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Benchmarking Fingerprint Minutiae Extractors

Tarang Chugh , Sunpreet S. Arora , Anil K. Jain , Nicholas G. Paulter Jr.1 2 1 3

Abstract: The performance of a fingerprint recognition system hinges on the errors introduced in
each of its modules: image acquisition, preprocessing, feature extraction, and matching. One of the
most critical and fundamental steps in fingerprint recognition is robust and accurate minutiae ex-
traction. Hence we conduct a repeatable and controlled evaluation of one open-source and three
commercial-off-the-shelf (COTS) minutiae extractors in terms of their performance in minutiae de-
tection and localization. We also evaluate their robustness against controlled levels of image degra-
dations introduced in the fingerprint images. Experiments were conducted on (i) a total of 3,458
fingerprint images from five public-domain databases, and (ii) 40,000 synthetically generated finger-
print images. The contributions of this study include: (i) a benchmark for minutiae extractors and
minutiae interoperability, and (ii) robustness of minutiae extractors against image degradations.
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1 Introduction

A fingerprint recognition system typically comprises of four major modules: image acqui-

sition, preprocessing, feature extraction, and matching (See Fig. 1). The errors introduced

in each of these four modules, from image acquisition to matching cumulatively impact

the overall system recognition performance. For instance, the low fidelity4 of a fingerprint

signal acquired by a sensor can introduce errors in preprocessing, induce poor feature ex-

traction, and ultimately deteriorate the matching performance. Therefore, it is important to

perform a comprehensive evaluation of each module independently to improve the overall

performance of the fingerprint recognition system.

Fingerprint sensor certification standards (e.g. PIV-071006 [Ni06] and Appendix F [Ni05])

mandate independent evaluation of fingerprint sensors. Hence vendors are required to demon-

strate that their sensors can acquire a high-fidelity image with low-noise characteristics.

Existing studies have evaluated the performance of sensors in terms of their resilience

to external environmental factors (temperature and humidity), intrinsic subject-dependent

factors (skin humidity and pressure) [Ka03], operational quality [CFM08], their interop-

erability [Al08], and finger liveness detection [Gh13]. Arora et. al [Ar16] have designed
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Figure 1: Framework of a typical fingerprint recognition system. While existing studies evaluate the

recognition system from an end-to-end perspective, we provide a benchmark for minutiae extraction

module. Errors introduced at different steps of the system, i.e. fingerprint acquisition (e1), preprocess-

ing (e2), minutiae extraction (e3), and matching (e4), cumulatively impact the overall performance.

and fabricated 3D fingerprint targets and whole hand targets for repeatable evaluation and

calibration of fingerprint sensors.

On the contrary, studies pertaining to fingerprint preprocessing, feature extraction, and

matching, evaluate these modules in entirety as a black-box with the goal to improve the

overall matching performance. National Institute of Standards and Technology (NIST) con-

ducts fingerprint vendor technology evaluations (FpVTE) to benchmark the capabilities

of fingerprint recognition systems in terms of identification accuracy and computational

requirements [Wi04, Wa14]. The 2014 FpVTE [Wa14] reports that the best performing

system achieved a FNIR of 1.9% for single index finger, and 0.09% using all ten-fingers,

at a FPIR of 0.1%. Fingerprint verification competitions5 (FVC 2000-2006) also evaluate

systems from an end-to-end perspective. Although these third-party evaluations are useful,

they do not evaluate individual modules. For instance, in the case of a false match or a

non-match, it is uncertain whether the error is caused due to poor image quality, minutiae

extraction errors, or inability of the matcher to handle distortion. An independent evalua-

tion of the individual modules will enable us to understand the error sources and design an

interoperable system.

It is generally known that minutiae extraction is critical to fingerprint recognition accu-

racy. Minutiae-based representation is the most widely used approach, essentially due to

its (i) interpretability, (ii) high matching performance, (iii) storage efficiency, (iv) appli-

cability to match fingerprints/latents in forensic casework, and (v) evidential value (i.e.

expert testimony based on mated minutiae is admissible in the courts of law) [JFN10]. The

FVC-onGoing [Do09], in addition to benchmarking performance at the system level, also

provides benchmarks for (i) fingerprint orientation extraction, and (ii) matching standard

minutiae-based templates [ISO/IEC 19794-2 (2005)]. However, accuracy and robustness

evaluation of minutiae extracted using different minutiae extractors are needed in order to

benchmark their performance and minutiae interoperability.

5 https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx
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Minutiae interoperability tests (e.g. MINEX III [Fl15]) evaluate the compliance between

minutiae-based template generators and matchers from different vendors. Kayaoglu et al.

[KTU13] compared the matching performance based on automatically extracted minutiae

and manually labelled minutiae. However, these tests did not evaluate the underlying fac-

tors limiting the minutiae interoperability, i.e. variations in the minutiae detection and lo-

calization ability. Moreover, the images input to minutiae extractors may contain distortion

and motion blur due to variance in pressure applied on the sensor platen, and may have

poor contrast due to dry/wet fingers (See Fig. 2). To address these challenges, this study

conducts:

• A repeatable and controlled evaluation of minutiae extraction in terms of their detec-

tion and localization performance, for one open-source and three commercial minu-

tiae extractors.

• A rigorous assessment of robustness of minutiae extractors in the presence of con-

trolled levels of noise and motion blur to understand their limitations.

(b) (c) (d) (e)(a)
Figure 2: Challenges in automated fingerprint processing. Five different impressions of the same fin-

ger (from FVC2004 DB1A). These illustrate (a) reference fingerprint, (b) large non-linear distortion

(compare the triangle in (b) to triangle in the reference fingerprint (a)), (c) smudged areas due to wet

fingerprint, (d) and (e) broken ridge structure due to dry and noisy fingerprints.

2 Evaluation Protocol

2.1 Databases

The fingerprint images used in this evaluation study are grouped into two sets.

• Dataset-A contains 3,458 real fingerprint images compiled from five public do-

main databases: FVC 2002 (DB1A and DB3A), FVC 2004 (DB1A and DB3A) and

NIST SD27 rolled prints database6. Each FVC database contains 800 fingerprint

images (100 unique subjects, 8 acquisitions/subject), with ground truth minutiae

marked by human subjects [KTU13]. NIST SD27 [NI] contains 258 rolled prints

with ground truth minutiae marked by at least two certified forensic examiners.

• Dataset-B contains 40,000 synthetic fingerprints (including 5,000 unique master-

prints, and 35,000 fingerprints degraded with controlled levels of noise and motion

blur) generated using Novetta’s biosynthetic software [No14]. It contains four levels

of noise (including anatomical deformations, dryness, ridge noise) and three levels

of motion blur.
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FVC 2002 DB1A FVC 2002 DB3A FVC 2004 DB1A FVC 2004 DB3A NIST SD27
(Rolled Prints)

Synthetic Fingerprints
(Novetta Biosynthesis)

Figure 3: Examples of fingerprint images from the six databases used in this evaluation study.

Figure 3 presents example fingerprint images from each of these databases. The two sets

of fingerprint databases used in this study are summarized in Table 1. The average NIST

Fingerprint Image Quality 2.0 (NFIQ 2.0) [Na16a], which lies in the range [0,100] where

0 indicates the worst quality, and 100 refers to the best quality, is also presented for each

database.

Database (# Fingerprints,

# Subjects)

Ground Truth Image Capture Image Size

(h×w)

Avg. NFIQ2

value (s.d.)

Dataset-A

FVC2002 DB1A [Ma02] (800, 100)

Manually Marked

Optical sensor 374×388 64 (15)

FVC2002 DB3A [Ma02] (800, 100) Capacitive sensor 300×300 26 (13)

FVC2004 DB1A [Ma04] (800, 100) Optical sensor 480×640 59 (17)

FVC2004 DB3A [Ma04] (800, 100) Minutiae Thermal sweep sensor 480×300 47 (16)

NIST SD27 (rolled prints) [NI] (258, 258) Digitized ink and paper 768×800 42 (10)

Dataset-B

Synthetic masterprints [No14] (5,000, 5,000) N/A Synthetically generated 480×512 71 (6)

Noisy prints [No14] (20,000, 5,000) Minutiae extracted Synthetically generated 480×512 40 (23)

Motion blurred prints (15,000, 5,000) from master prints Synthetically generated 480×512 44 (26)

Table 1: A summary of fingerprint databases used in this evaluation study.

2.2 Evaluating Minutiae Detection and Localization

An ideal fingerprint minutiae extractor is expected to exhibit high precision in minutiae

detection and localization, and minimize spurious and missing minutiae. We evaluate the

performance of one open-source minutiae extractor mindtct [Na16b], and three minutiae

extractors (COTS - A, B, and C) by comparing the extracted minutiae with the ground truth

obtained from human subjects for Dataset-A. The performance of a fingerprint minutiae

extractor depends heavily on the quality of input fingerprint images. Considering the large

variations in the NFIQ 2.0 values, we segregate the fingerprint images from Dataset-A into

five quality bins [0,20], [21,40], [41,60], [61,80], and [81,100] based on the NFIQ 2.0

values. Figure 4 presents examples of fingerprint images corresponding to each of the 5

quality bins. For a fair evaluation, performance comparison between minutiae extractors is

6 NIST SD27 is no longer publicly available.
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[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]NFIQ 2.0
Quality Bins

Dataset - A

Figure 4: Examples of fingerprint images from Dataset-A corresponding to the 5 quality bins based

on NFIQ 2.0 values, where [0,20] represents the worst quality bin and [81,100] indicates the best

quality bin.

done only for fingerprint images within each quality bin. We do not utilize the synthetic

fingerprint images (Dataset-B) for this evaluation, as the synthesis process itself introduces

some spurious minutiae.

2.2.1 Minutiae Detection

Given a fingerprint image, let Fd = { f 1
d , f 2

d , ..., f N
d } be the set of N minutiae detected by

a minutiae extractor, and Fg = { f 1
g , f 2

g , ..., f M
g } be the set of M ground truth minutiae

marked by human subjects. A detected minutia fd , and a ground truth minutia fg are said

to be paired, if fd lies within a distance threshold δ around fg. As the average ridge width

for a 500 ppi fingerprint image is known to be approximately 9 pixels [Ma09], we fix the

threshold to 10 pixels. If there is more than one detected minutia within the threshold, the

one closest to the ground truth minutia is paired with it. In case of a tie, the pairing decision

is made in favor of the minutia with smaller orientation difference. If a minutia has to be

inserted in the set Fd , in order to pair it with a minutia in the set Fg, it is considered as

a missing minutia. Similarly, if a minutiae in the detected set Fd , cannot be paired with

any minutia in ground truth set Fg, it is deemed to be a spurious minutia. We utilize the

Goodness Index (GI) metric of Ratha et al. [RCJ95] to evaluate the minutiae detection

performance.

GI =
∑L

i=1 Qi[Pi −Di − Ii]

∑L
i=1 QiMi

(1)

where L = no. of 16×16 non-overlapping patches in the input image, Qi = quality of the ith

patch (good = 4, medium = 2, poor = 1), Pi = no. of paired minutiae in the ith patch, Di

= no. of spurious minutiae in the ith patch, Di ≤ 2 ·Mi, Ii = no. of missing minutiae in the

ith patch, and Mi = no. of ground truth minutiae in the ith patch, Mi > 0. In order to restrict

the negative impact of outlier patches, the number of spurious minutiae (Di) in a patch is

restricted to a maximum value of 2 ·Mi.

The quality index proposed by Chen et al. [CDJ05] is utilized. We do not consider patches

with zero minutiae (near image boundary). The maximum value of GI is +1, which is

obtained when Di = Ii = 0 and Pi = Mi, i.e. all detected minutiae are paired and no. of

detected and ground truth minutiae is the same. The minimum value of GI is −3, which is

obtained when Pi = 0, Di = 2×Mi, and Ii = Mi, i.e. no detected minutiae could be paired
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and the no. of spurious minutiae takes its maximum possible value of 2 ·Mi. Larger the

value of Goodness Index, better the performance of a minutiae extractor. In addition to

Goodness Index (GI), we also report the average percentages of paired (Pi/Mi), spurious

(Di/Mi), and missing (Ii/Mi) minutiae.

2.2.2 Minutiae Localization

For a given minutiae extractor, let f̂d = { f̂ 1
d , f̂ 2

d , ..., f̂ P
d }, f̂d ⊆ Fd , be a set of P detected

minutiae points, paired with a subset of known ground truth minutiae points f̂g ⊆ Fg. The

positional error (ep) for the paired minutiae set ( f̂g, f̂d) is computed using the Root Mean

Square Deviation (RMSD) [Tu11] given by:

ep( f̂g, f̂d) =

√
∑P

i=1[(x
i
g − xi

d)
2 +(yi

g − yi
d)

2]

P
(2)

where, (xi
d ,y

i
d) and (xi

g,y
i
g) represent the locations of the detected minutia and the ground

truth minutia, respectively. Similarly, the orientation error (eθ ) between the set of paired

minutiae ( f̂g, f̂d) is computed using:

eθ ( f̂g, f̂d) =

√
∑P

i=1 φ(θ i
g,θ

i
d)

2

P
(3)

where φ(θ1,θ2) =

{ θ1 −θ2 if −π ≤ θ1 −θ2 < π

2π +θ1 −θ2 if θ1 −θ2 <−π

−2π +θ1 −θ2 if θ1 −θ2 ≥ π

2.3 Evaluating Robustness of Minutiae Extractors

The primary reason of errors in minutiae detection is the presence of artifacts due to varia-

tions in finger placement on the sensor platen, noise, finger moisture, fingerprint alterations,

etc. A common evaluation technique, known as stress testing, is used to test a system be-

yond normal operating conditions, often to a breaking point. We evaluate the robustness

of one open-source minutiae extractor mindtct [Na16b], and three commercial minutiae

extractors in the presence of controlled levels of noise, finger dryness, and motion blur,

to understand the stable operational conditions. We utilize the synthetic fingerprint images

from Dataset-B for this evaluation.

2.3.1 Robustness against Noise

Fingerprint images acquired by the fingerprint readers may possess noise due to physical

factors such as anatomical deformations in the friction ridge skin (scars, holes, scratches,

etc.), finger moisture, and/or environmental contamination. These noise sources induce sig-

nificant variation in minutiae extraction, even within multiple acquisitions of the same

finger. To quantify the impact of noise on minutiae extractors, synthetic prints with con-

trolled levels of noise are generated from synthetic master fingerprints. The noise model
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in Novetta’s biosynthetic software [No14] is utilized to add (i) anatomical deformations

(scars, holes, and pressure variations), (ii) ridge noise (Perlin noise), and (iii) finger dry-

ness. Fig. 5 presents different levels of noise added to a master fingerprint (used as the

reference).

Reference
Fingerprint Noise Level 1 Noise Level 2 Noise Level 3 Noise Level 4

Figure 5: Four different levels of noise added to the master fingerprint (reference fingerprint).

2.3.2 Robustness against Motion Blur

Movements of the hand during fingerprint acquisition may lead to introduction of motion

blur in the acquired image. We simulate three levels of motion blur in the synthetic master

fingerprints by applying motion lens filter function in both horizontal and vertical direc-

tion [Li16]. The MATLAB functions f special(′motion′,k) and f special(′motion′,k,90),
with three different values of k ∈ {5, 7, and 9} corresponding to increasing degrees of

motion blur, are applied. Fig. 6 presents a synthetic master print and corresponding three

different levels of motion blur.

Reference Fingerprint Motion Blur Level 1 Motion Blur Level 2 Motion Blur Level 3

Figure 6: Three different levels of motion blur added to the master fingerprint (reference fingerprint).

3 Experimental Results

Goodness index, average positional error (ep), and average orientation error (eθ ) are com-

puted by comparing the output from one open-source minutiae extractor, mindtct, and three

COTS minutiae extractors with the manually marked minutiae for Dataset-A, and minutiae

extracted on the master print (without any image degradations) for Dataset-B.

3.1 Minutiae Detection and Localization

Fig. 7 presents an example fingerprint from FVC2002 DB1A dataset with overlaid manu-

ally marked minutiae and the extracted minutiae from one open-source minutiae extractor,



Ground Truth
Manually Marked Minutiae

COTS - A
Goodness Index : 0.90
Avg. Pos. Error (�"): 4.41
Avg. Ori. Error (�!) : 0.07

COTS - B
Goodness Index : 0.77
Avg. Pos. Error (�"): 4.68
Avg. Ori. Error (�!) : 0.05

COTS - C
Goodness Index : 0.70
Avg. Pos. Error (�"): 3.48
Avg. Ori. Error (�!) : 0.06

mindtct (open-source)
Goodness Index : 0.47
Avg. Pos. Error (�"): 2.65
Avg. Ori. Error (�!) : 0.13

Figure 7: Example fingerprint from FVC2002 DB1A dataset with overlaid manually marked minutiae

and minutiae extracted by four minutiae extractors ( mindtct, and COTS A, B, and C). Goodness Index

(GI) is unit less, while Avg. Positional Error (ep) and Avg. Orientation Error (eθ ) are measured in

pixels and radians, respectively.

NFIQ 2.0 Quality Bins Minutiae

Extractor

[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]

# Fingerprints 419 803 1,051 1,053 132

Goodness Index

mindtct −0.64 (0.77) −0.45 (0.70) −0.33 (0.59) 0.11 (0.38) 0.36 (0.25)

COTS-A −0.74 (0.69) −0.14 (0.71) 0.00 (0.67) 0.47 (0.26) 0.60 (0.16)

Avg. (s.d.) COTS-B −0.03 (0.63) 0.22 (0.44) 0.33 (0.30) 0.48 (0.22) 0.57 (0.17)

COTS-C −0.04 (0.70) 0.12 (0.51) 0.21 (0.35) 0.40 (0.21) 0.48 (0.19)

Positional Error (ep) (in pixels)

mindtct 3.95 (0.80) 3.78 (0.69) 3.60 (0.73) 3.22 (0.56) 3.10 (0.46)

COTS-A 4.87 (0.66) 4.64 (0.61) 4.37 (0.64) 4.27 (0.60) 4.22 (0.59)

Avg. (s.d.) COTS-B 4.53 (0.83) 4.24 (0.72) 4.02 (0.73) 4.00 (0.61) 3.89 (0.54)

COTS-C 4.10 (0.86) 4.21 (0.82) 4.23 (0.78) 3.83 (0.70) 3.59 (0.57)

Avg. Orientation Error (eθ ) (in rad.)

mindtct 0.27 (0.23) 0.20 (0.12) 0.18 (0.09) 0.15 (0.06) 0.14 (0.04)

COTS-A 0.16 (0.12) 0.13 (0.07) 0.12 (0.06) 0.11 (0.04) 0.10 (0.03)

Avg. (s.d.) COTS-B 0.13 (0.13) 0.10 (0.06) 0.10 (0.05) 0.10 (0.04) 0.09 (0.03)

COTS-C 0.14 (0.12) 0.11 (0.07) 0.10 (0.05) 0.10 (0.04) 0.09 (0.02)

Table 2: Performance comparison of four minutiae extractors (mindtct, and COTS A, B, and C) in

terms of minutiae detection and localization accuracies. This evaluation utilizes fingerprint images

(Dataset-A) from five public domain datasets, available with manually marked ground truth minutiae.

Minutiae detection is measured in terms of Goodness Index (GI), a unit less measure in the range [-

3, 1]. A large value of GI suggests high number of detected minutiae are paired with ground truth

minutiae and low number of spurious or/and missing minutiae.

mindtct, and three COTS minutiae extractors. The values for the three performance metrics,

Goodness Index, Positional Error, and Orientation Error are also reported for each minu-

tiae extractor output. Tab. 2 presents a summary of the performance comparison between

the four minutiae extractors in terms of minutiae detection and localization accuracies for

Dataset-A. In comparison to other minutiae extractors, COTS-B consistently achieves a

higher value of Goodness Index across all quality levels. Performance of COTS-A is ob-

served to be highly dependent on fingerprint quality, as it achieves the lowest Goodness In-

dex for low quality images (NFIQ 2.0 = [0, 20]), and highest Goodness Index for high qual-

ity images (NFIQ 2.0 = [81,100]). The open-source minutiae extractor, mindtct, achieves

low Goodness Index compared to COTS minutiae extractors across all quality values, how-

ever, it also achieves lowest positional errors suggesting high positional accuracy for the

paired minutiae. In general, a NFIQ 2.0 quality value lower than 20 leads to a negative

Goodness Index and higher localization errors with larger variances. It can be observed that

as the quality level increases, the Goodness Index values also increase, indicating higher
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NFIQ 2.0 Quality Bins Minutiae

Extractor

[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]

# Fingerprints 419 803 1,051 1,053 132

Paired Minutiae / Ground Truth

mindtct 0.77 (0.12) 0.81 (0.11) 0.82 (0.09) 0.84 (0.08) 0.86 (0.07)

COTS-A 0.77 (0.14) 0.79 (0.16) 0.78 (0.17) 0.85 (0.07) 0.86 (0.06)

(Pi / Mi) COTS-B 0.71 (0.15) 0.76 (0.12) 0.79 (0.10) 0.82 (0.08) 0.84 (0.07)

Avg. (s.d.) COTS-C 0.74 (0.14) 0.74 (0.11) 0.75 (0.09) 0.77 (0.08) 0.78 (0.09)

Spurious Minutiae / Ground Truth

mindtct 1.19 (0.63) 1.06 (0.60) 0.97 (0.53) 0.57 (0.34) 0.36 (0.21)

COTS-A 1.29 (0.60) 0.72 (0.52) 0.56 (0.44) 0.22 (0.20) 0.12 (0.09)

(Di / Mi) COTS-B 0.44 (0.45) 0.30 (0.31) 0.25 (0.21) 0.15 (0.13) 0.10 (0.08)

Avg. (s.d.) COTS-C 0.52 (0.55) 0.36 (0.39) 0.30 (0.28) 0.13 (0.12) 0.09 (0.08)

Missing Minutiae / Ground Truth

mindtct 0.23 (0.12) 0.19 (0.11) 0.18 (0.09) 0.16 (0.08) 0.14 (0.07)

COTS-A 0.23 (0.14) 0.21 (0.16) 0.22 (0.17) 0.15 (0.07) 0.14 (0.06)

(Ii / Mi) COTS-B 0.29 (0.15) 0.24 (0.12) 0.21 (0.10) 0.18 (0.08) 0.16 (0.07)

Avg. (s.d.) COTS-C 0.26 (0.14) 0.26 (0.11) 0.25 (0.09) 0.23 (0.08) 0.22 (0.09)

Table 3: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C)

in terms of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

fingerprint images of different quality (Dataset-A).

number of paired minutiae and lower number of spurious and/or missing minutiae. Tab. 3

presents the performance comparison of the four minutiae extractors in terms of average

percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae. It can be

observed that the open-source minutiae extractor produces a much higher percentage of

spurious minutiae, but a much lower percentage of missing minutiae, compared to other

COTS minutiae extractors.

3.2 Robustness against Image Degradations

Tab. 4 summarizes the performance comparison between the four minutiae extractors on

robustness against different levels of image noise for Dataset-B. It can be observed that as

the noise level increases, the Goodness Index decreases, and the avg. positional error and

the avg. orientation error increases. In comparison to other minutiae extractors, COTS-A

achieves a much higher Goodness Index, and low positional and orientation errors even

in the presence of higher levels of image noise. All the minutiae extractors exhibit simi-

lar avg. positional errors, but a much higher variance is observed in the case of COTS-C.

Tab. 5 presents the performance comparison between the four minutiae extractors in terms

of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

images with different levels of noise. It can be observed that COTS-A achieved a very high

percentage of paired minutiae and much lower percentage of missing minutiae, resulting

in a high Goodness Index. In terms of spurious minutiae, mindtct is observed to consis-

tently perform poorly across all noise levels compared to the COTS minutiae extractors,

producing much higher percentage of spurious minutiae.

The performance comparison of the four minutiae extractors in terms of minutiae detec-

tion and localization accuracies for images degraded with different levels of motion blur

is presented in Tab. 6. It is observed that COTS-A achieves high Goodness Index value

compared to other minutiae extractors with low avg. positional and orientation errors. In

general, higher level of motion blur results in large negative values of Goodness Index for
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Noise Levels Minutiae

Extractor

Level 1 Level 2 Level 3 Level 4

Goodness Index

mindtct 0.36 (0.27) 0.09 (0.32) −0.43 (0.33) −0.80 (0.25)

COTS-A 0.80 (0.12) 0.72 (0.14) 0.52 (0.21) 0.15 (0.37)

Avg. (s.d.) COTS-B 0.53 (0.19) 0.43 (0.21) 0.19 (0.23) −0.15 (0.30)

COTS-C 0.72 (0.19) 0.53 (0.28) −0.08 (0.44) −0.60 (0.35)

Positional Error (ep) (in pixels)

mindtct 2.27 (0.59) 2.87 (0.72) 3.86 (0.72) 4.55 (1.05)

COTS-A 2.07 (0.55) 2.54 (0.61) 3.43 (0.67) 4.17 (0.73)

Avg. (s.d.) COTS-B 2.11 (0.63) 2.75 (0.74) 3.80 (0.69) 4.54 (0.72)

COTS-C 2.24 (0.64) 2.85 (0.79) 3.84 (0.91) 4.82 (2.02)

Avg. Orientation Error (eθ ) (in rad.)

mindtct 0.06 (0.04) 0.09 (0.07) 0.19 (0.14) 0.36 (0.30)

COTS-A 0.03 (0.02) 0.04 (0.03) 0.06 (0.05) 0.13 (0.12)

Avg. (s.d.) COTS-B 0.04 (0.02) 0.05 (0.03) 0.07 (0.06) 0.13 (0.12)

COTS-C 0.03 (0.02) 0.04 (0.03) 0.07 (0.07) 0.14 (0.25)

Table 4: Robustness evaluation of four minutiae extractors (mindtct, and COTS A, B, and C) against

different levels of noise (Dataset-B).

Noise Levels Minutiae

Extractor

Level 1 Level 2 Level 3 Level 4

Paired Minutiae / Ground Truth

mindtct 0.75 (0.12) 0.63 (0.11) 0.42 (0.09) 0.24 (0.08)

COTS-A 0.92 (0.14) 0.88 (0.16) 0.81 (0.17) 0.70 (0.07)

(Pi / Mi) COTS-B 0.78 (0.15) 0.74 (0.12) 0.64 (0.10) 0.51 (0.08)

Avg. (s.d.) COTS-C 0.89 (0.14) 0.80 (0.11) 0.52 (0.09) 0.24 (0.08)

Spurious Minutiae / Ground Truth

mindtct 0.14 (0.06) 0.18 (0.09) 0.27 (0.13) 0.28 (0.12)

COTS-A 0.04 (0.04) 0.05 (0.04) 0.10 (0.08) 0.24 (0.18)

(Di / Mi) COTS-B 0.03 (0.03) 0.04 (0.04) 0.09 (0.07) 0.17 (0.10)

Avg. (s.d.) COTS-C 0.05 (0.05) 0.08 (0.06) 0.11 (0.08) 0.08 (0.08)

Missing Minutiae / Ground Truth

mindtct 0.25 (0.12) 0.37 (0.14) 0.58 (0.13) 0.76 (0.12)

COTS-A 0.08 (0.06) 0.12 (0.07) 0.19 (0.08) 0.30 (0.12)

(Ii / Mi) COTS-B 0.22 (0.09) 0.26 (0.09) 0.36 (0.10) 0.49 (0.12)

Avg. (s.d.) COTS-C 0.11 (0.09) 0.20 (0.13) 0.48 (0.22) 0.76 (0.19)

Table 5: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C)

in terms of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

fingerprint images with different levels of noise (Dataset-B).

all minutiae extractors. Tab. 7 presents the performance comparison in terms of average

percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for images

with different levels of motion blur. With increase in the motion blur levels, a much higher

percentage of missed minutiae is observed compared to paired and spurious minutiae.

4 Conclusions

Minutiae extraction is one of the most critical component of an automatic fingerprint iden-

tification systems. We have presented a controlled and repeatable evaluation of one open-

source and three COTS minutiae extractors. Our experiments involve five public domain

databases with manually marked minutiae to determine minutiae detection and localization

accuracies. A large synthetically generated database with controlled levels of image degra-

dations allowed us to quantify the affects of noise and motion blur, on minutiae extraction

performance. The open-source minutiae extractor (mindtct) is observed to produce lowest

positional errors in public domain databases. However, it also generates a higher percentage
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Motion Blur Levels Minutiae Extractor Level 1 Level 2 Level 3

Goodness Index

mindtct 0.76 (0.12) 0.40 (0.16) −0.68 (0.24)

COTS-A 0.90 (0.13) 0.48 (0.16) −0.50 (0.25)

Avg. (s.d.) COTS-B 0.81 (0.15) 0.51 (0.15) −0.56 (0.17)

COTS-C 0.88 (0.10) 0.46 (0.13) −0.70 (0.26)

Positional Error (ep) (in pixels)

mindtct 3.05 (0.19) 3.69 (0.37) 4.14 (0.35)

COTS-A 3.13 (0.20) 3.73 (0.38) 4.09 (0.31)

Avg. (s.d.) COTS-B 3.08 (0.22) 3.84 (0.47) 4.10 (0.40)

COTS-C 3.11 (0.19) 3.88 (0.31) 4.27 (0.58)

Avg. Orientation Error (eθ ) (in rad.)

mindtct 0.02 (0.01) 0.06 (0.02) 0.10 (0.02)

COTS-A 0.01 (0.00) 0.06 (0.02) 0.09 (0.02)

Avg. (s.d.) COTS-B 0.01 (0.01) 0.04 (0.01) 0.10 (0.03)

COTS-C 0.01 (0.00) 0.06 (0.01) 0.08 (0.02)

Table 6: Robustness evaluation of four minutiae extractors ( mindtct, and COTS A, B, and C) against

different degrees of motion blur (Dataset-B).

Motion Blur Levels Minutiae Extractor Level 1 Level 2 Level 3

Paired Minutiae / Ground Truth

mindtct 0.90 (0.09) 0.73 (0.14) 0.26 (0.18)

COTS-A 0.96 (0.08) 0.76 (0.15) 0.34 (0.16)

(Pi / Mi) COTS-B 0.93 (0.09) 0.78 (0.14) 0.30 (0.16)

Avg. (s.d.) COTS-C 0.95 (0.07) 0.75 (0.15) 0.25 (0.17)

Spurious Minutiae / Ground Truth

mindtct 0.04 (0.03) 0.06 (0.04) 0.20 (0.13)

COTS-A 0.02 (0.01) 0.04 (0.03) 0.18 (0.11)

(Di / Mi) COTS-B 0.05 (0.03) 0.05 (0.04) 0.16 (0.13)

Avg. (s.d.) COTS-C 0.02 (0.02) 0.04 (0.03) 0.20 (0.12)

Missing Minutiae / Ground Truth

mindtct 0.10 (0.04) 0.27 (0.08) 0.74 (0.26)

COTS-A 0.04 (0.02) 0.24 (0.06) 0.66 (0.19)

(Ii / Mi) COTS-B 0.07 (0.02) 0.22 (0.05) 0.70 (0.24)

Avg. (s.d.) COTS-C 0.05 (0.02) 0.25 (0.06) 0.75 (0.20)

Table 7: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C)

in terms of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

fingerprint images with different levels of motion blur (Dataset-B).

of spurious minutiae compared to COTS minutiae extractors, deteriorating its overall per-

formance. COTS-A exhibits significantly high robustness against different levels of image

noise and motion blur.
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