Automated Web Service Composition
Methods and Tradeoffs

Markus Stumptner
University of South Australia,
Advanced Computing Research Centre,
5095 Mawson Lakes (Adelaide) SA, Australia,
email: mst@cs.unisa.edu.au

Abstract: This paper examines the use of constraint-based configuration for the com-
position of Web Services. Web Services are widely assumed to represent the basis for
the next generation of flexible distributed applications in B2B E-commerce, and the
composition of complex applications from individuals services has attracted much at-
tention. We show how this composition problem can be addressed at increasing levels
of semantic content embedded in the description of services, moving from purely ma-
nual composition to describing service matching as a configuration problem that can
be solved using constraint-based methods. We examine the restrictions imposed by Se-
mantic Web ontology languages and providing a succinct and high level mechanism for
imposing the different boundary conditions resulting from the multilayered application
environment. We give an example showing the configuration process for a simple ex-
ample problem, discuss the ramifications of the full composition problem, and describe
the resulting system architecture.

1 Introduction

Web Services [ACKMO04] have grown to be widely perceived as the architecture that will
fuel the next generation of flexible distributed applications in B2B E-commerce and other
fields, with individual Web Services being composed into more complex applications. In
this view of the distributed computing world, a Web Service is basically an individual com-
ponent that communicates with its environment through a set of parameterized, messages
typically using a web-related protocol and XML-based encodings for the messages. Web
Services have promise to adress multiple different but related concerns at the same time:

encapsulating business logic in clearly defined components

flexibility and standardization through HTTP-based communication

homogeneous interface can hide heterogeneous local information systems

distributed execution of multiple web services (from potentially different provides) wi-
thin the scope of the same application

e Dynamic selection of desirable candidates for cooperation from a set of offered candida-
tes (service matching)

Different languages for describing Web services have been developed over the past few
years; at the moment the most support candidate is WSDL (Web Service Description Lan-
guage) [CCMWO1]. WSDL describes a service in terms of multiple ports, each of which
defines sets of ingoing and outgoing messages that can be used to communicate with the
service through that port. A message is an XML structure that contains the parameters
(called parts) necessary for execution of the service, or passes back the result. WSDL de-
fines four operation modes, notifications, one-way, solicit-respons, and request-response,
each of which corresponds to a particular combination of output and input messages (e.g.,
solicit-response generates an output message and receives a return message). In addition,
a WSDL description gives a binding for a service, specifying the actual communication
protocol (e.g., SOAP, HTTP, or MIME) and its settings.

227

The service matching counterpart to WSDL’s service descriptions is UDDI (Universal Des-
cription, Discovery and Integration) [ea02b]. UDDI describes businesses in terms of physi-
cal attributes (name, address, and lists of services), plus extended attributes called TModels
that describe services by reference to standard taxonomies such as NAICS (North Ameri-
can Industry Classification System). However, UDDI has been recognized to be severely
limited in practice due to the fact that it solely supports keyword searches (in effect, string
matching) on its attributes and does not permit any description of actual service semantics.
As aresult it is either bypassed or extended by all the suggested approaches below.

This is because, as is clear from the list of expectations after the first paragraph, in particular
the fifth property, that individual Web services by themselves are of limited applicability.
They are either only considered a building block for more complex applications that can be
composed through the (possibly repeated) execution of multiple different Web services, or
at the very least independent components available for distributed execution that therefore
require a separate process for their identification and use. In particular the last of the five
properties listed above lies at the heart of the web service composition problem. A given set
of web services can be arranged in different ways, or different web services could theoreti-
cally be arranged to solve the same problem depending on particular conditions for a given
application. It is at this level that WSDL descriptions are considered insufficiently power-
ful to capture the information required for the arranging process, and extensive research on
other methods has been conducted.

Methods that have been studied so far to escape the WSDL/UDDI description bottlen-
eck range from largely static specification methods developed on the basis of classical
workflow modeling [YP02] over dedicated modeling languages [FLP*03], ontology lan-
guages [MBEO3], and dedicated Web service description languages [TheO1, NMO02] to
agent-based approaches [VSSBRO3]. Our concern lies mostly in examining the nature of
the composition problem and identifying to what degree configuration methods can be put
to use.

In the next section we will briefly discuss the basic infrastructure for Web service compo-
sition, and then examine thes different approaches and their shortcomings. In Section 3.4
we show how service matching generation can be described as a configuration problem
and solved using constraint-based methods, circumventing the restrictions imposed by Se-
mantic Web ontology languages and providing a succinct and high level mechanism for
imposing the different boundary conditions resulting from the multilayered application en-
vironment. We give an example showing the configuration process for a simple example
problem, discuss extensions including full service composition in Section 3.6 and finally
discuss architectural issues in Section 3.5.1.

2 Infrastructure for Web Service Composition

Conceptually, two subtasks of the WS composition task can be distinguished, the actual
logical arrangement and connection of the different services (also known as choreography
or orchestration [KSR04]), and the selection of the particular services that are suitable to
participate in the application in situations where multiple services are being offered (also
known as matching). Generally, choreography solutions assume the existence of a human
developer who uses some high level (often graphical) language that explicitly specifies the
operations called at a particular point in the sequence. We use composition here to refer to
approaches where a significant part of this process has been automated.

For the purpose of this paper we start by examining a simplified version of the WS combi-
nation model proposed by [YP02]. We refer to the parameters of the output messages of a
service s as o(s) and to the parameters of the input messages as i(s).

Definition 2.1 Given a set of services S = s1,...,8p, with O = Uo(s), I= Ui(s) a
composite service is a tuple < S, M >, and the partial function M : O +— I is the

228

parameter mapping.

The definition of [YP02] also permits specifying a mode for composition that indicates
whether alternate services that fit the description of S are executed in parallel or sequen-
tially (in case one fails). For space reasons we do not address this point or specify at this
time how particular output values are mapped to input values in other messages, merely
that they are. The mapping is partial because individual parameters may have default va-
lues or go unused, and it could involve more complex transformations (thus incorporating
the message synthesis and message decomposition of [YP02]).

2.1 Web Service Composition Languages

In the last years, a number of new conceptual languages for describing application beha-
viours have been developed, mostly with a view towards modeling business processes and
web services. So far no clear standard language has emerged, although BPEL4WS seems
to have the strongest industry base.

UML EDOC : The UML Profile for Enterprise Distributed Object Computing (EDOC)
was released in 2002 as a MOF (UML Meta Object Facility) compliant framework
by the OMG. It has an expressive graphical notation but the semantics for its life-
cycles are limited and ambiguous.

XPDL: The Workflow Management Coalition (WfMC) has developed an XML-based Pro-
cess Definition Language (XPDL) for supporting the interchange of process descrip-
tions between different workflow systems. It is rich in modelling concepts but there
is no graphical representation.

Web service languages: Most of the released web flow languages are based on XML and
are built on the top of WSDL. Remember that WSDL describes only static interfaces.
The Business Process Execution Language for Web Services (BPEL4WS) combines
the concepts of Microsoft’s XLANG and IBM’s WSFL. It allows the description of
life cycles and provides a message correlation model.

ebXML: ebXML offers a standard for describing business processes and for choreogra-
phy of business transactions in business collaborations. It focuses on the exchange
of business messages, collaboration agreements and collaboration profiles. ebXML
uses UML for business process specification, but limits itself to class diagrams,
which are not intended for the direct creation of ebXML business process specifi-
cations [TeaOl1].

Common to all these languages is that they assume a fixed assignment of the individual
web services to the cooperation described, and that the matching task has already been
performed (more likely manually than automatically). Formal criteria for correct matchings
under these conditions have been described in [YPO2], but are restricted by the limited
information available. A service S consists of a set of unspecified contents C, activites A,
and properties P.

Definition 2.2 Activity a of S is compatible with a' of S’ based on equivalence of their
respective pre- and post-conditions and the assumption that the input and output sets of a
are (respectively) a subset of those of a' (co-variance, or observation consistency [SS02]),
and S is compatible with S' if any operation of S is compatible with some of S', and the
content of S is a subset of that of S'. S conforms to S’ if their contents overlap and there is
one pair of operations a € A, a' € A', so that the output of a is compatible with the input

of .

229

Thus, conformance is a necessary condition for a correct outcome but not a sufficient one.
We continue with an examination of the actual approaches that have been proposed to
address the issue.

3 Matching and composing web services
3.1 Automatic Matching Support

In what is called an ontological workflow approach, the POESIA system [FLP+03] descri-
bes Web services in terms of “ontological coverage” and relates different services through
a separate “process framework” (which describes dependencies and therefore a partial time
ordering) and an aggregation hierarchy. Both the correctness of the aggregation hierarchy
and the appropriateness of the process framework (e.g. deadlock freeness) can be auto-
matically checked based on the data dependencies existing bewtween differen services.
Ontological coverage is used to restrict choice of services to preserve consistency between
the different services’ data needs.

The SWORD system [PF02] is a rule-based expert system for web service conposition that
uses a special-purpose planning approach to determine whether a particular service can
be composed from subsidiary ones. Lower level services are chained together by testing
whether the preceding service’s postcondition implies the following service’s precondition.

3.2 Ontology-based matching

In [MBEO3], Medjahed et al. propose a composition method based on identifying a fixed
set of compatibility criteria. Web services follow the standard WSDL model, but no less
than 17 extra descriptors are used in the model.

e For parameters, this extended modeling framework records, where applicable, the mea-
surement units associated with parameter values, and also specifies a business role for
each parameter.

Each operation has an associated purpose, category, and quality. Each of these three
again consists of three parameters.

e Purpose and Category are described by “function” value taken from some taxonomy
(e.g., RosettaNet or cXML) for Purpose and a “domain” for category, plus a list of syn-
onyms, and possible textual qualifiers (“specialization”).

e Quality is described by fees (charges for executing the service), security (secure trans-
mission yes/no), and privacy (a list of those parameters that are not shown to external
entitites). Effectively all these attributes are represented as strings, but given their limi-
ted choice from a specific taxonomy, can also be thought of as basically domain-specific
scalar values.

Finally, each Web service has a set of potential bindings. Based on these definitions, Web
services are determined as being composable in a number of steps that check whether are
composable in terms of

e mode, i.e., whether their message types are complementary (e.g., one is of type
request-response, and the other of type solicit-response),

o the parameters of corresponding messages (with one being possibly a subtype of the
other)

e purpose and category (with their respective Domains the same or synonyms, and one’s
specialization a subset of the other)

e finally, quality. This is checked individually for each property, e.g.,the offered fees must
be at least as large as the requested ones.

230

In addition the information provided describes whether any of the web services is supposed
to call operations of another one, in terms of a directed graph called the stored composition
template. The actual composition is required to represent a subgraph of the stored templa-
te. A special purpose language and matching algorithm operate on this representation. The
algorithm incorporates in hardcoded fashion the relevation comparison operators for the
different descriptors, i.e., purpose_compatible, category_compatible, quality_composable,
and message_composable. In case particular criteria are not fully satisfied, they are weigh-
ted to the degree of fulfillment.

Overall it can be said that while this approach attempts to be comprehensive in terms of
the attributes and powerful in terms of the algorithm, its flexibility is limited. The ontology
referred to in the method’s name is one fixed ontology that all services have to satisfy; there
can be no extensions.

3.3 OWL-S

OWL-S (formerly DAML-S) [ea02a] is an ontology (or a set of three related ontologies)
for what its authors call the “semantic description” of Web services. The description is divi-
ded into Service Models, which describe the way a Web service operates, Service Profiles,
which describe the advertised interface of a service (considered synonymous with “what
the service does”), and the Grounding, which maps the service to a specific WSDL des-
cription (commonly referred to as “how to use the service”, although it appears that to use
the service one needs to be aware of the other two models as well).

A Service Model has associated Processes that are atomic, composite, or “simple” (a ca-
tegory that basically serves the information hiding of internal process details — a simple
process can map to an atomic or composite one). Composite processes can be construc-
ted from simple or atomic ones using various operators (sequence, concurrent, while, etc.).
Atomic processes correspond to WSDL operations, and their inputs and outputs depend on
the type of WSDL operation represented. In addition to inputs and outputs, services are
described by their preconditions and effects, and the complete semantic description of a
service given by OWL is referred to as its IOPE. A significant number of proposals for
service matching in the OWL-S context have been published in the last years.

Paolucci [PKPS02] provides a list of requirements for a matching engine:

1. support “flexible semantic matching” between advertisements and requests “on the basis
of the ontologies available”

2. minimize false positives and false negatives

3. the requesting service should have some control over the amount of matching flexibility

4. the matching engine should encourage advertiser and requesters to be honest at the cost
of either not being matched or being matched inappropriately

5. the matching process should be efficient

Of these, criterium 1 basically states matching should be as good as possible with the
information available, and 4 merely means that matching needs to be correct - even if
someone advertises incorrectly for a reason,then they obviously desire incorrect matches to
occur.

The system checks whether the type (expressed through concepts in a OWL-S ontology) of
each request output is matched by the advertisement outputs, and each advertisement input
is matched by a request input. (Names are not checked.) Matches are ranked at four levels
based on the relationship between the compared outputs or inputs: exact if both are the
same, or if the request is an immediate subtype of the advertisement (the assumption that
subtypes will retain the same set of outputs is required explicitly in [PKPS02]). PlugIn if
the request is subsumed by the advertisement. Subsumes means that the request X is more
general than the advertisement A (X subsumes A) so that it cannot be completely provided
for. Failure means that “no subsumption relation between advertisement and request is

231

identified”.

The ranking shows two oddities. Notably, PlugIn is ranked lower than exact because there
is an implicit assumption that if provider A is more general than B, A will most likely pro-
vide less complete coverage than B, e.g., that a service that offers the functionality vehicle
is less likely to have all different models of sedan listed than one that merely advertises
sedan. Clearly this assumption is strongly dependent on domain specific factors.

Also, Failure is determined as the absence of subsumption between advertisement and
request (in either direction). Let us postulate a situation where provider A is subsumed by
request X (matching 3 of 7 outputs), provider B matches 5 outputs, but provider B has an
extraneous output not required by X. In this case, the match between X and B is a failure
and A will be chosen as Subsumes despite the fact that B would have provided something
closer to X and there would have been no harm to X from the extraneous output. We will
see another case of this in the next example.

Li and Horrocks [LHO3] are another example of OWL-S use for matchmaking. Their re-
presentation represents advertisement instances as special concepts with the argument that
TBox level reasoning is more effective than ABox reasoning, but the criteria for effec-
tiveness are not specified. Li and Horrocks have a slightly more involved list of matching
rankings that is likewise based on subsumption only but includes a separate intersection
ranking. However this is still not considered satisfactory and “excess” information is sepa-
rated from the service profile to be moved into separate providedBy and requestedBy slots
with the argument that “there is too much information and this makes it difficult to use
automated reasoning techniques”. Notably, there is no attempt to include precondition or
effect specifications.

In [NMO2], the semantics of Web services specified in OWL-S are expressed through Petri
nets which are then used to simulate execution of the service and verify dynamic properties.
There is no automatic composition.

3.3.1 OWL-S evaluation

Overall OWL-S (and OWL-S) can be found to have certain drawbacks concerning the mat-
ching process, not to speak of actual composition.

As pointed out in [vSSBR03], OWL-S can only express control patterns within one ser-
vice. In [LHO3], the restriction is assumed that individuals are not related to each other via
properties.

When putting OWL-S to practical use (although still in an artificial environment) Sabou et
al. found a number of other shortcomings [SRvS03]. These include the fact that profile and
process descriptions invite inconsistency, that Profile preconditions and effects cannot refer
to those of the corresponding process, that the specification syntax is repetitive, difficult,
and therefore error-prone, and that OWL-S ignores standard software engineering concepts,
thus preventing reuse and exploitation of parametric polymorphism in service descriptions.
In [BLWO04], other properties such as the inability to use variables in OWL expressions, are
mentioned.

3.4 Web Service Composition as Configuration

In the configuration area, although configuring software has long been a topic of rese-
arch [YMSO02, HG02, ASMO03], much of this work actually concentrates on software confi-
guration management topics, and the properties and behaviours described tend to focus on
parameter settings, module incompatibilities, and interaction with the execution environ-
ment more than on the actual behavior of the software. Web services provide a somewhat
different view, in that they postulate, by definition, complete encapsulation of the exe-
cution environment combined with an exclusively execution oriented external description

232

through their IOPE’s. We are therefore interested in examining how well this information
can be represented with the classical style of configuration descriptions as described, e.g.,
in [FFJ*03].

We therefore assume the existence of a (logic-based or constraint-based) representation
language for describing the domain constraints associated with a set of component types
organized in a monotonic inheritance graph (which could be called a subsumption hierarchy
except that full subsumption reasoning is usually not needed, but instead reasoning at the
instance level is). Instances have scalar (numerical, string, or boolean) attributes (which
may be subject to constraints) and connections to other components via ports. The specific
attributes (and sometimes their predefined fixed value), ports, and constraints depend on
the component’s type.

We assume the definition of a configuration task (DD, SRS, CLANG) as a triple of a do-
main description DD, a set of system requirements SRS, and the set of possible concepts
CLANG for the description of configuration solutions [FFJ*03]. (Complexity of course
depends on the expressiveness of the language used for the descriptions and we do not
discuss it further here.)

3.5 Key component based model

First, it must be recognized that virtually all approaches defined above have merely pushed
the UDDI approach down at most one level. Services may be matched in terms of IOPE’s,
but the inputs and outputs are generally assumed to be identically named (thus, it is assumed
that there exists a common ontology for service parameter names although not necessarily
for service names). Under these conditions the expression of the functionality of the service
seems to devolve naturally down to the outputs which they produce.

Now let us consider the classical approach used by configuration tools with object-oriented
representations. The classic approach is to express the functionality that one is looking for
in terms of key components that in turn require the existence of other, auxiliary components
until a finished configuration exists. Is it really appropriate to describe the key component
of a matching process as, for example, a car? At this point it is useful to consider that
what we are looking for is the specification of a service that looks for a car, and based on a
particular set of inputs. It is that service specification that is the key component (and which
will be used later to actually instantiate the service when the whole application is executed,
so that we can actually refer to it as a template, or the description of a call to the service).

Therefore, we establish an inheritance hierarchy of service description types according to
their inherent functionality and the attributes they possess. Service executions are instances
of these. Consider the following example of a PC selling service from [LHO3]:

e items are provided by an Actor with name Georgia ;
e items are PCs and the memory size is at least 128 Mb;

o the quantity of PCs being bought will be less than 200;

o the unit price is at least 700;

o the seller is guaranteed to have a creditLevel greater than 5;
e goods must be delivered before the 15/09/2002;

e goods must be delivered in Bristol

Using a notation for classes and constraints similar to the MML syntax from [FFJZ02]
which is based on the OMG Object Constraint Language (OCL), we can describe this
service template (contained in CLANG) as follows.! For brevity we omit the attribute
definitions:

class CompSaleAd subclass ServiceProfile

! Alternately, a specification could simply be a set of constraints handed in together, but in terms of adminis-
tration and storage, an actual specification entity seems more appropriate.

233

class Seller subclass Actor

seller1 = @Seller
name = “Georgia”;
end;

class Sale1 subclass @ CompSale
seller = sellert;
item = “PC”;
memory > 128;
processor = Set{Pentium3, Pentium4, Athlon...}
deliveryLocation = “Bristol”;
inv quantity < 200 end;
inv unitPrice > 700 end;
inv seller.creditLevel > 5 end;
inv deliveryDate < 15/09/2000
end;

Assuming that the classes below are also in CLANG,

class ServiceRequest
sv = @ ServiceProfile
end,;

the request for a particular sale would appear as follows:

e the provider is an Actor with creditLevel greater than 5
e jtems are PCs and the Processor must be Pentium4;
e the unit price must be less than 700.

class CompOrderDescription
subclass ServiceRequest end;
saleOrder = @ SaleOrderDescription
sv = @CompSaleAd;
sv.item = “PC”;
sv.processor = “Pentium4;
inv (sv.seller = @Actor)
and (sv.seller.creditLevel > 5)
inv sv.unitPrice < 700 end;
end;

If we consider the above as a set of configuration requirements, then according to the de-
finitions in [FFJ*03], this order results in the creation of an instance of CompSale, or a
subclass of it.

In summary, functionality is expressed through key components, Web service input restric-
tions and output requirements are described by constraints in the request. Properties of the
Service are specified either as constraints or constants in the profile. Unsurprisingly, extra-
neous properties, unlike [LHO3], do not prevent a match (and should not), while conditions
on properties that the specific profile does not specify do prevent it (and should). Clearly, a
match is better expressed in terms of consistency than mutual subsumption.

Flexible hierarchy matching. Above we have assumed the existence of a fixed inheritan-
ce hierarchy; in this services can still be selected not just by type but by checking their
individual properties, in the spirit of resource-oriented configuration, which started out by
using resources to express functionality of components [HJ91, FFJ*03]. Providing some
sort of automated subsumption computation for a set of classes is no problem (we note
that [LHO3] likewise assume that the concept hierarchy is not frequently changed).

Multiple service matching. Due to the instance level reasoning and the ability to use varia-
bles, it is possible to describe requests for multiple services, even of the same class, simply
by specifiying multiple service variables in the request and adding constraints on them or
their properties. This is particularly relevant in the context of coordination languages which

234

may in fact specify particular combinations of services to be executed in particular patterns,
sequentially, in parallel, or in mutual dependency. The ability to express this depends on the
capability of the representation formalism, but is available in many approaches that provide
an object-oriented component model underlying the representation (e.g., [Mai98, SFH98]).

The only other work that actually posits Web service composition in configuration terms
is that of van Splunter et al. [vSSBRO3] have addressed Web service composition using
an agent-oriented approach. Their system, originally designed to reconfigure intelligent
agents, was adapted to deal with OWL-S service descriptions. Its reasoning mechanisms are
only vaguely described, consisting of separate tasks for reasoning about the design process
(DPC), about requirements and their qualifications (RQSM), and about the design object
description (DODM). As a result, the specific representation and reasoning mechanisms
used are not clear, nor is their generic power. The authors admit to significant restrictions
such as solely configuring linear service sequences.

3.5.1 System Architecture

The switch to a configuration reasoner actually simplifies the handling as no special purpose
algorithms are needed. Of the five functionalities identified in [LHO3], advertising a service
and querying a service are handled using a standard constraint engine.

Above, we have not described any ranking scheme, and the consistency-based reasoning
of the constraint solver merely distinguishes between matches and non-matches. However,
switching to outcomes that rank matches can be done while staying within the constraint
paradigm by utilizing an optimizing constraint solver [Tsa93].

Using a constraint language instead of using OWL-S directly is no great hindrance from the
Web service perspective ([LHO3] also diverges in using standard Description Lggic (DL)
syntax for writing their specifications.) Note that the constraint descriptions can be mapped
to a description logic representation according to the guidelines set down in [FFJ 03], as
long as no constructs are used that exceed easy expressibility in DL’s. Unfortunately that
is true of any sort of service description that involves multiple interacting services, but that
is a consequence of the restricted DL syntax.

3.6 Planning

The ability to specify preconditions and effects (the “PE” in the “IOPE”) is one of the
greater expressive features in OWL-S. However, Sabou et al. [SRvS03] point out that their
utility is currently restricted because of a disconnect between the description of Service
Profiles and Processes. This issue deserves a closer look due to its effects on the computa-
tional characteristics.

The inclusion of pre- and postconditions, which is necessary for full service composition,
suggests a situation where by specifying an initial and a goal condition, any set of ser-
vices that provides the goal condition is composed. This transforms the problem from a
“normal” configuration problem into a planning problem, and in fact numerous dedicated
planning systems have been proposed to deal with the issue. In [PF02], a simple backward
chaining planner is used, [SAF03] employs a classical STRIPS-like planning formalism,
and—TWPS 03] uses a Hierarchical Task Network planner optimised for effective task de-
composition. In [TP04] a model-checking planner that can handle nondeterminism (such
as the incorporation of services whose success is not known at the time of planning).

The key issue with all planning-based approaches to Web Service composition is scalability.
In [TPO4], a state of the art planner is used with an OWL-S representation that the authors
describe as significantly more efficient than planning at the level of BPEL4WS descriptions.
While small problems can be handled efficiently, a problem involving the matching of three
processes with five parameters (with three values each) already reaches runtimes of several

235

hours (Case 6, [TP04]). The current scalability of these methods is therefore questionable.

As examined in [MMO3], the actual composition problem is significantly simplified if one
assumes the existence of prespecified control flow between the services to be composed
(as in the simple sequence of 2.1). This is the role taken by Web service cooperation lan-
guages that provide a framework (with full fledged control structures as in BPEL4WS) to
anchor the individual steps (services) in an application. The pre- and postconditions are
then constraints referring to the steps surrounding the current step in the cooperative plan
that embeds the individual Web service calls, but the actual structure is fixed (in particular
avoiding the problem of assembling complex control structures).

Notably, as expressed in [SRvS03, MMO3], unless we are dealing with a fixed set of ser-
vices, service descriptions are of limited use if there is no corresponding expanded UDDI
interface that returns services that match requests. (Note that it can use the same description
language as used for the original service requests and descriptions.)

3.7 Automata based methods

A final type of approach is the use of formal process models (in the spirit of process alge-
bras or Communicating Sequential Processes) to describe service behaviors that can then
be used in the composition task. E.g., [GHIS04] uses Mealy machines that describe permis-
sible state ¢hanges within processes and the messages exchanged between them. Another
approach [BGL 04] uses Deterministic Propositional Dynamic Logic as the underlying
formalism to describe the automata’s behavior. Like the “fixed ontology” approaches ex-
amined initially, these methods aim more at the orchestration problem - the connection of
a specific set of given processes, rather than the general composition problem.

4 Conclusion

Web services are the up-and-coming concept for the implementation of distributed enter-
prise applications, for application integration, and interoperability standards. Yet the scope
of the problem is so wide that even the boundary conditions for the service composition
task are not clearly defined - from the orchestration approaches that aim at explicit pro-
cedural programming at BPEL4WS level using XML syntax, with basic services as the
underlying statements, to the goal of automated, goal-directed programming, everything
can currently be found as proposal status. Experimentation and acceptance by the audience
will determine which approaches find widespread use.

Literatur

[ACKMO04] Gustavo Alonso, Fabio Casati, Harumi Kuno und Vijay Machiraju. Web Services.
Springer-Verlag, 2004.

[ASMO03] T. Asikainen, Timo Soininen und Tomi Ménnist6. A Koala-Based Ontology for Confi-
gurable Software Product Families. In IJCAI Workshop on Configuration, Seiten 7681,
2003.

[BGL 04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella und
+ Diego Calvanese. Synthesis of underspecified composite -services based on automated
reasoning. In Proc. ICSOC, Seiten 105-114, 2004.

[BLWO04] Steffen Balzer, Thorsten Liebig und Matthias Wagner. Pitfalls of OWL-S: a practical
semantic web use case. In Proc. ICSOC, Seiten 289-298, New York, 2004. ACM Press.

[CCMWOI] Erik Christensen, Francisco Curbera, Greg Meredith und Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1. Bericht, W3C, March 2001.

236

[ea02a]

[ea02b]
[FEJT03]

[FFJZ02]

[FLPT03]

[GHIS04]

[HGO02]

[HI91]

[KSRO4]

[LHO3]

[Mai98]
[MBEO3]
[MMO3]

[NMO02]

[PF02]
[PKPS02]

[SdFO03]

[SFH98]
[SRvS03]

[SS02]

[TeaO1]

Anupriya Ankolekar et al. DAML-S: Web Service Description for the Semantic Web.
In Proc. ISWC, Sardinia, Italy, Juni 2002.

T. Bellwood et al. UDDI Version 3.0. Bericht, UDDI.org, Juli 2002.

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus Stumptner und Mar-
kus Zanker. Configuration Knowledge Representation for Semantic Web Applications.
Al EDAM, 17(1), Januar 2003. Special issue on Configuration.

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach und Markus Zanker. Con-
figuration Knowledge Representation Using UML/OCL. In Proceedings UML 2002,
LNCS 2460. Springer, 2002.

Renato Fileto, Ling Liu, Calton Pu, Eduardo Delgado Assad und Claudia Bauzer Me-
deiros. POESIA: An ontological workflow approach for composing Web services in
agriculture. The VLDB Journal, 12(1):352-367, 2003.

Cagdas Evren Gerede, Richard Hull, Oscar H. Ibarra und Jianwen Su. Automated com-
position of e-services: lookaheads. In Proc. ICSOC, Seiten 252-262, New York, 2004.
ACM Press.

Lothar Hotz und Andreas Giinter. Using Knowledge-Based configuration for Configu-
ring Software? In ECAI Workshop on Configuration, Seiten 63-65, 2002.

M. Heinrich und E.W. Jiingst. A Resource-Based Paradigm for the Configuring of Tech-
nical Systems from Modular Components. In Proceedings of the 7th IEEE Conference
on Al Applications (CAIA), Seiten 257-264, 1991.

Rim Samia Kaabi, Carine Souveyet und Colette Rolland. Eliciting service composition
in a goal driven manner. In Proc. ICSOC, Seiten 308-315, New York, 2004. ACM
Press.

Lei Li und Ian Horrocks. A software framework for matchmaking based on Semantic
Web technology. In Proceedings WWW 2003 Conference, Seiten 331-339, Budapest,
Mai 2003.

D. Mailharro. A classification- and constraint-based framework for configuration. A/
EDAM, 12(4):383-397, 1998. Special issue on Configuration.

Brahim Medjahed, Athman Bouguettaya und Ahmed K. Elmagarmid. Composing Web
Services on the Semantic Web. The VLDB Journal, 12(1):333-351, 2003.

Daniel Mandell und Sheila A. Mcllraith. Adapting BPEL4WS for the semantic Web.
In Proc. ISWC, Sanibel Island, FL, Oktober 2003.

Srini Narayanan und Sheila A. Mcllraith. Simulation, verification and automated com-
position of web services. In Proceedings WWW 2002 Conference, Seiten 77-88. ACM
Press, 2002.

S. R. Ponnekanti und A. Fox. SWORD: A developer toolkit for Web service composi-
tion. In Proceedings WWW 2002 Conference, Honolulu, Mai 2002.

Massimo Paolucci, Takahiro Kawamura, Terry Payne und Katia Sycara. Semantic Mat-
ching of Web Services Capabilities. In Proc. ISWC, Sardinia, Italy, Juni 2002.

Mithun Sheshagiri, Marie desJardins und Timothy Finin. A Planner for Composing Ser-
vices Described in DAML-S. In Workshop on Planning for Web Services, International
Conference on Automated Planning and Scheduling, Trento, Juli 2003.

Markus Stumptner, Gerhard Friedrich und Alois Haselbock. Generative Constraint-
Based Configuration of Large Technical Systems. Al EDAM, 12(4), Dezember 1998.

Marta Sabou, Debbie Richards und Sander van Splunter. An experience report on using
DAML-S. In Proceedings WWW 2003 Conference, Budapest, August 2003.

M. Schrefl und M. Stumptner. Behavior Consistent Specialization of Object Life Cy-
cles. ACM Transactions on Software Engineering and Methodology, 11(1):92-148,
2002.

Business Process Team. ebXML Business Process Specification Schema. Bericht,
ebXML.org, Mai 2001.

237

[TheO1]

[TP04]

[Tsa93]
[vSSBRO3]

[WPST03]

[YMSO02]

[YP02]

The DAML Services Coalition. DAML-S: Semantic Markup for Web Services. In
Proceedings of the International Semantic Web Working Symposium (SWWS), Stanford,
Juli 2001.

Paolo Traverso und Marco Pistore. Automated Composition of Semantic Web Services
into Executable Processes. In Proc. ISWC, Seiten 380-394, 2004.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

Sander van Splunter, Marta Sabou, Frances Brazier und Debbie Richards. Configuring
Web Services using Structuring and Techniques from Agent Configuration. In Procee-
dings 2003 IEEE/WIC Conference on Web Intelligence, Beijing, Oktober 2003.

Dan Wu, Bijan Parsia, Evren Sirin, James Hendler und Dana Nau. Automating DAML-
S Web services composition using SHOP2. In Proc. ISWC, Sanibel Island, FL, Oktober
2003.

Katariina Ylinen, Tomi Ménnist6 und Timo Soininen. Configuring Software Products
with Traditional Methods-Case Linux Familiar. In ECAI Workshop on Configuration,
Seiten 5-10, 2002.

Jian Yang und Mike P. Papazoglou. Web Component: A Substrate for Web Service
Reuse and Composition. In Proc. CAiSE 2002, Toronto, 2002.

238

