semantic model associated to some given symbolic
model captures the meaning of the latter model, we
ignore some important issues that are at play when
dealing with models in an architecting context. What
is still missing is the (inherently subjective) nature
of human interpretation of these models. In some
studies such as [FVV+98], models are defined as
purposely abstracted conceptions (as held by a hu-
man viewer) of a domain; we call them subjective
models. It should be noted that the field of enter-
prise architecture requires a perspective involving
both computer science, information systems and
business sciences perspective.

This paper should also be understood from such a
mixed perspective. In enterprise architecture, both
the formal and informal worlds meet, as well as the
physical, social and informational worlds. The results
of the ArchiMate project, as reported in [Lan+05],
are indeed being used in practice by companies
within the Netherlands as well as abroad. Tool ven-
dors such as BizzDesign, IDS Scheer and Troux also
provide (certified!) support for the ArchiMate model-
ling language. Currently, an ArchiMate foundation
(www.archimate.com) is furthering the use and
evolution of ArchiMate.

2 Integration of Architectural
Domains

The aim of this section is to provide a motivation for
the distinction among symbolic, semantic and sub-
jective models. We provide some examples which
aim to illustrate the problem, each of which are
based on the issues brought forward in the afore-
mentioned initial survey [Bosm02] of the ArchiMate
project.

As mentioned before, even though companies have
long since recognized the need for an integrated
architectural approach and have indeed developed
their own architecture practice, they still suffer from
a lack of support in the design, communication,
realization and management of architectures and
related models. Several categories of needs with
regards to architectural models can be identified.
With respect to the different phases in the architec-
ture life cycle, we identify the following categories of
needs:

 Design - When designing architectures, ar-
chitects should use a common, well-defined
vocabulary to avoid misunderstandings and
promote clear designs. Such a vocabulary
must not just focus on a single architecture
domain, but should allow for the integration
of different types of architectural models re-
lated to different domains.

 Communication - Architectural models are
shared with various stakeholders within and
outside the organization, e.g., manage-
ment, system designers, or outsourcing
partners. To facilitate the communication
about architectures, it should be possible to
precisely represent the relevant aspects for
a particular group of stakeholders.

 Realization & integration - To facilitate the
realization of architectures and to provide
feedback from this realization to the original
architectures, links should be established
with design activities on a more detailed
level, e.g., business process design, infor-
mation modeling or software development.
These links should be established between
different plains of realization (conceptual,
logical and physical), as well as between
different aspects (information, process, ser-
vices, etc).

 Change - An architecture often covers a
large part of an organization and may be
related to several architectural models.
Therefore, changes to an architecture may
have a profound impact. Analysis of impact
of change is also needed to select between
different design alternatives. One alterna-
tive may be able to better absorb antici-
pated changes than another. Assessing the
consequences of such (potential) changes
beforehand, and carefully planning the evo-
lution of architectures are therefore very
important. Until now, support for this is vir-
tually non-existent.

In current practice, enterprise architectures often
comprise many heterogeneous models and other
descriptions, with ill-defined or completely lacking
relations, inconsistencies, and a general lack of co-
herence and vision. The main driver behind most of
the needs identified above is the complexity of archi-
tectures, their relations, and their use. Many differ-
ent architectures or architectural views co-exist
within an organization. These architectures need to
be understood by different stakeholders, each at
their own level. The connections and dependencies
that exist among these different views make life
even more difficult. Management and control of
these connected architectures is extremely complex.
Primarily, we want to create insight for all those that
have to deal with architectures. There are many
instances of this integration problem, of which we
discuss two examples below. In general, some inte-
gration problems can be easily solved, for example
by using an existing standard; others are intrinsic to
the architectural approach and cannot be ‘‘solved’’ in
the usual sense. These hard cases are intrinsic to

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 43

the complexity of architecture, and removing the
problem would also remove the notion of architec-
ture itself. This is illustrated by the example below.

Consider Figure 1, which contains several
architectural models. The five architectures
may be expressed as models in UML, or
models from cells of the Zachman’s archi-
tectural framework, or any kind of combina-
tion. For instance, there may be a company
that has modelled its applications in UML,
and its business processes in BPMN. In all
these cases, it is unclear how concepts in
one view are related to concepts in another
view. Moreover, it is unclear whether views
are compatible with each other.

The integration of the architectural models in Figure
1 is likely to be problematic due to the fact that they
have been developed by distinct stakeholders, with
their own concerns. Relating architectures means
relating the ideas of these stakeholders, of which
most remain implicit. A consequence is that we often
cannot assume to have complete one-to-one map-
pings, and the best we can ask for is that views are
in some sense consistent with each other.

In complex integration cases involving multiple
stakeholders, it is clear that integration is a bottom-
up process, in the sense that first concepts and
languages of individual architectural domains are
defined, and only then the integration of the do-
mains is addressed. We can summarize Example 0.1
by observing that the integration of architectural
models is hard due to the fact that architectures are
given and used in practice, and cannot be changed.
It is up to those who integrate these models to deal
with the distinct nature of architectural domains.

In every organization there are likely to be some
(architectural) models which have not been inte-
grated, simply because integration takes time and
effort. In some cases, the integration is not worth
the costs and effort. However, lack of integration
means that certain questions involving multiple
models cannot be answered. A particular problem in
enterprise architecture is that due to a lack of model
integration, stakeholders in an organization do not
have access to all the same/relevant information. In
extreme cases, they may even have conflicting in-
formation. The industrial partners of the ArchiMate
project regarded the information mismatch due to
lack of integration between architectural models as
being one of the stumbling blocks on the road to
better business/IT alignment [HeVa93]. At the same
time, however, quantifying this jointly held belief
was found to be hard, given the fact that there are
many other interfering issues in business/IT align-
ment, of course.

When looking at everyday architectural practice, it is
clear that some integration problems occur more
frequently than others. A typical pattern is that
some architectural models describe the structure of
an architecture at some point in time, whereas other
models describe how the architecture changes over
time.

The above discussed example illustrates how com-
positionality also introduces integration problems.
Finally, the importance of model integration, and its
challenges, also comes to the fore in the move to-
wards model-driven software development. In the
context of MDA [Fran03], the modelling techniques
from the original UML [BoRJ99] need to be inte-
grated better. It is no secret, however, that the
relationships between the original UML diagramming
techniques is not always explicit and unambiguous.

Process architectureProcess architecture

Application architectureApplication architecture Technical architectureTechnical architectureTechnical architecture

Information architectureInformation architecture Product architectureProduct architecture

??

??

??

??

??

Process architectureProcess architecture

Application architectureApplication architecture Technical architectureTechnical architectureTechnical architectureTechnical architecture

Information architectureInformation architecture Product architectureProduct architecture

??

??

??

??

????

Figure 1: Heterogeneous architectural domains

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
44 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

In the more recent version [OMG03] of the UML,
part of these problems has been remedied.

3 Symbolic, semantic and sub-
jective models in enterprise
architecture

To discuss the integration of architectural models, a
common terminology is needed. Just like architec-
tural diagrams are often misinterpreted due to the
fact that each stakeholder interprets the picture in
its own way, also architectural concepts are often
misinterpreted. Despite the fact that there seems to
be an increasing consensus on the terminology used,
for example brought forward by the efforts of the
IEEE 1471 working group, in practice one still finds
many distinct definitions of relevant architectural
concepts, such as model, meta-model, and view.

In this section we therefore define and discuss our
terminology. More specifically, we introduce the
notions of subjective, symbolic and semantic model.
These three classes of models will be discussed in
more detail below. The distinction between these
three classes of models is essentially based on Mor-
ris’ meaning triangle [Morr46], where a distinction is
made between a ‘‘sign’’ (symbolic model), ‘‘object’’
(semantic model) and ‘‘concept’’ (subjective model).

3.1 Symbolic models

A symbolic model expresses properties of architec-
tures of systems. As such it contains symbols that
refer to reality, which explains the name of this type
of models. The role of symbols is crucial, as we do
not talk about systems without using symbols. The
reason is that systems are parts of reality, and we
cannot directly talk about reality as we cannot know
the system by itself. Symbolic models are the for-
malization of one or more aspects of the architecture
of a concrete system.

A symbolic model is expressed using a description
language, a representation of the model that is often
confused with its interpretation. For example the
expression 3+5 may be intended to mean a particu-
lar natural number, but in this case it should just be
regarded as notation being part of the syntactic
model of the natural numbers. Strictly speaking, a
description language describes both the syntactic
structure of the model and its notation, i.e., the
words or symbols used for the concepts in the lan-
guage. We make a strict separation between struc-
ture and the notation, and we will use the term
‘model’ to refer to the structure.

The core of every symbolic model is its signature. It
categorises the entities of the symbolic model ac-
cording to some names that are related, linguisti-
cally or by convention, to the things they represent.
These names are called sorts (as used in first order
logic). Relations between entities of some sorts and
operations on them are also declared as relation
symbols in the signature. After the relations have
been specified, they can be used in languages for
constraining further or analyzing the nature of the
symbolic model. An example is in order here, before
we go any further. Figure 2 exhibits a structural
description of the employees of a company.

We need to recall that the above is a syntactic struc-
ture, that is, a description of a symbolic model with
a signature whose sorts are Employee and Director,
and with respective entities related by a relation
named Responsible_for. As yet we have assigned no
meaning to it, we have only categorized the entities
of the symbolic model into two categories and
named a relation between the entities belonging to
two sorts. The syntactic names used for the sorts
and relations push our intuition some steps ahead:
we know what an employee is, what a director is and
what responsible for means. However, while these
syntactic names help us in our understanding, they
are also the main source of confusion in the commu-
nication and analysis of an architecture. We could
have named the above sorts X and Y to better retain
the meaningless quality of the syntax, and avoid
confusion with semantics.

A signature thus provides a conceptual glossary in
whose terms everything else in the symbolic model
must be described, similar to the English dictionary
for the English languages. Additionally, a signature
comprises information to capture certain aspects of
the ontology of an architecture. For example it may
include hierarchical information between sorts in
terms of a ‘‘is_a’’ relationship, or containment in-
formation in terms of an ‘‘includes’’ relationship, or
dependency information in terms of a ‘‘requires’’
relationship. Signatures containing this additional
information are more general than a glossary. They
provide a conceptual schema, similar to the schema
provided to biologist by the species classification.

DirectorDirector EmployeeEmployee
Responsible_for

DirectorDirector EmployeeEmployee
Responsible_for

Figure 2: Syntactic model of director-
employee relationship

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 45

For example, Figure 3 extends the previous signa-
ture with an ‘‘is_a’’ relationship between the sorts
Director and Employee, intuitively suggesting that
every director is also an employee. Moreover, the
symbolic model may also contain a set of actions,
and the signature a set of action symbols, the mean-
ing of which we discuss in the following section be-
low.

3.2 Semantic Models

To make the notion of semantics explicit, we distin-
guish between a symbolic model and a semantic
model. When stakeholders refer to architectures and
systems, they can do so only by interpreting the
symbols in the symbolic models. We call such an
interpretation of a symbolic model a semantic
model. A semantic model does not have a symbolic
relation to architecture, as it does not contain sym-
bolic references to reality. There is, however, a rela-
tion between a semantic model and reality, because
a semantic model is an abstraction of the architec-
ture. To understand this relation between semantic
model and architectures, one should realize that an
important goal of modeling is to predict/mimic a
planned/pre-existing reality. When a symbolic model
makes a prediction, we have to interpret this predic-
tion and test it in reality.

There are various ways in which we can visualize the
relation between the four central concepts of enter-
prise, architecture, symbolic model and semantic
model. We put the concept of architecture central,
as is illustrated in Figure 4. In general, there can be
a large number of different interpretations for the
same symbolic model. This reflects the intuition that
there can be many architectures that fit a specific
architectural description.

There are (at least!) two kinds of abstraction we use
in creating a model of reality. The first is abstracting
from (properties of) the precise entity in reality to
which a concept refers. This occurs for example
when we make a model of the static structure of an
application in terms of its components, leaving out
(i.e., abstracting from) their behaviour. The second
kind is abstraction from differences between entities
in reality by grouping them into a single concept.
This is sometimes referred to as generalization, and
occurs for example when we use the concept ‘em-

ployee’, which groups the individuals in a company.
This is related to the notion of ‘sorts’ discussed be-
low.

Symbolic
Models

Architecture

Enterprise

Semantic
Models

interpreted by

abstracted byexpressed by

has

Symbolic
Models

Architecture

Enterprise

Semantic
Models

interpreted by

abstracted byexpressed by

has

Figure 4: The enterprise, its architecture,
symbolic and semantic models

The above four concepts and their relations are used
in engineering both for informal as well as formal
models. The relevant distinction we emphasize be-
tween symbolic and semantic models is the distinc-
tion between using symbols to refer to reality, and
abstractions of reality that only refer to reality by
interpreting the symbols of the symbolic model. Note
that this is not the same distinction as the one be-
tween informal and formal models: Within the class
of informal models, expressed for example in natural
language, both kinds exist, as well as within the
class of formal models, expressed for example in
first order logic.

The semantics of a modelling language is given by a
semantic model, an interpretation of the symbolic
model. A semantic model usually assumes the exis-
tence of some mathematical objects (sets for exam-
ple), used to represent the basic elements of a
symbolic model. Operations and relations of a sym-
bolic model are mapped to usually better understood
operations and relations amongst the mathematical
objects.

3.3 Subjective models

Besides symbolic and semantic models, one finds in
the enterprise architecture references to a third kind
of model, in particular in linguistic, psychological or
social theories. Here we refer to this kind of models
as subjective models.

DirectorDirector EmployeeEmployee
Responsible_for

DirectorDirector EmployeeEmployee
Responsible_for

Figure 3: Extended symbolic model

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
46 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

For example, the FRISCO Framework of Information
system concepts defines a model as a purposely
abstracted, clear, precise and unambiguous concep-
tion. This notion of model is what we refer to as a
subjective model. To better understand this frame-
work, consider the relationships between stake-
holder, enterprise, architecture, and architecture
description expressed in the form of a tetrahedron in
Figure 5 (which is a specialization of the FRISCO
tetrahedron [FVV+98]). FRISCO assumes that any
viewer that perceives the world around him first
produces a conception, i.e., a mental representation,
of that part he deems relevant. Such a conception
cannot be communicated about directly, unless it is
articulated somehow. In other words, a conception
needs to be represented. They argue that the dis-
tinction between subjective model on the one hand
and semantic and symbolic model on the other hand
goes back to long philosophical tradition. In particu-
lar Peirce [Peir69] argues that both the perception
and conception of a viewer are strongly influenced
by his interest in the observed universe. As men-
tioned before, the distinction between subjective,
symbolic and semantic model can also traced back
to Morris’ meaning triangle [Morr46], where a dis-
tinction is made between a “sign” (symbolic model),
“object” (semantic model) and “concept” (subjective
model).

4 Integration of models in
ArchiMate

In this section we illustrate how the distinction be-
tween symbolic, semantic and subjective models is
used in the integration of architectural models,
based on results from the ArchiMate project. In

doing so, we will use the fictive ArchiSurance case,
which was also used in [Lan+05]. Our work on inte-
gration of architecture models has, however, also
been applied to real-life cases provided by the indus-
trial partners of the ArchiMate project.

4.1 Integration of symbolic models
– Static case

The basis for model integration is an architectural
description language, called the ArchiMate language
[Lan+05]. Service orientation may typically lead to a
layered view of enterprise architecture models,
where the service concept is one of the main linking
pins between the different layers. Service layers with
services made available to higher layers are inter-
leaved with implementation layers that realize the
services. Within a layer, there may also be internal
services, e.g., services of supporting applications
that are used by the end-user applications. How this
leads to a stack of service layers and implementa-
tion layers is shown in Figure 6. These are linked by
used by relations, showing how the implementation
layers make use of the services of other (typically
‘lower’) layers, and realization relations, showing
how services are realized in an implementation
layer. In this context, we distinguish three main
layers:

 The business layer offers products and ser-
vices to external customers, which are real-
ized in the organization by business
processes (performed by business actors or
roles).

 The application layer supports the business
layer with application services which are re-
alized by (software) application compo-
nents.

 The technology layer offers infrastructural
services (e.g., processing, storage, and
communication services) needed to run ap-
plications, realized by computer and com-
munication devices and system software.

A premise of the ArchiMate language is that the
general structure of models within the different
layers is similar. The same types of concepts and
relations are used, although their exact nature and
granularity differ. As a result of this uniformity,
models created for the different layers can be
aligned with each other quite easily. Within each
layer, the language is structured according to the
three dimensions: internal-external, individual-
collective, and behaviour-structure. Figure 7 shows
the core concepts that are found in each layer along
these dimensions.

enterprise

architecture

architecture
description

stakeholder

enterprise

architecture

architecture
description

stakeholder

Figure 5: Relationship between enterprise,
stakeholder, architecture, and architecture
description

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 47

As an example, Figure 8 presents two models, a
diagram and a landscape map [SaSt97]. The dia-
gram on the left canvas visualizes five products on
the left, five business functions on the right, and ten
application components in the middle. The landscape
map on the right canvas visualizes an easy to under-
stand 2D ‘map’. The two models refer to the same
architecture. Moreover, in this particular case the
landscape map has been automatically generated
from the underlying model.

A more detailed exposition of the ArchiMate lan-
guage and its uses can be found in [Lan+05]. The
language is a coarse grained language, which facili-
tates the integration of symbolic models. However,
the use of a symbolic language also has its limita-
tions, in particular when we are interested in chang-
ing models, and when the symbolic models have
semantics, which have to be respected. These two
issues are discussed in the following two subsec-
tions.

4.2 Integration of symbolic models
– Dynamic case

Reconsider the situation depicted in Figure 8, and
assume that they are integrated in the sense that
the landscape map is generated from the diagram.

Now assume moreover that someone changes one of
these two models. Then it may be the case that the
models are no longer integrated. The problem of the
dynamic case of symbolic model integration is to
develop techniques to ensure that the models re-
main integrated.

We introduce special actions-in-models. They are
defined in terms of the effects they have on ele-
ments of the underlying model. For example, con-
sider a view on a business process model, and an
action that merges two processes into a single proc-
ess. Issues that are relevant for this action are the
effects of the merger, for example the removal of
processes, the addition of a new process, or the
transfer of some relations from an old, removed
process to a new process.

Mapping a seemingly simple change to the land-
scape map onto the necessary modifications of the
model may become quite complicated. Since a land-
scape map abstracts from many aspects of the un-
derlying model, such a mapping might be
ambiguous: many different modifications to the
model might correspond to the same change of the
landscape map. Human intervention is required to
solve this, but a landscape map tool might suggest
where the impact of the change is located.

Figure 6: Layered view

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
48 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

In the example of Figure 9, one may for instance
want to remove the seemingly redundant Legal Aid
CRM system by invoking a ‘remove overlap’ opera-
tion on this object. This operation influences both
the visualization and the architectural model. Figure
9 illustrates the effects of the operation on the un-
derlying model. First, one selects the object to be
removed, in this case the Legal Aid CRM system. The
envisaged tool colors this object and maps it back
onto the underlying object in the architecture. Next,
the relations connecting this object to its environ-
ment are computed, possibly using the impact-of-
change analysis techniques described in the follow-
ing section (the second part of Figure 9). Here, this
concerns the relations of Legal Aid CRM with the
Web portal and the Legal Aid back-office. These
relations will have to be connected to one or more
objects that replace the objects that are to be re-
moved. Since we have chosen a ‘remove overlap’
operation, the landscape tool computes with which
other objects Legal Aid CRM overlaps, in this case
the CRM system. The relations formerly connecting
Legal Aid CRM are then moved to the other CRM
system, unless these already exist (e.g., the relation
with the Web portal).

Naturally, this scenario presents an ideal situation
with minimal user intervention. In reality, a tool
cannot always decide how a proposed change is to
be mapped back onto the model, and may only pre-
sent the user with a number of options. For exam-
ple, if the functionality of the Legal Aid CRM system
would overlap with more than one other system,
remapping its relations requires knowledge about
the correspondence between these relations and the
functions realized by these other systems.

4.3 Integration of semantic models

We can go beyond the syntactic approach of inte-
grating symbolic models by taking their semantics
into account. In particular, we show that formal
methods can be used when we introduce a few basic
definitions we briefly explained before, such as sig-
nature, symbolic model and interpretation.

For architecture models dealing with dynamical as-
pects, functional analysis techniques based on for-
mal approaches such as process algebras and data
flow networks are useful. Issues such as two roles
acting at the same time, overwriting or destroying
each other’s work, can be identified and then a suit-
able protocol can be designed to prevent the prob-
lem. Thus, a functional behaviour analysis based on
formal methods is primarily a qualitative analysis
that can detect logical errors, leads to a better con-
sistency and focuses on the logic of models.

The dynamics of a concrete system with an architec-
tural description given by its signature can be speci-
fied in different ways; we distinguish between
specifications tailored towards control flow modelling
and those tailored towards data flow modelling. For
control flow modelling, we give a brief introduction
into process algebra, while for data flow modelling,
we introduce the reader into data flow networks.

To illustrate the use of these formal methods, we
use the enterprise architecture of a small company,
ArchiSell, modelled using the ArchiMate language. In
ArchiSell, employees sell products to customers,
while various suppliers deliver the products to Ar-
chiSell. Employees of ArchiSell are responsible for

Structure
element

Service Interface

Behaviour
element

Behaviour
element

Interaction Collabo-
ration

Structure
element

Service Interface

Behaviour
element

Behaviour
element

Interaction Collabo-
ration

Figure 7: The core concepts in three dimensions

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 49

ordering products and for selling them. Once prod-
ucts are delivered to ArchiSell, each product is as-
signed to an owner responsible for selling the
product. More specifically, we look at the business
process architecture for ordering products, visualized
in Figure 10. To describe this enterprise we use the
ArchiMate modelling concepts and their relation-
ships. In particular, we use structural concepts
(product, role and object) and structural relation-
ships (association), but also behavioural concepts
(process) and behavioural relationships (triggering).
Behavioural and structural concepts are connected
by means of the assignment (the lines with the black
dots) and access (the dotted lines with arrow) rela-
tions.

In order to fulfil the business process for ordering a
product, an employee has to perform the following
activities:

 Before placing an order, an employee must
register the order within the Order Registry.
This Order Registry is for administration
purposes. It is used to check orders upon
acceptance of goods later in the process.

Orders contain a list of products to be or-
dered.

 After that, the employee places the order
with the supplier. Based on the order, the
supplier is supposed to collect the products
and to deliver them as soon as possible.

 As soon as the supplier delivers the prod-
ucts, the employee first checks if there is an
order that refers to this delivery. Then, the
employee accepts the products.

 Next, the employee registers the accep-
tance of the products within the Product
Registry and determines which employee
will be the owner of the products.

Although the example is rather trivial, it serves to
illustrate how an architecture description can be
formalized and how it can be subjected to functional
analysis.

To obtain a formal model of a system as a semantic
interpretation of the symbolic model of its architec-
tural description, we start with an interpretation of
the signature. An interpretation I of the types of a

Figure 8: Model with associated landscape map view

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
50 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

signature assigns to each primitive sort S a set I(S)
of individuals of sort S which respects the sub-sort
ordering: if S1 is a sub-sort of S2 then I(S1) is a
subset of I(S2). Any primitive sort is interpreted by a
subset of a universe which is given by the union of
the interpretation of all primitive sorts. The subset
relation expresses the hierarchy between primitive
sorts. An interpretation I of the primitive sorts of a
signature of an architecture can be inductively ex-
tended to an interpretation of more complex types.
For example, an interpretation of the product type T1
 T2 is given by the Cartesian product I(T1) I(T2) of

the sets I(T1) and I(T2). The function type T1 T2
thus denotes the set of all functions from the uni-
verse to itself such that the image of I(T1) is con-
tained in I(T2). In general, there can be a large
number of different interpretations for a signature.
This reflects the intuition that there are many possi-
ble architectures that fit a specific architectural de-
scription.

The semantic model of a system involves its con-
crete components and their concrete relationships,
which may change in time because of the dynamic
behavior of a system. To refer to the concrete situa-
tion of a system, we have to extend its signature
with names for referring to the individuals of the
types and relations. For a symbolic model, we de-
note by n : T a name n, which ranges over individu-
als of type T.

To formalize the behavior of a system using this
semantic model, we can, for instance, use process
algebra. Process algebra [BaWe90, BePS01] is a
formal description technique for specifying the con-
trol flow behavior of complex systems. Note, how-
ever, that process algebra is mainly intended to
express the semantics of the actual flow of the proc-
ess and only to a lesser extend for the formalization
of resource allocations, etc. Starting from the lan-
guage syntax, each statement of the language is
supplied with some kind of behavior, and a semantic
equivalence says which behaviors are identical.
Process algebras express such equivalences in axi-
oms or equational laws. The axioms are to be sound,
i.e., if two behaviors can be equated then they are
semantically equivalent. The converse statement is
optional, and is called completeness, i.e., if two
behaviors are semantically equivalent then they can
be equated.

Data flow diagrams can be used to provide a clear
representation of any business function. The tech-
nique starts with an overall picture of the business
and continues by analyzing each of the functional
areas of interest. This analysis can be carried out to

the level of detail required. The technique exploits a
method called top-down expansion to conduct the
analysis in a targeted way. The result is a series of
diagrams that represent the business activities in a
way that is precise, clear and easy to communicate.

In a data flow interpretation of the ArchiSell process,
we consider each individual process step as an inde-
pendent data-consuming/data-producing entity.
Such an entity has input ports and output ports.
Within the data flow interpretation we are interested
in the data flow within the process, but not directly
in the actors (or roles) that perform the process.
Therefore, this interpretation is specifically suited for
situations in which many details are known about
the data and less about the actors. However, as we
will illustrate, a data flow interpretation can help us
in the assignment of actors to process steps.

Figure 11 illustrates the way in which we can inter-
pret the example as a data flow network. Note the
following:

 We leave out any information about roles
and individuals within the role sort. So, the
data flow diagram does not contain infor-
mation about which actor performs which
process steps.

 We specify registries as stores, i.e., special
functions, which resemble places in which
information can be stored and from which
the same information can be retrieved later.

 We explicitly identify which input/output
ports receive/send which kind of values. A
practical way is to begin with identifying the
values on the input/output ports, and then
to connect the output ports to other input
ports.

4.4 Integration of subjective models

Just as semantic models are important to enterprise
architecture because they are a bridge to formal
methods and theoretical computer science, subjec-
tive models are important to enterprise architecture
as they are a bridge to for example linguistic, psy-
chological and social theories. Consequently, using
semantic models we argue that this distinction with
symbolic models facilitates (or opens up) the use of
formal methods in enterprise architecture, here
using subjective models we argue that its distinction
with symbolic and semantic models facilitates the
use of (computational) linguistic methods in enter-
prise architecture.

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 51

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

administration
Home & Away

Financial
application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

administration
Home & Away

Financial
application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

administration
Home & Away

Financial
application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

administration
Home & Away

Financial
application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

administration
Home & Away

Financial
application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

administration
Home & Away

Financial
application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

Figure 9: Editing a landscape map

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
52 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

The ArchiMate project has not directly addressed
these ideas, but current research within our group is
indeed looking at ways to aid groups of actors to
disambiguate models (such as architectural models)
and also ground their common understanding
[HoBP05, HoPW05a, HoPW05d, HoPW05b, PrVH05,
HoPR05, HoPW05c]. This requires a combination
between formal approaches and communicative
approaches from social sciences. The distinction will
be important for the following applications:

 To create a mutual understanding among
stakeholders, we need to ensure that the
subjective models that they harbour are as
similar as possible. Because of their differ-
ent backgrounds, fields of expertise, needs,
and possibly even their psychological make-
up, different stakeholders may need distinct
symbolic models to arrive at approximately
the same subjective model.

 Especially important in this respect is to
bring about a successful communication on
relations among different domains de-
scribed by different architectures (e.g.,
processes vs. applications), since this will
often involve multiple groups of stake-
holders. Clear communication is also very
important in the case of outsourcing of
parts of the implementation of an architec-
ture to external organizations. The original
architect is often not available to explain
the meaning of a design, so the architecture
should speak for itself.

5 Related Work

A wide variety of organization and process modelling
languages are currently in use. The conceptual do-
mains that are covered differ from language to lan-
guage. In many languages, the relations between
domains are not clearly defined. Some of the most
popular languages are proprietary to a specific soft-
ware tool. Relevant languages in this category in-
clude the ebXML set of standards for XML-based
electronic business [Busi01], developed by OASIS
and UN/CEFACT, IDEF [USAD93], originating from
the US Ministry of Defence, PCE [Sche94], part of
the widely used ARIS Toolset, and the Testbed lan-
guage for business process modelling [EJO+99].
Recent standardization efforts in this area are car-
ried out by the Business Process Management Initia-
tive, with the graphical Business Process Modelling
Notation BPMN [BPMI03] as its main result. Support
for this language from vendors of business process
modelling and enterprise architecture tools is in-
creasing. However, the scope of these languages is
typically limited to business processes alone. They
tend not to provide concepts for modelling e.g. or-
ganizational structures, data models, or the rela-
tion/integration between business activities and
supporting IT applications, making it of limited use
in enterprise architecture.

In contrast to organization and business process
modelling, where there is no single, standard model-
ling language, in software modelling the Unified
Modelling Language (UML) [BoRJ99] has become a
true world standard. UML is the mainstream model-

Employee

Accept product
Register
product

acceptance

Place order for
product

Register order
placement

Order
Registry

Product
Registry

owns

Product

Figure 10: An example business-process architecture

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 53

ling approach within IT, and its use is expanding into
other areas, e.g., in business modelling [ErPe98].
Compared to the earlier versions, the support for
architectural modelling has improved in the recent
UML 2.0 standard [OMG03]. Still, at present, the
integration between the different models remains
limited, although the advent of model-driven system
development also requires such integration
[Fran03]. Furthermore, the modelling languages
used in the UML standard are of limited use to en-
terprise architecture. The UML has a so-called profile
for Enterprise Distributed Object Computing (EDOC),
which provides an architecture and modelling sup-
port for collaborative or Internet computing, with
technologies such as web services, Enterprise Java
Beans, and Corba components [OMG02]. This makes
UML an important language not only for modelling
software systems, but also for business processes
and for general business architecture. The UML has
either incorporated or superseded most of the older
IT modelling techniques still in use. However, it is
not easily accessible and understandable for manag-
ers and business specialists; therefore, special visu-
alizations and views of UML models should be
provided. Another important weakness of the UML is
the large number of diagram types, with poorly
defined relations between them. This is another
illustration of the lack of integration discussed in the
introduction of this paper. Given the importance of
the UML, other modelling languages will likely pro-
vide an interface or mapping to it.

Most languages mentioned above provide concepts
to model, e.g., detailed business processes, but not
the relationships between different processes. They
are therefore not particularly suited to model archi-
tectures ([1999-IEEE-Architecture]). Architecture
description languages (ADLs) define high-level con-
cepts for architecture description, such as compo-
nents and connectors. A large number of ADLs have
been proposed, some for specific application areas,
some more generally applicable, but mostly with a

focus on software architecture. [MeTa00] describe
the basics of ADLs and compare the most important
ADLs with each other. Most have an academic back-
ground, and their application in practice is limited.
However, they have a sound formal foundation,
which makes them suitable for unambiguous specifi-
cations and amenable to different types of analysis.
The ADL ACME [GaMW97] is widely accepted as a
standard to exchange architectural information, also
between other ADLs. There are initiatives to inte-
grate ACME in UML, both by defining translations
between the languages and by a collaboration with
OMG to include ACME concepts in UML 2.0 [OMG03].
In this way, the concepts will be made available to a
large user base and be supported by a wide range of
software tools. This obviates the need for a separate
ADL for modeling software systems. The Architec-
ture Description Markup Language (ADML) was
originally developed as an XML encoding of ACME.

Another important trend is OMG’s Model Driven
Architecture (MDA) approach [Fran03]. Although it
strongly leans on OMG standards such as UML, the
applicability of the approach is not limited to specific
languages. MDA comprises three abstraction levels:

 The requirements for the system are mod-
elled in a Computation Independent Model
(CIM) describing the situation in which the
system will be used. Such a model is some-
times called a subjective model or a busi-
ness model. It hides much or all information
about the use of automated data processing
systems.

 The Platform Independent Model (PIM) de-
scribes the operation of a system while hid-
ing the details necessary for a particular
platform. A PIM shows that part of the
complete specification that does not change
from one platform to another.

Register order
placement

Place order
for product

2
Accept
product

Register
product

acceptance
4 5

3 7
8 9

6
10

12 13 11

1

OR PR

Register order
placement

Place order
for product

2
Accept
product

Register
product

acceptance
4 5

3 7
8 9

6
10

12 13 11

1

OR PR

Figure 11: An example data flow network

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
54 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

 A Platform Specific Model (PSM) combines
the specifications in the PIM with the details
that specify how that system uses a par-
ticular type of platform.

UML is endorsed as the modelling language for both
PIMs and PSMs. At the CIM level, which roughly
corresponds with the enterprise-architectural level at
which the ArchiMate ideas are targeted, things are
still less clear.

Finally, work on ontology engineering is also rele-
vant to the issue of model integration. Ontology
engineering [Guar98] starts from the same semantic
interpretation of symbolic models as we discussed in
section typically in a description logic [BCM+03].
Though description logics are a useful combination
of expressive power and computational efficiency,
other alternatives to describe relations among con-
cepts are for example relational algebras. In this
paper we have not discussed these areas (see e.g.
the ArchiMate book [Lan+05] for a further discus-
sion), but raised the question relevant in architec-
ture about representation and reasoning about
dynamics. Within the area of description logic (see
e.g. the description logic handbook [BCM+03]) vari-
ous extensions have been proposed to description
logics. What we have shown here and in more detail
in [BBJS05], based on the same signature we can
also use modelling and analysis techniques from
other formal methods like process algebra or data-
flow networks. Summarizing, whereas the work on
ontology is relevant for enterprise architecture as
well as many other areas, such as for example the
semantic web, we focus in this paper on issues
which have been raised in our project as particular
for enterprise architecture: how to deal with dynam-
ics of models, how to interpret the actions in behav-
iour models, where we make the point that starting
from a given signature extracted from a diagram,
they can even be interpreted in completely distinct
models like process algebras and dataflow networks.

6 Conclusion

A subjective model is an abstract and unambiguous
representation of something (in the real world) that
focuses on specific aspects or elements and ab-
stracts from other elements, based on the purpose
for which the model is created. Subjective models
are represented using some symbolic model, which
has a formal semantics leading to a semantic model.
Because of their formalized structure, models lend
themselves to various kinds of automated process-
ing, visualization, analysis, tests, and simulations.
Furthermore, the rigour of a model-based approach
also compels architects to work in a more meticulous
way and helps to dispel the unfavourable reputation

of architecture as just drawing some ‘pretty pic-
tures’.

An integrated architectural approach is indispensable
to control today’s complex organizations and infor-
mation systems. It is widely recognized that a com-
pany needs to ‘do architecture’; the legacy spaghetti
of the past has shown us that business and IT de-
velopment without an architectural vision leads to
uncontrollable systems that can only be adapted
with great difficulty. However, architectures are
seldom defined on a single level. Within an enter-
prise, many different but related issues need to be
addressed. Business processes should contribute to
an organization’s products and services, applications
should support these processes, systems and net-
works should be designed to handle the applications,
and all of these should be in line with the overall
goals of the organization. Many of these domains
have their own architecture practice, and hence
different aspects of the enterprise will be described
in different architectures. These architectures cannot
be viewed in isolation.

The core of our approach to enterprise architecture
is therefore that multiple domains should be viewed
in a coherent, integrated way. We provide support
for architects and other stakeholders in the design
and use of such integrated architectures. To this
end, we have to provide adequate concepts for
specifying architectures on the one hand, and on the
other hand support the architect with visualization
and analysis techniques that create insight in their
structure and relations. In this approach, relations
with existing standards and tools are to be empha-
sized; we aim to integrate what is already available
and useful. The approach that we follow is very
generic and systematically covers both the neces-
sary architectural concepts and the supporting tech-
niques for visualization, analysis and use of
architectures.

Finally, as mentioned in the introduction, it should
be noted that the results of the ArchiMate project
are indeed being used increasingly in industry. Both
in the Netherlands and beyond, while tool vendors
such as BizzDesign, IDS Scheer and Troux provide
support for the ArchiMate language. Maintenance
and proliferation of the language is managed and
monitored by the ArchiMate foundation4.

4 http://www.archimate.com

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Integrating Architectural Models 55

7 References

[BBJS05] F.S. de Boer, M.M. Bonsangue, J. Jacob, and A.
Stam. Enterprise Architecture Analysis with XML. In
Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS‘05), Big Is-
land, Hawaii, USA, page 222, Piscataway, New Jersey,
USA, January 2005. IEEE Computer Society Press.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D.
Nardi, and P. Patel-Schneider, editors. The Description
Logic Handbook - Theory, Implementation and Applica-
tions. Cambridge University Press, Cambridge, United
Kingdom, EU, January 2003.

[Boar99] B.H. Boar. Constructing Blueprints for Enterprise
IT architectures. Wiley, New York, New York, USA,
1999.

[Bosm02] H. Bosma. Requirements. Technical Report Ar-
chiMate/D4.1, December 2002.

[BPMI03] BPMI. The Business Process Modeling Notation.
Technical report, Business Process Management Initia-
tive, 2003.

[BePS01] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors.
Handbook of Process Algebra. Elsevier Science Publish-
ers, North Holland, 2001.

[BoRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modelling Language User Guide. Addison
Wesley, Reading, Massachusetts, USA, 1999.

[Busi01] Business Process Project Team. ebXML Business
Process Specification Schema Version 1.01. 2001.

[BaWe90] J.C.M. Baeten and W.P. Weijland. Process Algebra.
Cambridge University Press, Cambridge, United King-
dom, EU, 1990.

[EJO+99] H. Eertink, W. Janssen, P. Oude Luttighuis, W.
Teeuw, and C. Vissers. A Business Process Design Lan-
guage. In Proceedings of the First World Congress on
Formal Methods, 1999.

[ErPe98] H.-E. Eriksson and M. Penker. Business Modeling
with UML: Business Patterns at Work. Wiley, New York,
New York, USA, 1998.

[Fran03] D.S. Frankel. Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley, New York, New
York, USA, 2003.

[FVV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W.
Hesse, P. Lindgreen, B.E. Nilsson, J.L.H. Oei, C. Rol-
land, and R.K. and Stamper, editors. A Framework of
Information Systems Concepts. IFIP WG 8.1 Task
Group FRISCO, IFIP, Laxenburg, Austria, EU, 1998.

[GaMW97] D. Garlan, R.T. Monroe, and D. Wile. ACME: An
Architecture Description Interchange Language. In Pro-
ceedings of CASCON ‘97, pages 169-183, 1997.

[Guar98] N. Guarino. Formal Ontology and Information
Systems. In N. Guarino, editor, Proceedings of
FOIS‘98, Trento, Italy, EU, pages 3-15, Amsterdam,
The Netherlands, EU, June 1998. IOS Press.

[HoBP05] S.J.B.A. Hoppenbrouwers, A.I. Bleeker, and H.A.
(Erik) Proper. Facing the Conceptual Complexities in
Business Domain Modeling. Computing Letters,
1(2):59-68, 2005.

[HoPR05] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and
V.E. van Reijswoud. Navigating the Methodology Jungle
- The communicative role of modelling techniques in
information system development. Computing Letters,
1(3), 2005.

[HoPW05a] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper,
and Th.P. van der Weide. A Fundamental View on the
Process of Conceptual Modeling. In Conceptual
Modeling - ER 2005 - 24 International Conference on
Conceptual Modeling, volume 3716 of Lecture Notes in
Computer Science, pages 128-143, June 2005.

[HoPW05b] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper,
and Th.P. van der Weide. Formal Modelling as a
Grounded Conversation. In G. Goldkuhl, M. Lind, and
S. Haraldson, editors, Proceedings of the 10th
International Working Conference on t he Language
Action Perspective on Communication Modelling
(LAP‘05), pages 139-155, Kiruna, Sweden, EU, June
2005. Linköpings Universitet and Hogskolan I Boras,
Linköping, Sweden, EU.

[HoPW05c] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper,
and Th.P. van der Weide. Towards explicit strategies
for modeling. In T.A. Halpin, K. Siau, and J. Krogstie,
editors, Proceedings of the Workshop on Evaluating
Modeling Methods for Systems Analysis and Design
(EMMSAD’05), held in conjunctiun with the 17th
Conference on Advanced Information Systems 2005
(CAiSE 2005), Porto, Portugal, EU, pages 485-493.
FEUP, Porto, Portugal, EU, 2005.

[HoPW05d] S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper,
and Th.P. van der Weide. Understanding the
Requirements on Modelling Techniques. In O. Pastor
and J. Falcao e Cunha, editors, 17th International
Conference on Advanced Information Systems
Engineering, CAiSE 2005, Porto, Portugal, EU, volume
3520 of Lecture Notes in Computer Science, pages
262-276, Berlin, Germany, EU, June 2005. Springer-
Verlag.

[HeVa93] J.C. Henderson and N. Venkatraman. Strategic
alignment: Leveraging information technology for
transforming organizations. IBM Systems Journal,
32(1):4-16, 1993.

[IEEE00] Recommended Practice for Architectural
Description of Software Intensive Systems. Technical
Report IEEE P1471-2000, The Architecture Working
Group of the Software Engineering Committee,
Standards Department, IEEE, Piscataway, New Jersey,
USA, September 2000.

[Jaga95] R. Jagannathan. Dataflow Models. In E.Y.
Zomaya, editor, Parallel and Distributed Computing
Handbook. McGraw-Hill, New York, New York, USA,
1995.

[JLB+04] H. Jonkers, M.M Lankhorst, R. van Buuren,
S.J.B.A. Hoppenbrouwers, M. Bonsangue, and L. van
der Torre. Concepts for Modeling Enterprise
Architectures. International Journal of Cooperative
Information Systems, 13(3):257-288, 2004.

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
56 Farhad Arbab, Frank de Boer, Marcello Bonsangue, et al.

[JVB+03] H. Jonkers, G.E. Veldhuijzen van Zanten, R. van
Buuren, F. Arbab, F. de Boer, M. Bonsangue, H.
Bosma, H. ter Doest, L. Groenewegen, J. Guillen
Scholten, S.J.B.A. Hoppenbrouwers, M.-E. Iacob, W.
Janssen, M.M. Lankhorst, D. van Leeuwen, H.A. (Erik)
Proper, A. Stam, and L. van der Torre. Towards a
Language for Coherent Enterprise Architecture
Descriptions. In M. Steen and B.R. Bryant, editors, 7th
IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2003), Brisbane,
Queensland, Australia, pages 28-39, Los Alamitos,
California, USA, September 2003. IEEE.

[Lan+05] M.M. Lankhorst and others. Enterprise
Architecture at Work: Modelling, Communication and
Analysis. Springer, Berlin, Germany, EU, 2005.

[Morr46] C. Morris. Signs, Language and Behaviour.
Prentice-Hall/Braziller, New York, New York, USA,
1946.

[MeTa00] N. Medvidovic and R.N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, 26(1):70-93, January 2000.

[OMG02] OMG. UML Profile for Enterprise Distributed Object
Computing Specification. Technical report, The Object
Management Group, 2002.

[OMG03] OMG. UML 2.0 Superstructure Specification - Final
Adopted Specification. Technical Report ptc/03-08-02,
August 2003.

[Peir69] C.S. Peirce. Volumes I and II - Principles of
Philosophy and Elements of Logic. Collected Papers of
C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA, 1969.

[PrVH05] H.A. (Erik) Proper, A.A. Verrijn-Stuart, and
S.J.B.A. Hoppenbrouwers. Towards Utility-based
Selection of Architecture-Modelling Concepts. In S.
Hartmann and M. Stumptner, editors, Proceedings of
the Second Asia-Pacific Conference on Conceptual
Modelling (APCCM2005), Newcastle, New South Wales,
Australia, volume 42 of Conferences in Research and
Practice in Information Technology Series, pages 25-
36, Sydney, New South Wales, Australia, January
2005. Australian Computer Society.

[Sche94] A.-W. Scheer. Business Process Engineering:
Reference Models for Industrial Enterprises. Springer,
Berlin, Germany, EU, 2nd edition, 1994.

[ShGa96] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1996.

[SaSt97] W. van der Sanden and B. Sturm. Informatie-
architectuur - de infrastructurele benadering. Panfox,
Rosmalen, The Netherlands, EU, 1997. In Dutch.

[TaCa93] D. Tapscott and A. Caston. Paradigm Shift - The
New Promise of Information Technology. McGraw-Hill,
New York, New York, USA, 1993.

[Turn87] K.J. Turner. An Architectural Semantics for
LOTOS. In Proceedings of the 7th International
Conference on Protocol Specification, Testing, and
Verification, pages 15-28, 1987.

[USAD93] U.S.A. Department of Commerce. Integration
Definition for Function Modeling (IDEF0) Draft. Federal
Information Processing Standards Publication. 1993.

Farhad Arbab, Frank de Boer

Centrum voor Wiskunde en Informatica
Amsterdam
The Netherlands
{farhad.arbab|f.s.de.boer}@cwi.nl

Marcello Bonsangue

Leiden Institute of Advanced Computer Science
Leiden University
The Netherlands
marcello@liacs.nl

Marc Lankhorst

Telematica Instituut
Enschede
The Netherlands
marc.lankhorst@telin.nl

Erik Proper

Instititute for Computing and Information Science
Radboud University Nijmegen
Nijmegen
The Netherlands
e.proper@cs.ru.nl

Leendert van der Torre

Computer Science and Communications
University of Luxembourg
Luxembourg
leon.vandertorre@uni.lu

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
 57

