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Abstract: Traceability and rationale management are utmost critical, especially in
distributed collaborative software development projects, due to a lack of mutual work-
place awareness and informal coordination among the participating stakeholders. There-
fore, this paper presents the rationale behind and implementation of a conceptional
design for a novel approach to traceability and rationale management in distributed
settings. In doing so, an innovative solution for extracting, visualizing, and analyzing
the relationships between requirements and other key artifacts as well as responsible
stakeholders is designed based on business needs within the software industry. Thus,
the main objective of this paper is to instantiate the underlying conceptual considera-
tions and methodological guidelines with the help of a comprehensive tool infrastruc-
ture particularly adapted to distributed settings.

1 Introduction

Traceability and rationale management represent utmost important tasks with respect to
the governance of geographically distributed software projects [HGKO07, dSHRO7]. Trace-
ability, in particular, denotes the ability to follow the relations between artifacts, such as
requirements, design documents, or source code and responsible stakeholders [GF94].
Traceability management (TM) therefore involves activities including the identification,
analysis, and maintenance of these relationships [KS98]. Rationale management, on the
other hand, addresses the documentation and usage of rationale information regarding
design and change decisions within software development projects [DPO1]. In combi-
nation with the concept of value-based software engineering (VBSE), denoting that not
all software artifacts can be attributed identical (customer) value and thus should be rep-
resented accordingly [EBHGO5], enhancements to software project decision support can
be achieved through the application of value-based and integrated end-to-end traceability
and rationale management (TRM) covering the entire software development life cycle.
Therefore, especially within spatially and temporally distributed projects, an increase of
development efficiency and effectiveness can be achieved by providing (bi-directional)
traceability information [dSHRO7]. Moreover, an intuitive representation of the data by
means of graphical visualization can be especially helpful and effective [dS05]. This qual-
ity feature is also required by the Capability Maturity Model Integration (CMMI) process
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standard, for instance, as well as most other important (software) industry standards.

Therefore, the main goal of this paper is to document the design and implementation of a
novel frace visualization approach called “TraVis”, which extracts data related to different
artifacts, activities, and users from collaborative software development environments in
order to support visual analysis and collaborative management of the relations between
these entities, while enhancing the platform’s functionality by graphical visualization and
analytic filtering mechanisms.

The following section 2 will, at first, briefly introduce the design and implementation
methodology that was chosen for the design of the solution approach. After that, the main
functional requirements for the novel solution will be outlined in section 3 before section
4 addresses the implementation platform and basic technologies used for realizing TraVis
as part of a larger solution architecture. According to section 2, implementation details
regarding the tool and application examples are given in section 5 to provide an initial
evaluation in terms of feasibility of the proposed solution. The last section 6 provides a
summary of findings and gives an outlook on future work.

2 Methodology

To eventually implement a comprehensive TRM solution, an object-oriented design method-
ology is chosen [Kru04], since trace relation models represent complex interrelated real-
world objects such stakeholders and artifacts with different attributes such as descriptions,
version numbers, and change rationale (see underlying information model in figure 1). The
concurrent requirements management process is mainly driven by common TRM process
activities and fields of application which in turn can be regarded as functional requirements
or “use cases”" in the figurative sense guiding the further development process (see also
table 1).

Moreover, this object-oriented approach aims at an architecture consisting of indepen-
dent application components, thus, abiding by the main software engineering (SE) best
practices formulated by [Kru04], i.e. (1) iterative development in combination with dif-
ferent evaluation steps and feedback loops to gain utmost utility of the novel approach
[HMPRO4], (2) use case-driven and collaborative requirements management involving
several research groups and other stakeholders, as well as (3) designing a component-based
solution architecture while separating three independent system components, namely (a)
data model and persistence layer, (b) collaboration platform to support the overall TRM
method, and (c) specialized tool support for traceability capturing, representation, and
analysis (TraVis).

Before introducing the actual solution design and implementation, the following section
summarizes the major functional requirements that have been gathered by means of several
preceding studies.

'In this paper, the requirements will not be represented in the form of actual use cases as, for instance, defined
by [Kru04] and [BME*07].
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3 Functional Requirements and Related Work

In the following paragraphs, requirements for the novel solution elicited in preceding stud-
ies are presented in the form of distinct application areas—including a procedural descrip-
tion with respect to TRM process steps, actors, requirements rationale and origin [Kru04]
as well as related work (see also [SZ04] and [HilO8]). Origins and rationale behind these
fields of application are based on a broad analysis of literature review data [HRHO7] as
well as empirical requirements elicitation (cf. analysis results in [dSHRO7] as well as
[Hil08]).2

The main functional areas and requirements regarding TRM in distributed settings derived
by means of literature reviews and tool evaluation have been complemented by conducting
two observational case studies encoded MBL and VCI (see table 1 and [dSHRO7]). Table
1 presents an overview of the three main requirements categories: (1) change management
in general (CM), (2) trace capturing and maintenance (TCM), and (3) trace representation
and analysis. Besides common literature [HRH07, HRGT08], these findings are substan-
tiated by the MBL and VCI studies [dSHRO7].

Table 1: Overview of Requirements from Case Studies and Reviews (CM = change management;
TCM = trace capturing and maintenance; TRA = trace representation and analysis)

Requirement | Cat. [ Source/Reference
Automatic change notifications CM MBL and VCI studies
Workplace awareness support CM [DCACO03] and MBL study
Traceability information supply CM GSD study, literature review
Collaborative trace capturing TCM VCI study, literature review
Collaborative trace maintenance TCM VCI study, literature review
Rationale management support TCM VCI study, literature review
Alternative visual representations TRA VCI study, literature review
Predefined views and filters TRA VCI study

Adjacency graph analysis TRA VCI study, literature review

Based on these functional requirements, the main functionality supported by the TraVis
solution is presented with respect to related work. The requirements elicited here corre-
spond to the main areas of TRM, i.e. (1) CM and impact analyses as major use case for
utilizing TRM information as well as the process of capturing and analyzing this informa-
tion. However, in order to support CM in general, advanced methods for trace capturing
(TCM) and analysis (TRA) are required as well. In addition to analyzing change impact,
traceability information is also critical for (2) project status reporting and (3) overall docu-
mentation of traces by developers and other team members. This functionality can further
be subdivided into (a) capturing and generation, (b) storage and representation, (c) analy-
sis and maintenance use cases [HilO8]. In addition, this information is vital to project and

2For a more detailed requirements analysis and review of related work see [Hil08].
3Real names have been changed by the authors and these acronyms simply represent variable names without
any semantic meaning.

163



program management for (4) performance monitoring purposes. Enhanced information
supply can additionally assist (5) post-specification development tasks that will also be
discussed in the following paragraphs.

Change Management and Impact Analysis. Change management (CM) tasks turn out
to be the prevailing field of application for traceability information—e.g. for change prop-
agation, generating notifications, and facilitating impact analyses in particular. Especially
in the latter case, traceability information is critical in case of late changes for determining
(1) directly and (2) indirectly affected artifacts and thus be able to (3) estimate the resulting
overall costs of changes proposed in order to decide whether the change can be conducted
or not [KS98]. Most often, change impact analysis pertains to changing requirements after
an initial specification has been defined—e.g. in the form of change requests posted by dif-
ferent stakeholders [Som07]. These include the integration of new requirements as well as
deleting and changing existing ones [Poh07].* The positive effects of sophisticated trace-
ability information on impact analysis quality and efficiency has also been substantiated
empirically (cp. for instance [LS96] and [LS98]). Automatically generated notifications as
well as visual representations of dependencies can substantially support impact analyses
[EH91].°

Project Status Reporting. CM also includes requirements implementation status track-
ing and reporting, i.e. capturing and analyzing the requirements’ implementation status
in post-specification project phases [Sch02]. In order to be able to determine and analyze
the exact status of one particular requirement’s implementation, continuous horizontal
traceability from the software requirements specification (SRS) via architectural models,
source code, and test cases must be established [Poh0O7]. This also requires information
about contribution structures [Got95], i.e. authorship information [dSDR*04], and un-
derlying rationale pertaining to post-specification artifacts and enables ensuring that all
current project activities are based on actual customer demands and thus create customer
value. Again, adequate quantitative data and according visual representations can be seen
as possible approach to supporting this task. Moreover, visualizations not only facilitate
inter-developer communication and project management, but also foster customer under-
standing and thus eventually system acceptance.

Overall Project Documentation Support. The overall project documentation subsumes
information necessary for both impact analysis and status reporting tasks. Taken together,
a project’s documentation corresponds to the overall traceability network containing both
pre- and post-specification information with respect to artifact relations, design and change
rationale, as well as contribution structures [KS98]. Project documentation tasks, there-
fore, pertain to the entire TRM process from capturing via storage and representation to

4Moreover, traceability information facilitates identifying cause and estimating the impact of bugs within the
scope of software maintenance and re-engineering of legacy systems [Poh07].

SCurrent RM tools, such as DOORS and CaliberRM, do not provide full impact analysis support with respect
to a complete analysis of all post-specification artifacts [GHRO7].

6As it is the case for impact analysis, current RM tool do not allow a continuous post-SRS status tracking.
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analysis and maintenance [Som(7]. As has been argued before, disposing of relevant trace-
ability information is vital to numerous other TRM-related tasks and can in turn facilitate
distributed collaboration on the whole. Especially with respect to distributed development
scenarios, current RM and SE solutions cannot provide integrated information and tool
support [HRH07, GHR07, HRG108].

Project Documentation Capturing and Generation. As regards capturing traceability
network information, in particular, a collaborative approach based on one central reposi-
tory is suggested both in literature and practice (cf. findings in [dSHRO7]). Moreover, a
common metamodel, including artifact entities, traces, and semantics as well as method-
ological guidelines and policies in the form of a traceability manual help coordinating this
activity. Automatically generated suggestions for candidate links, on the other hand, can
provide additional decision support, but are not considered here any further, since so far
only research-in-progress solutions exist, which most often still require manual interven-
tion and/or artifact description constraints [Hil08].

Project Documentation Storage and Representation. Based on the assumption of a
central storage of traceability information, all distributed project stakeholders can be pro-
vided with adequate representations of relevant extracts retrieved by means of filtering
and search techniques. Due to the complexity of large-scale distributed software projects
visualizations facilitate stakeholder communication as compared to standard list and table
representations. Currently, the information necessary for end-to-end TRM can only be
provided by collaboration platforms [HRH07, HRG'08].

Project Documentation Analysis and Maintenance. With respect to TRM information
analysis and maintenance support, filtering and search mechanisms need to be comple-
mented by more advanced visualization and analysis methods such as adjacency graphs for
more systematic impact analyses. However, current RM tools and collaboration platforms
usually provide analysis functionality only based on matrix and linked list representations
(cp. above and findings in [GHRO7, HRG T 08]).

Project Monitoring and Inspection. Within the scope of project monitoring activities,
which are mostly conducted by project managers and other high-level stakeholders, the
overall development process in terms of who has done what and when (process data) needs
to be traceable at any given time [DP9§]. On this basis, project managers have to be
able to assess and report individual and team performance, balance the overall work load,
and maintain reasonable division of labor while also considering implementation status
reports (see above). To be able to do so, end-to-end traceability information is utilized to
understand relations and particularly dependencies between artifacts and the stakeholders
involved. Moreover, process data on tasks performed, resources consumed, and other
quality measures can be utilized for general project planning and control [DP98].

7Current development environments mainly focus on source code monitoring [HRG108]. Other approaches,
such as Ariadne [dS05], monitor socio-technical relations, but again only based on source code dependencies
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Post-Specification Requirements Management. Requirements management tasks also
comprise validation, verification, testing, and establishing standards compliance [SZ04].
Contribution structures, for instance, can be utilized to identify and involve relevant stake-
holders into validation activities. As regards verification, refinement, dependency, and
satisfiability relations allow for ensuring that all requirements specified have been allo-
cated to ensuing implementation tasks and corresponding artifacts such as models and
code. Similarly, traceability relations can be used to check the existence of appropriate
test cases for verifying different requirements [SZ04] and to retrieve those.

Other Post-Specification Tasks. Traceability information and management capabilities
can also support other general SE tasks such as finding the right stakeholders for commu-
nication and coordination purposes, artifact understanding and software reuse as well as
software maintenance and thus support SE decisions due to better overview, visualizations,
and analysis methods, e.g. for finding relevant information and/or contact persons more
quickly. Group or team awareness is crucial in distributed settings due to the volatility
of communication networks and partially sparse interactions among related stakeholders
[HMFGOO0]. Appropriate visualization of relations between users and/or artifacts (cp. also
[dS05]) can thus lead to more purposeful collaboration.

Artifact understanding, informed software reuse, and maintenance can also be accounted
to general SE tasks that can benefit from traceability information. Improved traceabil-
ity supports different stakeholders in understanding artifacts and their respective contexts
even when not having contributed to their creation [SZ04]. For full artifact comprehension,
rationale capturing, representation, and analysis capabilities are critical as well [RJO1].
Furthermore, requirements dependencies can support software reuse in that similar re-
quirements are identified when the stated requirements are compared with existing re-
quirements for indicating possibly reusable components from different artifact stages. In
general, similarities between artifacts on different levels of horizontal abstraction along
the software development life cycle can be utilized to manage application frameworks and
software product lines [SZ04].

4 Implementation Platform and Technologies

The following sections briefly introduce the underlying information model implemented in
the collaboration platform which the TraVis tool is based on. Moreover, other technologies
used for the implementation of the TraVis solution approach and relevant implementation
details are also outlined.

and code authorship information.
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4.1 Traceability Information Model

Based on general trace information models, the underlying platform’s inherent informa-
tion model and its accessibility via the Web service API have to be adapted to TraVis.
Compared to the underlying platform information model, some interrelations had to be
simplified due to the vendor’s practical restrictions. However, all vital elements of the
TraVis information model are represented—tracker items and all different kinds of arti-
facts (documents, wiki pages, source code, etc.), for instance, can be tracked by distinct
realization states and versions as well as categorized by embracing trackers or containers,
respectively. Rationale information can be added by means of (wiki) comments to types
of associations between tracker items and artifacts.
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Figure 1: CodeBeamer Information Model

As can be seen in figure 1, the model differentiates between four basic types of associa-
tions: depends, parent, child, and related. Moreover, responsible users can take
on various roles as they are associated to certain tracker items or artifacts. These include
owner, creator, assigned_to, submitted_by, modified_ by, and locker
(someone who has locked a particular artifact for non-concurrent editing). Change re-
quests are modeled as tracker items in a so-called change request tracker and therefore
not represented separately in the CodeBeamer model. Furthermore, items in change re-
quest and requirements trackers also dispose of wiki-based rationale descriptions directly
attached. For further adapting the CodeBeamer information model, specific project tem-
plates with predefined tracker structures are created. To be able to connect to the collabo-
ration server and extract the relevant traceability information, TraVis uses CodeBeamer’s
Web service API (for a detailed description of the packages used see [HGKOS]).
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4.2 Implementation Technologies and Details

To be able to connect to the collaboration platform over the Internet and, thus, provide a
Web-based user interface, the Java WebStart® (JWS) technology by Sun Microsystems is
chosen. Moreover, JWS allows iterative updates to be able to extend the current proto-
type’s functionality while keeping entailing network traffic low. This is and will be par-
ticularly critical for evaluating the overall solution with globally distributed stakeholders
[Hil08].

For extracting the traceability information from the collaboration platform, the Hessian
binary Web service protocol provided by the underlying CodeBeamer platform is utilized.
Besides its most advanced association mechanisms, link semantics, and wiki engine inte-
gration, the platform has initially been chosen for the prototypical TraVis implementation
due to its fast and flexible Web service application programming interface (API) which
has also been extended collaboratively with the vendor in the course of this research.'®

9

The CodeBeamer platform provides an integrated wiki engine for (a) annotating and com-
menting on tracker items and other artifacts, e.g. to add rationale information, and (b) for
creating self-contained wiki documents. Traceability information captured via wiki pages
and comments can be in turn represented as interlinked wiki content in CodeBeamer’s Web
frontend and analyzed via the Web service API (see also [HGKO08]). As for the WebStart
application’s user interface layer, TraVis uses Java Universal Network/Graph'! (JUNG)
framework. The JUNG architecture is designed to support a variety of representations of
entities and their relations, such as directed and undirected graphs, multi-modal graphs,
graphs with parallel edges, and hypergraphs.

On basis of the different Web-based technology platform just described, the most impor-
tant details pertaining to the implementation of TraVis are documented in figure 2. How-
ever, the focus of this paper is on the TraVis part of the overall solution architecture, i.e.
visual representation, analysis, and maintenance functionality, and thus particular the use
cases specified in section 3. The overall solution implementation architecture underlying
this paper also includes an adapted collaboration platform as well as a separate source
code management (SCM) repository (see figure 2). Moreover, particular semantic infor-
mation can be added for more efficient retrieval of certain objects (cp. class descriptions
in [Hil08, HGKO8] and cf. information model in figure 1).

5 Tool Implementation and Application Scenarios

In this section, the functional areas presented in section 3 are substantiated to demonstrate
how the underlying requirements are implemented by the TraVis solution and, thus, the

8http://java.sun.com/products/javawebstart/ (2007-10-16).

http://hessian.caucho.com/ (2007-10-16).

10CodeBeamer has been analyzed and compared to other commercially available collaboration platforms, e.g.
in [RGBHO7], [HRHO7], and [HRG ' 08].

http://9ung. sourceforge.net/ (2007-10-16).
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Figure 2: TraVis’ Embedding Solution Architecture

feasibility of the approach as well as the applicability of the implementation is evaluated
in terms of an initial demonstration or proof of concept. In doing so, TRM activities
concerning (a) representation and visualization as well as (b) analysis and maintenance
can be distinguished.'?

5.1 Trace Representation and Visualization

TraVis provides different means of displaying the traceability network graph extracted
from the development platform. Starting with an empty panel, the application’s user in-
terface requires the user to either manually select and deselect different element and as-
sociation types or use various menu options for filtering, searching, and transforming the
graph.

Manual Selection. The checkboxes of the TraVis user interface allow for a fine-grained
configuration of the traceability information to be shown in the center panel. According
to the CodeBeamer information model, the following elements are available for visual-
ization: (1) users (stakeholders), (2) issue trackers, tracker items, and attachments (3)
documents and folders (as parts of the document management system), (4) forums and
single posts, (5) wiki pages, as well as (6) source files. When selecting particular project
elements, only the resulting combination types of associations are activated while all other
relations are shaded and not available. Accordingly, when removing certain information
elements, these changes update the active options of manual selection. When checking or
un-checking certain association types, these are added or removed, respectively. Checking

12The methodology for collaboratively capruring traceability information by means of the functionality incor-
porated in the underlying platform is not in the focus here, for further details see [Hil08]. Moreover, [Hil08]
also documents three independent evaluation cycles and provides substantial evidence for the approach’s utility
in distributed scenarios.
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Add/Remove all displays or hides all relation types possible. Moreover, edge labels can
be manually added by means of the respective checkbox in the Options menu. Therefore,
the checkboxes are the universal user interface for custom analyses concerning all major
functional TRM requirements considered in this paper.

Element Filters. In addition to manually removing elements and associations from the
graph, TraVis also provides numerous predefined filters for reducing network complexity
and facilitating inspection tasks. To be able to do so, inactive users, other disconnected
elements with no relations, as well as closed tracker items representing finished tasks can
be filtered out automatically. Moreover, tracker items can be added to the graph, removed,
and highlighted with respect to different tracker categories, implementation phases, and
realization states. As has been mentioned earlier, TraVis complementarily analyzes links
between wiki pages and thus these can be added or filtered out by checking the Wiki Links
filter option. In addition to manually selecting and deselecting graph elements, filters are
thus also universally applicable to a variety of TRM tasks such as status reporting and
general traceability information management.

Predefined Views. Besides selection options and filters, TraVis also disposes of many
other possible choices of graph representation. To facilitate overall usability and reduce
complexity of the application, TraVis currently provides the following predefined views
which can be easily adapted and extended to other use cases by means of TraVis’ object-
oriented and component-based architecture: (1) An “Ego View” with all elements associ-
ated to one particular stakeholder, (2) “Editing (basic)” and (3) “Editing (all)” showing
elements that can be linked visually by TraVis, either regarding reduced or full project
complexity, (4) “Task Distribution” with stakeholders and shared artifacts (see example
below), (5) “Major Artifacts”, (6) “Tracker Structure”, as well as (7) “Project Manage-
ment Analysis” which display tasks associated with certain stakeholders.

The task distribution view reveals who is doing what as well as collaboration structures
formed by shared artifact relations between stakeholders, which is the basis for further
analysis methods such as social network inspections (cp. next section as well as 6). In the
case of this particular task distribution view, the implementation consists of four different
graph options: (1) the rypes of elements and associations included (here tracker items,
users, and their interrelations), (2) value-based vertex sizing (instead of uniform sizing,
see subsequent section), (3) mouse mode (picking), and (4) graph layout (cp. also the
following section). However, TraVis’ architecture allows for adapting and creating views
with more or less options very easily, e.g. by simply adding a new radio button in the
Views menu.

Search Functions. For analyzing complex traceability networks, TraVis implements
two complementary types of searches: (1) an integrated type-ahead search and (2) a search
menu for adding and highlighting particular nodes. The former search function can be uti-
lized to spot and find individual artifacts in very dense and complex graphs. In doing so,
the type-ahead search already highlights graph items while the user is still typing, i.e. the
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search process can be gradually concretized, while search results are instantly displayed in
the center pane. For this and all other types of searching the traceability network informa-
tion, the artifacts’ titles and major description attributes are indexed and thus searchable.
These search results are categorized according to the types of elements found—such as
tracker items and documents in this case. By clicking particular elements in the result
tree a graph can be built up from scratch or complemented (cp. also filtering mechanisms
above). The Find Artifact (Highlight) function operates analogously to the type-ahead
variant.

Transformations. TraVis also provides different graph transformations such as distor-
tion, rotation and zooming. With respect to graph distortion, different lenses are defined
with both hyperbolic and linear magnifying optics. To further reduce the graph’s com-
plexity, the different lens modes can be combined with all other options, filters, and views
described so far. For zooming and rotating the graph both mouse and keyboard shortcut
controls are provided in addition to the respective items in the Options menu of TraVis’
user interface.

5.2 Trace Analysis and Maintenance

The implementation details described so far focused on visualizing the information re-
trieved from the platform for universally supporting different software engineering deci-
sions and use cases. On top of that, TraVis also provides tool-supported methods for visual
traceability network analysis and maintenance. Therefore, the following paragraphs expli-
cate the TraVis functionality for exploring and analyzing the graph by means of additional
information visualizations as well as visual editing capabilities.

Gradual Graph Exploration. Since the size of real-world traceability graphs are a ma-
jor concern in TRM, incremental exploration techniques are a good solution for analyzing
huge graphs originating from one particular element (cf. [HMMOO], p. 37). This ele-
ment can either be specified by a change request or found by the search and add function
described above. The context menu option Show connected vertices adds all elements con-
nected to a requirement resulting of a search operation, as well as the respective relation
types as edge labels (related, depends, etc.). By applying this method in turn to one
of the newly added elements, the graph is gradually explored from its origin. Furthermore,
it is possible to show all connected vertices, i.e. the complete adjacency graph, of one par-
ticular start node by means of the corresponding option in the context menu (see figure 3).
This type of information visualization therefore identifies artifacts directly and indirectly
affected by changes to the focal artifact and thus facilitates impact analyses (cf. section
3). Moreover, status reporting is supported by enabling to follow the horizontal trace path
of one requirement up to the current realization state. Additional artifact information is
displayed on mouse-over operations in the form of tooltips. Vice versa, TraVis also allows
for removing particular nodes.
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Figure 3: Gradual Graph Exploration Functionality

Trace Network Analysis. Besides manual trace network analysis by means of the check-
boxes and options explicated above, TraVis also provides a comprehensive network analy-
sis function activated by choosing the predefined project management analysis view. This
non-visual “view” analyzes the number of traces among the different types of trackers
and displays a detailed dynamically generated list of requirements and relations between
tracker items. In doing so, customized trackers in addition to standard requirements,
change requests, and bug trackers are considered as well. This function facilitates auditing
the overall project documentation as well as determining traceability as a quality measure
(cp. also data collection and measurement procedures in evaluation section. Again, the
show connected vertices can also be applied to particular users and thus monitored what
artifact development activities they are currently involved in. Using the task distribution
view, on the other hand, also supports project monitoring and controlling—e.g. by spotting
out project members that do not participate in any collaborative activities. Furthermore,
the function Team Statistics in the Project menu returns a list of all project members’
relations to certain project elements such as tracker items and documents, for instance,
which also enables project managers to compare and assess the developers’ collaboration
intensity.!?

Value-Based Node Sizing. Also mainly for project management (monitoring and con-
trolling) purposes, TraVis implements variable node sizing algorithms for indicating cus-
tomer value based on requirements analysis results such as priorities and other value mea-
sures. The customer value assigned to the requirements is then propagated to related and
dependent artifacts such as design documents and source code—not including stakehold-
ers. Therefore, the initial heuristic algorithm for calculating the node sizes has been im-
proved by adapting the PageRank algorithm as also applied by the Google'* search engine

131t has to be noted though, that tools such as TraVis can create a possibly unwanted form of transparency
from the developers’ perspective and raise data protection concerns that are beyond the scope of this research.
Yhttp://www.google.com/ (2007-10-20).
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to the requirements of TraVis’ solution architecture [PBMW98]. The PageRank algorithm
is based on the assumption that nodes in a network, in this case artifacts and tracker items,
are more relevant or valuable according to the number of references by incoming relations
and their respective values. It has been shown that the values within a network converge
after a finite number of iterations [PBMW98]. To be able to do so, TraVis initializes the
nodes other than requirements with a value of W(nod%) and defines a constant @'
to accelerate convergence. The new value of one particular node is thus calculated as the
sum of the related nodes’ start values while the node’s new start value is determined by
(1 —d) + d * new value.'®
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Figure 4: Extract from a Value-Based Task Distribution Graph

Value-based node sizing and the customer values written back to the platform as additional
attributes, thus, provide decision support for prioritizing artifact-related activities accord-
ing to their customer value [EBHGOS] and, therefore, iterative as well as agile methods
(see figure 4 for an extract of a value-based graph). Furthermore, customer value informa-
tion also complements and quantifies the overall projects awareness as well as personnel
turnover decisions (cf. section 3). Figure 4 also depicts how the different artifact types are
encoded in different colors and patterns in order to provide even better visual information
and decision support.

Rationale Information Management. Besides customer value, the artifact nodes of the
traceability network carry a lot of additional information which can be utilized to com-
prehend justifications behind design as well as change decisions and version history—i.e.
rationale information. To be able to prepare and provide this artifact context information

15Using a constant d is recommended by [PBMW98] and has been calibrated here to a value of 0.85 by
means of the data from early evaluations and open source projects on the CodeBeamer-based JavaForge platform:
http://javaforge.com/ (2007-10-20). Currently, the TraVis implementation of PageRank converges
after less than ten iterations for most projects. However, to provide some safety buffer, TraVis calculates 15
iterations.

16¢f. [PBMW98] and [HGKO8] for a more detailed description of the algorithm and calculation examples.
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in an easily processable manner, the graphs are complemented by a so-called element in-
formation pane which displays a tree visualization of additional artifact or stakeholder
information depending on the node currently selected in the center pane. While user ele-
ment information is mainly useful for monitoring purposes, artifact rationale information
facilitates both impact analyses and general project documentation and maintenance ac-
tivities.!”

Editing and Platform Synchronization. Starting with one of the predefined editing
views (cp. section 5.1), for instance, or after manually selecting mouse mode editing in
combination with any other view or filter, allows for removing and creating new asso-
ciations between elements of the graph (see example in figure 5). This is conducted by
simply dragging and dropping a line from one node to the other. As can be seen in figure
5, an association comment and type can be specified before the edge is added to the graph.
Newly created edges as well as deleted ones are first recorded by TraVis’ internal object
model and later committed as a complete transaction to the platform by clicking on Sub-
mit Changes in the Project menu. Accordingly, changes made directly to the platform via
its Web user interface can be synchronized by means of the Reload Project function. Vi-
sual editing essentially facilitates collaborative capturing and maintenance of traceability
information and thus overall project documentation (cf. use case description in section 3).
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Figure 5: Visual Editing and Maintenance of Traceability Information

6 Summary and Outlook

As has been demonstrated in the preceding sections, the current prototype version im-
plements all major functional requirements specified with respect to TraVis’ visual rep-

17Gee [DMMPO6] for further definitions of rationale management tasks in SE.
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resentation, analysis, and maintenance support. It has also been shown that the adapted
and customized version of CodeBeamer used for this prototypical implementation of the
overall solution architecture covers the complementary collaborative capturing and main-
tenance processes. These TRM activities are particularly important in distributed software
projects—mainly for enabling better mutual workplace awareness and informal coordi-
nation mechanisms due to the central availability of project knowledge in the form of
traceability information.

Due to the fact that software projects can become very complex and spatial distribution
of artifacts and actors hampers workplace awareness and process transparency, a lack of
traceability can become harmful to project efficiency and documentation effectiveness in
particular. Bidirectional end-to-end traceability, as required by CMMI, for instance, is
critical, however, both with respect to in-project decision support and later maintenance
tasks. Hence, TraVis provides added value particularly to distributed collaborative soft-
ware development projects.

TRM methods as well as their combination with the VBSE approach can increase the qual-
ity of the artifacts developed within the individual project phases and, therefore, also the
quality of the final product. For tool-based project support, the application of a software
development platform that incorporates communication between all team members and
enables information capturing should be considered. Additionally, tracking and managing
particular requirements all the way to the new product are also supported [RGBHO7].

Thus, within this paper, a novel trace visualization approach and respective tool support is
introduced, which is based on such an underlying collaboration platform while enhancing
the platform’s functionality by graphical visualization as well as analytic filtering mech-
anisms and predefined views. In doing so, various TRM activities within distributed de-
velopment projects are supported. Hereby, the focus of the tool’s conception is mainly the
support of cross-cutting project management functionality, requirements and change man-
agement in particular. This paper, thus, takes different requirements identified, substanti-
ated, and verified in both, literature and real-world practice into account and implements a
Web-enabled solution architecture based on an underlying central collaboration platform
integrating various artifact repositories (cp. figure 2).

The latest version of TraVis described in this paper is complemented by enhanced trace
analysis functionality and predefined views specifically designed to improve the tool’s
performance in certain TRM application respects [HGKO07, Hil08]. Furthermore, for the
value-based calculation of the size of the artifacts [HGKO7], an advanced analysis method
based on the PageRank algorithm is implemented [PBMWO98]. Additionally, maintain-
ability and usability of TraVis are further enhanced, for instance through additional filter
and search functionality.'® The main rationale for enhancing the solution with respect to
visual and value-based analysis support is the need to reduce the complexity of relations
in distributed reasonably and thus provide better decision support.

Within future conceptions and implementations of the tool support, functionality for addi-

18These enhancements are based on an initial set of two empirical evaluation studies concerning TraVis appli-
cability in distributed settings [HilO8] and eventually aim at increasing the output quality and process efficiency
of particular TRM tasks in distributed collaborative software development.
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tional analyses like the graphical display of the social networks between project members
and across multiple projects—both intra- and inter-organizationally—shall be integrated.
For comprehensive social network analyses, authorship information pertaining to both
pre- and post-specification artifacts is required [dASHRO7]. Combining and visualizing in-
formation on artifact relation and contribution structures in turn allows for deriving social
networks or sociograms'® from socio-technical relations of artifacts and responsible stake-
holders which provide a good basis for project and team structure analysis [dSRCT04].
This, in turn, can further facilitate team awareness, communication, and informal coor-
dination [RvdHAA107]. Personnel turnover situations that are most often noticeable in
larger-scale projects, offshore outsourcing scenarios in particular, represent one major use
case for this kind of information (see section 3 as well as [dSHRO7]).

Besides these conceptional enhancements, already integrated functionality will be further
evaluated experimentally to gather conclusions for future TRM requirements and devel-
opment activities [Hil08]. In addition, several case studies and controlled experiments
involving both students and partners within the software industry are planned in order to
further evolve the solution and elicit remaining deficiencies as well as new requirements.
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