
Rules for Type-checking of Parametric Polymorphism
in EMF Generics

Miguel Garcia

Institute for Software Systems (STS)
Hamburg University of Technology (TUHH), 21073 Hamburg, Germany

miguel.garcia@tuhh.de

Abstract: The Eclipse infrastructure for modeling is based on EMF, an implemen-
tation of Essential MOF, the OMG standard for metamodeling. A recent addition to
EMF has been parametric polymorphism (also known as “parameterized types” or
“generics”) thus achieving the same benefits realized in other generic type systems
(most notably, Java 5). To our knowledge, this is the first formal account in the litera-
ture of the resulting type system, including the well-formedness rules (WFRs) for type
expressions. We offer an initial formalization of the type system of EMF Generics
by formulating those WFRs in OCL (Object Constraint Language). The insights thus
gained are applicable to solve the type-checking problem for custom DSLs (Domain
Specific Languages).

1 Introduction

The EMF infrastructure allows the programmatic manipulation of models as first-class
citizens by making available (among others) reflection and persistence services that sig-
nificantly increase the productivity of the development of modeling tools. A cornerstone
of such infrastructure is the language in which models are expressed (Ecore) whose type
system adds generics to the type system of Essential MOF [Obj06]. Models expressed
in Ecore can be seen in turn as a shorthand notation for types in Java, thanks to the code
generation capabilities delivered with EMF. It is these generated classes that are used as
a software component in tools for DSLs (Domain Specific Languages), with the Ecore-
based model specifying the abstract syntax for the DSL in question [Gar06]. Ecore can
equally well be used to capture the data model of a general-purpose application, although
we focus on the modeling-tool scenario throughout this paper.

The modeling abstractions supported by Ecore language constructs can be conceptualized
as a subset of those available for UML class models. With this limitation no significant
loss in expressivity is incurred, as every datamodel expressed in UML can be reformulated
as a corresponding Ecore + OCL model. Several advantages result from focusing on a well
defined set of constructs. For example, an implementation supporting Object-Relational
Mapping (ORM) of Ecore-based models must deal with considerably fewer special cases
than its UML counterpart.

261

The structure of this paper is as follows. Sec. 2 reviews definitions around type systems,
serving as background for the characterization of EMF Generics in Sec. 3, including the
OCL formulation of well-formedness for type expressions. Subtyping between parame-
terized types is formalized, after discussing conformance of a parameterized type to its
declaration. Related work, e.g. tooling support for modeling with generics, is covered
in Sec. 4. Conclusions and plans for future work are discussed in Sec. 5. Knowledge is
assumed from the reader about metamodeling and Java 5 Generics, while experience in
OCL is helpful but not required.

2 Type systems of programming and modeling languages

The grammar of a programming or modeling language specifies the set of syntactically
legal programs. Not all of them are useful: those (programs, models) on which the trans-
lator would fail are discarded by the well-formedness rules (WFRs) for sentences in the
language. For example, requiring all usages of an identifier to refer to a declaration that is
in scope is a common WFR. Typing rules add another hurdle that well-formed programs
should overcome: they allow determining (preferably at compile-time) the most specific
type of each expression, with the purpose of rejecting those programs that are type unsafe,
i.e., those which may cause at runtime the assignment of a value of type T1 to a location
declared to hold values of type T2, with T1 not a subtype of T2. Type safety alone does
not rule out all unwanted runtime behaviors: correctly typed programs may crash, never
terminate, or produce incorrect results. The decision procedures for analyzing properties
of interest beyond type-safety are the realm of Hoare-style program verification [Gor89]
or model-checking tools [Lam06]. In contrast to these specialized techniques, type sys-
tems have a successful track record in terms of cost/benefit (specification effort vs. variety
of unsafe situations detected), thus explaining all the effort that goes into their engineer-
ing. The designers of a type system must balance natural tensions among expressiveness,
performance of type inference, and usability of the resulting type system.

More in detail, specifying a type system involves:

1. Making explicit the rules by which new types can be defined. Together with the set
of built-in types, types so constructed constitute the universe of types for a given
program or model.

2. Building upon this vocabulary of valid types, the link to the grammar of the lan-
guage is established in the form of typing rules, i.e., a procedure to assign (some-
times infer) a unique type for each well-formed expression in the language. This
inference is not performed in isolation but taking into account an environment of
visible identifier, type pairs.

3. Finally, the subtyping relationship between types allows determining, in conjunction
with the type annotations from the previous item, whether the program is type safe.
This algorithm is embodied in the type checker

262

The mechanism of choice to define type construction expressions is usually an EBNF
grammar with additional WFRs, generating a set of valid types instead of valid sentences.
The need for WFRs for type expressions can be seen for example in the context of generic
type declarations, i.e., those owning one or more type parameters which may impose con-
straints for type arguments to fulfill. Not every syntactically-correct parameterized type
(listing type substitutions) conforms to its type declaration. Types are generally compile-
time entities, but EMF always reifies them at runtime for reflection. Java 5 supports re-
flection of typing information in the form of java.lang.reflect classes, with much
improved support available in Java 6 (javax.lang.model.util.Types).

Similar to Java before generics, a classifier declaration in Ecore before 2.3 did not own any
type parameters and thus was a constructor for just one type. Instead, a classifier with type
parameters defines a set of types, one for each conformant substitution by a type argument.
For example, a list that keeps its items automatically sorted may be declared as

class OrderedList<T extends Comparable<? super T>> {...}

making clear that T admits any type argument conforming to Comparable<? super T>.
Interface Comparable allows comparing two values of type T or supertypes thereof. For
example, if an ordered list is to contain String items a comparator for Object will
also do, as strings are objects. Bounded generics allow writing generic algorithms which
minimally depend on the type of the input, while preserving static type-safety. The idea of
factorizing object capabilities into fine-granular types was first introduced by ML [Gil97].

Angle brackets are used for two different purposes in Java 5. In the example above, the
outermost pair of angle brackets encloses a type parameters section, while the innermost
pair encloses a type arguments section. A type parameters section occurs in the context of
type construction, while no new type is introduced by type arguments (they act like queries
returning types already defined). In the example, the fragment ? super T denotes a set
of types, each of them lower bounded by T (lower bounded by being generics-speak for
supertype of). Subtyping is formalized in Sec. 3.3. The ? is not actually a type argument
but a wildcard standing for any of several possible type arguments. A wildcard can only
be used in places where a type argument is expected, however it should not be considered
to be the name of a specific type. For instance, each occurrence of ? in Pair<?,?>

in general stands for different types, and ? is not a subtype of ?. By convention, the
unqualified wildcard ? is a shorthand for ? extends Object.

3 Well-formed Type Expressions in EMF Generics

Two main constructs are subject to well-formedness checking: (a.1) the declaration of a
generic type, and (a.2) a parameterized type, i.e., an invocation of (a.1) with type argu-
ments. The OCL WFR for (a.1) is given in Sec. 3.1, as a prerequisite for answering:

b.1. whether a given parameterized type is a valid invocation of its declaration (Sec. 3.2)

b.2. subtyping relationship between two parameterized types (Sec. 3.3)

263

The precise formulation of these queries over ASTs is not straightforward given the rich
structure of references that (a.1) and (a.2) may exhibit. For example, determining (b.1)
must take into account two different scopes for type parameters (that of the declaration
and that of the invocation) where moreover wildcards may occur (except in bounds of type
parameters in a.1). For the same reason, the case-analysis of transformation algorithms
operating on ASTs of type expressions is intricate.

Figure 1 shows the new classes (ETypeParameter and EGenericType) added to the
metamodel of Ecore to support genericity. Only legal instantiations of this metamodel
will result in legal Java types. The reader is invited to compare the readability of the
OCL formulation vs. the current realization in EMF, commented procedural code in
org.eclipse.emf.ecore.util.EcoreValidator (“specification by reference imple-
mentation”). Moreover, OCL invariants can be compiled into Java, allowing the automatic
detection of violations of WFRs during AST tree-building or transformation, before fur-
ther processing takes place. The WFRs for the non-generics fragment of Ecore are covered
elsewhere [BSM+03, Obj06].

Figure 1: Fragment of the Ecore metamodel dealing with Generics

264

3.1 Declaration of a Generic Type

Informally, well-formed ASTs of (a.1) consist of an EClassifier with a non-empty list
of ETypeParameter, which from then on are in scope for the whole type declaration
(e.g. class C <T extends C<T>> is legal, §8.1.2 in [GJSB05]). A type parameter
owns a possibly empty list of upper bounds, later used to answer (b.2). Each such bound
is represented in the AST as an EGenericType which may represent:

• a reference to a type variable (in scope for a.1), acting as a terminal node, as no type
arguments can be specified

• a reference to a non-generic type

• a reference to a generic type, either with or without type arguments (in the latter
case a so called raw type reference).

Listing 1 contains the OCL formulation of the sketched WFRs.

Listing 1: WFRs for generic type declarations

c o n t e x t E C l a s s i f i e r
inv c o n s i s t e n t T y p e P a r a m e t e r s :

a l l D i f f e r e n t (e T y p e P a r a m e t e r s . name) and
eTypeParame te r s−>f o r A l l (t p | t p . i s C o n s i s t e n t (e T y p e P a r a m e t e r s))

c o n t e x t ETypeParameter : : i s C o n s i s t e n t (t p s I n S c o p e :
C o l l e c t i o n (ETypeParameter)) : Boolean

d e f : s e l f . name <> ’ ’ and (s e l f . eBounds−>i sEmpty () or
s e l f . eBounds−>f o r A l l (t r |

t r . i s C o n s i s t e n t T y p e R e f e r e n c e (t p s I n S c o p e)))

c o n t e x t EGener icType : : i s C o n s i s t e n t T y p e R e f e r e n c e (
t p s I n S c o p e : C o l l e c t i o n (ETypeParameter)) : Boolean

d e f : not i s W i l d c a r d () and (
(s e l f . i s R e f e r e n c e T o T y p e P a r a m e t e r ()

and t p s I n S c o p e−>i n c l u d e s (s e l f . eTypePa rame te r))
xor
(s e l f . i s R e f e r e n c e T o C l a s s i f i e r () and
−− s e l f . e C l a s s i f i e r i s t h e d e c l a r a t i o n o f t h e g e n e r i c t y p e
s e l f . e C l a s s i f i e r . i s V a l i d T y p e I n v o c a t i o n (s e l f . eTypeArguments)))

c o n t e x t EGener icType : : i s R e f e r e n c e T o T y p e P a r a m e t e r () : Boolean
d e f : e C l a s s i f i e r −>i sEmpty () and

not eTypeParamete r−>i sEmpty () and eTypeArguments−>i sEmpty ()

c o n t e x t EGener icType : : i s R e f e r e n c e T o C l a s s i f i e r () : Boolean
d e f : not e C l a s s i f i e r −>i sEmpty () and eTypeParamete r−>i sEmpty ()

265

3.2 Type invocation

Again informally, a parameterized type (a.2) consists syntactically of a name reference to
a generic type (a.1), followed by one or more type arguments. At the AST level, all these
constructs are instances of EGenericType, with conventions on their connectivity used to
determine the role played by the instance (conventions fixed when the abstract syntax was
chosen). Details are given below as individual WFRs are reviewed. Syntactically valid
type arguments can be any of:

• references to type variables in scope for the type invocation. This scope is introduced
by a generic type or operation declaration in which the type invocation occurs, and
is not to be confused with the scope of type variables for the referred generic type
declaration.

• references to types (raw type reference, parameterized type reference, or reference
to non-generic type)

• wildcards (?, ? extends oneUpperBound, ? super oneLowerBound).
Each of these bounds, just like bounds in a generic type declaration, cannot be a
wildcard itself. Instead, it can assume any of the forms described in the two previous
items.

The start situation when answering (b.1) are ASTs for a parameterized type P1 = G <
T1, ..Tn > and its declaration D1 = G < A1, ..An >. P1 and D1 are not directly
comparable as usages of type variables belong to disjoint scopes and as P1 may con-
tain wildcards. A process termed capture conversion ([GJSB05], §5.1.10) rewrites those
wildcards into appropriately bounded fresh type variables (whose lifetime is limited to an-
swering b.1). The resulting type invocation has the form P2 = G < X1, ..Xn >. The
next rewriting takes place on the declaration D1 by substituting all occurrences of type
variables declared in D with the type arguments from P2. Each Ai, i = 1..n is rewritten
to Ai[V (Aj) ← Xj , j = 1..n], where V (Aj) stands for the type variable introduced by
Aj . The resulting working expression D2 is not a declaration anymore but a parameterized
type (a.2) sharing the same scope of type variables as P2. The final step involves iterating
over each actual type argument tpi in P2, checking if it is a subtype of each upper bound
of the type argument at the ith position in D2. In case any of these comparands refers to a
type variable, type argument containment (explained in the next subsection) is used.

Listing 2: WFRs for type invocations

c o n t e x t E C l a s s i f i e r : : i s V a l i d T y p e I n v o c a t i o n (−− s e e 4 . 5 i n JLS3
−− t y p e A r g s c o n t a i n s t h e t y p e argument s o f t h e t y p e i n v o c a t i o n
t y p e A r g s : Sequence (EGener icType)) : Boolean

d e f : i f not s e l f . i s G e n e r i c T y p e D e c l a r a t i o n ()
then typeArgs−>i sEmpty ()
e l s e typeArgs−>i sEmpty () −− raw t y p e

or i s V a l i d T y p e I n v o c a t i o n A f t e r C a p t u r e C o n v e r s i o n (
c a p t u r e C o n v e r s i o n (t y p e A r g s))

e n d i f

266

c o n t e x t E C l a s s i f i e r : : i s V a l i d T y p e I n v o c a t i o n A f t e r C a p t u r e C o n v e r s i o n (
t y p e A r g s : Sequence (EGener icType)) : Boolean

pre : typeArgs−>i sEmpty ()
or typeArgs−>f o r A l l (t a | not t a . i s W i l d c a r d ())

c o n t e x t E C l a s s i f i e r : : i s V a l i d T y p e I n v o c a t i o n A f t e r C a p t u r e C o n v e r s i o n (
t y p e A r g s : Sequence (EGener icType)) : Boolean

d e f : −− t h i s o p e r a t i o n has an OCL−s p e c i f i e d p r e c o n d i t i o n , s e e above
typeArgs−>i sEmpty ()
or Sequence (1 . . typeArgs−>s i z e ())−> f o r A l l (i n d e x |

eTypeParame te r s−>a t (i n d e x) . i s V a l i d T y p e S u b s t i t u t i o n (
typeArgs−>a t (i n d e x) , t y p e A r g s))

c o n t e x t ETypeParameter : : i s V a l i d T y p e S u b s t i t u t i o n (−− 4 . 1 0 . 2 i n JLS3
−− c c t a i s a c a p t u r e−c o n v e r t e d t y p e argument , i . e . n o t a w i l d c a r d
c c t a : EGenericType ,
t ypeArgsForAl lTypePa rams : Sequence (EGener icType)) : Boolean

d e f : s e l f . eBounds−>f o r A l l (s i |
s i . i sSupe rTypeOf (c c t a , t ypeArgsForAl lTypePa rams))

3.3 Subtyping between two parameterized types

Subtype and Supertype are binary relations on types. They are partial orders (i.e., re-
flexive, antisymmetric, and transitive) and transpose of each other. It is sufficient to define
directSubtype (or directSupertype) to have Subtype and Supertype univocally deter-
mined. Direct subtype, symbolized <1, consists of:

• an enumeration of pairs of predefined types (i.e. for the BuiltInType×BuiltInType
subset of Type × Type)

• a partition of the remaining cases into categories with a membership condition for
each. For example, in the type system of Java 5, the partition with pairs of the form
NullType, C (where C is a class or interface type) has the constant membership

condition True. As a consequence, null, the only value conforming to the type
NullType, can always be assigned to a location declared to hold instances of C, for
any declared type C.

Besides answering whether subtyping holds between two types, it is sometimes possible
to conclude whether two type expressions T1,T2 (involving type variables and wildcards)
exhibit subtyping, i.e., whether the set of types denoted by T1 is necessarily a subset of
that denoted by T2. This procedure, type argument containment (§4.5.1.1 in [GJSB05]) is
depicted visually in Figure 2 and formalized for the Ecore metamodel in terms of OCL as
shown in Listing 3.

267

Figure 2: Graphical display of the rules for Type Argument Containment. Arrows point at the
container argument

Listing 3: Type Argument Containment

c o n t e x t EGener icType : : c o n t a i n s (TA : EGener icType) : Boolean
d e f : (s e l f = TA) or

i f s e l f . i sUpperBoundedWi ldca rd ()
then −− l e f t branch i n F igur e 2

i f TA . i sUpperBoundedWi ldca rd ()
then s e l f . eUpperBound . i sSupe rTypeOf (TA . eUpperBound)
e l s e s e l f . eUpperBound = TA
e n d i f

e l s e i f s e l f . i sLowerBoundedWildcard ()
then −− r i g h t branch i n F i g ur e 2

i f TA . i sUpperBoundedWi ldca rd ()
then s e l f . eUpperBound . i sSupe rTypeOf (TA . eUpperBound)
e l s e s e l f . eUpperBound = TA
e n d i f

e l s e f a l s e
e n d i f

A type argument is either a wildcard, a raw type invocation, a parameterized type invoca-
tion, or a reference to a type variable. Therefore, type argument containment alone does
not provide an answer in all cases where two arbitrary type arguments are compared for
subtyping. An important special case is the comparison of two parameterized types with-
out wildcards or type variables: it succeeds only when they refer to the same generic type
and their arguments match exactly: none of List<String>, List<Object> is subtype
of the other, for otherwise type-unsafe updates would be allowed. The rules in Figure 2 im-
ply that upper-bounded wildcards exhibit covariant subtyping with respect to their bounds.
In contrast, lower-bounded wildcards give rise to contravariant subtyping.

4 Related Work

Emfatic [Dal05] is an Eclipse-based IDE that greatly simplifies the creation of Ecore-based
models thanks to a well-designed textual notation. We have extended Emfatic to handle
generics, allowing in particular the translation from .emf into .ecore. This work is part
of a larger project (supported by a 2006 Eclipse Innovation Grant) involving extensions

268

to the Eclipse Modeling infrastructure. Up-to-date progress reports are available on this
author’s homepage, http://www.sts.tu-harburg.de/˜mi.garcia/

Although Ecore so far does not include executable statements, this situation will change
as ideas developed originally for Executable UML [RFW+04] find their way into Ecore
extensions. Generics-aware type checking is relevant for the Eclipse MDT implementation
of OCL, with UML2 support available from the 1.1 release (UML2 brings its own notion
of polymorphic types). A discussion of typing for Generics OCL can be found in [Kya05].

Bruce explains in [Bru02] the formal machinery required for analyzing the type system of
OO languages, including a discussion of the design decisions made for several languages
currently in use. Determining whether the rules of a proposed type system (defined as
described in Sec. 2) actually reject all type-unsafe programs is a topic on its own, with
researchers increasingly relying on mechanized proofs, for example for Java [ON99].

Before generics, EMF developers would routinely reuse the Java code generated by EMF,
adding potentially unsafe downcasts. A refactoring to automatically parameterize Java
classes [KETF07] can be used to remove the need for such downcasts. The APIs used in its
Eclipse implementation are explained in a tutorial by Fuhrer [Fuh05]. Another discussion
of type inference in Java 5 can be found in [PB06].

5 Conclusions and Future Work

Type systems are an often neglected area in DSL design. This state of affairs can be traced
back to the perception that the specification and implementation of type-checking is too
time consuming, given its interdependence with all the language constructs of the DSL
in question. Additionally, most DSLs are translated into an statically type-safe language
which provides a “safety net” to catch type unsafe programs. We have motivated the
need for declarative and machine-processable encodings of type-checking rules by show-
ing productivity and quality advantages in comparison to a manual implementation for an
industrially-relevant DSL, Essential MOF extended with Generics, which moreover has a
rich type system. The resulting OCL expressions can be used as test oracles in conjunction
with inputs produced by model-based test generation [CGN+05], and in the implementa-
tion of Design-by-Contract [MMS98]. With it, runtime checks during the execution of
transformations on ASTs are instrumented automatically, reporting whenever a WFR is
broken. As previously isolated transformations are aggregated into model compilers, the
ability to detect a contract violation before further processing takes place is essential.

Future work building upon the formulation of type-checking rules in terms of OCL at
the DSL metamodel level involves Certified Model Transformations. This certification
comprises the design-time (symbolic) analysis of behavior of a transformation algorithm,
for all possible executions that satisfy stated preconditions, to ensure termination and the
establishment of stated postconditions. This capability is necessary if model compilers are
to be considered on par with their 3GL counterparts.

269

References

[Bru02] Bruce, K. B. Foundations of Object-Oriented Languages: Types and Semantics. MIT
Press, Cambridge, MA, USA, 2002.

[BSM+03] Budinsky, F, Steinberg, D, Merks, E, Ellersick, R, and Grose, T. J. Eclipse Modeling
Framework. Addison-Wesley Professional, Boston, MA, USA, 2003.

[CGN+05] Campbell, C, Grieskamp, W, Nachmanson, L, Schulte, W, Tillmann, N, and Veanes,
M. Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer.
Technical Report MSR-TR-2005-59, Microsoft Research, 2005.

[Dal05] Daly, C. Emfatic Language for EMF Development,
http://www.alphaworks.ibm.com/tech/emfatic, 2005.

[Fuh05] Fuhrer, R. Dagsthul Seminar Types for Tools, Static Analysis for Java in Eclipse,
http://kathrin.dagstuhl.de/files/Materials/05/05251/05251.FuhrerRobert1.Slides.ppt,
2005.

[Gar06] Garcia, M. Formalizing the well-formedness rules of EJB3QL in UML + OCL. In
Kühne, T, editor, Reports and Revised Selected Papers, Workshops and Symposia at
MoDELS 2006, Genoa, Italy, LNCS 4364, pages 66–75. Springer-Verlag, 2006.

[Gil97] Gilmore, S. Programming in Standard ML ’97: A Tutorial Introduction. Technical Re-
port ECS-LFCS-97-364, Laboratory for Foundations of Computer Science, Department
of Computer Science, The University of Edinburgh, 1997.

[GJSB05] Gosling, J, Joy, B, Steele, G, and Bracha, G. Java(TM) Language Specification, The
(3rd Edition) (Java Series). Addison-Wesley Professional, July 2005.

[Gor89] Gordon, M. J. C. Mechanizing programming logics in Higher Order Logic. In Current
trends in hardware verification and automated theorem proving, pages 387–439, New
York, NY, USA, 1989. Springer-Verlag New York, Inc.

[KETF07] Kieżun, A, Ernst, M. D, Tip, F, and Fuhrer, R. M. Refactoring for parameterizing Java
classes. In ICSE’07, Proceedings of the 29th International Conference on Software
Engineering, Minneapolis, MN, USA, May 23–25, 2007.

[Kya05] Kyas, M. An extended type-system for OCL supporting templates and transformations.
In M. Steffen and Gianluigi Zavattaro (Eds), Formal Methods for Open Object-Based
Distributed Systems (FMOODS 2005), Lecture Notes in Computer Science, number
3535, pages 83–98. Springer-Verlag, 2005.

[Lam06] Lamport, L. The +CAL Algorithm Language. In NCA ’06: Proceedings of the Fifth
IEEE International Symposium on Network Computing and Applications, page 5, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[MMS98] Meyer, B, Mingins, C, and Schmidt, H. Providing Trusted Components to the Industry.
Computer, 31(5):104–105, 1998.

[Obj06] Object Management Group. Meta Object Facility (MOF) Core Specification, formal/06-
01-01, http://www.omg.org/docs/formal/06-01-01.pdf, Jan 2006.

[ON99] Oheimb, D. v and Nipkow, T. Machine-checking the Java Specifica-
tion: Proving Type-Safety. In Alves-Foss, J, editor, Formal Syntax and
Semantics of Java, volume 1523 of LNCS, pages 119–156. Springer, 1999.
http://isabelle.in.tum.de/Bali/papers/Springer98.html.

[PB06] Plümicke, M and Bäuerle, J. Typeless programming in Java 5.0. In PPPJ ’06: Proceed-
ings of the 4th international symposium on Principles and practice of programming in
Java, pages 175–181, New York, NY, USA, 2006. ACM Press.

[RFW+04] Raistrick, C, Francis, P, Wright, J, Carter, C, and Wilkie, I. Model Driven Architecture
with Executable UML. Cambridge University Press, Cambridge, UK, 2004.

270

