An Implementation to transform Business
Collaboration Models to executable Process

Specifications
Michael Ilger Marco Zapletal
ilger@ani.univie.ac.at marco @cs.univie.ac.at
University of Vienna University of Vienna

Abstract: UN/CEFACT’s Modeling Methodology (UMM) is a well accepted
and formal notation to analyze and design B2B business processes. In a service
oriented architecture (SOA) environment process specification languages like
the Business Process Specification Schema (BPSS) are used to configure B2B
information systems. However, mappings from UMM models to BPSS process
specifications currently exist just on a conceptual level. This results in a gap
between defined B2B processes and BPSS configurable e-commerce systems.
Thus, a model driven code generation of BPSS descriptions is required. In this
paper we present a technical implementation of a transformation engine that
generates BPSS process specifications from a UMM model represented in the
XML Metadata Interchange (XMI) language. This implementation bridges the
gap mentioned above. It has been used in the EU project GILDAnet to generate
BPSS descriptions from logistic processes modeled in UMM.

1 Motivation

Business process modeling has traditionally focused on describing intra-organiza-
tional processes. In a business-to-business (B2B) environment two or more organi-
zations take part in an inter-organizational process. Consequently an agreement of
all participants on a shared business process, also called collaboration, is required.
However, each of the participating partners describes the shared process from his
point of view. Therefore the described sights will not match. Thus, in order to spec-
ify shared processes it is inevitable to use a method that describes the process from
a common point of view. UN/CEFACT’s Modeling Methodology (UMM) [UN/O1]
is such a well accepted method in the B2B sector.

Furthermore, it has to be a modeler’s goal to use the designed processes for real busi-
ness instead of leaving them in some unread manuals or strategic papers. It is the
intention of UMM to describe processes not just for human understanding but also
to create machine-interpretable artifacts. In order to configure e-commerce informa-
tion systems dynamically in changing environments (e.g. partners, processes, etc.),
system-executable process specifications are needed. The Business Process Specifi-
cation Schema (BPSS) [UN/03], known as a part of the ebXML framework, is such
an XML-based process definition language.

However, the mapping of relevant segments of a UMM model to a BPSS instance
is only conceptually denoted so far [HH04a] [HHKOS]. Thus a tool implementa-
tion is required, which generates BPSS instances out of UMM models. In this paper

9

we present the implementation of a tool which transforms UMM models into BPSS
files. In the EU funded GILDAnet project this transformation engine was developed
to generate system-executable BPSS descriptions from modeled supply chain pro-
cesses. The remainder of this paper is structured in six sections. In section 2 we
present related work before giving an overview about the transformation process in
section 3. Section 4 to 6 describe each of the three transformation stages. Section 7
finishes the paper with a conclusion.

2 The transformation process: An overview

The transformation engine we implemented transforms UMM models to BPSS pro-
cess specifications. The overall transformation process covered by our implemen-
tation spans over three major stages (denoted by the gray arrows in figure 1). The
engine needs a valid UMM model as input to the first stage and outputs a BPSS com-
pliant process specification after completing the third stage.

Considering the input format, it is a definitive goal of this implementation to stay
independent of specific UML modeling tools. Thus, an input format is required
which is supported by a wide range of different modeling environments. For us the
widespread XML Metadata Interchange (XMI) [Obj00] standard was the candidate
of choice as input format specification. In the first stage of the workflow, the object
structure that corresponds to the XMI tree is dissolved. Then equal UML element
types are grouped in list data structures in order to ease and speed up further process-
ing. These collections are input to the second stage, where we map these elements
to an object structure that conforms to UMM meta model. Furthermore, some basic
consistency checks are applied during the mapping to ensure a valid UMM instance.
Within the third stage the valid UMM object representation is mapped to a BPSS
instance according to the approach described in [HHO4a].

Splitting the workflow into the three stages described above enhances the modular-
ization of the transformation engine. The object representation of the UMM meta
model acts as the core of the engine. Additional modules that use this core, but im-
plement different input or output formats may easily be implemented. Candidates for
other output formats of a UMM transformation might be the Business Process Exe-
cution Language (BPEL) [HHO04b] or the Web Services Choreography Description
Language (WS-CDL).

The GILDAnet UMM example

In this paper we demonstrate the workflow of our implementation on the basis of a
simple example. It depicts a real-world process modeled in the EU project GILDAnet
(Global Integrated transport Logistic DAta NETwork) using UMM. In the GILDAnet
project this implementation has been used to generate BPSS process specifications
from the described processes.

In UMM a collaborative process is described by a business collaboration protocol.
Two or more partners participate in the execution of a business collaboration pro-

10

cd Workflow /

XMl objects Pr?:ersesslggt::%;(m collections containing
P ! relevant UML elements

(Stage 1)
Transform UML . -
S onlects - BPSS objects
elements to UMM >9 UMM objects | . |Transform UMMto BPSS objects

objects (Stage 2) BPSS (Stage 3)

Figure 1: The workflow of the transformation engine consists of three stages (gray arrows)

tocol. A collaboration is composed of one or more interactions between its par-
ticipants. Each interaction is performed by exactly two partners and results in an
information exchange. UMM denotes an interaction by the concept of a business
transaction activity that is refined by a business transaction. A business transaction
starts with an activity performed by the initiating party. The execution of this activ-
ity outputs a message that is input to an activity of the reacting party. Depending on
the business case that is represented by a certain business transaction the reacting
party sends a response back to the initiating party (compare a request for quote to a
shipping notification). The execution of a business transaction may succeed or fail,
which has impact on the flow in the business collaboration protocol.

ad FreightForwarderRetaiIer/

«BusinessTransactionActivity»
GoodsDelivery

«BusinessTransactionActivity»
DeliverySettlement

Failure

®

Success

Figure 2: Example business collaboration protocol describing the collaboration between
freight forwarder and retailer.

11

Our example consists of one business collaboration protocol that describes a supply
chain process between a freight forwarder and a retailer dealing with the delivery of
perishable goods (figure 2). The business collaboration protocol is composed of two
business transaction activities called GoodsDelivery and DeliverySettlement. Each
business transaction activity is refined by an equally named business transaction.
However, due to space limitation we just describe the goods delivery interaction
(figure 3) in detail in this paper. Performing this interaction the freight forwarder
has the role of an initiator by sending a CMR ' concerning the delivery of goods to
the retailer. The retailer, playing the role of the reactor, sends then a signed CMR !
response back to the freight forwarder.

In order to ease understanding of our engine, we explain each step of the transfor-
mation workflow using the perishable goods example.

ad GoodsDelivery
:Initiator :Reactor
«RequestRespons eActivity» \ «InformationEnvelope>
PassmgOnGoodsCrn rToRetalIer) :PassingBackSignedCmrToTruckerDestination|
Fallure
Success
«InformationEnvelope » («RespondingBusiness Activity»
:Goods AndCMRToRetailerRequest tassingBackSignederToTruckerDestination

Figure 3: Example business transaction describing an information exchange concerning a
CMR'

3 Processing the XMI representation (Stage 1)

As described above the implementation accepts XMI compliant files as input to the
transformation process. The XMI source needs to describe a valid UMM model in
order to successfully generate a BPSS process description. Due to the huge size of
an XMI structure even regarding our small example, we refrain from including the
example XMI code here. In order to avoid a manual traversal of the extensive XMI
structure we utilized an XML data binding framework. The Apache XMLBeans?
framework was our tool of choice to get an object representation from the XMI file.

ICMR is an abbreviation for Carriage of Goods by Road

12

3.1 Extracting the relevant XMI objects

The XMI data and hence its object representation is nested in a tree structure anal-
ogous to the UML model structure. However, from the large amount of data in the
XMI structure we just need one element type as entry point in the further transfor-
mation - the activity graphs. All other element types needed for a BPSS generation
(e.g. classes, use cases) can be reached by starting from the particular activity graph.
Therefore recursive processing is used to traverse the whole tree and to store the
activity graphs in a flat collection. However, the Rational Rose XMI flavor defines
stereotypes and tagged values outside of their elements and links them by a common
ID. Hence, the recursive algorithm collects also these elements and puts them into
homogeneous dictionary data structures. Using the ID as the key and the element
itself as the value enables a fast lookup of required objects in further steps.

In our example the business collaboration protocol (figure 2) and the two business
transactions (figure 3 shows the goods delivery interaction) are stored in the activity
graph collection. Stereotypes and tagged values of each model element are stored
in the homogeneous dictionaries. The activity graph collection is then input to the
second stage.

3.2 Obstacles regarding the XMI processing

Choosing XMI as the input format for the implementation raised some serious ob-
stacles. Unfortunately XMI is an ambiguous interchange format. Hence nearly each
tool vendor supports a different XMI flavor. Regarding our implementation we con-
centrated on the XMI flavor produced by the Unisys XMI Add-In 1.3.6 for Rational
Rose 2003. The Apache XMLBeans? framework needs a W3C XML Schema in-
stance (XSD) as a base to generate an object representation. However, the XMI
flavor used by the Unisys XMI Add-In is only described by a Document Type Def-
inition (DTD). Consequently, we had to convert the document type definition to a
schema representation including some manual adoptions. Furthermore the Unisys
XMI Add-In uses only a small subset of the XMI standard. Hence, a lot of generated
classes are never used. Some problems have also been caused by the Unisys XMI
Add-In itself. We discovered some serious flaws in this implementation especially
regarding the export of UML activity graphs. Transitions that are connected to object
flow states are also always exported as leading away from them. Furthermore, object
flow states are not exported as being the contents of a partition in the XMI repre-
sentation. These two problems result in the impossibility to distinguish whether a
message is sent by the requesting or responding party . The last problem we faced
was that the classifier of a partition is missing in the export. In UMM the classifier
of a partition in a business transaction corresponds to the role that performs the ac-
tivity located in the partition. In order to circumvent this handicap the name of the
partition has been used to denote the performing role.

13

4 Transforming UML elements to UMM objects (Stage 2)

In the second stage of the transformation we instantiate an object structure corre-
sponding to the UMM meta model using the input from the preceding stage. Thus,
we implemented the UMM meta model as a set of Java Beans in order to simplify
the mapping procedure. At first a UMM model object is instantiated that contains
all further UMM artifacts. The UMM model contains in turn a business transac-
tion view and a business requirements view object. The business transaction view
is a container for most of the artifacts needed to generate a BPSS. The business re-
quirements view object contains just business collaboration protocol use cases and
business transaction use cases that capture the requirements on a corresponding col-
laboration or transaction.

Regarding the technical implementation of this UML (represented as XMI object
structure) to UMM object transformation we focused on keeping the mapping code
as simple and clean as possible. Thus, we used reflection mechanisms to dynam-
ically instantiate UMM object types based on the stereotypes occurring in a model
instance. Furthermore, tagged values are dynamically looked up and set in the partic-
ular object structure based on the values occurring in the corresponding XMI objects.
After the initial UMM model structure is created, we start the actual mapping. The
starting point for the mapping procedure is the collection containing the UML ac-
tivity graphs. Business collaboration protocols and business transactions are both
stereotyped activity graphs and all other relevant artifacts can be traversed by pro-
cessing them. Thus, a loop iterates over all UML activity graphs and determines
whether the current graph is a business collaboration protocol or a business trans-
action. However, relying only on the stereotype of the activity graph may cause
inconsistent states in further steps if unanticipated elements are found. Hence, based
on the stereotypes of the activities contained in the graph the algorithm decides the
stereotype of the activity graph. The activity graph is a business collaboration pro-
tocol if only business transaction activities are found or a business transaction if a
requesting business activity and a responding business activity are found. If a mix is
found, the algorithm quits processing this activity graph by throwing an appropriate
exception.

4.1 Processing collaborations between partners

Processing a business collaboration protocol starts with creating the appropriate ob-
ject representation. Thus, a business collaboration protocol object is instantiated
for the FreightForwarderRetailer collaboration (figure 2) and added to the business
transaction view. As next step, the algorithm creates the containing business trans-
action activities. In our example two business transaction activity objects called
GoodsDelivery and DeliverySettlement are created. The business collaboration pro-
tocol object is again a container for the elements contained in the corresponding
activity graph. Hence, the two business transaction activities are added to the busi-
ness collaboration protocol FreightForwarderRetailer. Then the algorithm processes

14

pseudo states and final states. Regarding the FreightForwarderRetailer collaboration
two final state objects are created - one Success and one Failure. At this point we
had to implement a workaround in our UMM meta model representation. Due to
the fact that stereotyped elements inherit from their UML base classes, the UMM
stereotypes inherit also the relations of their base classes in the UML meta model.
This means for example that there are relations defined between activity graphs and
final states in the UML meta model, but not between business collaboration proto-
cols and final states in the UMM meta model. Thus, we either had to implement
the relevant parts of the UML meta model in our object representation (and let the
UMM objects inherit from them) or to add some workaround extensions directly to
our UMM meta model data structure. In order to keep the object model relatively
simple we decided to implement the workaround extensions. Hence, also the final
state objects Success and Failure are added to the business collaboration protocol
instance by the algorithm. The next step in processing business collaboration pro-
tocols identifies the transitions including their guard conditions between the model
elements of the activity graph. In our example, five transitions as shown in the busi-
ness collaboration protocol are identified. Similar to the pseudo and final states
problem, we had to extend the business collaboration protocol object again to pass
the identified transitions. Finally, the business collaboration protocol use case that
captures the requirements on a business collaboration protocol is identified. In the
GILDAnet example, the business collaboration protocol is modeled as the behavior
of the corresponding use case. Thus, the business collaboration protocol use case is
found by the behavior-context relation in the UML meta model [Obj04]. Again, an
object is created that complies with the business collaboration protocol use case and
added to the business requirements view container.

4.2 Processing information exchanges between partners

If an activity graph is identified as a business transaction, first of all the correspond-
ing object is created and added to the business transaction view container object.
Considering our example, a business transaction object named GoodsDelivery is in-
stantiated. The algorithm subsequently iterates over the activities contained in the
business transaction. A business transaction must have exactly two activities, one
requesting business activity and one responding business activity. Unless exactly two
activities are found, the algorithm exits with an exception. Otherwise, the adequate
object is created and added to the business transaction container. In our example a
requesting business activity PassingOnGoodsCmrToRetailer and a responding busi-
ness activity PassingBackSignedCmrToTruckerDestination are constructed. Then
the algorithm iterates over the object flow states of the business transaction. The ob-
ject flow states represent an instance of a certain information envelope that is trans-
mitted. Thus, we need to determine the appropriate classifier of the envelope that is
being transmitted. In UML, and hence in the XMI object representation, the relation
between a class and an object flow state thereof is denoted via a so called classifier

15

in state [Obj04]. Following this relationship two information envelopes are created
and added: One representing the GoodsAndCMRToRetailerRequest and one for the
PassingBackSignedCMRToTruckerDestinationResponse. They are in turn added to
the business transaction. Finally, the roles participating in the business transaction
are determined via the classifier of the particular partition. In order to keep the ex-
ample simple the requesting business activity is performed by a role called initiator
and analogous the responding business activity is performed by a role called reactor.
For each role a corresponding object representation is created, added to the business
transaction view and linked with the activity it performs.

In UMM, a business transaction follows one of six pre-defined business transaction
patterns. The pattern is specified by the stereotype of the requesting activity in a
transaction. Two one-way (notification, information distribution) and four two-way
(request/response, query/response, commercial transaction, request/confirm) infor-
mation exchange patterns are adopted by UN/CEFACT from RosettaNet [Ros02].
According to Open-edi [ISO95], these pattern cover all known legally binding inter-
actions between two e-commerce applications. A further analysis of the transaction
patterns is found in [BJJWO02]. Except the optional response, the business transac-
tion patterns adhere all to the same structure. Neither additional model elements nor
another activity flow are allowed. Only additional final states capturing a different
semantic are allowed, but not considered in BPSS. Thus, mapping initial and final
states as well as transitions of a business transaction is not required.

As described in section 3.2 the classifier of a partition is not exported by the Unisys
XMI Add-In. Hence, as a workaround the classifier of a partition is denoted using
the name of the partition. Due to space limitations we left this detail out in our ex-
ample. Furthermore, there is no possibility to determine which information envelope
is sent by which party (see section 3.2). For our implementation we had to assume
that the first object flow state exported by the Unisys XMI Add-In corresponds to the
information envelope sent by the requesting party.

4.3 Finishing the UMM object model

In a last step business transaction activities are linked to their refining business trans-
actions. Due to some clashes between the UMM meta model and the modeling en-
vironment provided by Rational Rose 2003, the refining business transaction of a
business transaction activity can only be identified using pre-defined naming rules.
However, a more detailed description of this problem would exceed the scope of this
paper and is therefore left out. Anyway, an iteration over all business transaction ac-
tivities is needed to identify their refining business transaction. We tried to optimize
this step using a dictionary data structure with the name of the business transaction
as the key and the actual object as value.

The resulting object representation of the UMM model is then input to the last step
that generates a BPSS compliant process specification. Figure 4 shows a conceptual
overview of the constructed objects and their relationships regarding our example.

16

cd UMM Beans Object Model/

FreightForwarderRetailer :
BusinessCollaborationProtocol

DeliverySettlement : GoodsDelivery :
BusinessTransactionActivity BusinessTransactionActivity

+transaction
not further refined.. .
GoodsDelivery :
BusinessTransaction
Initiator : Reactor :
AuthorizedRole AuthorizedRole
T
+performedBy +respondingBusiness Activity
+requestingBusinessActivity | +performed?y
PassingOnGoodsCmrToRetailer : PassingBackSignedCmrToTruckerDestination :
RequestResponseActivity RespondingBusinessActivity
+arget +source +source +arget

GoodsAndCMRToRetailerRequest | | PassingBackSignedCMRToTruckerDestinationResponse :
{InformationEnvelope InformationEnvelope

Figure 4: Conceptual overview of the UMM objects created in the example

5 Transforming UMM to BPSS (Stage 3)

In the final stage of the transformation workflow we take the UMM object model
and map it to a BPSS instance. Since BPSS is designed to be a subset of the UMM
specification, the mapping for many elements is intuitive. In the following sub chap-
ters we will describe in detail how our implementation generates BPSS. Thus we
use the XML-based BPSS notation in the subsequent illustration of our perishable
goods example, simplified to capture just the relevant aspects. Due to the fact that
XML is chosen as the notation of BPSS, the documents are still human-readable
and relatively easy to understand. The fact that XML is used also creates some ad-
ditional transformation requirements. For example XML requires a special format
for durations as used in timeToPerform. In our approach we use business collabora-
tion protocols contained in the UMM object model as entry point to start the BPSS
generation. Thus, we can trivially create one BPSS instance for each business col-
laboration protocol. This approach is important to us, as we have the goal of creating
files which can be uploaded to a registry server. As our registry server can only de-

17

note if a company supports a role in a special BPSS this functionality works only
in an environment where one file is available for each binary collaboration. Other-
wise it is ambiguous to decide which process is supported. The algorithm iterates
over these objects and instantiates a process specification object in each cycle. The
process specification is a data binding object corresponding to the root element in a
BPSS instance. When the transformation of the complete model is finished a file is
created for each BPSS and data is serialized to the file system.

In the description of the BPSS structure we will omit a couple of details which are
included in our tool, but not required to understand the function of our mapping.
Most importantly each element features a so-called namelD, which is a unique id.
While it is a real unique ID in generated files we use simplified ones in our ex-
ample. Every element features also a documentation element which may contain
further information concerning the respective element. Finally we also focused only
on binary collaborations, because multi party collaborations do not appear in the
GILDAnet environment and are also deprecated in the current BPSS version.

5.1 Processing collaborations between partners

Due to the one to one relationship between the business collaboration protocol and
the BPSS process specification, the process specification inherits the name from the
collaboration. Next a binary collaboration object is constructed representing the
business collaboration protocol. Regarding our example the process specification as
well as the binary collaboration object are named FreightForwarderRetailer. The bi-
nary collaboration specifies a set of attributes. The pattern attribute has currently
no counterpart in UMM and is therefore not specified. It is reserved for future
considerations when patterns for standardized collaborations will be available by
UN/CEFACT. The isInnerCollaboration attribute is set true if the particular collab-
oration is a nested one or otherwise set false. UMM revision 12 [UN/O1] used in our
implementation does not provide this mechanism, thus this attribute is also left out.
The remaining attributes (beginsWhen, endsWhen, preCondition and postCondition)
are derived from the business collaboration protocol use case that captures the re-
quirements on the collaboration.

As next the two participating roles of a binary collaboration are processed. The role
names are set using the names from the corresponding authorized roles taking part
in the business transaction. Hence, it is a requirement that the same two roles take
part in each transaction of one binary collaboration. In our example we extract the
two roles initiator and reactor out of the business transactions and create an object
representation of them.

Now the algorithm iterates over the business transaction activities contained in the
business collaboration protocol object of the UMM model. For each business trans-
action activity in the UMM business collaboration protocol a corresponding business
transaction activity in the BPSS is instantiated. In our example we create a business
transaction activity in the BPSS called GoodsDelivery and a second one called De-

18

liverySettlement.

Furthermore, we need to specify the initiating role of the binary collaboration. Thus,
we check for each business transaction activity if it is the first one in the collabora-
tion flow. This is determined through the relation to the initial state. In some cases
there is no relationship between the initial state and the first business transaction
activity, but there are some pseudo states in between. Anyway, a depth first search
algorithm is used to determine the business transaction activity that is most closely
located to the initial state. Once the first business transaction activity is located the
initiating role of the binary collaboration (initiatingRoleIDREF) is set using the ini-
tiating role of the refining business transaction. In the simple example the initiator
of the GoodsDelivery business transaction activity is also the initiator of the collab-
oration.

Moreover the attributes fromRole and toRole of a business transaction activity spec-
ify, which role of the binary collaboration plays a certain role in the refining business
transaction. This relationship can only be constructed by comparing the names of the
roles. Similar as with binary collaborations the attributes beginsWhen, endsWhen,
preCondition and postCondition denote some requirements on a business transac-
tion activity. These are derived from the associated business transaction use case of
the business transaction (that refines this business transaction activity). Regarding
our example, the mapping is again trivial (e.g. initiator of the collaboration maps
to the initiator of the transaction). Furthermore, two more attributes (isConcurrent,
timeToPerform) are taken from the UMM business transaction activity to the BPSS
equivalent. At this point our algorithm continues with processing the business trans-
action that is described in section 5.2. In order to facilitate understanding of the
generation workflow we continue with the remaining elements of the binary collab-
oration element.

Finally all pseudo states, final states and transitions have to be added to the BPSS.
Pseudo states - initial states, decisions, forks and joins - are simply mapped to
their corresponding representation in the BPSS. Considering our example there is
no pseudo state in the collaboration and hence no such element in the BPSS de-
scription. Regarding final states, BPSS distinguishes between successful and failed
collaboration executions denoted by Success and Failure elements. BPSS demands
that there exists at least one Success and one Failure per each binary collaboration.
Although not mandated by UMM, we postulate this as a requirement to a UMM
model that is input to our implementation. In our example business collaboration
protocol the two existing final states are simply mapped to their BPSS equivalent. In
BPSS final states can only be referenced from one single business state. In our ex-
ample this means that two Failures and one Success object are constructed. Finally
we process the transition collection contained in the business collaboration protocol
object representation. In a BPSS transition elements are just needed if a transition
leads from one business state to another. Otherwise, if a transition is connected to an
initial, pseudo or final state the transition is denoted using the fromBusinessStatel-

19

DREF or respective toBusinessStateIDREF attribute. Hence, in our example we have
one single transition element which connects our two business transaction activity
elements. The remaining transitions which connect the business transaction activi-
ties to all other states (as in figure 2) are either specified in the Start element or in
the Success/Failure elements. The following listing shows the relevant parts of the
binary collaboration derived from our example.

<bpss:BinaryCollaboration initiatingRoleIDREF="r1"
nameID="bcl" name="FreightForwarderRetailer">
<bpss:Role nameID="rl" name="Initiator"/>
<bpss:Role nameID="r2" name="Reactor"/>
<bpss:Start toBusinessStateIDREF="bsl"
toBusinessState="GoodsDelivery" nameID="sl1"/>
<bpss:BusinessTransactionActivity businessTransaction="GoodsDelivery"
businessTransactionIDREF="bt1l" toRoleIDREF="r2"
toRole="Reactor" fromRoleIDREF="rl" fromRole="Initiator"
name="GoodsDelivery" nameID="btal"/>
<bpss:BusinessTransactionActivity
businessTransaction="DeliverySettlement"
businessTransactionIDREF="bt2" toRoleIDREF="r2"
toRole="Reactor" fromRoleIDREF="rl" fromRole="Initiator"
name="DeliverySettlement" nameID="bta2"/>
<bpss:Success conditionGuard="Success" fromBusinessStateIDREF="btl"
fromBusinessState="GoodsDelivery" nameID="sl1l" name="Success"/>
<bpss:Failure conditionGuard="Failure" fromBusinessStateIDREF="btl"
fromBusinessState="GoodsDelivery" nameID="s2" name="Failure"/>
<bpss:Failure conditionGuard="Failure" fromBusinessStateIDREF="bt2"
fromBusinessState="DeliverySettlement" nameID="s3" name="Failure"/>
<bpss:Transition toBusinessStateIDREF="bta2"
toBusinessState="DeliverySettlement" fromBusinessStateIDREF="btal"
fromBusinessState="GoodsDelivery" nameID="t1"/>
</bpss:BinaryCollaborations>

5.2 Processing information exchanges between partners

A business transaction in BPSS is equivalent to a business transaction in UMM.
Thus, mapping this construct is straightforward. Again, our algorithm creates a busi-
ness transaction object and sets its name according to the UMM transaction. Further-
more, the pattern that is used in the particular transaction has to be set. We derive it
from the concrete stereotype of the requesting business activity in the corresponding
UMM transaction. Regarding our example we create a business transaction con-
tainer in the BPSS and assign it the name GoodsDelivery. Moreover, we set the
pattern attribute to RequestResponseActivity.

In the next step, we construct the object representations of the requesting business
activity and the responding business activity - in our example the activities Passin-
20nGoodsCmrToRetailer and PassingOnGoodsCmrToRetailer - and add them to the
BPSS business transaction object. Both business actions contain a set of tagged val-
ues defining parameters regarding security and legal facets. The semantical mapping
of these parameters follows the extensive descriptions in [HHO4a], whereas the tech-
nical implementation is quite simple and hence left out. The last stage in constructing
the BPSS representation of a business transaction is to denote the information that

20

is exchanged in the particular interaction. An information envelope of a UMM busi-
ness transaction corresponds to a document envelope in BPSS. Similar to UMM,
the envelopes that are described in a BPSS business transaction are instances of a
certain business document. It follows, that in a BPSS structure business documents
are denoted outside of a certain business transaction in order to reuse them. In our
example this results in two business document objects located directly in the bi-
nary collaboration container - named GoodsAndCMRToRetailerRequest and Pass-
ingBackSignedCMRToTruckerDestinationResponse. Then we reference the Good-
sAndCMRToRetailerRequest document by adding a document envelope object to
the requesting business activity object and linking them via the businessDocumen-
tIDREF attribute of the document envelope. The same procedure applies to the busi-
ness document sent back by the requesting party. A document envelope is added to
the responding business activity and linked to the PassingBackSignedCMRToTruck-
erDestinationResponse document. The actual document structure is then referenced
by using the specificationLocation attribute of the business document object. The fol-
lowing listing denotes the second part of our BPSS describing the perishable goods
example.
<bpss:BusinessTransaction pattern="RequestResponseActivity"
nameID="bt1l" name="GoodsDelivery">
<bpss:RequestingBusinessActivity nameID="regBA"
name="PassingOnGoodsCmrToRetailer">
<bpss:DocumentEnvelope businessDocumentIDREF="bd1l"
businessDocument="GoodsAndCMRToRetailerRequest" nameID="del" />
</bpss:RequestingBusinessActivity>
<bpss:RespondingBusinessActivity nameID="resBA"
name="PassingOnGoodsCmrToRetailer">
<bpss:DocumentEnvelope businessDocumentIDREF="bd2"
businessDocument="PassingBackSignedCMRToTruckerDestinationResponse"
nameID="de2" />

</bpss:RespondingBusinessActivity>
</bpss:BusinessTransaction>

<bpss:BusinessDocument specificationLocation="..."

nameID="bdl" name="GoodsAndCMRToRetailerRequest"/>
<bpss:BusinessDocument specificationLocation="..."

nameID="bd2" name="PassingBackSignedCMRToTruckerDestinationResponse"/>

6 Related work

In the B2B environment there are many different standards, proposals and tools avail-
able. The ebXML framework is considered to be among the more important ones.
The reason might be that it offers a full suite of specifications ranging from messag-
ing to registry servers which allow companies to advertise their services to anybody
who is willing to conduct business. Relevant for our implementation is only ebXML
BPSS, which allows the description of collaborative processes.

Currently no implementation of a mapping between UMM and BPSS is available.
This can be considered a result of the limited usage of BPSS in today’s e-commerce.
Some theoretical approaches on how a mapping could work are already available. In
[HHKOS5] we can find a description of the relation between these two concepts.

21

Though BPSS is not the only language to describe the choreography of business
processes. There exist other well known examples like BPEL, the Business Process
Execution Language [BEAO3], which is supported by major companies or the Web
Services Choreography Description Language (WS-CDL) [Wor(04] developed by the
W3C. BPSS has one big advantage though. It is closely connected to UMM, which
has become an important factor in modern modeling.

In our JAVA -based tool we decided to use XMI, the XML Metadata Interchange
language [Obj00], as the source format. Due to the fact that XMI is used by UML
tools as an exchange format this ensures compatibility to as many different tools
as possible. Unfortunately, as discussed in section 3.2, this decision caused some
unpredictable problems. In order to facilitate the handling of XML structures we
incorporated Apache XMLBeans? as an XML data binding framework. Alternatives
would have been Java Architecture for XML Binding (JAXB) or Castor. The XML-
Beans framework appeared like the most sophisticated solution at that point.

Due to the fact that source and target format are both XML-based using W3C’s XSL
Transformation (XSLT) [Wor99] technology would have been an obvious solution.
However the transformation algorithm requires a lot of logical operations that are
difficult to implement using XSLT or even exceeding its functionality. This includes
for example the creation of unique IDs, consistency checks or splitting up a UMM
model in different BPSS files (see section 5 for further explanations).

7 Conclusion

As simple as the transformation from UMM to BPSS seems, it still has some hidden
pitfalls, which are not easy to see in advance. One of the biggest problems is right at
the beginning of the transformation process. When XMI is chosen as data exchange
format because it is based on a common standard you would expect it to look more
or less the same for any kind of modeling tool. Unfortunately this is not the case
and XMI output for the same model might vary dramatically for different tools. This
leads to the need of specialized input converters for each supported dialect. In the
special case of Rational Rose data output another problem was that some information
which was present in the diagrams was not put into the XMI code and therefore had
to be reconstructed or forced to be replaced through additional information required
by special modeling guidelines.

Generating BPSS code turned out to be the lesser problem. Most information is
already provided in a satisfying way by the UMM model. Some problems arise due
to the fact that there is some information which is not included in UMM but required
by BPSS. Furthermore, some data structures which are supported by UMM cannot
be translated into correct BPSS files.

One insight gained during the project was that the approach of a central data structure
provides a good and flexibly base for development as it allows a modular design to
support different input and output types. This leads to a point where support for

2 Apache XMLBeans framework - http://xmlbeans.apache.org/

22

different choreography languages and input languages, such as different XMI flavors,
can easily be added.

References

[BEAO3] BEA, IBM, Microsoft, SAP AG and Siebel Systems. Business Process Execution
Language for Web Services, May 2003. Version 1.1.

[BJJWO02] Maria Bergholtz, Prasad Jayaweera, Paul Johannesson, and Petia Wohed. Process
Models and Business Models - A Unified Framework. In Stefano Spaccapietra, Salvatore T.
March, and Yahiko Kambayashi, editors, ER (Workshops), volume 2503 of Lecture Notes in
Computer Science, pages 364-377. Springer, 2002.

[HHO4a] Birgit Hofreiter and Christian Huemer. ebXML Business Processes - Defined both
in UMM and BPSS. In M. Niittgens and J. Mendling, editors, XML4BPM 2004, Proceedings
of the Ist GI Workshop XML4BPM — XML Interchange Formats for Business Process Man-
agement at 7th GI Conference Modellierung 2004, Marburg Germany, March 2004, pages
81-102, March 2004.

[HHO4b] Birgit Hofreiter and Christian Huemer. Transforming UMM Business Collabora-
tion Models to BPEL. In Robert Meersman, Zahir Tari, and Angelo Corsaro, editors, OTM
Workshops, volume 3292 of Lecture Notes in Computer Science, pages 507-519. Springer,
2004.

[HHKO5] Birgit Hofreiter, Christian Huemer, and Ja-Hee Kim. Choreography of ebXML
business collaborations. Information Systems and e-Business Management (ISeB), 2005.
[ISO95] ISO. Open-edi Reference Model, 1995. ISO/IEC JTC 1/SC30 ISO Standard
14662.

[ObjO0] Object Management Group, Inc. OMG XML Metadata Interchange (XMI) Speci-
fication, November 2000. Version 1.1 (formal/00-11-02).

[Objo4] Object Management Group, Inc. Unified Modeling Language (UML) Specifica-
tion, July 2004. Version 1.1 (formal/04-07-02).

[Ros02] RosettaNet. RosettaNet Implementation Framework: Core Specification, Decem-
ber 2002. V02.00.01.

[UN/0O1] UN/CEFACT Techniques and Methodologies Group. UN/CEFACT’s Modeling
Methodology - Meta Model, November 2001. Revision 12.

[UN/03] UN/CEFACT Techniques and Methodologies Group. UN/CEFACT ebXML Busi-
ness Process Specification Schema, October 2003. Version 1.10.

[Wor99] World Wide Web Consortium (W3C). XSL Transformations (XSLT), November
1999. Version 1.0.

[Wor04] World Wide Web Consortium (W3C). Web Services Choreography Description
Language, December 2004. Working Draft Version 1.0.

23

