
PDV-E 122

Dezember 1978

PDV-Entwicklungsnotizen
Das Sprachentwicklungsprojekt

des US-Verteidigungsministeriums

P. Elzer

Dornier-System GmbH
Friedrichshafen

,.,

Kernforschungszentrum Karlsruhe

PDV-Berichte

Die Kernforschungszentrum Karlsruhe GmbH koordiniert und betreut im Auftrag des Bun­

desministers für Forschung und Technologie das im Rahmen der Datenverarbeitungspro­

gramme der Bundesregierung geförderte Projekt Prozeßlenkung mit Datenverarbeitungsan­

lagen (PDV). Hierbei arbeitet sie eng mit Unternehmen der gewerblichen Wirtschaft und Ein­

richtungen der öffentlichen Hand zusammen. Als Projektträger, gibt sie die Schriftenreihe

PDV-Berichte heraus. D.arin werden Entwicklungsunterlagen zur Verfügung gestellt, die einer

raschen und breiteren Anwendung der Datenverarbeitung in der Prozeßlenkung dienen sol­

len.

Der vorliegende Bericht dokumentiert Kenntnisse und Ergebnisse, die im Projekt PDV gewon­

nen wurden.

Verantwortlich für den Inhalt sind die Autoren. Die Kernforschungszentrum Karlsruhe GmbH

übernimmt keine Gewähr insbesondere für die Richtigkeit, Genauigkeit und Vollständigkeit

der Angaben, sowie die Beachtung privater Rechte Dritter.

Druck und Verbreitung:

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640 7500 Karlsruhe 1

Bundesrepublik Deutschland

PROJEKT PROZESSLENKUNG MIT DV-ANLAGEN

ENTWICKLUNGSNOTIZ PDV-E 122

DAS SPRACHENTWICKLUNGSPROJEKT

DES US-VERTEIDIGUNGSMINISTERIUMS

P, ELZER

DORNIER-SYSTEM GMBH

FRIEDRICHSHAFEN

DEZEMBER 1978

PDV-E 122

152 SEITEN

Vorwort

Die Entwicklung einer neuen höheren Programmiersprache für integrierte

Rechnersysteme (embedded computer systems) im US-Verteidigungsministerium

findet große Aufmerksamkeit in der internationalen "computing community".

Diese Aufmerksamkeit wird hervorgerufen durch verschiedene Aspekte des

Sprachentwicklungsprogramms:

1. Die Sprachentwicklung ist von großem wissenschaftlichen Interesse,

da international anerkannte Fachleute daran mitarbeiten.

2. Die Organisation und Zeitplanung des Sprachentwicklungsprojektes ist

aufsehenerregend, da bisher alle Termine eingehalten wurden. Dies ist

erstaunlich, da die Terminvorgaben nach allgemeinen Erfahrungen bei

derartigen Projekten sehr knapp bemessen sind.

3. Gelingt es tatsächlich, die entstehende Sprache verbindlich für alle

Projekte des US-Verteidigungsministeriums vorzuschreiben, so hat dies

auf Grund der politischen Lage zur Folge, daß die Sprache primär im

Verteidigungsbereich und sekundär im industriellen Bereich auch in

Deutschland wirtschaftlich bedeutsam werden könnte. Um die mögliche

wirtschaftliche Bedeutung dieser Sprachentwicklung für die Bundesre­

publik abzuschätzen und einen intensiven Informationsfluß zwischen bei­

den Seiten herzustellen, wurde Herr Elzer, Firma Dornier-System GmbH,

Friedrichshafen, im Rahmen des PDV-Projekts im Auftrag des BMFT für

ca. 1 Jahr nach USA delegiert. Herr Elzer ist dort Mitarbei ter in der

Gruppe, die das Sprachentwurfsprojekt koordiniert.

Als weitere .Publikation über die Ziele und den Verlauf des Spra chprojekts ist

ein Artikel von W.A. Whitaker, dem Leiter dieser Sprachgruppe , z u nennen /1/.

Es soll nicht unerwähnt bleiben, daß an der Vorgehenswe ise beim Sprachentwurf

und an der Qualität der bisher vorliegenden Sprachentwürfe heftige Kritik ge­

übt wurde /2/, /3/. Eine Abgrenzung der Anwendungsgebiete für die neu entwicke

Sprache des US-Verteidigungsministeriums und fü r PEARL wird in /4/ gegeben.

Literatur:

/1/ W.A. Whitaker:

/2/ E.W. Dijkstra:

/3/ E.W. Dijkstra:

/4/ T. Martin:

The U.S. Department of Defense
Conunon High Order Language Effort.
SIGPLAN Notices, Vol. 13 (1978),
Nr. 2, S. 19-29.

DOD-I: The Sununing Up.
SIGPLAN Notices, Vol. 13 (1978),
Nr. 7, S. 21-26.

On the BLUE/GREEN/YELLOW/RED Language submitted
to the DOD.
SIGPLAN Notices, Vol. 13 (1978),
Nr. 10, S. 10-32.

Neue amerikanische Programmiersprache am
Horizont.
Regelungstechnische Praxis, 20 (1978), Nr. 11.

-1-

DORNIER

Dornier System GmbH

KURZFASSUNG

Dieser Bericht gibt eine gedrängte Darstellung von Geschichte, Zielen und Organisa­

tionsstruktur des Projektes zur Schaffung einer gemeinsamen höheren Pro­

grammiersprache für integrierte Rechnersysteme des US-Verteidigungsministeriums. Es

wird der Stand der Arbeiten an Sprache und Softwareumgebung im September 1978

beschrieben, sowie eine Reihe von begleitenden Aktivitäten geschildert und ein Ver­

gleich mit PEARL versucht.

ABSTRACT

This report gives a condensed presentation of history, aims and organisational structure

of the US-DoD project for a Common High Order Language for embedded computer

systems. lt describes the state of the work on language and software-environment in

September 1978, as well as some supporting activities. A comparison with PEARL is

attempted.

Dornier System GmbH

INHALTSVERZEICHNIS Seite

0 Einleitung 4

1 Das eigentliche Sprachentwicklungsprojekt 5

1.1 Vorgeschichte und organisatorische Grundlagen 5

1.2 Entwicklung der technischen Anforderungen 7
1.3 Untersuchung von Kandidatensprachen 9
1.4 Die "Interim List'' 11

1.5 Der bisherige Verlauf der Sprachentwicklung 12
1.6 Weitere Planungen 1 3

2 Begleitende Aktivitäten 14
2.1 Die Softwareumgebung 14

2.2 'TARTAN' - ein Sprachmodell 16

2.3 Testprobleme 17
2.4 Untersuchungen zur Ein-/Ausgabe 1 8

2.5 1 mplementationsvorbereitungen 19

2.6 Das ARPA-Netz 20

3 Die Sprachentwicklung des US-Dept. of Def. im Vergleich

mitPEARL 21

3.1 Zielsetzung 21

3.2 Technische Gesichtspunkte 23

4 Literatur 25

-3-

DORNIER

Dornier System GmbH

Anhänge:

A1 D.A. Fisher:

DoD's Common Programming Language Effort

A2 Zusammenfassung von Wirtschaftlichkeitsanalysen

A3 US-Dept. of Def. Requirements for High Order Computer

Programming Languages ("STEELMAN")

A4 The US-Department of Defense Common High Order

Language Effort

A5 · Department of Defense Requirements for the Programming

Environment for the Common High Order Language

("PE BB LEMAN")

A6 Shaw, Hilfinger, Wulf:

TARTAN, Language Design for the lronman Requirement:

Reference Manual

A7 Shaw Hilfinger, Wulf:

TARTAN, Language Design for the lronman Requirement:

Notesand Examples

AB Set of Sample Problems for Phase 11 of the design

contracts of the Dod HOL commonality effort

DORNIER
Dornier System GmbH

0. EINLEITUNG

Im Jahre 1975 wurde vom US-Verteidigungsministerium ein Projekt begonnen mit dem

Ziel, für den Verteidigungsbereich eine einheitliche höhere Programmiersprache für

integrierte Rechnersysteme(1) zu schaffen. Dabei wurde von Anfang an angestrebt,

auch die für einen rationellen Einsatz dieser Sprache notwendigen Softwarehilfsmittel,

wie Computer, Laufzeitpakete, Betriebssystemergänzungen, Testhilfen, etc. in der

Sprache selbst erstellen zu können, um maximale Portabilität zu erzielen. Parallel zur

eigentlichen Sprachentwicklung wird deshalb auch die notwendige Softwareumgebung

mit definiert. Außerdem sind Organisationen zur Pflege der Sprache, Überwachung

ihrer Implementierungen und Unterstützung ihrer Anwendungen geplant. Ein Projekt­

ziel ist es, bis 1980 die endgültige Sprachspezifikation, sowie mindestens einen Pro-
duktionscompiler zur Verfügung zu haben. 1

Im vorliegenden Bericht wird versucht, einen knappen Gesamtüberblick über die

Geschichte des Projektes, seine Ziele und seine Organisationsstruktur zu geben, sowie

andere relevant erscheinende Aktivitäten, die nicht immer organisatorisch mit dem

Sprachentwicklungsprojekt verknüpft sein müssen, zu identifizieren. Wenn auch vor

Veröffentlichung der endgültigen Sprachvorschläge im Frühjahr 1979 keine exakten

Aussagen über Charakter und Funktion von Elementen der Sprache gemacht werden

können, so wird doch versucht, die bereits an Hand der veröffentlichten technischen

Anforderungen erkennbaren Unterschiede zu und Ähnlichkeiten mit PEARL zu

charakterisieren.

Für den Leser, der an eingehender 1 nformation interessiert ist, sind die wesentlichsten

Originaldarstellungen als Anhänge beigefügt.

(1) dies ist der Versuch einer Übersetzung des amerikanischen Fachbegriffs

"embedded computer system", der nicht vollständig dem deutschen Begriff des

"Realzeitsystems" entspricht.

-5-

DORNIER
Dornier System GmbH

1. DAS EIGENTLICHE SPRACHENTWICKLUNGSPROJEKT

1.1 Vorgeschichte und organisatorische Grundlagen

1 n diesem Abschnitt soll nur ein zusammenfassender Überblick gegeben werden, da

eine sehr eingehende Gesamtdarstellung der Geschichte des Projektes, seiner Ziele und

seiner Organisationsstruktur bereits im April 1978 in der Zeitschrift 'Computer' der

1 EEE erschienen ist. Dieser Aufsatz ist als Anhang 1 beigefügt.

Bereits in den Jahren 1973 und 1974 wurden Studien durchgeführt [1,2] um Daten

über Höhe und Verteilung der Softwarekosten im US-Verteidigungsbereich zu erhalten.

Zwei Ergebnisse waren besonders wesentlich:

Die Kosten für integrierte Rechnersysteme stellten mit 56 % den Hauptanteil der

jährlichen Ausgaben von 3 Mrd. Dollar für Software im US-Verteidigungsbereich

dar.

Bei einer Berechnung über die gesamte Lebensdauer eines Systems übertrafen die

Kosten für die Wartung die für die Entwicklung und Herstellung bei weitem.

Weiterhin stellte sich heraus, daß im gesamten Verteidigungsbereich über 200 Rechner­

modelle und über 450 verschiedene Programmiersprachen (einschließlich Assembler)

verwendet wurden. Aus dieser Zersplitterung ergab sich weiter, daß die für eine ratio­

nelle Softwareentwicklung und -wartung notwendigen Hilfsmittel nur in den se ltensten

: Fällen und dann auch meist nur in rudimentärer Form vorhanden waren. Eine

Schlüsselrolle spielte auch hier das Fehlen einer einheitlichen Programmiersprache.

Aus diesen Gründen wurde im Januar 1975 auf 1 nitiative des " Director of Defense,

Research and Engineering"(2) ein gemeinsames Programm der Teilstreitkräfte formu­

liert. Außerdem wurden keine weiteren Mittel für Entwicklung und Einsatz neuer

Programmiersprachen in wesentlichen Projekten des Verteidigungsbereiches mehr be­

reitgestellt, bis das Problem einer zufriedenstellenden gemeinsamen Nutzung software­

bezogener Hilfsmittel gelöst wäre.

(2 l heute: Undersecretary of Defense, Research and Engineering"

-6-

DORNIER
Dornier System GmbH

Ungefähr zur selben Zeit wurden andere Programme gestartet, z.B. zur Untersuchung

der Möglichkeit einer einheitlichen Rechnerfamilie für den Verteidigungsbereich (MCF:

"rnilitary computer family").

Globale Richtlinien für die Behandlung der Probleme rationelleren Rechnereinsatzes

gab die Anweisung 5000.29 [3]. Eine Zusammenstellung verschiedener Artikel über die

erkannten Probleme und Vorschläge zu ihrer Behebung erschien im Oktoberheft 1975

des "Defense Management Journal" [4].

Um die Arbeiten an der Sprachentwicklung zu koordinieren, wurde im Januar 1975 die

"High Order Language Working Group (::::: HOLWG)" gegründet. Stimmberechtigte

Mitglieder sind Vertreter der US-Armee, Marine, Marineinfanterie und Luftwaffe, sowie

des Amtes für Nachrichtenwesen, des Nationalen Sicherheitsbüros und der DARPA(3).

Der Vorsitzende der HOLWG, z.Zt. Lt. Col. W.A. Whitaker, wird vom USDRE ernannt.

Dr. D. Fisher vorn "Institute for Defense Analyses (IDA)" ist der technische Berater

dieses Ausschusses. Die HOLWG ist gegenüber dem USDRE verantwortlich und außer­

dem tätig als einer der Unterausschüsse des "Management Steering Committee for

Embedded Computer Resources (MSC-ECR)".

Ihre Aufgabe ist es, "Möglichkeiten zur Einführung der minimalen Anzahl gemeinsamer

höherer Programmiersprachen zu untersuchen, die bei Entwicklung, Beschaffung und

Betrieb von Rechnern in militärischen Systemen verwendet werden sollen". 1 nsbeson­

dere sollen die technischen Anforderungen an derartige Sprachen definiert, die Eignung

von existierenden Sprachen untersucht, eine erfolgsversprechende Vorgehensweise fest­

gelegt, und die notwendigen Maßnahmen überwacht werden.

Der mögliche Nutzen des Sprachentwicklungsprojektes wurde in mehreren Wirtschaft­

lichkeitsanalysen untersucht, die zu positiven Ergebnissen führten. Anhang 2 enthält

die Zusammenfassungen von zweien dieser Analysen.

<3) "Defense advanced research projects agency", eine zentrale Forschungsförderungs­

stelle des US-Verteidigungsm inister iums.

-7-

DORNIER

Dornier System GmbH

1.2 Entwicklung der technischen Anforderungen

Im Gegensatz zum Vorgehen bei verschiedenen anderen Sprachentwicklungsprojekten

betätigt sich die HOLWG nicht als Sprachentwicklungsausschuß im üblichen Sinne,

sondern fördert die Entwicklung durch unabhängige Auftragnehmer auf Wettbewerbs­

basis.

Als Arbeitsgrundlage wurden die technischen Anforderungen an eine höhere Sprache

zur Programmierung von integrierten Rechnersystemen zusammengestellt. Dieses Do­

kument diente dann später als Grundlage für eine Ausschreibung, lieferte einen allge­

mein anerkannten Bewertungsmaßstab und verhinderte, daß völlig unvergleichbare

Sprachentwürfe entstanden.

Die gegenwärtigen technischen Anforderungen, die in dem als Anhang 3 beigefügten

"Steelman"-Papier zusammengestellt sind, sind das Ergebnis eines evolutionären

Prozesses, der von 1975 bis 1978 dauerte.

Am 1 DA wurde eine Serie von Vorschlägen ausgearbeitet, wobei jeweils die Kommen­

tare zum vorhergehenden Vorschlag eingearbeitet wurden, die seitens potentieller

Benutzer, Auftragnehmern des Militärbereichs und anderer interessierter Organisa­

tionen eingingen. Auf diese Weise konnten die einschlägigen Erfahrungen eines großen

Teiles der Fachwelt genutzt werden. 1 n gewissen Zeitabständen wurden einzelne Ver­

sionen durch militärische Dienststellen offiziell genehmigt und als die fo lgenden Doku­

mente veröffentlicht:

STRAWMAN

WOODENMAN

TINMAN

IRONMAN

revised 1 RONMAN

STEELMAN

April 1975

August 1975

Januar 1976

Januar 1977

Juli 1977

Juni 1978

Als ein Beitrag zur Diskussion um TINMAN wurde im Herbst 1976 ein Seminar mit

anerkannten Wissenschaftlern auf den Gebieten Sprachentwurf und Compilerbau an

der Cornell-Universität in lthaca, N.Y., veranstaltet. Die Ergebnisse dieses Seminars

sind in Buchform erhältlich (5].

DORNIER
Dornier System GmbH

Insgesamt gingen während der Entwicklung der technischen Anforderungen über

2000 Seiten an Kommentaren von 184 Institutionen und Einzelpersonen ein.

Die Entwicklung der technischen Anforderungen erbrachte aber noch ein weiteres

wesentliches Ergebnis: Es wurde festgestellt, daß in allen Bereichen des Verteidigungs­

sektors die gleichen Anforderungen an eine höhere Programmiersprache für integrierte

Systeme galten. Dieses Ergebnis war als nicht selbstverständlich vorauszusetzen ge­

wesen.

-9-

DORNIER

Dornier System GmbH

1.3 Untersuchung von Kandidatensprachen

Da nicht von vornherein feststand, daß eine neue Sprache entwickelt werden mußte,

wurden im laufe des Jahres 1976 23 existierende Programmiersprachen daraufhin

untersucht, wie weit sie den aufgestellten technischen Anforderungen genügten. Diese

Vergleiche wurden nach von der HOLWG aufgestellten Richtlinien von insgesamt 16

Auftragnehmern durchgeführt.

Folgende Sprachen wurden betrachtet:

ALGOL 60

ALGOL 68

CMS-2

COBOL

CORAL 66

CS-4

EL-1

EUCLID

FORTRAN

HAL/S

J3B

J 73

LIS

LTR

MORAL

PASCAL

PDL 2

PEARL

PL/I

RTL/2

SIMULA 67

SPL/1

TACPOL

Jede Sprache wurde von mindestens zwei Bewertu ngsgruppen begutachtet, die Er­

gebnisse von einem Ausschuss aufbereitet und der HOLWG vorgelegt. Das gesamte

während der Auswertung entstandene Mater ial ist auf Mikrofilm erhältlich [6].

DORNIER
Dornier System GmbH

Wesentliche Ergebnisse waren:

Keine der Kandidatensprachen erfüllte die technischen Anforderungen in ausrei­

chendem Maß, um als "die" endgültige einheitliche Programmiersprache akzeptiert

werden zu können.

Aus der Tatsache, daß mehrere der Kandidatensprachen bereits eine Anzahl der

aufgestellten Anforderungen erfüllten, ergab sich, daß das Problem im Rahmen des

Standes der Technik lösbar war, d.h. ein geeigneter Sprachentwurf erschien mach­

bar.

Eine vollständige Neuentwicklung erschien deshalb nicht als notwendig, weil alle

diejenigen Sprachen, die die technischen Anforderungen zu einem großen Teil erfüll­

ten, abgeleitet waren von ALGOL 68, PASCAL oder PL/1. Diese drei Sprachen

wurden deshalb als Basissprachen für die Entwicklung der gemeinsamen Program­

miersprache vorgeschlagen.

-11-

CORNI ER

Dornier System GmbH

1.4 Die Interim List

In der Zwischenzeit wurde auch ein Vorhaben verwirklicht, von dem man sich . eine

wesentliche Verbesserung der Situation. schon vor der Durchsetzung einer gemeinsamen

Programmiersprache versprach. Es wurde eine Liste von einigen wenigen

Programmiersprachen zusammengestellt, deren Verwendung für neu zu beginnende

Projekte integrierter Rechnersysteme vorgeschrieben werden konnte.

Kriterien für die Auswahl dieser Sprachen waren vor allem, daß sie

ihre Eignung durch praktischen Einsatz bei mindestens einem der Armeeteile

bewiesen haben

und

durch ein geeignetes Definitionsdokument festgelegt sein

mußten. Aufnahme in die aufzustellende Liste setzte außerdem die Verpflichtung zur

weiteren Betreuung der Sprache seitens der sie nominierenden Organ isation voraus.

Diese Voraussetzungen waren bei folgenden, im VS-Verteipigungsbereich bereits seit

einiger Zeit verwendeten Sprachen erfüllt:

CMS-2

SPL-1

TACPOL

J 3 JOVIAL

J 73 JOVIAL

ANSI COBOL

ANSI FORTRAN

Diese Sprachen wurden in einer Anweisung 5000.31 [7] als verbindlich für den Einsatz

bei neu zu beginnenen Projekten erklärt, "falls nicht nachgew iesen werden kann, daß

die Verwendung einer anderen Sprache über die Lebensdauer des Systems gesehen

kostenwirksamer ist" (cit. 5000.31).

-12-

DORNIER
Dornier System GmbH

1.5 Der bisherige Verlauf der Sprachentwicklung

Nach der Formulierung eines Projektplanes wurde dann im April 1977 die

Sprachentwicklung international ausgeschrieben. Von den 18 eingegangenen

Angeboten wurden folgende vier ausgewählt:

Cl 1-Honeywell-Bull (Paris, Minneapolis)

lntermetrics (Nähe Boston)

Softech (Nähe Boston)

Stanford Research International (Nähe San Francisco).

Alle vier erfolgreichen Anbieter schlugen eine Sprachentwicklung auf der Basis von

PASCAL vor. Die Arbeiten begannen im August 1977 und die Ergebnisse der ersten

Phase, die vorläufigen Sprachentwürfe, wurden termingerecht im Februar 1978

ausgel iefert.

Diese Sprachentwürfe wurden dann einem Bewertungsverfahren unterzogen, an dem

über 70 Teams und Einzelpersonen aus aller Welt teilnahmen. Um die Urheberschaft

der einzelnen Sprachen geheimhalten zu können, wurden die Sprachen durch einen

Farbcode (grün, rot, blau, gelb) identifiziert. Die Ergebnisse dieser Einzelbewertungen

wu rden durch eine Expertengruppe ausgewertet und mit Empfehlungen der HOLWG

zur Entscheidung vorgelegt. Es wurde beschlossen, die Sprachentwürfe "grün"

(Cl 1-Honeywell-Bull) und "rot'' (1 ntermetrics) weiterentwickeln zu lassen.

Eine Kurzdarstellung des Auswerteverfahrens mit statistischen Daten findet sich in [8].

Eine Zusammenfassung des Projektverlaufes bis zur Vergabe der Entwicklungsaufträge

gibt ein Vortrag von Lt. Col. W.A. Whitaker, dessen Manuskript als Anhang 4 beigefügt

ist. Ein Gesamtbericht über die Auswertung ist auf Mikrofilm erhältlich [9]. Er enthält

folgendes Material:

Anleitung zur Durchführung der Analyse"revised 1 RONMAN, alle vier Sprachvorschläge

der Phase 1, alle Einzelana lysen, die nach Sachgebieten umgeordneten Analysen, und

das "STEELMAN"-Dokument.

Anschließend an d iese Auswertungsphase begann im April 1978 die zweite Phase der

Sprachentwicklung, d ie Feindefinition, die mit der Vorlage der vorläufigen

vollständigen Sprachbeschreibung im März 1979 beendet sein soll.

-13-

DORNIER
Dornier System GmbH

1.6 Weitere Planungen

Während der zweiten Phase der Sprachentwicklung werden durch Vertreter der

HOLWG in vierteljährlichen Abständen Fortschrittskontrollen bei den Auftragnehmern

durchgeführt, deren Ergebnisse allerdings aus wettbewerbsrechtlichen Gründen

vertraulich behandelt werden müssen. Bei der zweiten derartigen Veranstaltung im

November 1978 werden auch Vertreter ausgewählter Bewertungsteams hinzugezogen

werden.

Im April 1979 soll dann die Entscheidung für eine der beiden in der zweiten Phase

entwickelten Sprachen fallen. Daran wird sich bis Dezember 1979 eine Phase

eingehender Tests anschließen, während der auch noch evtl. notwendige

Verfeinerungen vorgenommen werden sollen. Auch an dieser Phase sollen ausgewählte

internationale Teams beteiligt werden. Zur Unterstützung dieser Arbeiten sollen im

April 1979 auch Testübersetzer für die in der zweiten Phase entwickelten Sprachen auf

dem Arpanetz verfügbar sein.

Gleichzeitig soll mit der Erstellung der ersten Produktionscompiler begonnen werden,

und es wird erwartet, daß bis Mitte 1980 zumindest einer zur Verfügung stehen wird.

Im Oktober 1978 wird mit der Vorbereitung von Kursmaterial begonnen werden, um

den Beginn von Ausbildungskursen im Frühjahr 1979 zu ermöglichen. Auch die

organisatorischen Vorbereitungen für eine Betreuungsstelle werden schon im

Herbst 1978 anlaufen, damit diese Stelle im Frühjahr 1980 ihre Arbeit aufnehmen
kann.

-14-

DORNIER
Dornier System GmbH

2. BEGLEITENDE AKTIVITÄTEN

2.1 Die Softwareumgebung

Das Sprachentwicklungsprojekt sollte von vornherein nicht als isolierte Aktivität

gesehen werden, sondern eingebettet in allgemeine Bemühungen, die

Softwareproduktion auf dem US-Verteidigungssektor insgesamt zu konsolidieren und

damit schließlich zu rationalisieren und zu verbilligen. Es war deshalb von Anfang an

beabsichtigt, die Anwendung der Sprache durch entsprechende Softwarewerkzeuge zu

unterstützen. Außerdem sollten Organisationen geschaffen werden, die sowohl

Kontrolle über die Sprache selbst ausüben, als auch eine Qualitätsprüfung der erstellten

Compiler vornehmen und Anwenderberatung vornehmen könnten. Entsprechende

Maßnahmen sind deshalb bereits in den technischen Anforderungen an die Sprache

angedeutet (vergl. Kap. 13 des "STE E LMAN"-Dokuments).

Es ist nun beabsichtigt, eine Reihe von Dokumenten zu entwickeln, die ähnlich wie die

STRAWMAN-STEELMAN-Serie eine Reihe immer weiter konsolidierter

Anforderungen an Organisationen und Softwareumgebung beschreiben sollen.

Als Vorbereitung dazu begannen bereits 1977 Arbeiten an der Definition der

Anforderungen an Betreuungsorganisationen und Softwareumgebung. Zwei

Unterauftragnehmer fertigten unter der technischen Aufsicht eines Vertreters der

US-Marine Vorstudien an, die im Januar, bzw. April 1978 ausgeliefert wurden. Diese

Studien dienten als Basis für die Erstellung eines Dokumentes, das, ähnlich wie

'STRAWMAN' für die Sprache, die Diskussion über die Eigenschaften der

Softwareumgebung auf breiter Basis eröffnen soll.

Nachdem aber auf diesem Gebiet an mehreren Stellen Neuland betreten werden mußte

und sollte, erschien es nützlich und notwendig, gleich zu Beginn im Rahmen eines

Workshop die Meinung von Fachleuten zu den Themen Softwarewerkzeuge und

Sprachbetreuung einzuho len. Dieses wurde im Juni 1978 in lrvine, Universität von

Kalifornien, abgehalten. Die Ergebnisse sollen noch im laufe des Jahres 1978

veröffentlicht werden.

Im folgenden soll eine sehr kurze und deshalb vielleicht etwas schlagwortartige

Zusammenfassung der als besonders wichtig erkannten Problemgebiete gegeben

werden.

-15-

DORNIER

Dornier System GmbH

Die größten Schwierigkeiten treten bei Entwurf und Wartung von Software auf

Die Wartung und laufende Anpassung verschlingt einen noch höheren Anteil der

Lebensdauerkosten eines Systems als bisher schon angenommen, nämlich bis zu 95 %.

Die im Verteidigungsbereich (speziell bei Wartungsstellen) und bei

forschungsorientierten Institutionen jeweils angewandte Softwaretechnologie klafft

um Jahre, wenn nicht um eine Generation auseinander. Dagegen unterscheiden sich

die zu lösenden Probleme kaum in ihrer Komplexität.

Man verspricht sich sehr viel von Rechnerunterstützung bei Problemanalyse,

Programmerstellung, und Test. Allerdings erfordern die bisher erprobten Methoden

erhebliche Rechnerkapazität.

Programmverifikation auf formaler Basis hat noch nicht den technischen Stand

erreicht, der ihren praktischen Einsatz auf breiter Basis ermöglichen würde.

Verifikation und Test von Compilern werden von den bisher damit befaßten

Dienststellen nach ganz verschiedenen Methoden durchgeführt, die äußerst stark von

den jeweiligen pol itischen Gegebenheiten abhängen. Keine Methode hat bisher alle

Anforderungen erfüllen können.

Eine Benutzerorganisation ist notwendig.

Der Hauptnutzen des Workshop für die laufende Arbeit bestand jedoch in den

zahlreichen Detailbemerkungen zu den einzelnen Kapiteln des ursprünglichen Pap ieres

zur Softwareumgebung. Dieses wurde daraufhin nach längeren Diskussionen vollständig
überarbeitet und neu gegliedert.

Erste Bemerkungen, die seitens der HOLWG und über das· ARPA-Netz (siehe 2.6)

eingingen, wurden eingearbeitet und das resultierende Dokument, "Pebbleman", im

Juli 1978 zur Diskussion und Kritik versandt. Es ist als Anhang 5 beigefügt.

Zur Zeit werden Möglichkeiten zur Verwirklichung der da rin skizzierten Konzepte und

die organisatorischen Voraussetzungen für die Einrichtung der erwähnten

Betreuungsorganisationen geprüft.

Es ist beabsichtigt, zur Jahreswende 1978/79 eine zweite Version dieses Dokumentes

zu erstellen. Erste Modellimplementat ionen notwendiger Softwarewerkzeuge sind ab
Mitte 1979 geplant.

-16-

DORNIER

Dornier System GmbH

2.2 'TARTAN' - ein Sprachmodell

Da einer der wesentlichsten Kritikpunkte bei der Auswertung der Sprachentwürfe aus

Stufe 1 ihre Komplexität und ihr Umfang gewesen waren, wurde im Auftrag der

DARPA am "Department of Computer Science" der Carnegie-Mellon Universität in

Pittsburgh eine Studie durchgeführt, mit dem Ziel, zu prüfen, mit welchem Minimalauf­

wand sich die Forderungen von "revised" 1 RONMAN erfüllen ließen.

Das Ergebnis dieser Studie war das im Juni 1978 veröffentlichte Sprachmodell

'TARTAN'. Das "reference manual", das 22 Seiten (!) umfaßt und ein Heft mit Be-
.. ·-

merkungen und Beispielen sind als Anhänge 6 und 7 beigefügt.

Oie Verfasser dieses Sprachentwurfs konnten auf die Sprachvorschläge aus Phase 1,

sowie auf eigene Erfahrungen mitder Entwicklung von ALPHARD [10,11] und BLISS

aufbauen. Das Hauptgewicht beim Entwurf wurde auf das Typkonzept, generierende

Definitionen und das Modulkonzept gelegt.

Die Ergebnisse der Studie wurden den beiden Auftragnehmern der Phase 11 zur Verfü­

gung gestellt.

-17-

DORNIER

Dornier System GmbH

2.3 Testprobleme

Im Juni 1978 wurde den Auftragnehmern der Phase 11 ein Satz Beispielprogramme

zugestellt, an Hand derer die Flexibilität und Problemgerechtheit der entstehenden

Programmiersprache demonstriert werden sollen. Die Beispiele sind hauptsächlich dem

Bereich der Systemprogrammierung entnommen. Es ist nicht beabsichtigt, die entste­

henden Programme irgendwelchen statistischen Auswerteverfahren zu unterwerfen. Die

vollständigen Testprobleme sind in Anhang 8 enthalten.

Folgende Beispiele wurden ausgewählt:

1 Erkennung asynchroner Unterbrechungen durch Abfrage

2 Unterbrechungsbehandlung unter Prioritäten

3 Ein kleines Dateibehandlungspaket

4 Darstellung bewegter Bilder

5 Ein Schutzmodul für eine Datenbasis

6 Ein Beispiel aus der Prozessteuerung

7 Adaptiver Wegeschaltalgorhythmus für einen Datenübertragungsknoten

8 Allgemeiner Zeitsteuerungsmodul

9 Parallele Ausgabe im verteilten System

10 Entpacken und Konvertieren von Eingabedaten.

-18-

DORNIER

Dornier System GmbH

2.4 Untersuchungen zur Ein-/Ausgabe

Unter der fachlichen Aufsicht eines Mitarbeiters des "Electronics Command" (Fort

Monmouth) der US-Armee wurden im Rahmen einer Doktorarbeit Möglichkeiten zur

Klassifizierung maschinenunabhängiger Primitivfunktionen der Ein-/Ausgabe unter·

sucht [12). Grundlage waren einschlägige Arbeiten von Wirth (MODULA) und Hoare,

sowie die Sprachentwürfe aus Phase 1.

Es wird versucht, verschiedene Ein-/Ausgabevorgänge nach ihrer inneren Funktion zu

klassifizieren, etwa "Status-" oder "Unterbrechungsgesteuert" mit den jeweiligen Un·
·-· ·- .

terklassen. Die für die einzelnen Klassen relevanten Operationen und Steuerparameter

werden identifiziert, und dazugehörige Betriebssystemtechniken und -bausteine unter­

sucht. Außerdem werden Methoden zur Abbildung von Datenstrukturen auf Maschi·

nendarstellung betrachtet.

Die Arbeit kann wohl am besten als der Versuch charakterisiert werden, die lmplemen·

tation von E/A-Funktionen so durchzustrukturieren, daß höhere Funktionen (wie z.B.

die in PEARL) in maschinenunabhängiger Weise auf die in der fertigen DoD-Sprache

vorgesehenen Primitivfunktionen abgebildet werden können.

-19-

DORNIER

Dornier System GmbH

2.5 1 mplementationsvorbereitu ngen

Nachdem bereits einige Dienststellen innerhalb des Verteidigungsbereiches an einer

Verwendung der zukünftigen gemeinsamen Sprache interessiert sind, werden Vorunter­

suchungen betrieben, durch die festgestellt werden soll, an welchen Stellen möglicher­

weise 1 mplementationsschwierigkeiten zu erwarten und welche Technologien im Ein­

zelfall am erfolgversprechendsten sind.

So wird z.B. die Verwendbarkeit von "secure UNIX" als unterliegendem Betriebs­

system geprüft. Verschiedene Zwischensprachtypen werden auf ihre Eignung hin unter­

sucht, als Grundlage für einen standardisierten, portablen Compiler zu dienen. Hierbei

spielen besonders Effizienz- und Optimierungsaspekte eine Rolle. Unter diesem Ge­

sichtspunkt müssen auch die Forschungen an der Carnegie-Mellon Universität gesehen

werden, die sich z.B. mit Messungen der statischen Codeeffizienz von Compilern und

mit der Entwicklung eines generierbaren, maschinenunabhängigen, portablen Compilers

befassen. Um verbessertes statistisches Material zu dem Verfahren über Effizienz-„
messungen zu gewinnen, soll es in nächster Zeit auf existierende Compiler im Verteidi-

gungsbereich angewandt werden. Außerdem wurde eine spezielle Untersuchung über

Fragen der Softwarewartung begonnen.

-20-

DORNIER
Dornier System GmbH

2.6 Das ARPA - Netz

Dieser mehrfach erwähnte Begriff steht für ein Rechnernetzwerk von beträchtlichen

Ausmaßen, das in den Jahren 1969 bis 1972 unter Förderung der ARPA aufgebaut und

seitdem für eine Vielzahl von Forschungs- und Entwicklungsvorhaben benutzt wurde.

Es umfaßt über 125 Rechner, an mehr als 67 über die ganzen USA verteilten Stellen,

die untereinander durch kommerzielle Telefonleitungen verbunden sind. Über Wahllei­

tungen und Datensammelstationen kann praktisch eine unbegrenzte Anzahl von schrei­

benden Terminals angeschlossen werden. Die durchschnittliche Belastung während der

normalen Arbeitszeit schwankt zwischen 500 und 700 Benutzern. Über Satellitenver­

bindungen sind Außenstationen in Europa und Hawaii angeschlossen.

Auf diesem Rechnernetz steht eine breite Palette von Softwarewerkzeugen vom Simu­

lator für CPU s über Compiler für praktisch alle wesentlichen Programmiersprachen bis

in zum Nachrichtenübermittlungssystem, das mit einem Datenbankmechanismus ge­

koppelt ist, zur Verfügung. Da über das ARPA-Netz viele der an der Sprachentwicklung

beteiligten Stellen miteinander verbunden sind, hat es sich als eine große Hilfe bei der

Vorbereitung von Dokumenten und Sitzungen oder bei der Durchführung von Auswer­

t ungen erwiesen.

Wenn die Arbeit am Terminal für einen Techniker zunächst auch sehr gewöhnungs­

bedürft ig ist und die Aneignung einiger neuer Arbeitsgewohnheiten nötig macht, so

erhöht sich doch die Effizienz von Teamarbeit durch die Verwendung eines solchen

speichernden Kommunikationsmittels außerordentlich.

... ...
~
"' 0

"' 0

!
~

-21-

CORNI ER

Dornier System GmbH

3. DIE SPRACHENTWICKLUNG DES US-DEPT. OF. DEF.

IM VERGLEICH MIT PEARL

3.1 · Zielsetzung

In diesem Abschnitt soll der Versuch eines Vergleiches zwischen PEARL und der

zukünftigen gemeinsamen Programmiersprache des US-Verteidigungsbereiches gemacht

werden. Dies liegt nahe, da beide Sprachen sich in ihrem Hauptanwendungsgebiet, der

Programmierung von Realzeitsystemen, überlappen. Leider sind jedoch zur Zeit einem

solchen Vergleich bezüglich seines Grades an Detailliertheit aus mehreren Gründen enge

Grenzen gesetzt:

Die Sprachentwürfe der Phase 1 sind zu großen Teilen als überholt zu betrachten, da

während der Bewertungsphase Änderungsvorschläge und zum Teil berechtigte Kritik

in so großem Umfang eingingen, daß die Sprachen vermutlich erhebliche Verände­

rungen erfahren werden, wenn auch nur ein kleiner Teil der Vorschläge berücksich­

tigt wird.

Die technischen Anforderungen erfuhren beim Übergang von "revised IRONMAN"

zum "STEELMAN"-Dokument erhebliche Änderungen. Manche davon, wie z.B. die.

das Tasking-Modell betreffenden, waren sogar grundsätzlicher Art.

Über den derzeitigen Zustand der Sprachentwürfe wird aus Wettbewerbsgründen

selbstverständlich Stillschweigen bewahrt.

Unter all diesen Einschränkungen kann aber doch versucht werden, ein ige generelle

Unterschiede zu identifizieren.

Zunächst sind Entstehungsgeschichte und Zielsetzung der beiden Sprachen völlig unter­

schiedlich. PEAR L wurde auf Initiative von Anwendern in enger Zusammenarbeit

zwischen Herstellern, Softwarehäusern und Anwendern entwickelt. Ein Ziel dabei war,

die Kommunikationslücke zwischen dem Spezialisten mit dem Wissen um den Prozeß

und dem Datenverarbeitungsspezialisten dadurch zu schließen, daß dem Prozeßent­

wickler, sei es nun der Ingenieur, der Physiker oder der Chemiker, ein Mittel in die

-22-

DORNIER
Dornier System GmbH

Hand gegeben wird, das ihm erlaubt, einen großen Teil der anfallenden Programmier­

aufgaben selbst zu erledigen. Dazu war ein Instrumentarium nötig, da es gestattete,

weitestgehend von speziellen Eigenschaften des Rechnersystems einschließlich der 1 n­

terfacehardware zu abstrahieren. Dafür wurde an manchen Stellen eine gewisse Inflexi­

bilität in Kauf genommen. Außerdem war es notwendig, dem "gelegentlich Program­

mierer" einen gewissen Komfort zu bieten, der natürlich manchmal mit entsprechen­

dem Implementationsaufwand erkauft werden muß.

Die Sprachentwicklung des US-Dept. of Def. war dagegen von vornherein für den rein

professionellen Programmierer gedacht. Sie soll speziell auch für die Erstellung von

großen militärischen Realzeitsystemen eingesetzt werden können, bei denen Fragen der

Programmzuverlässigkeit und der Verteilbarkeit des Arbeitsaufwandes eine große Rolle

spielen. Außerdem war es wegen der großen Verschiedenartigkeit der Anwendungen

nötig, besonders ausgefeilte Anpassungsmöglichkeiten an Charakteristika des Rechners

und der lnterfacehardware zu fordern. Auch spielen Effizienzfragen bei militärischen

Anwendungen mit ihren manchmal drastischen physikalischen Einschränkungen eine

größere Rolle als beim industriellen oder gar labormäßigen Rechnereinsatz.

-23-

DORNIER

Dornier System GmbH

3.2 Technische Gesichtspunkte

Es ist außerdem möglich, aus den im 'STEELMAN'-Dokument zusammengestellten

Anforderungen einige technische Unterschiede zu PEAR L abzuleiten, die die zukünf­

tige Programmiersprache für den Bereich des US-Dod mit sehr großer Wahr­

scheinlichkeit aufweisen wird :

Zunächst wird sie 'kleiner' sein als Full-PEAR L, da eines der Hauptprinzipien beim

Entwurf ist, möglichst keinen Mechanismus in die Sprache einzubauen, der durch

andere, bereits enthaltene Mechanismen dargestellt werden kann. Natürlich setzen

Handlichkeit und Anwendbarkeit der Sprache der strengen Durchsetzung dieses

Prinzips gewisse Grenzen.

Aus diesem Prinzip ergibt sich aber, daß die Sprache wohl kaum höhere Ein-/ Ausgabe­

anweisungen wie in PEAR L, ja selbst kaum solche wie in herkömmlichen Programmier­

sprachen enthalten wird. Vielmehr sollen benutzerorientierte Ein-/Ausgabefunktionen

mit Hilfe der vorzusehenden Expansionsmechanismen aus einigen wenigen primitiven

Operationen aufgebaut und dem Benutzer in (z.T. standardisierten) Anwenderbiblio­

theken zur Verfügung gestellt werden. Für den Benutzer soll dann aber ihr Aufruf nicht

von dem in die Sprache eingebauter Funktionen unterscheidbar sein. Die allgemeine

Form häufig gebrachter Ein-/ Ausgabefunktionen soll aber schon in der Sprachbeschrei­

bung festgelegt werden.

Auf leistungsfähige Mechanismen zur Definition von Typen, Operatoren, Modu len und

Abstraktionen wird deshalb bei der Entwicklung der Sprache größtes Augenmerk ver­

wandt werden müssen. Man darf wohl sagen, daß der Erfolg der Sprache in der Praxis

mit der Qualität, Handlichkeit und Benutzerfreundlichkeit dieser Mechan ismen stehen

oder fallen wird.

Was die angebotenen Datentypen und darauf anwendbaren Operationen, das Prozedur­

konzept und die Kontrollstrukturen angeht, so werden Unterschiede zu PEARL nur im

Detail feststellbar und hauptsächlich durch das strenger eingehaltene Typkonzept be­

dingt sein.

-24-

DORNIER
Dornier System GmbH

Die im "STEELMAN" formulierten Anforderungen an die Konstruktionen zur Steue­

rung paralleler Prozesse würden von PEAR L voll erfüllt werden, jedoch bleibt abzu­

warten, wie diese Anforderungen von den Entwerfern ausgelegt werden, bevor irgend­

ein Vergleich gezogen werden kann. Bei den Synchronisationsmechanismen ist -

entsprechend dem Stand der wissenschaftlichen Diskussion auf diesem Gebiet - alles

offen.

Die Mechanismen zur Behandlung von Fehlern und Ausnahmereaktionen werden in der

"DoD-Sprache" voraussichtlich dem neuesten Stand der Technik entsprechen. Ein wei­

teres relativ neues Sprachmittel werden die "assertions" sein, die es gestatten, selbst­

kontrollierende Algorithmen zu schreiben. Ihre Semantik ist jedoch in PEAR L durch

entsprechende Verwendung des "SIGNAL"-Mechanismus nachbildbar.

Sprachmittel zur Beschreibung der statischen Systemkonfiguration außerhalb des ei­

gentlichen Rechners, wie sie der Systemteil in PEAR L zur Verfügung stellt, wird es

nicht geben. Dafür wird es möglich sein, logische Datenstrukturen auf physikalische

Speicherelemente im Rechner abzubilden. Ein Teil der Aufgaben des Systemteils, wie

z.B. Bereitstellung von Steuerinformation für Betriebssystemgeneratoren oder Opti­

mierungsparametern für Compiler, wird durch andere Sprachelemente übernommen. So

ist z.B. an bedingte Übersetzung gedacht. Ein Grundprinzip, nämlich Trennung von

maschinenabhängiger und maschinenunabhängiger Information, soll jedoch, ähnlich

wie in PEARL, gelten.

-25-

CORNI ER

Dornier System GmbH

4. LITERATUR

[1] B.W. Boehm et. al:

[2]

[3]

[4]

[5]

[6]

Information Processing /Data Automation lmplication of Air Force

Command and Control Requirements in the 1980s (CCIP-85), Vol. 1,

Highlights (Revised Edition), Febr. 1972

and:

Vol IV, Technology Trends: Software, Oct 1973, Space and Missile

Systems Organization, AFSC, Los Angeles, California

D.A. Fisher:

Automatie Data Processing Costs in the Defense Department;

1 nstitute for Defense Analysis, Paper P-1046, AD-A004841, Oct. 1974

Department of Defense Directive 5000.29, "Management of Computer

Resources in Major Defense Systems", April 26, 1976

(verschiedene Autoren)

Defense Management Journal, Vol. 11, No. 4, Oct 1975

J. H. Williams, D. A. Fisher (editors):

Design and Implementation of Programming Languages - Proceedings of

a DoD-Sponsored Workshop;

Lecture Notes in Camp.Sc., Vol. 54, Oct 1976, 496 pp

Springer-Verlag 1977

Amoroso, Wegner, Morris, White:

Language Evaluation Coordinating Committee Report to the High Order

Language Working Group (HOLWG);

Erhältlich auf Mikrofilm über die HOLWG oder von:

NTIS, US-Dept. of Commerce,

5285 Port Royal Raad, Springfield, Va., 22 161

AD-A'/J37 634, Jan. 1977

-26-)

DORNIER

Dornier System GmbH

[7] Department of Defense lnstruction No 5000.31, "Interim List

of DoD High Order Programming Languages (HOL)," Nov. 24, 1976

[8] P. Elzer:

Report on the 'review of analyses' phase 1 of the US-Dod-HOL-project;

L TPL-European group, paper PE 78032902

[9 1 DoD-HOL-Commonality Effort, Phase 1 Report; (4635 pages)

erhältlich auf Mikro-fiche über die 'HOLWG' oder von:

NTIS, US-Dept. of Commerce,

5285 Port Royal Road, Springfield, Va., 22161

ADB 95q) 587

[10] Wulf, London, Shaw:

An lntroduction to the Construction and Verification of ALPHAR D

Programs;

IEEE Transactions on Software Engineering, SE-2, 4, Dec. 1976

(pp. 253 - 265).

[11] Shaw, Wulf, London:

Abstraction and Verification in ALPHARD: Defining and Specifying

Iteration and Generators; CACM, 2(/), 8, Aug. 1977 (pp.553-564)

[12] D.E. Perry:

High level language features for handling 1/0 devices in real-time systems

PhD-Thesis, Stevens Institute of Technology, Castle Point, Hoboken,

New Jersey, Mai 1978

,1
·1 .r
·' :'j

;.!
:r
~~

~
1 ~ .,
1.

· ·~ .,
··i

;::

' ' i

i
1

J

A s lnng CI S th ere 11• ere 110 111ac/11'11 es. pro1:rammi11g was 110 probfom at
all: '"" "" 11 '<' /111d a fe11• ll'cah comp11ters. programmi11J! b1?ca111e a mild
pmhl<'m . am/ 1w 1<" that we haue gil(Cllltic COlllJJll/ers, progra111mi11K has be·
cum e an equally KigC1 n /ic JJrublem. !11 this sense the electro11ic illdustry
has 1wt soluc" { a si11gl1? p robll!m. it has 011/y created them-il has created
t lw prob/em of 11 si11 g i t s prod11 cts. .

E. W. Dijkstra
Turing Awurd Lccture

As has often been noted. the past 25 years of
digital computing have been characterized by
striking increases in compuLing spced, memory
capacity, and hardware reliabilitv, with simultaneous
decrcases in power consumption and hardware
cost. What is perhaps not so widely recognized is
that thcse trcnds have lcd to inflated expcctations
for automating not only thosc tasks that had been
previou sly performed manually, but also for auto­
mating somc tasks that hadn 't even been attemptcd
beforc. !\1uch of the burden of these incrcased
cxpectations has fallen on software.

Within the Dcpartment of Defense, systcms
requircmcnts for softwarc have bccn expanded, as
cxemplified hy automation of control functions in
systcms such as Tacfire, thc Safeguard ballistic
missilc defcnse system, the Airbornc Warnin" and
Control Systc11:· thc Trident ballistic missil~ sys
tem, and the Mmutcman systcm .
. Costs. Studies conductecl in 1973 ancl 197,1 pro­

v1de some quantita t ive data on the sizc and makeup
of thc software prohlem. "' Althou~h liL Lle infor­
mation is availahle, thesc studics 1 ~ivc somc
conscrva tive estimates that provide reli r. · ,le lowcr

bounds on the cost of software in the DoD. For
example, in · 1973 digital computer software costs
were estimated at ~3 billion to $3.5 billion annuall'I
and were growing in dollars and in proportion t~
other computcr costs. An additional $2 to $3 billion
were spent in ehe same year for the support and
operation of comput.er systems. These s tudies also
showed that the greatcst software problerns in th„
DoD, as measured by their cost, are associated
with so-callcd embedded computer systems (Fig­
ure 1), and that the majority of costs are incurred
in software maintenance rather than development..

The rising cost of compuler resources has rcsulted
in increased a tt ention b:.· the highest levels of man·
agement, and a number of tcchnical and manageri:J
procedures have becn undertaken. ' Initial guidance
was provided by DoD Directive 5000.29, Manage·
ment of Computer Re~~ources in Major Defcnse
Systems.•

At one time DoD was a major innova tor and cor.­
sumer of thc most sophisticatcd compu ter hnrdware,
but now it represents only a small fraction of the
föta l market. In software, tha t unique position still
remains: a significant fract ion of the total software
industry is devotecl to DoD-related programs-nnd
this is truc in even !arger proportion for the more
advanced and demnnd ing systems. Thus. as it once
had for hardware technology, DoD now has the
opportunity and responsibility to ensure that its
influencc on software ted111ology is beneficial.

Common lnn!!Ull!!C cffort. One of thc major tasks
undertuken by DoD to alleviate software problems

24 001 :-i-91 <;~11 ~ •o:u: . „ou 2 . 1 son .1s , •. 1978 ll-: L·: ~; COMPUrEi=l

has heen thc common progrnmming languagc cffort.
This effort is based on the idca that many of the
support costs for software increase with the number
of languages, und that languages must be suited to
their applications. Furthermore, with a common
progrumming language, a software development
and maintenance environment could be built, pro­
viding centralized support und common libraries,
that could be shared by severul projects working
in the same application area. Ideally, support soft­
ware, including trnnslators, could be developed in
the source language so that any existing tools
could be made available on a new machine at the
cost of developing a new code generator for a
standard compiler.

Embeclded comput.cr systems. Because the major­
ity of software costs in the DoD are associated
with embedded computer systems, the common
language effort is concerned primarily with embed­
ded computer software. The term "emhedded com­
puter system" was first used in 1974' to denote
one that is logically incorporated in a !arger
system-e.g., an electromechanical device, a tactical
system, a ship. an aircraft, or a communicaLions
systern-whose prirnary function is not computation.
1 ncluded

0

in the concept of embeddecl computer
systems is the support softwarrt necessary to design,
develop, and maintain them. Computers used
primarily for data processing. scientific, or research
applications are not normally included in the
emhedderl computcr systems category.

Embcdded computer software often exhibits
characteristics that are strikingly different from
those of other computer applications. The programs
are frequently !arge (50,000 to 100,000 lines of
code) und long-lived (10 to 15 years). Personncl
turnover is rapid, Lypically two years . Outputs are
not just data, but also control signals. Change is
continuous because of evolving system require­
ments-annual revisions are often of the same
magnitude as the original development.

. Mission rclntionships. Software requirements vary
from system to system depending upon the mission.
The relative importance of execution efficiency, mem­
ory utilization, program modifiability, rellability, and
program production time vary widely among appli­
cations and among components of a single system.
l\fony embedded computer applications require soft­
ware that will continue to opcrate in the presence of
faults, whether the faults are in the computer hard­
ware, input data, operator procedures, or the soft­
ware.

At least 200 models of computers are used in em­
bedded computer systems at DoD. In many appli­
cations, the computers must be installed in configu­
rations that are incompatible with general-purpose
installations. For example, the applications may re­
quire monitoring of sensors, control of equiprnent,
display, or operator input processing. They must in-"
terface special periphernl equipment like radar, real­
time clocks, and analog devices. Software must some-

March 1978

SCIENTIFIC

DATA
PRCCESSING

EMBEDDED COMPUTER SYSTEMS
56"/o

Figure 1. Breakdown ol estimated $3
billion annual DoD soltware
costs.

times be able to respond at periodic (real time) inter­
vals, to service interrupts with.in limited times. and
to predict computation times. The tim_e intervals
vary from mlcroseconds in device interface handling,
through milliseconds in sensor m1mitoring, and
seconds in control applications, to days in report
generation.

Special-purpose executive programs must be de­
velope<l for many applications that ca11not afford the
overhead (and do not require the generality) of gen­
eral-purpose operating system:>. Systems program-.
mlng capability is also needed to develop and main­
tain support software, including translators, software
development tools, and testing aids, as weil as
their host operating systems.

In many applications, including con:man<l and con­
trol, training, and softwarc developmcnt, it is neces­
sary to access, manipulate, and <lisplay !arge quanti­
ties of data. Much of this data is .symholic or textual
rather than numcric, and must be organizcd in an
orderly and accessible fashlon. Memory space rather
than execution time is often the critica\ resource.
On thc o~her hand, a substantiul numeric processing
capahility may still be essential, especially in simula­
tion. sensor processing, and equipment control.

Sofüvnre problem·s. Difficulties with embedded
computer software are not atypical. Software prob­
lems that require or are susceptible to technical
solution arise primarily from the nonsuitability of
existing lani,,ruages for embedded computer applica­
tion:::, from inadequate tools for softwarc develop­
mcnt :md maint.enancc, and from insufficient con­
cern :"11r maintenance during software development.

25

26

Ot.hcrs, listcd below, suggest management solutions
in conjunction with technology.

Software dcvelopmcnt and maintenance are con·
strnined by thc nvailability of dollars, development
time, machinc resources, competent personnel, and
useful programming tools. As with any activity in
which expectations exceed the available capability,
something must give. In this case, th!) symptoms
appear in the form of software that is nonrespon·
sive to user needs, unreliable, excessively expensive,
untimely, inflexible, difficult to maintain, and not
reusable.

Much has been said about the problems of soft·
ware reliability. DoD software has all the common
symploms-occasional system crashes, inability to
deal with user errors and ill-formcd data, and errors
which occur so frequcntly in a complex program
from an upparently minor change. Software relia·
bility, howcver, is purticularly important in the
military environment where errors can have severe
consequences.

One little-recognized problem is that few useful
software tools are available to the embedded soft·
ware de\'eloper and maintainer. One reason is that
resource limitations on hardware have Ied to an
over-reliance on assembly language programming.
There has been little incentive for individual projects
to expend the effort and resources necessary to
provide facilities that would be generally useful,
especially whe:1 there are few, if any, other projccts
using the same programming language. This may
also account for the lack of off-the-shelf software.

Finally, there is little cost accountability . This
situation has been created by the lack of visibility
of software to management, inaccessibility of soft­
ware costs, and failure to give software the same
scrutiny as hardware.

At least 450 general-purpose programming languag·
es and lincompatible) dialects are used in DoD embcd­
dcd computer applications-and none is widely used.
With few exceptions the only common (i.e„ widely­
used) languages are Cobol (in data processing ap·
plications) and Fortran (in scientific and engineer·
ing applications). The remaining languages are
used almost exclusively in embedded computer
applications.

Programming languages

The present diversity of programming languages
used in embedded computer systems did not cause
mos t of the problems-nor would a common pro­
gramming language cause them to disappear. Never·
theless, the existing language situation unquestion­
ably aggravates them and inhibits some potential
solutions.

The programming language is the central element
in the design, development, and maintenance of soft­
ware. lt is the one software component that pervades
all software component ac tivity. lt providcs the
building blocks from which software is com Lructed.

Together with its implementation (as a compiler),
it acts as the finol arbitrator for the behavior of np·
plication software arid associates an interpretation
with each program. The programming language is a
major con~ern when developing software toob and
aids, when commu.nic11ting techniques and algorithm3,
when writing manuals, and when training personnel.

Ill effects. The lart~e number of prograrnming lan·
guages and the !ack of any widcly-used lan1,."llage
have had many iil-effects:

Excessiue cost. There is enormous duplication of
costs for the c!esign, implementation. testing, mai.n·
tenance, and training t,hat ·must be repeated for thc
translators, so.ftware tools·. application software, and
support packnges for euch languagc.

Slow commanication. Transfer of new software
technology to pract ical u·se is severely rctarded.
The diversity of lanL;uagcs creates artificial bound­
aries that complicate communication, reduce under·
standing, and lead to mutual mistrust among users.

Scattered research. There is little research on the
problems of software for embedded comput.er systems.
Lack of program1ning language commonality makes
it nearly impossible to gathcr quantitative dala about
problems that arc unique to these appl icat.ions .

Unnecessary r.ies to uendors. 'vVhen a language
is unique to a single project, so must be Lhe supporl
so(tware. In consequence, the softwure mainlcnance
is tied to the original vendor. This tcndcncy is
strengthened in the common situalion in which the
translator and support tvols for the languuge are
written in still anotl ,er language that rcmJins the

. property of the vendor.

Diversion from important tasks. The dcvelopment
of a new programm:ng language for each project
diverts energy from t".he real taste Of nccessity. pro­
jects are concerned with thcir own applirntion; their
primary goal must be to develop the application
software. Project pe;·sonnel may have neithcr the
inclination, time, funds, nor expertise to develop more
powerful or more gennrally useh1l softwarc tools that
are needcd to support their languagc.

Diffused expenditures. The]arge numbcr of Jan·
guages diffuses the available funds so that only
the most primitive software aids can be afforded.·
Potentially useful software tools are limited to users
of the associatcd language and, thus, provide little
leverage. .

Rish in 11sing existin{f larzguages. When the
existing languages are poorly supported (as they
must be when t.here is no widely used language)
and a new compiler mu~c be developed for each
new system (as is typical in embcdded computcr
applications), the adoption of an existing language

COMPUTER

by a new project is often more risky and lcss cost
effective (at least during development) than it is to
clevclop a new language spccialit:ed to the applica­
Lion.

History

The common language effort has had a short but
lively history. lt bcgan in 197-1 when groups in each
of the military departments independently proposed
the adoption of a common programming language
for developing major defense systems. Those efforts
included the Army "Implementation Language for
fieal -Time Systems" study, the Navy CS-4 effort,
and the "High Order Language Standardization
for the Air Force" study. In January 1975 a joint
Service program was formulated on the advice of
the Director of Defense Research and Engineering.*
He also instructed that no further funds be
expended for the implementation of new program­
ming languages in major defense systems until the
problcrn of software commonality (i.e., of insufficient
sharing of software resourc<.>s) had been resolvcd. 0

Working group. To coordinate the activities of
the common language effort, a high order language
working group was subsequcntly formed with
official members from the Army, Navy, Air Force,
l\farine Corps, Defense Communications Agency,
l\ational Sccurity Agency, and Defense Advanced
nesea rch Projccts Agency. NASA and other offices
within DoD have also participated. A representa­
tive of the British Ministry of Defence has been
working full time in the United States since January
1977. The author acts as technical advisor. The
high-order language working group is chaired by a
represen ta tive of the Unclersecretary of Defense,
ne~earch and Engineering.

The working group is chartered to "investigate
the eslablishment of a minimal number of common
high-order cornputer programrning languages to be
used in the development, acquisition, and support
of computer resources embedded within Defense
Systems."' In particular, it is to define the technical
requirements for a common language, compare
them with existing languages, recommend adoption
or implementation of the necessary languages, and
to monitor and assist any such actions. Thus, the
working group coordinates all the activities of the
common language effort but does not participate
rlirectly in the design or implementation of program­
ming languages or their associated software.

The major concerns of the common language
effort are to reduce the number of programming
languages and to provide a useful, well supported
environment for those that remain. The working
group realized ·early that it · would be irnpractical
to convert existing programs to a common language;

•Nnw thc lJnclcrsl'c r<•lnry of Defcn•c. llcscurch nncl F:nginccrini;,
USflll l::.

March 1978

hence the cornmon language effort applies only to
new systcms.

Interim !ist. A first step in reducing the numher
of programming languages was to a<lnpt an interim
!ist of approved languages. The military depart­
ments each nominated a limited number of lan­
guages. These nominations resulted in the issuance
of DoD Instruction 5000.31." This instruction
specifies that only approved high-order languages
(Table 1) will be uscd to develop new defonse sys­
tem software, unless another language can be
shown to be more cost effective ovcr the system
Iife cycle.

Table 1. Interim list _of approved prog1ammlng languages.

CMS·2
SPL-1
Tacpol
J3 Jovial
J73 Jovial
ANSI Cobol
ANSI Fortran

Gcnernting the rcquiremcnts. ln Lhe spring of
1975, the working group began the process of deter­
mining the characteristics of a general-purpose
programming language suitable for ernbedded com­
puter applications. The characteristics were to be
given in the form of requirements \vhich would act
as constraints on the acccptahility of a language,
but would not dictate specific language features.
The requirements are not a languuge specification;
instead, they attempt to rigorously define the
needed characteristics in a form that can be
critically reviewed.

STRA WMAN. Although thcre are several widely
acceptcd general goals and criteria (such as effi­
ciency, reliability, reaclibility, si:nplicity, and imple­
mentability), they do not lend themsclves to quan­
tifiable assessment. At the opposite extreme are
specific language features, advocated by sorne,
which if adopted as requirements would impose
streng constraints on the form but not necessarily
increase the effectiveness of Lhe language. The
arguments for or against any spcc1fic language
feature are often applicable to a dass of features
sharing certain properties, and they often depend
on other characteristics of thc language. The
requircmcnts attempt to isolate the needed prop­
erties from the features that implcment them.
Initially, rigorous dcfinition at the level of requirc­
ments proved <lifficult, so a S'l'llAWMAN of prelirn­
inary requirements was establishcd. S'l'HAWMAN

was widely circulated within the military depart­
ments and to a lesser extent in the academic com­
munity and inclustry.

wonnENMAN. The reviews of S1'RAWMAN re­
sulted in inputs which were formcd into 11 fni rlv
complet e, but still tentative, set of requi rements

27

28

called WOODl::Nl\lAN.9 This document cont1.1ined
descriptions of the general (i�e .. nonquanti{hblel
characteristics which were desired; it also coni:.:,ined
manv other clesirable characteristics whose fcasi­
bility. practicality, and mutual compatibility had
not been test.ed. WOODENl\lAN, too, was widely
distributed. not onlv within the military depart­
ments but also to other government agencies, the
compuler science research community, and industry.
Addit.ionally, a number of technical experts outside
the United Stntes were solicited for comments, the
European community being especially responsive.

TINMAN. Based on the various inputs and the
official responses from each of the military depart­
ments. a TINMAN'"·" set of requirements was
derived. TlNi\lAN removed former requirements for
which there was no sound rationale, restricted
unnecessarily general requirements, and modified
others to be practical within existing technology.
Each requirement in TINMAN had its own justifi­
cation. TINMAN requirements were officially ap·
proved by the assistant secretary for research and
development of each of the military departments
in J anuary 1976.

The document was circulated widely for comment,
and in October of that year a workshop" was held
at Comell University to cliscuss the technical issues
that had been raised by the requirements and to
further investigate their feasibility.

IRONMAN. A new version of the requirements,
called IRONMAN," was issued in January 1977.
IRON�tAN requirements were substantially the
same as those of TtN:.tAN, but moclified for feasibility
and clarity and presented in an entirely different
formal. TINMAN was discursive and organized
around general areas of discussion. IHONM,\N, on
the other hand, is very brief and is organizcd like
a language d,-scription or manual. lt is essentially
a specification wit.h which to initiate the design of
a language. However, it is still sufficiently general
to conslrain the structure of a language without
dictating the details of its design. A more rccent
revision, the Revised ll!ONMAN," was issued in
July 1977 ancl is av�\ilable for comment.

At each itcration, r.ommenLs were gathered and co­
ordinaLed bv 1.he :,ervices and Lheir working group
representativr;s, 1 hen analyzed and reformulated as
requirement.s hy the Institute for Defense Analyses.
In all, 74 con:mallds and offices within DoD, 66 in­
dividuals outside of DoD. and 43 companies and or­
ganizations (llot ,;ounting the workshop at Cornell
or the languar;e eva!ualion efforts) have contributed
over 2000 pagf)S or commentary on the rcquircments.
Not all of tlw suf{gesLions have been adopted, and
many have lmm modified before acceptance, but
each has been considercd in sufficient detail to dc­
termine why it should ·or should not be followed.

Beginning with WOODENMAN, each iteration has
reduced the number and generality of the capa­
bilities requested. As the needs of the application
have become better undcrstood, as the applicaLion

needs have been examined wiLh respcct to known
language features, and as morc cmphasis has bcen
placed on the general requirements for reliabili_ty,
mainlainability, and efficicncy, many of Lhe requ1re·
ments havc become bolh more precise and less
restrictive.

Similnrity of rcquircments. Onc surpising result
of the requirements effort has been the similarity
of the requirements among the different application
areas. Early in this program, it appeared that dif·
ferent user communitics might have fundamentally
different requirements with insufficient overlap to
justify a common language or might have critical
requirements that were incompatible. Such com·
munities include avionics, guidance, command and
control, communications, and training simulators.
However, it has been impossible to single out differ­
ent sets of requirements for particular communities.
Almost all the potential users had the same
requirements, although priorities dirfcre<l. Often
the priorities varied among segments of a task. All
users needed input-output, real-time facilities. strong
data typing. etc.

Upon reflection, the technical rationale for this
outcome was clear. The surprise was historical and
was based on the observation that in the past the
different commwuties have favored different language
npproaches. Further investigation showe<l that the
origin of this clisparity was primarily administrative
rather than technical. This did not, however, estab·
lish that a single language could rneet all the statcd
requirements, only that, if a language meeting all
requirements were found, it woulci satisfy lhe per­
ceived needs.

Langunge evohrntion. During 1976, 23 pro�ram·
ming languages (Table 2) were evaluated against
the developing rcquircments. These cvaluation�
were performed by 16 companics and crganiza•
tions.

Most of the languagcs received at least two
evaluations. In several cases the designers of a
language were included among its evaluators. The
report" consolidating the evaluations i11cludcs the
following findings:

•. No languagc saLisfied the requircments so weil
that it could be adopted as a common language.

• Sevcral of the languagcs werc sufficicni.ly com·
patible with Lhe technical requiremenls so th:it
they could be modified to produce an acccptable
language. All of Lhe languages in lhis group are
derivatives of Algol-68, Pascal, or PL/I.

• Without exception, the evaluators found all thc
interim approved languagcs to be inappropriate as
a basis for developing a common language.

• lt was the consensus of the evaluators that it
is currently possible to producc a singlc language
that ytould mect essentially all the requirements.

COMPUTER

Table 2. Examples of languages that were evaluated
agalnst the technlcal requlrements.

1. Languages currently being used for embedded computer
appllcalions in DoD. such as

CMS·2
Jovial
SPL/1
Tacpol

2. Languages being used for pr3cess control and similar
applicatlons in Europe. such as

Coral 66
LIS
LTR
Pearl
RTL/2

3. Research languages known to satisfy speclfic requlrements.
such as

Euclid
Moral
ECL

4 Languages widely used outside DoD, such c; s
Cobol
Fortran
Pascal
PL/ I

The latter finding means that no technological im­
pediment to a single language was found and that it
is likely that divergent requirt?mcnts, such as those
for readable programs, avoidance of unnecessary com­
plexity, implementable compilcrs, semantic and syn·
tactic consistency, machine ind.ependence, and object
code efficiency, can be met.

As might be expectcd. the more modern languages
tended to satisfy thc requirement.s for reliability
and main tainability, while languages intended for
process control and DoD applications satisfied the
requirements that reflect the special needs of
embed<led computer applications.

Design competition. Since no existing . language
simultaneously sa t isfie<l the nreds of embedded
computer applications, of rcliablP and maintainable
sofLwarc, and of machinc indepPndcncc, and since
it appeared feasible to satisfy all the requircments
without new technology, th(· seniccs undertook a
joint enginccring dcsign effort l.o produce a com­
mon l:mguage that would satisfy thc requirements.
BecaL1se all the lanbruages tliat wrre idcntificd as
appropriate for mo<lifü:atio:1 are derivatives of
Algol-68, Pascal, or PL/I. it was deci<led that the
common languagc also shonld he a derivative of
lbuL not nccessarily upward cornpa tible with) one
or those three. Several cor11pet.'.ng designs were
pla:mcd. Most of the fifteen proposals received,
including the four best, wE>rc bascd on Pascal.
Th c-se four-CI 1-Honeywcll Bull, Intcrmetrics,
Soffech, and Sill Inlerna tionnl- began parallel
des ign cfforts in August 1977.

March 1978

We i1 1ww ;;at we design a language . to simplify the expressio11 of an
unbou11cied number of algorithms created by an important class of prob·
[ems. T!•e design should be performed only when th~ alg_orithms for this
clas.< impo.<e, or are likely to impo.~e. after some cultwat1on, cons1derable
traffic 011 computers as weil as considerable composition time by pro·
grammers using existing languages. The languag_e, the.~ must ~educe the
cost of a set of transactions to pay the cost of 1ts des1gn, maintenance,
and improueme11t.

Alan J. Perlis
1966 Turing Award Lccture

The philosophy of the technical requirements

The technical requirements for the common
language reflect six major. goals: (1) that it be suit­
able for software in DoD embedded computer
applications; (2) that it be appropriatc for the
design, development, and maintenance of reliable
software for systems that are !arge, long-lived. and
continually undergoing change; (3) that it be suit­
able as a common language (i.e., complete, unam­
biguous, and machine-independent standards can
be established); (4) that it will not impose execution
costs in applications where it provides unused Qr
unneeded generality; (5) that it provide a base
around which a useful software development, main·
tenance, and support environment can be built;
and (6) that it be an example of good current
language design practice. At the highest level, the
requirements take the form of general design
criteria (i.e., constraints) that are most strongly
influenced by the first three goals.

Application needs. Many facilities must be pro­
vided in a language that is suitable for embedded
computer applications, but four stand out becausc
they are not usually provided in general-purpose
languages for data processing and scientific appli­
cations:

User input-output i11terface specification. These
applications use specialized input-output devices
whose characteristics may not be known at the
time of language design.

E x ceptio11 ha11dli11g. lt must be pos~ihlc to writc
programs that will automatically rccover fro ri1
errors, whether in the hardware, softwarc, or
data.

Real-time control. lt must be possible to access
real-time clocks, to control cxternal devices in real
time, and to respond within real-time constraints.

Parallel process i11g. lt mus t be possiblc to write
programs that control many dcviccs in parallel,
that share processors through intcrleaved cxecu­
tion , and whose parts may be executcd concur­
rently on multiprocessors.

29

30

Necds or l'nvironment. The characteristic'S of
military software and its environment impose
several gcmeral design criteria on a suit.able Iang11age:

Reliability. The combinution of extremely complex
systems with life-and-death implications may not
be unique to t.he military, but it certain1y requires
that language characteristics which promote the
production of reliable software be weighted very
highly.

Modifiability. Perhaps as much as 90 percent of
soft.ware costs in embcdded computer systems go
for software maintenance. Language features that
contribute to the maintainability of reliable and
efficient programs should have a major impact on
software costs.

Efficiency. Physical limitations of military systems
(e.g., an airplane) may impose limitations on the
time and space for computations. In consequence,
the efficiency of object progrnms is a legitimate
and sometimes critical concern in military applica­
tions. Software that cannot meet these constraints
may be. in effect, worthless.

Needs of commonnlity. Moreover, the desire for
a language that can be widely used throughout
DoD adds still more design criteria:

Machine indPpendence. With over 200 computer
models used in DoD. the language must be suf­
ficiently machine-inclependent that it can be made
available on a variet.y of object machines.
Practicality. The language must be surficiently
easy and. i;1expen�ive to implement that its wide
use will be er.i:ouraged.

Complete definitio11. The language must have a
complete and unambiguous definition to assure
that softwarf' can be shared and incompatible
implementations can be avoided.

Easily accessibfo support software. The avail­
ability of usP.ful and easily accessible support
software is. cf course, the ultimate technical goal
of lhe common language effort, but the ability
t,o builcl such i". support environment can be
strongly infbenced by the language character­
islics.

General requiremcn ts. The design criteria were
then translated into eight formal requirements
dealing with the y,enerality, reliability, maintain­
ability, efficie:1cy, �implicity, implementability,
machine-independencc, and formal definability of
a suitable languagc. These eight, which constitute
the firsL chapl•Jr <)f the technical requirements."
are further exl'anc!ed into specific constraints on
the design in the remaining chaptcrs.

At.Lcmpl:s to nxpi•nd th•? general requircmcnts to
a morc dctailcd lcvel whcre quanlifiable mcasures
could bc applied. raised qucstions about Lhe relative
priorit.ies of the gHneral requiremcnts and about

how conflicts in requirements should be resolved.
Some of the tradeoffs that were considered are
outlined below. Others are given in references 11
and 16. Together thcy constitute a design ph.iJosophy
for a common languagc, a philosophy of not making
concessions on the gcneral requirements unless
absolutely necessary, and only after careful con·
sideration of the implications.

Safcty vs. efricicncy. Intuition and historical
observation teil us that there is a tracleoff between
safety and efficiency in programs. Languages such
as Euclid have emphasized safety but do not have
efficient implementations. At the same time there
are numerous examples in language designs of con­
cessions to efficiency at the expense of safoty (c.g ..
the "free union" in Pascal). The apparent tradeoff
may not be inherent. Euclid was a vehicle for
research and was not intended for use in)arge
software efforts. The information needcd to guar­
antee safety includes the type and ranges of valucs
of variables (to limit their use in a program). That
is, safety requires the same information as is
needed by an optimzing compiler to determine
what optimizations can be safely applied. This
suggests that the same answer (i.e„ languages that
provide more information in programs) may pro•
vide partial solutions to the problems of safety.
maintainability, and efficiency. This idea was
pursued in the requircmenls dcvclopment phase.
and thus far no case has bcen found in which the
efficiency of a correcl program musl be recluced in
order to guarantec safoty (although thc compiler
may be more complex).

Gcneralization vs. spccinliznlion. A general-purpose
Ianguage can satisfy a variety of needs ancl can be
applied to mcet many, possibly unfore13een, situations,
while a special-purpose language with built·in facili­
ties for a particular application is often more effi­
cient and therefore less cxpensi\"e in use. The ques­
tion is how to ach.ieve both in the same programming
language. The approach taken was lo aim for a sim­
ple- general-purpose language that would have the
power needed for the intended applications. but would
not yet be spcciali.zed for any particubr application.

Such a language should havc a few gcneral­
purposc structures, cach provicling a singlc primiti\"e
capability that can be combined with thc othcrs to
form more spccialized structures. Predefined ,1pplica­
tion-oriented library definitions should be available
in the language. As definitions made within thc !an·
guage, they can be inclependcntly controlled. need
not add to the complexity of other applications, and
need not affect the implcmentation of the language
itsclf.

Programming cusc vs. progrnm safcly. The more
tolerant Lhe programming language. the lcss it
imposcs on the pr0b'rammcr Lo specify his intcnt and
assumptions in his programs, and thus Lhc coding
task is easier.

COMPUTER

The safety of programs, on the other hand, is
enhanced by requiring specification of the program­
mer's intent (e.g., specifying the range and types of
variables), allowing redundant specificntions (e.g„
types determinable from either the formal or actual
parameters), restricting the mixing of data types
(e.g., prohibiting implicit type conversions), permit­
ti ng restrictcd access to program components
(E•.g ., specifying the scope of access for variables),
and denying access to non-essential propertics of
data. and programs (e.g., encapsulated type defi­
nitions).

A safe language allows the translator to check for
program consistency and to verify that the program­
mer has, in fact, conformed to his stated intent and
his own conventions in each program.

Considering that coding is a tiny fraction of the
total software cost and that there are major software
relia!>ility and maintenance problems in embedded
computer systems, the tradeoff between program­
ming ease and program safcty has been resolved in
favor of safety.

Achieving efficiency. The desire for efficiency in
software is often in conflict with other important
goals such as minimal de\'elopment cost, timely
dclivery, rcliability, and functional utility. Systems
requirements for efficicncy ultimately take the form
of space and time constraints imposed by the com­
puter hardware. No additional bcnefit is derived from
failure to use availablc spar.e or failure to use an idle
processor. Consequently, efficiency should be viewed
as a constraint and not as an opt;imization criterion
whC'n developing programs.

Without aut.omatcd softwarn to•Jls to identify which
parts of a program are consuming the comput.ational
resources, the whole program must be optimizcd.
Without efficient high·level languages suited to the
task, the most capable programmcrs must be used
to hand-ta.ilor the machine ccde. Thc complexity of
the task coupled with other constraints when devel­
oping a system seldom permits an optimal solution.
More important. because a mililary system under·
goes change throughout its lifctime, what may have
initially been an efficient implementation becomes
inefficient when changes occur i!1 the assumptions
and system characteristics again!'t which it was op­
Limizcd.

To be efficient, a high·order language must contain
fcatures that are appropriate l:.tl the applications. That
is, it must have features that permit; the user to ex­
press what is to be accomplicheti by the computa­
tion without dictating the details of how it is tobe
implemented. The translator can tl,en select the most
efficient implementation as a fu11ction of the gen­
erality and context of its use.

Thc language must be built from fcatures that
have efficient implement.ations on most. machines;
if the featurcs are too general or tco ::pecialized, thcy
oflen will not have cfficicnl repr~sentalions. 1 t must
be possible to combine built-in featvres to produce
highcr-lcvel mechanisms that are specialized to a

March 1978

part-icular application, task, or program without
imposing run-time cost for multiple levels of proce­
dure calls. An efficient language will require the pro­
grammer to provide more formal documentation
and will encourage the use of structured control

· primitives. Finally, whenever possible, features should
be chosen to maximize the amount of processing
that can be clone during translation.

Current activities and plans

Three phases are planned for the design and
'implementation of the common language. The first
phase or preliminary designs will be completed in
February 1978. The preliminary designs will be
incomplete but are supposed to be sufficiently
detailed to detennine the likelihood of their satisfying
the major goals for the language. In particular,
they are to address the most difficult design issues
and to explain the rationale for each design decision.

The preliminary designs will be analyzed by a
variety of teams from the military, industrial, and
research communities on a voluntary basis between
February 16 and March 13, 1978 (i.e., 390 ind.ividuals
from 125 teams). The aim of the analyses" is to
identify the major weaknesses. errors, and ovcr­
sights in the preliminnry designs and to determine
their severity. The analyses will be used to identify
the strengths and weaknesses of the individual
desit,'11s, to obtain independent appraisals of the pre­
liminary designs with respect to a number of spccific
design criteria, to help determine which subset of
the design efforts will be continued into 'the second
phase, and to provide feedback to the design con­
tractors as they completc their clesigns. It is antici­
pated that the prcliminary designs, the results of
the individual analyses, and a summary evaluation
report will be publicly available.

The candidate language designs will be completed
in 1979, after which therc will be an analysis and
review of cach design, leading to selection of one as
the common language. A complete prototype trans­
lator (possibly in the form of an interprctcr) will
be available at that time.

The tcchnical requircments conlinue to be refined
with minor revisions issued at 6-month lo 1-year
intervals. The final version of thc requircmenls and
the final language design will be consistent with one
anoLher. fnconsistencies discovered during the pre­
liminary design efforts are expected to impose
changes in the requirements. A revised version.
STl':F:LMAN, is planned for late spring 1978.

During the remaindcr of 1978. the primary
conccrn of Lhe high·orcler languagc working group
will be with the support and environmcnt for a
common language. Possible approaches will be identi­
fiecl and plans laid for lanb'llagc standards: translat.or
ccrtification: a root compilcr; a common lihrnry:
automaLecl tools for softwnrr. design. clcvcloprnent.
and maintenance: an<l a common (host) user-intcrfoce.
A working pnpcr outlining alternatives and initial
posiLions will be issucd by the working l:,'TOup in the

31

32

spring of 1 978. Further input will be provided b:,, the
National Bureau of Standards technical sympc:, ium
on "Tools for I mproved Comput.ing in thc f,() ' s"
to be held in J unc 1978, and by a proposed workshop
to be sponsored by the military departmenls foUow­
ing the NBS symposium.

Scveral parallel activities are planned for the third
phase (i.e . . the year following selcction of the conunon
language). These include test programming of DoD
applications; fine tuning of the language design; and
development of production compilers. the common
library. support facilities. software developmcnt and
maintenance tools. t ranslator certification and test
facilities. and special-purpose application libraries.

The language will not be made available for
production use in DoD applications until the testing
and implementation phase has been completed (i .e . ,
1980 in the cu iTent schedule). The common lan­
guage, upon nomination by the mili tary services.
would then be .idded to the !ist of languages that
are approved for usc in DoD systems. No compiler
will be certi ficd until a standard definition of the
languagc is adopted at the end of the third phase.

lf t.he common language effort is successful
1 1) there will be a redudion in the number and a rise

• in thc level of �he general-purpose languages used
for new software in DoD embedded computer systems,
(2) there will bt? an effective and useful software
developmcnt and maint.enance environment bui lt
around the langnages that remain, and (3) duplicate
efforts to develop and maintain similar software
tools and support systems will be reduced. The wider
the acceptance and use of the language (inside and
outside DoD), th1= greatcr will be the benefits to DoD.
lt� acceptance and usefulness, in turn, depend on
its appropriateness for potential applications: on the
quality of its design, implementation, and support;
and on the economic implications of its use as seen
by potential us(!rS . Consequently, the e ffort has
encouraged and c:ont.inues to encourage active parti­
cipation from industry as weil as from potential
users within DoD. Interested organ izations are
encouraged to contribute to the continuing revision
of the technical requ irements, the development of a
strategy to assure commonality among implementa­
tions of the lang11agc, and the planning and construc­
tion of a suitable em"ironment for the language. D

Acknowledgemen1

The work rep()rted here was conducted under
contract. DAHCl 57::1 C 0200 for the Department of
Defense. The pnblication o f this paper does not
indicate en<lorsement by DoD, nor should the con­
tents be construed as reflecting the official position
of that agency . .

Some of the mat1!rial presented here has also

appeared in refe1·ence 18 .

Re ferences

l . Rnrry W . ßochm et al. , ln{urm at. iu11 Procl!.,si11 .i:1f)ata
A 11 1omutin11 lmplica tio11 o{ A ,:r Force Co111 111a 1 1 cl a1 1d
Con t rol Req 11 irem c11 /s in the 1980s (CCIP-8.5). Vol. 1 .
Higli ligh t s ! Revised Edi tion) . Febr u n ry l 972 . n nd
Vol. I V, Tec/1 110/ogv Trends: Soft ware, October 1 97:J .
Space and M issile Systems Organ iza tion. A FSC.
Los Angeles, Ca l i fornia.

2. D. A. Fisher. " Automatie Data Process ing Costs in
the Defense Department. " 1 nst iuite for Dcfense Ana·
lysis. Paper P-1046 , A D·A00,184 1 . Oc lober 1 9 7 4 .

3 . ßarry C . DeRoze, " A n Introspcctive Analysis of DoD
Weapon System So ftware M anagement , " De{e11se
Ma11ageme11 t Jouma� Vol . 1 1 , No. 4 . pp. 2-7 .
October 1975 .

4 . Dcpartment of Defcnse D irec tive 5000.29. " i\lanage·
ment o f Compu ter Rcsou rces in l\laj or Defense Sys·
tems, " A pril 26 , 1976 .

5 . .John 1-1 . M anley, " [,;mbedded Compu lers - Sdtware
Cost Considerntions , " A f,'/ f'S C:01 1(l'roc„ Vol. 41 ,

1974 NCC. pp. 3 4 3-347 .

6 . M alcom ll. Curric, " DoD 1 ! ighcr Order Prog-ra mming
Languagc." Memorandu m issucd hy D i rcclor, Ddense
Research am! Engineering (DDR&E). Januar)' 28. 1 975.

7 . "Charter for the H igh Order L n n1,'Ua ge Working
G roup, " M anagement Steering Committc-e for E mhcd·
ded Computer Hesources, ßarry C. De Roze, Chnirman.

8. Department of Dcfcnse I nstruction Numbcr :,000. 3 l .
" I n terim List o f DoD H igh Order Progrnmming Lan·
guagc-s (HOL), " (si 1;11cd) Frank /\ . Shruntz , 1\ ssi�tanl
Secretary of Defense (I nsta l lation and ! .o,-: i st. i cs) :
Frank P . Wacher , .l\ssista n t Slicrelary of Dcfonse
(Comptroller) : Richnrd M . Shrivcr, Dircctor Telecom·
munication and Command and Conlrol Svsl ems: and
M a lcom R. 'Cu rrie , Dirc-ctor o f Dcfense Resea rch and
Engineeri ng, November 24 , 1 976.

9. David A. Fisher, " WOODENMA N-Sct o f Cr i teria
and Needed Charactcristics for a Common DoD H igh
Order Programming Lang1.1age, " I nstitute for Oefense
Analyses, Working Paper, A ugust 1 3 , 1 97 5 .

1 0. High Order Lanb'Uage \.Vorking G roup, " Dl'pnrtment
of Defcnse Hequ iremcn t.s for H igh O rder Cn mpulcr
Programming Lan:,'Uagcs-TI NM A N , " June 1 976 .

1 1 . D. A . Fisher, " A Common Progra nuning Lunguagc­
for the Dcpartment of Defensc- llackgrou nd and
Tcchnica! llcquircmcnts, " ! nst itule for Dl'f<'n,;c Ana·
lyscs , l'apcr P- 1 1 9 1 . AD·A028297 . June 1 97!.i .

12 . John H. Williams and David A. Fisher, Eds„ Lecture
No tes in Compu ter Science, Vo/. 54. Desig11 and
lmplemen tatio11 o{ Programming La11guagl!s - Pro­
ceedi11gs of a DoD Sponsored Work.shop. October
1976 , 4 96 pp. , S pringer-Verlag, 1 977 .

COM PUTER

1 :1 . l · l igh Order Language Work ing G roup, " Depa rtment
of Ddcnsc Huqu ircmcn ts for H ighcr Order Computer
Programming La nguagcs- l RON M A N , " ,J a nuary 1 4 ,
1 97 7 .

1 4 . 1 l igh Order La n1,ruage Worki ng G roup. " DcparLmcnt
o f Dcfense Requ i rcmo}n t fo r 1-! igh-Orcler Computer
Progra m m i ng Lnngunges - flevised l llO N M A N , "
J u ly 1 977 .

1 5 . S. A morriso. P . Wegner. D . Morris, D. Wh ite, " Lan -
1,,r1rnge E vnlun tion Coord inl!t ing Committee lleport
to the H igh -Order Languagc Wo r k i n g G roup
(HOLWG)," i\ D-i\03i634. 2h 1 7 pp .. . January 1 4, 1 977,
with appendices by

a. Lloyd Campbcl l . Army Ba l listic Research Labo­
ra tory, i\berdeen , Mar_yla nd ;

b . P. Pa rayre. Centre de Progra mmation de la Ma­
rine, Paris, Fra nce;

c. J . D. l chbiah, CI I-Honeywell Bull, Louveciennes,
France;

d. Computer Sciences Corpora t. ion, Fa l ls Churc h ,
Virgin ia :

e . i\. Dcmers and ,T . Wi l l iams, Cornell Univcrsi ty,
l thaca, New York :

r. Jean E. Sammet. l\f au rice Ackroyd, Michael L.
Bell . I . G ray K inn ie, and Richard.S. Kopp; I B M
Federal Sys tems Divi, ion , G a ithersburg, Mary­
land:

g. Br ian L. M a rks , and ltobert F. Maddock. I B M
United Kingdom La bcratodes. Winchester, Eng­
land: and Tom C. Spillman, 1 BM Fcderal Systems
Division:

h . ,J . G . P . ßarnes. I mperial Chemical lndustries
Limi ted , Slough, E nglund :

i . · ß . M . ßrosgol, n . E . Hartman, J . R . Nestor.
:\1 . S . Roth , n nd L . M Wciss man , l ntermetrics,
l nc . , Cambridge. M assachusctts:

j . Na tional Security Agency, Ft. Meadc, Mary­
land:

k . D r. Tomas Martin, PE ArtL Dcvclopment Board,
c/o G esellschaft fur K ernfors :hung �BH, Karl ­
sruhe, W. G ermany;

I. RLG Associa tes, I nc . , Resto n . Virginia ;

m. E. F. M i l ler and A . I . Wa�sermann. Science Ap·
plicat ions, I nc. , San Franc isr:o, Cnl i fornia :

n. John ß. Goodenough, Clement L. McGowan, and
John n. Kelly, So ffcch, l nc . , Waltham, M assa­
chusetts;

o. Software Sciences Limite<..!, famborough, Hamp­
s hire, E ngland:

p. Texas Instruments l :1corponitcd, I l untsvi lle, Al­
abamn.

16 . David A. Fisher and PhiEp R. Wetherall " fla tionale
for Fixed- Point and Flouti ng·Pt , int Compu tat iona l
Requiremcnts for A Commc,n Programming Lan­
guage, " I nslitute for Defoc:se Ana lyses, Paper
P- 1 305, Jnnuary 1 978.

March 1 978

l 7 . D<:fense Advnnced l lesearch l 'rojecls i\ gency, " Plnn
ft : r thc Ana lyscs of Lhe Prel imini1ry Designs for A
c„m mon Progru m m i n g La nguages for thc DeparL•
n 1 t •nt of Defense , " Deccmber 30, 1 9 7 7 .

1 8 . J .t. Col. Wi l l inm i\. Whi tal<cr, "The l l . S. Depa rtmcnL
of Dcfense High Order Lnnguag-e l•:ffort. " Unpubl ish, � l
paper , 1 1 pp„ Defensc A d va nccd llcsearch Proj ects
Agcncy, November 9 , 1 977 .

Da vid A . Fishcr is a member of the
rcscarch sta ff a t thc I nsliLute for
Defcnse A nn lyses in Arl ington. Virginin.
where he hns studicd sofLwarc cosls in
the DoD and providccl tech nical assis­
tance to thc Cornmon Progra mmir.g
Lan1,'l.iage Efforl. He hns hcen an assis­
tnn t professor a t Vanderbi lt Un ivcr�i ly
and the U niversity of Delaware. Pre­

. viously he was a staff engineer a t
Burroughs Corpora tion where h e w a s i nvolved in the design
of microprogra m mable computers, of progra rnming lan-
1,ruages. of opera ting systems, a nd of m i l i tary softwarc.

His a reas of publicat ions include softwnre costs. boundcd·
workspace algorithms , control slructurcs, and paral le l
proccssing.

Fishcr received a PhD in computer science frorn Carne­
gie-Mel lon U n ivers i ty in 1 970, an MSE from M oore
School o f Elcctr icnl E ngineering, Un iversi t y of Pc nnsy l ­
v a n i a in 1 967. a nd a BS in mathema tics from Carnegie
I ns titute o f Technology in 1 964 . H e is a senior member
o f I E E E and a member of A I A A and A C!\·! .

�,
�

J
ij

1r.
Workshop on �

PATT E R N R ECOG N I T I O N �APP L I E D TO O l l I D EN T I F I CAT I O N

i
November 1 1 -1 2 , 1 97 6 (1 73 pp. l i

Th i s co l l ec t ion of papc rs represen ts the l a tes t v icws
•

and ana l y ses or more than 30 spec ia l i s ts on the subjec t o r
o i l iden t i f i ca t i o n and i t s r e l a t ion 1 0 pa t tcrn recogn i t i on . j · Thcones, l abora tory cxper imen ts, an cl on-s i te 1es 1s wc re

rli· �ross-exam , ned . A samp l o n g o l topics 011 the agcncla �
,nc l udes : c f fec ts o r wca thenng on ods ; s w 1 , s 1 ica l conccp ts il i n o i l iden t i f ic a t , o n ; c l u s ter ana lys , s o l o i l spec tra l da ta,

1
pat tern recogn , t i on programs; app l oca t ions to o l l ,den t o l i-
ca t ,on , on thc e r r , c , cncy of pa 1 1ern rccog11 1 1 io11 mcthortol •
og ,es ; an on_l i nc compu tcr ized i n f r;m,c l iden t i f ic a t i on sys•
tem ; s t u t , s t ,ca l cons o clera t o ons of ol l iden t i l icat ion by
in frared spec troscopy ; pa t tern recog n i t ion approaches for Rcrude o i l c l ass i f i ca t ion ; and rat i on i ng me 1hods app l , ed to ·') gas ch romatograph ,c da ta for o i l idc n t i f ica t ion .

})/ Non -mombers - $ 1 2 .00 Members - $9.00 -:;jf:l

Use ordor form on p. 105 . 33

.....

.....
oi
eil
0
Cl

0
E
0
u.
(/)

0

CORNIER

Dornier System GmbH

A N H A N G 2

Decisions and Designs Incorporated, under contract to DARPA, produced
an additional economic analysis of the DoD High Order Language strategy.
This study was based upon the decision analysis techniques produced
1.mder previous DARPA contracts. The work used pieces of existing
software and was implemented on the IBM 5100 desk top minicomputer.
This work was briefed and demonstrated at the Management Steering
Conunittee meeting of 20 October 1977 . ~bdels were actually rerun at
the meeting break with parameter variations suggested by the conunittee.
TI1e program is available for further exercise on request. Three pro­
grams were involved:

o DECISION provides the decision tree, tracing the various
alternative scenarios.

o SPREAD calculates the mixture of language usage as a result
of those scenarios, growth of progran~, distribution of
projects by phases, etc.

o EVAL calculates the actual value of savings due to a
particular language mix. lt considers the difference
between languages in a dozen different categories, quanti­
tatively calculates their advantage over a baseline of
Assembler, and sets up the commonality auvantages as a
f1.mction of the mix of language usage. The savings quoted
are entirely software savings but there are also calculations
of hardware savings implied by various language mixes.

All savings are compared against the baseline which would result from
the exclusive use of Assembler; therefore, any model considering even
the present use of high order languages, will exhibit savings. The
impact of the common language program is therefore the differenc~ between
any proposed scenario with a common language, both savings and costs, less
the savings calculated from present trends.

Technical savings e:xpected even from the use of existing languages are
quite significant. They are based upon some detailed consideration of
the individual languages. Indeed, if significant savings were not
e:xpected, then the present policy towards high order languages would be
ill-conceived. The proposed new common high order language is examined
in detail and e:xpected to give significantly higher technical savings.
All savings are baselined against a flat software expenditure from now
on of $3.2B per year and all savings are proportional to this nwnber.

!

2

Runs were primarily directed towards exanuning the sensitivity of the

introduction date and the rate of introduction. Detailed results are
givcn in the attache<l figurcs. AJi introduction date of 1980 and total
acceptance in 1985 may be compared with an introduction in 1�85 and
total acceptance in 1990 or with an introduction in 1980 and a slower
acceptance, being complete only in 1990, etc. Both the saving rate per
year and the integral savings to 1996 are shown. lt must be noted that
even the total acceptance of a language means that only new programs
are being initiated and older programs in other languages continue for
their life cycle; therefore, savings take some time to build up. On
the other hand, the savings when established are enormous and pay back
of language development costs can easily occur in much less than a year,
once use is established.

An examination of the results based upon the total savings to 1996 gives
the following trend:

o For a five-year introduction period, delay of the year
of introduction through the period 1980 to 1987, with a
c�rresponding delay of the complete adoption from 1985
to 1992, gives an average reduction in savings of about
$1.5B per year delayed. This is simply the average
magnitude of savings once full use is established.

o Keeping a constant total acceptance date of 1985, delay
of the introduction from 1980 to 1982 costs about $1B
per year delay.

o Having established an introduction date, slow acceptance
or delay of the total usage date costs about $1B per year
delay.

o All these figures are proportional to the total software
costs envisioned. $1.58 corresponds to about 10% of the
calculated additional savings due to the use of the new
language. Thus a delay of one year in the introduction
could only be justified if it resulted in an offsetting
integrated savings of more than 10%, indicating an improved
maximum savings rate increase of up to 20%.

lt is recommended that the DoD Single Common Higher Order Language be
introduced as rapidly as possible without penalizing technical quality
or acceptability much more than 10%. Costs are small in all cases, being
less than 1% of savings.

1he High Order Language Working Group has established a third econornic
.model for a DoD High Order Language commonality. 1his model is an out­
growth of the work done by Decisions and Designs Incorporated and its
fi·rst version resembles the DDI model in rnany details. lt has also
received considerable input from discussions with the MITRE modelers.
1he main tmique feature of the model is the fact that it is available
on the ARPANET account of HOLWG for continued use and modification by
the Working Group. It will continue to be maintained and updated during
life of the program and will be used as a decision aid in the future.
It is presently rtmning on a PDP-10, is written in FORTRAN for trans­
portabili ty.

1his model may be conceptually divided into three portions similar to
the DDI structure but the elements are somewhat different.

o DECISION is a routine which allows the implicit input of
events or decisions which can affect either the use of a
particular language, the costs generated, or its effective­
ness. Such decisions include the introduction of a language
at a particular date, the rate of its adoption, the existence
of control for that language, phasing out or restricting new
starts in a language, permission to recode previous software
from one language to another when cost effective, etc.

o PROS processes each one of these decisions and integrates
an evolving world model up to the input time, including the
amotmt of effort in each programming language by each
Service, by size of program and phase of development and
possibly application area. 1hese are all derived numbers
based upon input decisions and the resulting new starts.
Ten languages are followed including all seven DODI 5000.31
languages plus Assembler, the common language and a lumped
figure for all minor HOLs. For the baseline, a steady growth
in the software produced from 1955 to date is postulated.
1his corresponds to past data. Future growth may continue
or decrease as indicated by decision.

o EVAL gives an evaluation of the total value of the particular
scenario at each time on the basis of benefits calculated from
some thousand factors based on language phase of development
and size of program. 1he coefficients were obtained informally
from the organizations responsible for the individual languages.
1hey are available for modification and it is expected that both
the coeffieients and the definition of factors will evolve with
continued study. 1he gross properties of the languages can be

2

checked against their general acceptance. For instance, a
particular situation in which we find FORTRAN and JOVIAL to
have similar utilization might be expected to· correspond to
similar magnitudes of technical benefit. Further, we can
expect magnitude of technical benefit to be significant
(factor of 2) in those cases where historically we see a
large voltmtary adoption rate. A 10% benefit would not be
expected to have resulted in much acceptance, a 90% benefit
should imply almost total adoption to the exclusion of
Assembly language. All benefits (both positive and negative)
and costs are reference to Assembly language.

Costs are calculated for training, compiler generation,
introduction and maintenance, tools, and control. All costs
are positive and, except for training, are not generated
for Assembly language efforts. The benefits of commonality
as calculated by the code are therefore evidenced in reduction
in costs. These costs are then compared to technical gains
to find the total benefi t. Note that the benefi t- resul ting
from additional hardware commonality and from sharing and
transportability of applications programs is not calculated
in the present version but will be added later. These can
be expected to give quite large savings but are also dependent
on factors outside the pure software environment and will
require a more inclusive world model.

Tue advantages of this model include its wide availability,
its continued existence, the explicit use of decisions, a
considerable accotmting detail in the evolution of the world
model, and the technical detail in the factors appropriate to
the individual languages. lt is expected that the model will
continue to evolve and play a significant role in program
decisions for this and other efforts.

The benefits calculated and the general results are only
slightly less percentagewise than that of the DDI model and
the resulting recommendations would be the same. It is
improtant to note that all the technology commonality factors
in the two programs were independently derived. This program,
wilike the MITRE effort, is not deliberately conservative in
the factors considered. lt purports to be the current best
estimate. It is, however, conservative in the omission of
significant factors which have not yet been included.

3

The ··baseline case for this program normally considers an
expanding software commitment, perhaps coupled with a decreas­
ing cost of hardware, to increase the total fraction of
computer resources devoted to software. Because of the
benefits herein envisioned, the growth of functionality in
software is calculated to be much more rapid than the growth
of expenditures. With the inclusion of additional saving
factors, it may be possible to get the cost of software in
1977 dollars to flatten out, even if the functionality
increases by an order of magnitude.

CORNI ER

Dornier System GmbH

ANHP,NG 3

DEPARTMENT OF DEFENSE

REQUIREMENTS FOR HIGH ORDER

COMPUTER PROGRAMMING LANGUAGES

"STEELMAN"

June 1978

PREFACE

The Department of Defense Common High Order Language. program was
established in 1975 with the goal of establishing a single high order computer
programming language appropriate for DoD embedded computer systems. A
High Order Language Working Group (HOL WG) was established to formulate the
DoD requirements for high order languages, to evaluate existing languages
against those requirements, and to implement the minimal set of languages
reqbired for DoD use. As an administrative initiative toward the eventual goal,
DoD Directive 5000.29 provides that any new defense systems should be
programmed in a DoD approved and centrally controlled high order language.
DoD Instruction 5000.31 gives an interim list of approved languages: COBAL,
FORTRAN, TACPOL, CMS-2, SPL/l, and JOVIAL J3 and J73. Economic
analyses that were used to quantif-y the benefits from increased use of high
order languages, also showed that the rapid introduction of a single modern
language would increase the benefits considerably. The requirements have
been widely distributed for comment throughout the military and civil
communities, producing successively more refined versions from STRAWMAN
through WOODENMAN, TINMAN, IRONMAN, and the present STEELMAN.
During the requirement development process, it was determined that the single
set of requirements generated was both necessary and sufficient for all' major
OoD applications. Formal evaluation was performed on dozens of existing
languages concluding that no existing language could be adopted as a single
common HOL for the DoD but that a single language meeting essentially all the
requirements was both feasible and desirable. Four contractors were funded
to produce competing prototype designs. After analysis of these preliminary
designs the number of design teams was reduced to two. Their designs will be
completed and a single language will emerge. Further steps in the program will
include test and evaluation of the language, production of compilers and other
~ools for software development and maintenance, control of the language, and
· validation of compilers. Government-funded compilers and software tools, as
well as the compiler validation facility, will be widely and inexpensively
available and well maintained.

THE TECHNICAL REQUIREMENTS

The technical requirements for a common DoD high order pr~~ramming language
given here are a synthesis of the requirements submitted by the Military Depa~tments.
They specify a set of constraints on the design of languages that ar~ appropn~te .tor
.embedded computer applications (i.e., command and control, communicat1ons, av1omcs,
shipboard, test equipment, software development and maintenance, .and support
applications}. We would especially like to thank the phase one analys1s teams, the
language design teams, and the many other individuals and organizations that have
commented on the Revised Ironman and have identified weaknesses and trouble spots in
the technical requirements. A primary goal in this revision has been to reduce the
complexity of the resulting language. ·

This revision incorporates the following changes. Care has been taken to ensure .
that the paragraph numbers remain the same as in the Revised lronman. There have been
several changes in terminology and many changes in wording to improve the
understandability and preciseness of the requirements. Several requirements have been
restated to remove constraints that were, unintended but were implied because the
requirement suggested a particular mechanism rather than giving the underlying
requirement. The requirements for embedded comments (21), unordered enumeration
types (3-28), associative operator specifications (7D), dynamic aliasing of array
components (108), _and multiple representations of data (118) have been deleted because
they have been found unnecessary or are not adequately justified. The minimal source
language character set has been reduced to 55 characters to make it compatible with the
majority of existing input devices (2A). The do together model for parallel processing has
been found inadequate for embedded cqmputer applications and has been replaced by a
requirement for parallel processes (section 9). The preliminary designs have
demonstrated the need for additional requirements for explicit. conversion between types
(38), subtype constraints (30), renaming (3-58), a language distinction between open and .
closed scopes (5G), and the ability, but preferably not special mechanisms, to pass data
between parallel processes (9H), to write nonverifiable assertions (lOF), to wait for several
signals simultaneously (9J), and to mark shared variables (9C).

The Steelman is organized with an outline similar to that expected in a language
defining document. Section 1 gives the general design criteria. These provide the major
goals that influenced the selection of more specific requirements in later sections and
provide a basis for language design decisions that are not otherwise addressed in this
document. Sections 2 through 12 give more specific constraints on the language and its
translators. The Steelman calls for the inclusion of features to satisfy specific needs in the
design, implementation, and maintenance Of military Software, specifies both general end
specific characteristics desired for the language, and calls for the exclusion of certain
undesirable characteristics. Section 13 gives some of the intentions and expectations for
development, control, and use of the language. The intended use and environment for the
lan~uage has strongly influenced the requirements, and should influence the language
des1gn.

2

A precise and consistent use of terms has been attempted throughout the document.
Many potentially ambiguous terms have been defined in the text. Care has been taken to
distinguish between requirements, given as text, and comments, given as bracketed notes.

\

The following terms have been used throughout the text to indicate where and to
what degree individual constraints apply:

shall

should

shall attempt

shall require

shall permit

must

may

will

translation

execution

indicates a requirement placed on the language or translator

indicates a desired goal but one for which there is no objective test

indicates a desired goal but one that may not be achievable given the
current state-of-the-art, or may be in conflict with other more
important requirements

indicates a requirement placGd on the user by the language and its
translators (language is subject)

indicates a requirement placed on the ianguage to provide an option to
the user (language is subject)

indicates a requirement placed on ·the user by the language and its
translators (user is subject)

indicates a requirement placed on the language to provide an option tC'
the user (user is subject)

indicates a consequence that is expected to follow or indicates an
intention of the DoD; it does not in any case by itself constrain the
desi gn of the 1 anguage

refers to any processing applied to a program by. the host or object
machine before execution; it includes lexical analysis, syntactic error
checking, program analyses, optimization, code generation, assembly,
and loading

refers to the processing by the object machine to carry out the actions
prescribed by the program.

3

l. General Design Criteria

lA. '· Generality. The language shall provide generality only to the extent necessary to
satisfy the needs of embedded computer applications. Such applications involve real
time control, seif diagnostics, input-output to nonstandard ·peripheral devices, parallel
processing, numeric computation, and file·processing.

18. Reliabil ity. The language should aid the design and development of reliable
programs. The language shall be designed to avoid error prone features and to
maximize automatic detection of programming errors. The language shall require some
redundant, but not duplicative, specifications in programs. Translators shall produce
explanatory diagnostic and warning messages, but shall not attempt to correct
programming errors. ·

lC. Maintainability. The language should promote ease of program maintenance. lt
should emphasize program readability (i.e., clarity, understandability, and modifiability of
programs). The language should encourage user documentation· of programs. lt shall
require explicit specification of programmer decisions and shall provide defaults only for
instances where the default is stated in the language definition, is always meaningful,
reflects the most frequent usage in programs, and may be explicitly overridden.

10. Efficiency. The language design should aid the production of efficient object
programs. Constructs that have unexpectedly expensive implementations should be
easily recognizable by translators and by users. Features should be chosen to have a
simple and efficient implementation in many object machines, to avoid execution costs for
available general ity where it i~ not needed, to maximize the number of safe optimizations
available to translators, and to ensure that unused and constant portions of programs will
not add to execution costs. Execution time support packages of the language shall not be
included in object code unless they are called.

lE. Simplicity. The language should not contain unnecessary complexity. lt should
. have a consistent semantic structure that minimizes the number of underlying concepts.
lt should be as small as possible consistent with the needs of the intended applications.
lt should have few special cases and should be composed from features that are
individually simple in their semantics. The language should have uniform syntactic
conventions and should not provide several notations for the same concept. No
arbitrary restriction should be imposed on a language feature.

lF. lmplementability. The language shall be composed from features that are
understood and can be implemented. The semantics of each feature should be
sufficiently well specified and understandable that it will be possible to predict its
interaction with other features. To the extent that it does not interfere with other
requirements, the language shall facilitate the production of translators that are easy to

. implement and are efficient during translation. There shall be no language restrictions
that are not enforceable by translators.

4

/

IG. Machine lndependence. The design of the language should strive for mach~ne
independence. lt shall not dictate the characteristics of object machines or operating
systems except to the extent that such characteristics are implied by the semantics of
control structures and built-in operations. lt shall attempt to avoid features wh~se
semantics depend on characteristics of the object machine or of the object machine
operating system. , Nevertheless, there shall be a facility for defining those po~ti.ons of
programs that are dependent on the object machine configuration and for cond1t1onally
compiling programs depending on the actual configuration. ·

lH. Complete Definition. The language shall be completely and unambiguously defined.
To the extent that a formal definition assists in achieving the above goals (i.e., all of
section 1), the language shall be formally defined.

5

2. General Syntax

2A. Character Set. The full set of character graphics that may be used· in· source
programs shall be given in the language definition. Every source program shall also
have a representation that uses only the following 55 character subset of the ASCII
graphics:

%&' () *+. -. /:; <=>?
0123456789
ABCOEFGHIJKLMNOPQRSTUVWXYZ_

· Each additional graphic (i.e., one in the full set but not in the 55 character set) may be
replaced by a sequence of (one or more) characters from the 55 character set without
altering the semantics of the program. The replacement sequence shall be specified in
the language definition.

28. Grammar. The language should have a simple, uniform, .and easily parsed grammar
and lexical structure. The language shall have free form syntax and should use familiar
notations where such use does not conflict with other goals.

2C. Syntactic Extensions. The user shall not be able to modify. the source language
syntax. In particular the user shall not be able to introduce new precedence rules or to
defi ne new syntactic forms.

20. Other Syntactic Issues. Multiple occurrences of a language defined symbol
appearing in the same context shall not have essentially different meanings. Lexical
units (i.e., identifiers, reserved words, single and multicharacter symbols, numeric and
string literals, and comments) may not cross line boundaries of a source program. All key
word forms that contain d~clarations or statements shall be bracketed (i.e., shall have a
closing as well as an opening key word). Programs may not contain unmatched brackets
of any kind. ·

1 .

2E. Mnemonic Identifiers. Mnemonically significant identifiers shall be allowed.
There shall be a break character for use within identifiers. . The language and its
translators shall not permit identifiers or reserved words tobe abbreviated. [Note that
this does not preclude reserved words that are abbreviations of natural language words.]

2F. Reserved Words. The only reserved words shall be those that lntroduce special
syntactic forms (such as control structures and declarations) or that are otherwise used
as delimiters. Words that may be replaced by identifiers, shall not be reserved (e.g.,
names of functions, types, constants, and variables shall not be reserved). All reserved
words shall be listed in the language definition.

I .

2G. Numeric Literals. There shall be built-in decimal literals. There shall · be no
implicit truncation or rounding of integer and fixed point literals.

6

.2H. String Literals. There shall be a built-in facility for fixed length string literals.
String literals shall be interpreted as one-dimensional character arrays.

21. Comments. The language shall permit comments that are introduced by a special
(one or two character) symbol and terminated by the next line boundary of the source
program.

7

3. Types
\

3A. Strong Typing. The language shall be strongly typed. The type of each variable,
array and record component, expression, function, and parameter shall be determinable
during translation.

38. Type Co
0

nversions. The language shall distinguish the concepts of type (specifying
data elements with common properties, including operations), subtype (i.e., a subset of
the elements of a type, that is characterized by further constraints), and representations
(i.e., implementation characteristics). There shall be no implicit conversions between
types. Explicit conversion operatio.ns shall be automatically defined between types that
are characterized by the same logical properties.

3C. Type Definitions. lt shall be possible to define new data types in programs. A
type may be defined as an enumeration, an array or record type, an indirect type, an
existing type, or a subtype of an existing type. lt shall be possible to process type
definitions entirely during translation. An identifier may be associated with each type.
No restriction shall be imposed on user defined types unless it is imposed on all types . .

30. Subtype Constraints. The constraints that characterize subtypes shall include
range, precision, scale, index ranges, and user defined constraints. The value of a
subtype constraint for a variable may be specified when the variable is declared. The
language should encourage such specifications. [Note that such specifications can aid
the clarity, efficiency, maintainability, and provability of programs.]

·3,}. Numeric Types

3-lA. Numeric Values. The language shall provide distinct numeric types for exact and
for approximate computation. Numeric operations and assignment that would cause the
most significant digits of numeric values tobe truncated (e.g., when overflow occurs) shall
constitute an exception situation.

3-18. Numeric Operations. There shall be built-in operations (i.e., functions) for
conversion between the numeric types. There shall be operations for addition,
subtraction, multiplication, division, negation, absolute value, and exponentiation to
integer powers for each numeric type. There shall be built-in equality (i.e., equal and
unequal) and ordering operations (i.e., less than, greater than, less than or equal, and
greater than or equal) between elements o~ each numeric type. Numeric values shall be
equal if and only if they have exactly the same abstract value.

3-lC. Numeric Variables. The range of each numeric variable must .be speci fi ed in
programs and shall be determined by the time of its allocation. Such specifications shall
be interpreted as the minimum range to be implemented and as the maximum range
needed by the application. Explicit conversion operations shall not be required between
numeric ranges.

8

Approximate Arithmetic

3-10. Precision. The precision (of the mantissa) of each expression result and
variable in approximate computations must be specified in programs, and shall be
determinable during translation. Precision specifications shall be required for each such
variable. Such specifications shall be interpreted as the minimum accuracy (not
significance) to be implemented. Approximate results shall be implicitly rounded to the
implemented precision. Explicit conversions shaU not be required between precisions.

3-lE. Approximate Arithmetic Implementation. Approximate arithmetic will be
implemented using the actual precisions, radix, and exponent range available in the
object machine. There shall be built-in operations to access the actual precision, radix,
and exponent range of the implementation.

Exact Arithmetic

3-lF. Integer and Fixed Point Numbers. Integer and fixed point numbers shall be
treated as exact numeric values. There shall be no implicit truncation or rounding in
integer and fixed point computations.

3-lG. Fixed Point Scale. The scale or step size (i.e., the minimal representable
difference between values) of each fixed point variable must be specified in programs

· and be determinable during translation. Scales shall not be restricted to powers of two.

3-lH. Integer and Fixed Point Operations. There shall be integer and fixed point
operations for modulo and integer division and for conversion between values with
different scales. All built-in and predefined operations for exact arithmetic shall apply
between arbitrary scales. Additional operations between arbitrary scales shall be
definable within programs.

3.2. Enumeration Types

3-2A. Enumeration Type Definitions. There shall be types that are definable in
programs by enumeration of their elements. The elements of an enumeration type may

· be identifiers or character literals. Each variable of an enumeration type may be
restricted to a contiguous subsequence of the enumeration.

3-28. Operations on Enumeration Types. Equality, inequality, and the ordering
operati ons shall be automatically defined between elements of each enumeration type.
Sufficient addi ti onal operations shall be automatically defined so that the successor, .
predecessor, the position of any element, and the first and last element of the type may
be computed. ·

3-2C. Boolean Type. There shall be a predefined type for Boolean values.

3-20. Character Types. Character sets shall be definable as enumeration types.
Character types may contain both printable and control characters. The ASCII
character set shall be predefined.

9

.-
3.3. Composite Types

3-3A. Composite Type Definitions. lt shall be possible to define types that are
Cartesian products of other types. Comp~site types shall include arr~ys (i.e., co'!lposite
data with indexable components of homogeneous types) and records (l.e., compos1te data
with labeled components of heterogeneous type).

3-38. Component Specifications. For elements of composite types, the type of each
component (i.e., field) must be explicitly specified in programs and determinable during
translation. Components may be of any type (including array and record types). Range,
precision, and scale specifications shall be required for each component ·Of appropriate
numeric type.

3-3C. Operations on Composite Types. A value accessing operation shall . be·
automatically defined for each component of composite data elements. Assignment shall
be automatically defined for components that have alterable values. · A constructor
operation (i.e., an operation that constructs an element of a type from its constituent
parts) shall be automatically defined for each composite type. An assignable component
may be used anywhere in a program that a variable of the component's type is permitted.
There shall be no automatically defined equivalence operations between values of
elements of a composite type.

3-30. Array Specifications. Arrays that differ in number of dimensions or in
component type shall be of different types. The range of subscript values for each
dimension must be specified in programs and may be determinable at the time of array
allocation. The range of each subscript value must be restricted fo a contiguous
sequence of integers or to a contiguous sequence from an enumeration type.

3-3E. Operations on Subarrays . . There shall be built-in operations for valu.e access,
assignment, and catenation of contiguous sections of one-dimensional arrays of the same
comJi>onent type. The results of such access and catenation operations may be used as
actual input parameter. .
3-3F. Nonassignable Record Components. lt shall be possible to declare constants and
(unary) functions that may be thought of as record components and may be referenced
using the same notation as for accessing record components. Assignment shall not be
permitted to such components.

3-3G. Variants. lt shall be possible to define types with alternative record-structures
(i.e., variants). The structure of each variant shall be determinable during translation. ·

3-3H. Tag Fields. Each variant must have a nonassignable tag field (i.e., a component
that can be used to discriminate among the variants during execution). lt shall not be
possible to alter a tag field wit~out replacing the entire variant.

10

3-31. lndirect Types. lt shall be possible to define types whose elements are
indirectly accessed. Elements of such types may have components of their own type,
may have substructure that can be altered during execution, and may be distinct while
having identical component values. Such types shall be distinguishable from other
composite types in their definitions. An element · of an indirect type shall remain
allocated as lang as it can e referenced by the program. [Note that indirect types require
pointers and sometimes heap storage in their implementation.]

3-3J. Operations on lndirec:t Types. Each execution of the constructor operation for
an indirect type shall create a distinct element of the type. An operation that
distinguishes between different elements, an operation that replaces all of the component
values of an element without altering the element's identity, and an operation that
produces a new element having the same component values as its argument, shall be
automatically defined for each indirect type.

3.4. Sets

3-4A. Bit Strings (i.e., Set Types). lt shall be possible to define types whose elements
are one-dimensional Boolean arrays represented in maximally packed form (i.e, whose
elements are sets).

3-48. Bit String Operations. Set construction, membership (i.e., subscription), set
equivalence and nonequivalence, and also complement, intersection, union, and symmetric
difference (i.e., component-by-component negation, conjunction, inclusive disjunction,
and exclusive disjunction respectively) operations shall be defined automatically for each
set type.

3.5. Encapsulated Definitions

3- 5A. Encapsulated Definitions. lt shall be possible to encapsulate definitions. An
encapsulation may contain declarations of anything (including the data elements and
operations comprising a type) that is definable in programs. The language. shall permit
multiple explicit instantiations of an encaps~lation .

3-58. Effect of Encapsulation. An encapsulation may be used to inhibit external access
to implementation properties of the definition. In particular, it shall be possible to
prevent external reference to any declaration within the encapsulation including
automatically defined operations such as type conversions and equality. Definitions that
are made within an encapsulation and are externally ·accessable may be renamed before
use outside the encapsulation.

3-SC. Own Variables. Variables declared within an encapsulation, but not within a
function, procedure, or process of the encapsulation, shall remain allocated and retain
their values throughout the scope in which the encapsulation is instantiated.

11

4. Expressions

4A. Form of Expressions. The parsing of correct expressions shall not depend on the
types of their operands or on whether the types of the operands are built into the
language ..

48. Type of Exptessions. lt shall be possible to specify the type of any expression
explicitly. The use of such specifications shall be required only where the type of the
expression cannot be uniquely determined during translation from the context of its use
(as might be the case with a literal).

4C. Side Effects. The language shall attempt to minimize side effects in expressions,
but shall not prohibit all side effects. A side effect shall not be allowed it it would alter
the value of a variable that can be accessed at the point of the expression. Side effects
shall be limited to own variables of encapsulations. The language shall permit side
effects that are necessary to instrument functions and to do storage management within
functions. The order of side effects within an expression shall not be guaranteed.
[Note that the latter implies that any program that depends on the order of side effects is
erroneous.]

4D. Allowed Usage. Expressions of a given type shall be allowed wherever both
constants and variables of the type are allowed.

4E. Translation Time Expressions. Expressions that can be evaluated during
translation shall be permitted wherever literals of the type are permitted. Translation
time expressions that include only literals and the use of translation time facilities (see
1 lC) shall be evaluated during translation.

4F. Operator Precedence Levels. The precedence levels (i.e., binding strengths) of all
(prefix and infix) operators shall be specified in the language definition, shall not be
alterable by the user, shall be few in number, and shall not depend on the types of the
operands.

4G. Effect of Parentheses. lt present, explicit parentheses shall dictate the association
of operands with operators. The language shall specify where explicit parentheses are
required and shall attempt to minimize the psychological ambiguity in expressions.
[Note that this might be accomplished by requiring explicit parentheses to resolve the
operator-operand association whenever a nonassociative operator appears to the left cf
an operator of the same precedence at the least-binding precedence level of any
subexpressi on.]

12

5. Constants, Variables, and Scopes

SA. Declarations of Constants. lt shall be possible to declare constants of any type.
Such constants shall include both those whose values are determined during translation
and those whose value cannot be determined until allocation. Programs may not assign
to constants.

58. Declarations of Variables. Each variable must be declared explicitly. Variables
may be of any type. The type of each variable must be specified as part of its
declaration and must be determinable during translation. [Note, "variable" throughout
this document refers not only to simple variables but also to composite variables and to
components of arrays and records.]

SC. Scope of Declarations. Everything (including operators) declared in a program
shall have a scope (i.e., a portion of the program in which it can be referenced). Scopes
shall be determinable during translation. Scopes may be nested (i.e., lexically
embedded). A declaration may be made in any scope. Anything other than a variable
shall be accessable within any nested scope of its definition.

SO. Restrictions on Values. Procedures, functions, types, labels, exception situati6ns,
and statements shall not be assignable to variables, be computable as values of
expressions, or be usable as nongeneric parameters to procedures or functions.

SE. Initial Values. There shall be no default initial values for variables.

SF. Operations on Variables. Assignment and an implicit value access operation shall
be automatically defined for each variable.

SG. Scope of Variables. The language shall distinguish between open scopes (i.e.,
those that are automatically included in the scope of more globally declared variables)
and closed scopes (i.e., those in which nonlocal variables must be explicitly imported).
Bodies of functions, procedures, and processes shall be closed scopes. Bodies of
classical control structures shall be open scopes.

\
\

\
\

13

\
' 6. Classicsil Control Structures

·'

6A. Basic Control Facility. The {built-in) control mechanisms should be of minimal
number and complexity. Each shall provide a single capa1'ility and shall have a
distinguishing syntax. Nesting of control structures shall be allowed. There shall be no
control definition facility. Local scopes shall be allowed within the bodies of control
statements. Control structures shall have only one entry point and shall exit to a single
point unless exited via an explicit transfer of control {where permitted, see 6G), or the
raising of an exception {see lOC}.

68. Sequential Control. There shall be a control mechanism for sequencing statements.
The language shall not impose arbitrary restrictions on programming style, such as the
choice between statement terminators and statement separators, unless the restrjction
makes programming errors less likely.

6C. Conditional Control. There shall be conditional control structures that permit
selection among alternative control paths. The selected path may depend on the value
of a Boolean expression, on a computed choice among labeled alternatives, or on the true
condition in a set of conditions. The language shall define the control action for all values
of the discriminating condition that are not specified by the program. The user may
supply a single control path to be used when no other path ·is selected. Only the
selected branch shall be compiled when the discriminating condition is a translation Urne
expressi on. ·

60. Short Circuit Evaluation. There shall be infix control operations for short circuit
conjunction and disjunction of the controlling Boolean expression in conditional and
iterative control structures.

6E. Iterative Control. There shall be an iterative control structure. The iterative
control may be exited (without reentry) at an unrestricted number of places. A
succession of values from an enumeration type or the integers may be associated with
successive iterations and the value for the current iteration accessed as a constant
throughout the loop body.

6G. Explicit Control Transfer. There shall be a mechanism for control transfer (i.e., the
~o to). lt shall not be possible to transf~r out of closed scopes, into narrower scopes, or
mto control structures. lt shall be poss1ble to transfer out of classical control structures.
There shall be no control transfer mechanisms in the form of switches, designational
expressions, labet variables, labet parameters, or alter statements.

14

7. Functions and Procedures

7 A. · Function and Procedure Definitions. Functions (which return values to
expressions) and procedures (which can be called as statements) shall be definable in
programs. Functions or procedures that differ in the number or types of their
parameters may be denoted by the same identifier 'or operator (i.e., overloading shall be
permitted). [Note that redefinition, as opposed to overloading, of an existing function or
procedure is often error prone.]

78. Recursion. lt shall be possible to call functions and procedures recursively.

7C. Scope Rules. A reference to an identifier that is not declared in the most local
scope shall refer to a program element that is lexically global, rather than to one that is
global through the dynamic calling structure.

Functions

.70. Function Declarations. The type of the result for each function must be specified in
its declaration and shall be determinable during translation. The results of functions may
be of any type. lf a result is of a nonindirect array or record type then the number of its
components must be determinable by the time of function call.

Parameters

7F. Formal Parameter Classes. There shall be three classes of formal data
parameter s: (a) input parameters, which act as constants that are initialized to the value
of corresponding actual parameters at the time of call, (b) input-output parameters, which
enable access and assignment to the corresponding actual parameters, either throughout
execution or only upon call and prior to any exit, and (c) output parameters, whose values
are transferred to the corresponding actual paramder only at the time of normal exit. In
the latter two cases the corresponding actual parameter shall be determined at time of
call and must be a variable or an assignable component of a composite type.

7G. Parameter Specifications. The type of each formal parameter must be explicitly
specified in programs and shall be determinable during translation. Parameters may be
of any type. The language shall not require user specification of subtype constraints for
formal parameters. If such constraints are permitted they shall be interpreted as
assertions and not as additional overloading. Corresponding formal and actual
parameters must be of the same type.

7H • . Formal Array Parameters. The number of dimensions for formal array parameters
must be specified in programs and shall be determinable during translation.
Determination of the subscript range for formal array parameters may be delayecf until
invocation and may vary from call to call. Subscript ranges shall be accessible within
function and procedure bodies without being passed as explicit parameters.

15

71. R~strictions to Prevent Aliasing. The language shall attempt to prevent aliasing
(i.e., multiple access paths to the same variable or record component) that is not intended,
but shall not prohibit- all aliasing. Aliasing shall not be premitted between output
parameters nor between an input-output parameter and a nonlocal variable. Unintended
aliasing shall not be permitted between input-output parameters. A restriction limiting
actual input-output parameters to variables that are nowhere referenced as nonlocals
within a function or routine, is not prohibited. All aliasing of components of elements of
~n indirect type shall be considered intentional.

16

8. Input-Output, Formating and Configuration Control

BA. Low Level Input-Output. There shall be a few low level input-output opera~ions
that send and receive control information to and from physical channels and dev1ces.
The low level operations shall be chosen to insure that all user level input-output
operations can be defined within the language.

88 • . User Level Input-Output. The language shall specify (i.e., give calling format and
general semantics) a recommended set of user level input-output operati9ns. These
shall include operations to create, delete, open, close, read, write, position, and
interrogate both sequential and ra.ndom access files and to alter the associatlon between
logical files and physical devices. ·

8C. Input Restrictions. User level input shall be restricted to data whose record
representations are known to the translator (i.e., data that is created and written entirely
within the program or data whose representation is explicitly specified in the program).

80. Operating System lndependence. The language shall not require the presence of
an operating system. [Note that on many machines it will be necessary to provide
run-time procedures to implement some features of the language.]

SE. Resource Control. There shall be a few low level operations to interrogate and
control physical resources (e.g., memory or processors) that are managed (e.g., allocated
or scheduled) by built-in features of the language.

8F. Formating. There shall be predefined operations to convert between the symbolic
and internal representation of all type·s that have literal forms in the language (e.g., strings
of digits to integers, or an enumeration element to its symbolic form). These conversion
noerations shall have the same semantics as those specified for literals in programs.

.17

9. Par~lelProces~ng
1

9A. Parallel Processing. lt shall be possible to define parallel processes. Processes
(i.e., activation instances of such a definition) may be initiated at any point within the
scope of the definition. Each process (activation) must have a name. lt shall not be
possible to exit the scope of a process name· unless the process is terminated (or
uni ni ti ate9).

98. . Parallel Process Implementation. The parallel processing facility shall be
designed to minimize execution time and space. Processes shall have consistent
semantics whether implemented on multicomputers, multiprocessors, or with interleaved
execution on a single processor. .

9C. Shared Variables and Mutual Exclusion. lt shall be.possible to mark variables that
are shared among parallel processes. An unmarked variabl_e that is assigned on on~
path and used on another shall cause a warning. lt shall be possible efficien~ly to ·
perform mutual exclusion in programs. The language shall not require any use of mutual
exclusion. ·

90. Scheduling. The semantics of the built-in scheduling algorithm shall be
first-in-first-out within priorities. A proce!ls may alter its own priority. If the language
provides a default priority for new processes it shall be the priority of its initiating
process. The built-in scheduling algorithm shall not require that simultaneously
executed processes on different processor,s have the same priority. [Note that this rule
gives maximum scheduling control to the user without loss of efficiency. Note also that
priority specification does not impose a specific execution order among parallel paths
and thus does not provide a means for mutual exclusion.] ·

9E. Real Time. lt shall be possible to· access a real time clock. There shall be
translation time constants to convert between the implementation units and the program
units for real time. On any control path, it shall be possible to delay until at least a
specified time before continuing execution. A process may have an accessible clock
giving the cumulative processing time (i.e., CPU time) for that process.

9G. Asynchronous Termination. lt shall be possible to terminate another process.
The terminated process may designate the sequence of statements it'will execute in
response to the induced termination.

9H. Passing Data. lt shall be possible to pass data between processes that do not
share variables. lt shall be possible to delay such data transfers untit both the sending
and receiving processes have requested the transfer. ·

91. Signalling. lt shall be possible to set a signal (without waiting), and to wait for a
signal (without delay, if it is already set). Setting a signal, that is not al ready set, shall
cause exactly one waiting path to continue.

9J. Waiting. lt shall be possible to wait for, determine, and act upon th~ first
completed of several wait operations (including those used for data passing signalling ·
and real time). · · ' '

18

/

10. Exception Handling

lOA. Exception Handling Facility . . There shall be an exception handling mechanism ~or
responding to unplanned error situations detected in declarations and statements dunng
execution. The exception situations shall include errors detected by hardware,
software errors detected during execution, error situations in- built-in operations, and
user defined exceptions. Exception identifiers shall have a scope. Exceptions should
add to the execution time of programs only if they are raised.

108. Error Situations. The errors detectable during execution shall include exceeding
the specified range of an array subscript, exceeding the specified range of a variable,
exceeding the ir:nplemented range of a variable, attempting to access an uninitialized
variable, attempting to access a field of a variant that is not present, requesting a
resource (such as stack or heap storage) when an insufficient quantity remains, and failing
to satisfy a program specified assertion. [Note that some are very expensive to det.ect
unless aided by special hardware, and consequently their detection will often be
~uppressed (see lOG).]

lOC. Raising Exceptions. There shall be an operation that raises an exception.
Raising an exception shall cause transfer of control to the most local enclosing exception
handler for that exception without completing execution of the current statement or
declaration, but shall not of itself cause transfer out of a function, procedure, or process.
Exceptions that are not handled within a function or procedure shall be raised again at
the point of call in their callers. Exceptions that are not handled within a process shall
terminate the process. Exceptions that can be raised by built-in operations shall be
given in th~ language definition.

100. Exception Handling. There shall be a control structure for discriminating among
the exceptions that can occur in a specified statement sequence. The user may supply a
single control path for all exceptions not otherwise mentioned in such a discrimination. lt
shall be possible to raise the· exception that selected the current handler when exiting
the handler.

! OE. Order of Exceptions. The order in which exceptions in different parts of an
expression are detected shall not be guaranteed by the language or by the translator.

lOF. Assertions. lt shall be possible to include assertions in programs. If an assertion
ls false when encountered during execution, it shall raise an exception. lt shall also be
possible to include assertions, such as the expected frequency for selection of a
conditional path, that cannot be verified. [Note that assertions can be used to aid
optimization and maintenance.]

lOG. Suppressing Exceptions. lt shall be possible during translation to suppress
lndividually the executi on time detection of exceptions within a given scope. The
language shall not guarantee the integrity of the values produced when a suppressed
exception occurs. [Note that suppression cf an exception is not an assertion that the
corresponding error will not occur.]

19

11. Representation and Other Translation Time Facilities

l lA. Data Representation. The language shall permit but not require programs to
specify a single physical representation for the elements of a type. These specifications
shall be separate from the logical descripti.ons. Physical represe.ntation shall include
object representation of enumerat.ion elements, order of fields, width of fielc;is, presence
of "don't care" fields, positions of word boundaries, and object machine addresses. In
particular, the facility shall be sufficient to specify the physical representation of any
record whose format is determined by considerations that are entirely external to the
program, translator, and language. The language and its translators shall not guarantee
any particular choice for those aspects of physical representation that are unspecified by
the program. lt shall be possible to specify the association of physical reso!Jrces (e.g.,
interrupts) to program elements (e.g., exceptions or signals).

l lC. Translation Time Facilities. To aid conditional compilation, it shall be possible to
interrogate properties that are known during translation including characteristics of the
object configuration, of function and procedure calling environments, and of actual
parameters. For example, it shall be possible to determine whether the caller has
suppressed a given exception, the callers optimization criteria, whether an actual
parameter is a translation time expression, the type of actual generic parameters, and the
values of constraints characterizing the subtype of actual parameters.

110. Object System Configuration. The object system configuration must be explicitly
specified in each separately translated unit. Such specifications must include the object
machine model, the operating system if present, peripheral equipment, and the devic~
configuration, and may include special hardware options and memory size. The
translator will use such specifications when generating object code. [Note that
programs that depend on the specific characteristics of the object machine, may be made
mcre portable by enclosing those portions in branches of conditionals on the object
machine configuration.]

l lE. Interface to Other Languages. There shall be a machine·independent interface to
other programming languages including assembly languages. Any program element that
is referenced in both the source language program and foreign code must be identified in
the interface. The source language of the foreign code must also be identified. ·

l lF. Optimization. Programs may advise translators on the optimization criteria to be
used in a scope. lt shall be possible in programs to specify whether minimum translation
costs or minimum execution costs are more important, and whether execution time or
memory space is to be given preference. All such specifications shall be optional.
Except for the amount of time and space required during execution, approximate values
beyond the specified precision, the order in which exceptions are detected, and the
occurrencß of side effects within an expression, optimization shall not alter the semantics
of correct programs, (e.g., the serriantics of parameters will be unaffected by the choice
between open and closed calls).

20

12. Translation and Library Facilities.

12A. Library. There shall be an easily accessible library of generic definitions and
separately translated units. All predefined definitions shall be in the library. Library
entries may include those used as input-output packages, common pools of shared
declarations, application oriented software packages, encapsulations, and machine
configuration specifications. The library shall be structured to allow entrie$ to be
associated with particular applications, projects, and users.

128. Separately Translated Units. Separately translated units may be assembled into
operational systems. lt shall be possible for a separately translated unit to reference
exported definitions of other units. All language imposed restrictions shall be enforced
across such interfaces. Separate translation shall not change the semantics of a correct
pro gram.

· 120. Generic Definitions. Functions, procedures, types, and encc;tpsulations may have
generic parameters. Generic parameters shall be instantiated during translation and
s~all be interpreted in the context of the instantiation. An actual generic parameter may
be any defined identifier (including those for variables, functions, procedures, processes,
end types) or the value of any expression.

21

13. Support for the Language

13A. Defining Oocuments. The language shall have . a complete and unambiguous
aefining document. lt should be possible to predict the possible actions of any
syntactically correct program from the language def!nition. The language docu~e~tation
shall include the syntax, semantics, and appropnate examples of each bu1lt-in and
predefined feature. A recommended set of translation diagnostic and warning messages
shall be included in the language definition.

138. Standards. There will be a standard definition of the language. Procedures will
be established for standards control and for certification that translators meet the
standard.

13C. Completeness of Implementations. Translators shall implement the standard
definition. Every translator shall be able to process any syntactically correct program.
Every feature that is available to the user shall be defined in the standard, in an
accessible library, or in the source program. ·

130. Translator Diagnostics. Translators shall be responsible for reporting errors that
are detectable during translation and for optimizing object code. Translators shall be .
responsible for the integrity of object code in affected translation units when any
separately translated unit is modified, and shall ensure that shared definitions have
compatible representations in all translation units. Translators shall do full syntax and
type checking, shall check that all language imposed restrictions are met, and should
provide warnings where constructs will be dangerous or unusually expensive in
execution and shall attempt to detect exceptions during translation. lf the translator
determines that a call on a routine will not terminate normally, the exception shall be
reported as a translation error at the point of call. ·

13E. Translator Characteristics. Translators for the language wifl be written in the
language and will be able to produce code for a variety of object machines. The machine
independent parts of translators should be separate from code generators. Although it
is desirable, translators need not be able to execute on every object machine. The
internal characteristics of the translator (i.e., the translation method) shall not be
specified by the language definition or standards. ·

13F. Restrictions on Translators. Translators shall fail to translate otherwise correct
programs only when the program requires more resources during translation than are
available on the host machine or when the program calls for resources that are
unavailable in the specified object system configuration. Neither the language ·nor lts
translators shall impose arbitrary restrictions on language features. For example, they
shall not impose restrictions on the number of array dimensions, on the number of
identifiers, on the length of identifiers, or on the number of nested parentheses levels.

22

13G. Software Tools and Application Packages. The language should be designed to
work in conjunction with a variety of useful software tools and application support
packages. These will be developed as early as possible and will include editors,
interpreters, diagnostic aids, . program analyzers, qocumentation aids, testing aids,
software maintenance tools, optimizers, and application libraries. There will be a
consistent user interface for these tools. Where practical software tools and aids will
be written in the language. Support for the design, implementation, distribution, and
maintenance of translators, software tools and aids, and application libraries v.iill be
provided independently of the individual projects that use them.

... ...
~
"' 0

"' 0

= ö ...
.;,
0

DORNIER

Dornier Syslem GmbH

A N H A N G 4

THE U.S. DEPARTMENT OF .DEFENSE COMMON HIGH ORDER LANGUAGE EFFORT

Wi 11 iam A~ Whitaker, · Lt.Co!., USAF
Oefense Advanced Research Projects Agency

1400 Wi lson Blvd., Arlington, Va. 22209, USA

The United States Oepartment of Oefense (OoDl spends more than three bi 11 ion
dol lars a year on computer soft~are. This includes the design, development,
acquisition, management, and operational support and maintenance of · such
soft~are. Only a smal 1 fraction of this effort is involved ~ith the
accounting, inventory, payrol 1 ing, and financial management functions ~hich are
defincd by the Federal Government as Automatie Data Processing, those functions
that have their exact analogy in the commercial sector and share a common
technology, both hard~are and soft~are. A much !arger fraction of the OoO's
Computer investment is in computer resources ~hich are embedded rn, and
procured as part of, major Meapons systems, communications systems, command and
control systems, etc. In this environment the DoD finds itself spending an
even !arger share of its systems resources on softMare. As a ·result, this area
is receiving increasing attention from the highest levels of management. A
number of technical and managerial initiatives have been cal led out to both
reduce the cost and improve the quality of Oefense systems softMare. A
management plan has been formulated in this area and initial guidance is
provided by OoD Oirective 5000.29, Management of Computer Resources in Major
Oefense Systems.

In the area of soft~are ~e may have, at the present time, more flexibi 1 ity and
a greater influence on the technology than Mith hard~are. Some years ago, the
OoD ~as a major innovator and consumer of the most sophisticated possible
computer hard~are. lt no~ represents only a smal 1 fraction of the total
commercial market. In soft~are, that unique position sti 11 maintains. A
eignificant fraction of the total soft~are 1ndustry is devoted to OoO related
programs and that is true in even !arger proportion for the more advanced and
demanding systems. Thus, there is both an opportunity and a responsibi 1 ity in
the soft~are arena ~hich is past for hard~are.

One epecific initiative ~hich has been called out by OoO Oirective 5000.29 is
the use of high order languagcs· <HOL) in systems development. The advantages
are ~el 1 kno~n and in many communities, for instance, the COBOL finan~ial

management community or the FORTRAN scientific computational community, these
advantages are so persuasive that there has been essential ly no alternative to
the use of these common languages for more than · a decade. The obvious
advantages lnclude ease of Mriting of programs, self~documentation, ease of

maintenance, ease of modification, transportabi lity of programs, simpl ification
of training, etc.

1 t is surprising that a gene~·al consensus has not mandated a common high order
language for embedded systems long since. There are, ho~ever, a number of
managerial technical constraints that have acted against this in the past. Fbr
most Defense-.systems appl ications , very severe timing and memory considerations
have been prominent in the past, often governed by real time interaction ~ith
the exterior environment. Because of these constra ints, and restrictions in
developmental cost and time scale, many systems have opted for assembly
language programming. Th i s decision is often substantial ly influenced by past
experience ~ith. poor quality compi lers and the fact that the assembler comes
~ith the machine, ~hi le the compi ler and its tools usual ly must be developed
after the project has begun. · The advantages of high order languages, ho~ever,
are compel 1 ing and many more recent systems developments have turned to HOLs.
Because of limitations of available high order languages, the programs
generated most often include very !arge portions done in assembly code and
1 inked to an HOL structure, negating many of the expected advantages.

Further, many systems have found it convenient to produce their o~n high order
language or some perhaps incompatible dialect of an existing one. Since there
is no general faci lity for control of existing languages, each systems office
has'had to do the configuration control on their language and compi lers and
continue to maintain such on their particular dialect through the entire
maintenance phase of the system, ~h i ch may be very long lived. Th i s has had
thc effect of practically reducing the contractual flexibility of the
government and restricting competition in maintenance and further development.
This lack of commonality negates many advantagcs of high order languages
including transportabi lity, sharing of tools, the development of very po~erful
tools of high efficiency and, in fact, not only raises the total cost of
existing tools, but in some cases essential ly prices them out of the market.
Many development projects are very poorly supported and forced to 1 ive ~ith a
technology ~hich is far belo~ the state-of-the-art.

By the early 1970's each of the mi litary departments had under~ay studies or
actual language designs ~hich ~ere expected to lead to common languages for
lar ge por tions of those departments, in January 1975 the Oirector of Ocfense
Research and Engineering set up a Oefense-~ide program ~ith the goal of a
s ingle common mi 1 itary computer programming language for embedded systems. The
in ten t ~a s to have a real time language to supersede those numerous ones in
cx i s t ence whi le maintaining the standards of FORTRAN and COBOL, the success of
~h ich standards had provided impetus to this consolidation program. Further,
to assur e non-pr ol i feration during the duration of this effort al 1 other
implement a t ions of ne~ high order programming languages for R&D programs · ~ere
halted. A Hi gh Order Language Working Group lHOLWGl with representatives from
DoD and the Mili tary Services ~as established as the agent for this effort.

Br iefly, the logic of this initiative is as . follo~s:

o The use of a high order language reduces programming costs, increases
the readabi lity of programs , the ease of their modificatlon,

faci 1 itates maintenance, etc. and general ly addresses many of the
Problems of 1 ife cyc!e program costs.

o A modern powerful high order language performs these tasks better
and, in addition, may be designed to serve also in the specification
phase and provide faci lities for automatic tests and program
verij~cation. A modern tanguage is required if real time, parallel
processing, and input/output portions of the program are to be
expressed in high order language rather ·than assembly language
inserts which destroy most of the readabi 1 ity and transportabi 1 ity
advant~ges of using an HOL. A modern language may also provide
better error checking, more reliable programs, and the capabi 1 ity for
more eff iclent compi lers.

o Many of the advantages of a high order language can only be real ized
through computer tools. A total programming environment for the
language includes not just compi ler.s and debugging aids but text
editors and interactive programming assistance, automatic t~sting
faci 1 ities and proofs of correctness, extensive module libraries, and
even semi-automatic programming frorn specifications. Universal use
of those tools which are avai lable today wöuld significantly reduce
the present cost of software. Development of more powerful tools
holds even greater promise. Unfortunately, the average programmer's
tool box is rather bare. Because of the difficulty of preparing
these tools for each new languige and machine and operating system,
and the time involved, only the very largest projects have been able
to assemble even a representative set. Whi le in many cases
development of tools can be shown to be desirable in the long run,
day to day pressures usual ly prevai 1. There is almest never time to
do it right. The use of a common high order language across many
projects, control led at some central faci 1 ity, would al low the
sharing of resources in order to make avai lable the powerful tools
which no single project could generate. lt would even make those
previously generated tools avai lable at the beginning of a project,
reducing start up time.

o Reducing the number of languages supported to a minimal number,
therefore, provides the greatest economic benefit. There are, of
course, costs associated with supporting any particular project and
general costs of supporting the language. Fora sufficiently large
number of users, presumably the basic cost would be proportional ly
less. Perhaps 200 active projects contributing to a .single support
faci lity may not b~ proportional ly much cheaper than two faci 1 ities
each supporting 100 projects, although the absolute saving would be
significant.

o There are, however, unique advantages to having a single mi 1 itary
cornputer language. With a single language, one could reasonably
expect new cornputers proposed for a project to be suppl ied by the
manufacturer with a compi ler. This is, in fact, the experience of
the Britieh with their common language effort. lf there ~er~ five or

ten common languages, that is not a reasonable expectation. In fact,
if there ~ere a single common language, its use in DoD and the
provision of tool! by the OoD ~ould make it a popular candidate for
use else~here. Suff;cient use could be generated that it ~ould be
economical ly sound to· produce machines with firmware targeted to this
high order language, decreasing cost and increasing efficiency. The
multitude of mi litary languages in the past has not received this
sorf of acceptance. A single powerful supported high order language
migh{_even be expected to influence academic curricula, improving the
training not so much of individual programmers but the understanding
and capabi llties of the general engineering community for support of
DoD programs.

The High Order Language Working Group (HOLWGJ was chartered to formulate the
requirements for common DoD high order languages, compare those requirements
~ith existing languages, and recommend that adoption or implementation of the
necessary common languages. In the very near term , administrative recourse has
been taken. DoD Oirective 5000.29 specifies that "DoD approved high order
programming languages wil 1 be used to develop Oefense systems soft~are unless
it is demonstrated that none of the approved HOLs are cost effective or
techn ical ly practical over the system life cycle ••• Each DoD approved HOL ~i 11
be assigned to a designated control agent •.. " Thus, the .use of high order
languages is established and indeed very strongly mandated, since 1 ife cycle
costs are usual ly dominated by maintenance where the high order languages have
consiclerable advantage over assembly language. Approved high order languages
~i 11 be used, thereby reducing the proliferation and further, these languages
~ill be controlled by central facilities. DoD lnstruction 5000.31, Interim
List of DoD Approved High Order Programming Languages, designates those
languages and assigns control responsibility. COBOL and FORTRAN wi 11 be
control led by the Off ice of the Assistant Secretary of Oefense (Comptrol ler)
acting with The National Bureau of Standards and The American National
Standards Institute. TACPOL shal 1 be control led by the Army. CMS-2 and SPL/l
shal 1 be control led by the Navy and JOVIAL J3 and J73 by the Air Force.

Formal ization of these languages is a major step for~ard and recognizes for the
firs t t ime the corporate comm i tment of the Department of Oefense to provide
support for languages in the long term. lt stops the proliferation of
languages in that al 1 ne~ systems are to be programmed in one of these
languages, but there is no intent that already e~isting programs be redone or
tha t the projects, already committed to a language, change. There are,
however, limitations. The languages themselves are selected from the present
Serv ice inventories and are not, in general, modern po~erful languages. They
a r e gener al ly deficient in tools andin avai labi lity of comp i lers. Further, we
have on ly started on the concept of control. lt wi 11 b~ some time before they
reach t he state of a ~el 1 supported and control led language. This is,
therefore , an interim very near term solution. A more satisfactory technical
solution t o the problem is to formulate requirements, evaluate the existing
languages, sel ect t he best for modification to meet the requirements, and bui ld
a single common high order language, if that proves technical ly feasible.

The f irst charge t o the High Order Language Working _proup ~as to establ lsh

requirements. In terms of reference, this 1.1orking group 1Jas to consider
general purpose computer programming languages, those 1.1hich · are . used by a
programmer to talk to a · ~ornputer, that is, of the level of the interim
standards defined above. This is a lirnited goal and does not include either
gcneral ized requirements languages or very specific appl ications packages, .
1.1hich are formulated like languages but have only limited access to the
capabi lities• of the computer. Such applications packages include simulation
P~ograms suclt as SIMSCRJPT, or GPSS, automatic test equipment languages such as
ATLAS, 1Jhich is real ly for communications bet1.1een the test engineer and the
technician, or special purpose packages for aerodynan1ics or civi 1 engineering,
or even general ized query languages or job control languages. Some of these
are under study by other groups.

The goals of such a high order language are 1.1el 1 agreed upon.

o One 1.1ishes to have the language faci litate the reduction of the cost
of soft1.1are. This cost must be reckoned on the total burden of the
1 ife cycle, including maintenance and certainly not just the cost of
production or program 1.1riting.

o Transportabi 1 ity al lo1.1s the reusing of major portions of soft1.1are and
tools from previous projects and the flexibi 1 ity to ~odify hard1.1are
conf i gurat i ons .

. o The maintenance of very long lived soft1.1are in an ever changing
threat situation requires responsiveness and timely flexibi 1 ity.

o Rel iabi 1 ity is an extremely severe requirement in many Oefense
systems and is often reflected in the high cost of extensive testing
and verification procedures.

o The readabi 1 ity of programs produced for such long term systems use
is clearly more important than coding speed.

o The general acceptability of high order languages is determined, at
this time, by the efficiency and quality of the compi led code. Whi le
rapidly fal 1 ing costs of hard1.1are may make this difficult to
substantiate in general, each project manager 1.1i 11 compare the
eff iciency of the object code produced against an absolute standard
of the best possible machine language programming. Yery 1 ittle
degradation is acceptable.

Whi le these and simi lar goals are 1.1ell accepted, they do not lend themselves to
a quantifiable or rational assessment of languages. Alternatively, · one could
establ ish criteria 1.1hich 1.1ere excessively explicit, determining the form but
not necessari ly the capabi lity of the language. Rigorous definition of the
exact level of requirement proved difficult. Therefore, a STRAWMAN of
preliminary requirements 1.1as established to define this level b~ i 1 lustration.
The STRAWMAN 1.1as for~arded to the Military Oepartments, other government
agencies, the academic community and to industry. Additional ly, a number of

·technical experte outside the U.S. 1.1ere eolicited for . comments, the European

community being especial ly responsive,
research has been much mpre active
decade.

all the more vital eince language
there than in the U.S. over the last

The review of the STRAWMAN resulted in inputs from which were put together a
fairly compl-ete, but sti II tentative, set of requirements cal led the WDODENMAN.
This too ��s �idely distribut�d for comment. Based on various inputs and the
official responses from each of the Military Oepartments, a TINMAN set �as
derived �hich then represented the desired characteristics tor a high order
computer programming language for the OoD.

Early in this program, there was the feeling that different user communities
might have fundamental ly different requirements with insufficient overlap to
justify a common language between them. Such communities include avionics,
�eapons guidance, command and control, communications, training simulators,
etc. In addition to the embedded computer applications, even the scientific
and the financial management communities were solicited for requirements for
completeness sake. The surprising result was that the requirements so
generated �ere identical. lt was impossible to single out different sets of
requirements for different communiti�s. All users needed input/output, real
time capabi lity, streng data typing for compi ler checking, modularity, etc.
Up?n reflection, the technical rationale for this was clear. The surprise was
historical, based on the observation that in the past the different communities
had favored different language approaches. Further investigation showed that
the origin of this disparity was �rimari ly administrative rather than
tcchnical, and the result that a single set of requirements would satisfy a
broad set of users became less of a surprise. This did not, however, establ ish
that a single language could meet all the stated requirements, only that, if a
language meeting al I the requirements existed, it would satisfy the users
needs.

Very wide distribution of the TINMAN fol lowed and for a year comments were
received on this document. An international workshop was held at Cornel 1
University in the fal I of 1976 to i lluminate the current state of the jrt of
programming language design and implementation. In January, 1977, a new
version was issucd cal led the IRDNMAN. This is essential ly the same set of
requirements as the TINMAN, modified slightly for feasibi lity and clarit�. but
it is presented in an entire1y different format. The TINMAN was discursive and
organized around general areas of discussion. The iRDNMAN, on the other hand,
is very brief and organized like a language description or manual. lt is
essential ly a specification �ith which to initiate the design of a language.
lt is sti 11 sufficiently general so as not to constrain a particular structure
of the language but just its capabi lities. The IRONMAN was revised in July,
1977, mainly to clarify the intent, but also to correct the few errors and
inconsistencies that had been identified.

The next phase of the work �as the ·evaluation of existing languages. This �as
begun in a formal fashion in the summer of 1976, at which time the current
requirements document was the TINMAN. Oifferences between the TINMAN and the
JRONMAN are sufficiently minor so as not to affect the conclusions of this
evaluation. The purposes of the evaluati�� were: to ·examine the existing

languages and determine if one or a combination could satisfy the requirements:
to determine on the basis of evaluation of existing languages whether the
requirements themselves uere feasible and valid; to determine if it was
possible uithin the state-of-the-art to have a single language satisfying al 1
these requirements; and to �ecommend the procedure for arriving at the desired
minimal set of languages.

The languages included in the evaluation uere those nominated to the Interim
Standard List, languages in uide acceptance elseuhere, and certain modern
languages offering advanced capabi lities. The main eet of languages was
evaluated very formal ly by contracts in uhich each language was evaluated by
more than one contractor and each contractor had several languages to evaluate,
thus giving a cross check on the results. In addition, a number of individuals
submitted detai led evaluations of specific languages uith uhich they had a
unique fami I iarity. Al I these evaluations consisted of a comparison of the
language against each individual point of the TINMAN. They were not mere
cxistcnce checks but the languages uere also examined fo� feasibi I ity of
moclification should a particular point not bc met and for features beyond the
TINMAN requirements.

The fol louing languages received formal evaluations: FORTRAN, COBOL, PL/1,
HAL/S, TACPOL, CMS-2, CS-4, SPL/1, J38, J73, ALGOL 60, ALGOL 68, CORAL 66,
PASCAL, SIMULA 67, LIS, LTR, RTL/2, EUCLID, PDL2, PEARL, MORAL, EL-1. Besides
those languages receiving formal evaluation, a number of other languages were
examined for specific ·teatures or as examples of modifications of these
languages and contributed data to the feasibi lity and flexibi I ity of the
various language approaches. In addition, some, such as APL, uere immediately
excluded as being inappropriate for Oefense systems programming.

Such uas the bulk of these studies that a government committee uas put together
to analyze and compare the evaluations and to make recommendations consistent
uith them. These conclusions and recommendations uere adopted unanimously ·by
the High Order Language Working Group as the basis for the next phase of the
project. The conclusions may be briefly summarized as fol lous:

o Among al I the languages considered, none uas found that satisfies the
requirements so �el I th�t it could be adopted as the common language.

o Al I evaluators feit that the development of a single language
satisfying the requirements uas a desirable goal.

o The consensus of the evaluators uas that
produce a language uithin the current
essential ly all the requirements.

o Almost al I the evaluators feit ·that
language to satisfy all the requirements
carefully chosen base language.

it �ould be possi�le to
state-of- the-art meeting

the process of designing a
should start from some

o Without exception,
evaluators to be

the follouing languages �ere found by the
inappropriate to scrve as base languages for a

·development of the common language: FORTRAN, COBOL, TACPOL, CMS-2,
JOVIAL J73, JOVIAL J3B, SIMULA 67, ALGOL 60, and CORAL 66.

o Proposals ehould be solicited from appropriate language designers for
modification efforts· using any of the languages, PASCAL, PL/1, or
ALGOL 68 as a base la.nguage from LJhich to start. These efforts
should be directed toward the production of a language that satisfies
the • DoD set of language requirements for embedded computer
app 1 �cat i ons.

o At eome appropriate time some choice should be made among these
design · efforts to determine LJhich are most LJorthy of being continued
to completion.

The definition of a base language, uhich evolved during this procedure, LJas one
�hich �as fami liar to the community so that a number of contractors could use
it as a starting point and provide an audit trai I for evolution of the desired
language LJhich could be compared betLJeen contractors by government personnel,
Many contractors LJould pass near some intermediate existing language, a
modification of one of the bases in the direction of the requirements. For
instance, PEARL or HAL/S could be considered modifications in the PL/1 fami ly
toLJards our desired real time language. This does not mean that those deemed
inappropriate as a base language are not perfectly adequate for their present
op�rational use. lndeed, the presence of COBOL and FORTRAN, to LJhich LJe are
committed to on a lang term basis, belies that implication. Nevertheless,
these languages LJould not be good starting point� in that they have basic
inconsistencies LJith the requirements or have been superseded by more
appropriate starting points.

At this point LJe had determined, as LJel I as can be done on the basis of paper
studies LJithout actual construction of a language, that a single language could
be constructed to meet the requirements, further, that this could be done uith
elements LJhich are mutual ly consistent and LJithin the demonstrated
state-of-the-art. The next step in the project LJas, therefore, to provide a
prel i�inary definition of a language. Alternatively this might be considered
an elaborate feasibi I ity proof. Such definition LJas to be informal but fairly
complete and consider the cost and nature of implementations.

This preliminary definition LJas done using the IRONMAN Revised as a
specification and �rawing upon the previous LJork done on evaluations. The
procedure uas multiple competitive contracts, LJith the best products to be
selected for continuation to full rigorous definition and developmental
implementation.

In August 1977, four contracts LJere awarded to produce competitive prototypes
·of the common high order language. These awards came as a result of a request
for proposal and offers received from fourteen firms, both U.S. and foreign.
The successful contractors LJere Cll-Honeywell Bull, lntermetrics, Softech, and
SRI-International.

�hi Je different approaches LJere offered, al I four LJinning contractors proposed

to etart from the computer language PASCAL as a base. This thereby restricts
the products in form and makes it some"'hat easier to compare the re,ults. We
L.Jere prepared to deal "'ith three different base languages, so the outcome uas
coincidental. lt should .be noted that the requirements against "'hich the
language is being designed are not the same as those driving PASCAL and the
result should not be expected to be a superset of Pascal. Hol.Jever, there ui 11
be some fami ly resemblence and care is being taken not to modify eurviving
Pascal forms L.Jithout substantial reason.

The products of Phase J , the preliminary designs , "'ere received in February
1978. Thc considerable interest that this project has generated in the outside
community made it possible to seek technical input for the evaluation of these

.designs from the industrial and ac.edemic communities L.Jorld"'ide. Eighty
volunteer analysis teams "'ere formed and produced extensive technical analysis
of the designs. The period avai labte L.Jas quite short, but the designs uere
only prel irninary and the purpose of the analyses "'as to deterrnine uhich should
be cont i nued to comp I et i on. On the bas i s of _these ana I yses, Cl 1-HoneyL.Je 1 1
Bul 1, and lntermetrics L.Jere selected to·continue and resume uork in Apri 1 1978.

As a result of both the designs and the analyses, the requirements uere updated
in June 1976 to a STEELMAN version. Since this may logical ly be the final set
of requirements, some care "'as taken to clean it up and particularly to remove
apparent misunderstandings and discrepancies "'hich surfaced as the result of
the actual design of the four languages. The exceptional ly rigorous revieL.J of
the languages by the analysis tearns in the context of the requirements �as a
further exceptional test. lt L.Jas the specific goal of this revision to assure
that the level of the requiremcnts L.Jas propcrly functional, neither too
speci fic nor too general. Seme portions of requiremcnts have been deleted or
modified as a result of these revieL.Js and the parallel processing requircments
have been general ized. The document remains a set of real istic requirements
for large-scale systems in the present state-of-the-art. lt does not describe
an abstract, ideal language but is limited to one dealing in operational
realities. Restrictions on character set reflect the distribution of input
devices in al I communities. The GO TO, remains although restricted, in order
to ensure a6ceptabi I ity in those communities L.Jhere it is sti 11 "'idely us�d.

The second phase of the design L.Ji II include a language manual and a complete
description, a formal definition of the language, and a test translator �hich
ui 11 al lo"' some execution. T�e test iranslator is only an aid Jn development
and testing of the language and is. not intended to be a production level
compi !er. A final selection betL.Jeen these t"'o designs �i 11 take place in Apri 1
1979.

A selection �; 11 then be made of the single sucdessful contender and that
language "'i 11 undergo elaborate test and evaluation of the language (as opposed
to test of compi lers) by reL.Jriting a number of existing �el I defined programs
or systems to dcmonstrate its applicability and advantages. A number of
production compi lers ui 11 be contracted for from different sources. A major
thrust of this effort is to �ake the products non- propriet�ry and uldely

avai lable. Compilers will be tested against benchmarks and certified and ~hen
avai lable the language can then be added to the list of approved languages in
OoDI 5000. 31.

Most recently ~e

analyses. These
resulting fr~m the
examined various
demonstrated, and

have seen the compleation of three different economic .
~ere targeted to questions of expectation of savings to

successful compleation of this program. They further
introduction strategies and rates. Significant savings ~ere

these were magnified by rapid introduction.

As the language becomes avai lable, those other vital steps to programming
environment wi 11 be provided including control, training, and tools. A
particular technology tobe fostered in this area is that of . the generation of
efficient compi lers. A number of techniques including root compi lers,
compi ler-compi lers and compi ler factories wi 11 be developed ~ith the eventual
goal of making avai lable very inexpensive techniques for producing a cornpi ler
in this language for a ne~ machine. Certification, testing and comparison of
compi lers by the control faci lity ~ill promote competition and make the
government a more kno~ledgeable buyer. Whi le there is no interit to force any
existing project to reprogram inane~ language, there might be occasions in
~hich this could be very profitable. Translation aids ~i 11 be developed for
converting existing language programs into the ne~ language. lt is hoped that
th4s ne~ language wi 11 be so po~erful ly supported that it ~i 11 be the language
of choice for future systems. lt should be experimental ly avai lable by 1979
and avai lable for general use in 1980.

These aspects of the development environment are being explored using
procedures simi lar to that for the language requirements. A document has been
prepared addressing those features of control led support ~hich ~ould be
required · for the optimal uti lization of the language. These may be
requirements in a diffeent sense from the rigorous complete se~ of the
STEELMAN, but the iteration methodology is also appropriate here. An initial
version, SANOMAN, was superseded July 1978 by the PEBBLEMAN. This is sti 11
quite prel iminary. Comment is being solicited from the soft~are development
community, a some~hat different group than the language experts ~ho primari ly
address the language requirements. A meeting was held at the University of
Cal ifornia Clrvinel in June 1978 d)scussing al 1 aspects of the requirements.
In September 1978, a meeting at Egl in AFB, Florida, discussed prin1a.ri ly the
technology of retargetable compi lers.

PEBBLEMAN proposes a configuration control board for the language ~hose
responsibi lity is to maintain the definition and resolve any possible
questions. A language control facility would provide val idation and
certification of compi lers that they COflform to the official definition uithin
the 1 imits of the current abi lity to test. The bulk of the document is
concerned uith defining those tools ~hich could be provided in common to the
use of language and outlining the methodology for producing and inter-relating
those tools.

There is no intent to imply that al 1 possible language requirements have been
uncovered. New environments, new machines, new computer science and technology
~i 11 eventual ly render the best language obsolete. lt is rather eurprising
that everything required can· be presently met. That may be the result of
setting our sights on what we ·know. George Washington didn't ask for airplanes
or atomic bombs or lasers, al 1 he wanted was more muskets, cannon and sabers.
~uture lan~uage research is vital to the continued growth of capabi l ities. lt
•s not the i~tent that the existence of this language stifle such research,
rather that • it provide a target and a user, a data and requirements gathering
agency that wi 11 be able to survey the state-of-the-art and both direct and
apply future developments.

Besides the normal interaction between portions of the Oepartment of Oefense
and other agencies of the U.S. Government, this effort has had close relations
with and received a great deal of support and technical input from a number of
outside organizations with similar aims. T~e appropriate subcommittees of the
American National Standards Institute and the International Standards
Organization including their Working Group on Programming Languages for the
Control of lndustrial Processes have been kept closely informed of this ~ork.
The International Purdue Workshops on lndustrial Computer Systems have long
held an interest in this area and in particular an affi liate group, Long Term
Procedural Language-Europe (LTPL-EJ has as a goal the production of a language
much 1 ike the one we desire: The goals of this group have recently been
adopted by the European Economic Community and there has been a very intimate
relationship between this group and the HOLWG. This is perhaps the most
closely analogous group, trying to satisfy the requirements of several
countries in many appl ications areas.

Perhaps the most successful national common language effort has been that of
the British Ministry of Defense in specifying language CORAL 66 for al 1 MOO
real time appl ications. The HOLWG has received much valuable technical and
managerial insight from the British experience and to enhance this cooperation,
the British have assigned a senior technical expert to the HOLWG to be resident
in Washington, providing both technical input and liaison. More recently, both
the German and French governments have inifiated procedures to standardize on
existing high order languages, respectively, PEARL and LTR. The Federal
Republ ic of Germany has also assigned a technical represenative to the HOLWG in
Washington. The Japanese government, Ministry of Information, Technology . and
lndustry, is subsidizing a consortium to produce a software production
environment, central to which is a common programming language. The CCITT has
proposed a common high order language for international use in communications.

lt appears that the time is ripe for moving to a common high order language
both technical ly and administratively, but significant mi lestones do remain.
The High O~der Language Working Group activefy solicits comments and the
cooperation the -rthein making this effort a success.

BIBLIOGRAPHY

Documents ~i th AO number ava·i 1ab1 e from
the National T~cnical lnfomation Service.

Oepartment of Oefense Directive 5000.29, Management of Computer
Resources in Major Oefense Systems,, 26 Apri 1 1976.

Oepartment · of Oefense Oirective 5000.31,
High Order Programming Languages (HOL!,

Interim List of OoO
24 November 1976.

Oepartment of Oefense Requirements for High o~der Computer Programming
Languages "TINMAN", June 1976.

Oepartment of Oefense Requirements for High order Computer Programming
Languages "IRONMAN" Revised, July 1977.
Department of Defense Requirements for High order Computer Programniing
Languages "STEELMAN", June 1978

' Institute for Defense Analyses, Automatie Data Processing Costs
in the Defense Oepartment, Paper p-1046, AO-A004841,
D. A. Fisher, October 1974.

Institute for Oefense Analyses, A Common Programming Language
for the Department of Defense - Background and Technical
Requirements, Paper P-1191, AO-A028297, 0. A. Fisher,
June 1976.

The Common Programming Language Effort of the Department of Defense,
Paper given at the AIAA/NASA/IEEE/ACM Computers in Aerospace
Conference, 1 November 1977, D. A. Fisher.

Language Evaluation Coordinati~g Committee Report to the High
Order Language Working Group (HOLWGl, S. Amoroso,
P. Wegner, O. Morris, D. White, AD-A037634, 14 January 1977.

Oefense System Soft~are Management Plan, AO-A022558, March 1976.

Oefense System Soft~are Research and Developruent Technical Plan,
AD-A047062, September 1977.

The MI TRE Cor poration, A Cost/Benefit Analysis of High Order Language
Standardization, M78-206, J.A. Clapp, E. Loebenstein, P. Rhymer,
September 1977.

Oecisions and Designs Incorporated, Benefit Model for High Order
Language, TR78-2-72, ~oseph M. FoK, March 1978.

A.
B.

c.
D.
E.
F.
G.

H.
L

J.
K.

L.
M.

N.
o.

High Order Language Working Group, Studies of the Economic
Impl ications of Alternatives in the OoO High Order Commonal ity
Effort, tobe publ ished. .

HOLWG, DoD High Order La~guage Commonality Effort - Design,
Phase l Report, AOB-950587, June 1978.

Lecture Notes in Computer Science, Vol. 54, Design and Jmplementati~n
of Programming Languages - Proceedings of a DoD Sponsored Workshop,
Ithaca, October 1976, Ed. John H. Wi lliams and David A. Fisher,
Springer-Verlag, 1977 .

Report of the lrvine Workshop on the Environment for the DoD
Common Language, NOSC, tobe published.

Report of the Eglin Workshop on Common Compiler Technology,
ADTC, to be publ ished.

HOL PAST MILESTONES

Formation of HOLWG JAN 75
STRAWMAN APR 75
WOOOENMAN AUG 75
TINMAN JAN 76
DoD DIR 5000. 29 APR 76
DDR&E Directs Service Funding MAY 76
OoDJ 5000.31 NOV 76
Contractor Evaluation Completed DEC 76
Program Management Plan JAN 77
Report of Evaluation JAN 77
IRONMAN JAN 77
Final SOW for Des ign MAR 77
RFP lssued APR 77
Revised IRONMAN JUL 77
Design Contracts A~arded JUL 77
Economic Analysis JAN, 77 - NOV 77
Language Design Phase AUG 77 - FEB 78
Phase I Evaluation FEB 78 - MAR 78
Phase J Selection APR 78
Program Decision Date APR 78
STEELMAN JUN ·78
Language Definition Phase 11 APR 78 - .MAR 79
PEBBLEMAN Environment Req JUN 78

HOL FUTURE MILESTONES

Final Selection APR 79
Test & Evaluation MAY 79 - OEC 79

P. Language Refinement
O. Development of Production

Comp i 1 ers
Compiler Maintenance .

R. Control Facility/Tools
Control Faci lity Al 1 Up

S. Language Tool Oevelopment
Dei iv~y of Tools
TOOLKI~ Avai lable

T. Training Mat' 1 Definition
Training Courses

U. Language Conversion Aids
V. Added to DoOI 5000.31

MAY 79 - OEC 79

MAY 79-------------->
JAN 80-------------->
OCT 78 - OCT 79
FEB 80-------------->
MAY 79-------------->
JUL 79-------------->
MAR 80
OCT 78 - MAY 79
APR 79 - MAR 80----->
JUL 79 - MAR 80
APR 80

,._ ,._
~

"' 0

"' 0
c
0
u.
cii
0

DORN IER

Dornier System GmbH

ANHANG 5

DEPARTMENT OF OEFENSE

REOU 1 REMENTS FOR THE PROGRMtll NG ENV l RONMENT FOR

HIE COMMON H 1 GH ORDER L/1NGUAGE

PEBBLEMAN

JULY 1978

PREFACE

The Oepartment of Oefense Hi�1h Order Language Commonal i ty language program 1-ias
established in 1975 1,,1ith thc goal of establishing a single high order computer
programming language appropriate for DoD cmbecldecl con1puter systems. A High

Order Language Working Group (HOLWG) was establ ished to formulate the DoD
requirements for High Dreier Languages, to cvaluatc existing languages against
those requirements, and to implement the minimal set of languagcs requircd for
OoO use. As an administrative ihitiative toward the eventual goal, OoD
Oirective 5000.29 provides that new defense systems shoulcl be programmecl in a
OoO approved and central ly control led high or-cler language. UoD lnstruction
5003. 31 gave an inter im I ist of approved I a119I10::'J�S i nc I ud i ng COOIIL, F[l[HRAM •
TflCPOL, CMS-2, SPL/1, ancl JOVIAL J3 ancl J73. Eco11u111ic analyse�. 1.Iere u;;�cl to
quantify the bcncfits of goin�1 to high orclcr langu<1<JCG ancl indicate

• consiclerably greater benefits associatccl with th,:, r0picl introcluction of a
sing I e, modern I anguage. The requ i rer,1en t s h.Jve l:oe,:,n 1� i cle I y cl i s t 1· i IJu t ccl f 01•
comment throughout the military and civil communitics, producing successivcly
more refined versions from STRAWMAN through WOOUcf�tlt'-N, TINnAN, !FlONnAN, ancl the
present STEELMAN. Ouring the requirement development process, i t �,.:is
clctermined that the single set of requirements generatecl I-i,,s both ntecessary and
sufficicnt for al I major OoO applications. Formal rvaluation was performecl on
clozens o f ex ist i ng l anguagcs conc I ucl i ng th.:i t no ex ist i ng I c1n9u<19e cnu I d be
aclopted as a single comr,1on HOL for the OoO but that a i:,ingle l,Hl(tu,1�I0 ri1 •:f:tin9
e ssential ly al I the requirements t-ias bcith fc�1sible <1ncl c!csir.:iblc. Fcur
contractors were funclecl to llrocluce con11,etitive f)rotot�1r,es lJasecl Ltf)011 PASCAL. A
first-phase evaluation recluced the clesi�1ns to ti-10 1.:hich ,�i 11 be c.:1rriccl to
con1pletion and from 1,.ihich a single languaue 11ill e;,Iei-r;e. Further step:. in tlie
program will be the test ;:incl e.valuation of the larn:iuage, procluction of
compi lcrs and a program clevelopmcnt and tool environ111e11l, ancl control of the
language and valicl.:ition of compilers. Thc lanuu,:iue valiclation facilities a,7cl
government-fundecl compi lers ancl tools wi 11 bc wiclcly and chcaply av.:ii labte to
help promote use of the language.

TABLE OF CONTENTS

1
1.1
1. 2
1. 3

2
2.1
2.2
2.3
2.4

3
3. 1
3.2
3.3
3.4
3.5

4
4.1
4.2
4.3
4. 3.1
4.3.2
4.4
4.5

5

6
6. 1
6.2
6.3
6.4
6.5

7
7 :1
7.2
7.3
7.3.1

"7.3.2
7.3.2.1
7.3.2.2

lntroduction
Purpose
Reference Documents
Definition of Requirements Terms

Language Standard
Standard Document
lntent of the Common Language
Expl ici t Pol icy and Controls for Standardization
Approach

Control and Support Organizations
Configuration Contra! Board
Comp i ler Validation Faci 1 ity
Language Support Fa~i 1 ity
Appl ication Libraries
User Organizations

Configuration MJnagement
Objcctivco and Stratcgy
Con f i ~1ur a t i on Mana9cmen t o f t hc Coo11non Langua~1e
Con f i gur a t i on llanagemcn t o f Co:np i .1 er s
General
Comp i le Validation Procedures
Configuration Management of Supporting Software
Configuration Management of Application Programs

Propcrtics of Soft~are tools

Design and Preparation Tools
General
Editors
Preprocessors
Design ancl Simulation
Automatie Translation Aids

Translation Tools
General properties
Technology
Interfaces
Hand! ing of translators
Input to translators
Source sta t ements
Contra! and opt ion parameters

7.3.3
7.3.3.1
7.3.3.2
7.3.3.3

8
8.1
8.2

9
9.1
9.2
9.3
9.4
9.4.1
9.4.2

I' 9.4.3
9.4.4

10
10.1
10.2
10.3

11
11.1
11. 2
11. 3

12
13
13.1
13.1.1
13.1.2
13.1.3

(13.2

14

Output of translators
Code and control information
Listings
Error messages

Link/Load Tools
General requirements
Interfaces

Runtime Tools
General
Virtual language machine
Extended language machine
Runtime test and debug tools
Branch and timing counlers
Trace and breakpoint
lnteractive symbolic dcbugger
Symbo 1 i c clump

Maintenance
General
Maintenance oriented precautions
Individual tools

Managcn1en t T oo 1 s
General
Libraries
Interface Monitor

App 1 i ca t i on So f ti.1are
Training Support
Types of Training Required
Programmcrs Using the Common Language
Compiler Ocvelopcrs
Management of Projects Using thc Common Language
Training Mocles

Information Col lection, Dissemination, and Promotion

Chapter 1

lntroduction

1.1 Purpose

The Oepartment of Oefense IDoDJ is defining a Common Higher Order Languagc
CHOLJ for embedded systems based upon a language requirements cfocument . The

LanDuage Requirements Oocument 11as the procluct of the Mi 1 i tarv Oepartments
coordinated by the OoD HOL Working Group IHOLWGJ. lt incorpora t ed comments and
Suggestions from the government, acaden1ic in s ti- tut i ons, ancf industry unti 1
jucfgcd to bc of sufficicnt correctness and throuahnr. ss to be used as the
requirements document for thc cJcsign of thc DoD ~011101on High Dreier Languagc for
embecfcfed systems.

In order for the Common High Order Language tobe successful in achieving the
desired objectives, the environment in wh i ch it is usecf has tobe concfucive to
i ts support. The env i ronment inclucles al 1 supporting activi ties anct aic.Js to
cfcvclop programs for all systcm s applications - sm::i ll, medium and large. These
aicfs include for instancc:

1. Organizations ancf methocJs to control thc 1.:~ngua~1c and promote cfevc l opmcnt
0 f t 00 1 s

2. Compilers for converting the HOL into the machine language of t he target
Computer

3. Tools to aid in the dcsign, test and clcbug of ;.ippl ication progr<ims

4. Organizations and methods to research the use of the language an cf prepare
for fol 101.J on

5. Materialsand techniques for tra i ning users of the language

6. Mcthods for col lecting, cataloging anti clissem i na ting information about the
languagc and programs 1.Jritten in the language

7. Project management aicfs to ach i eve SllCCC-:>sful implcmenta t ion and
n1a in t enance

This document , titled PEBOLEMAN, describes the requirements for the environment
necessary to the success of the Common High Order Language. lt wi 11 go through
;:i n11n1bP.r o f i t era t i ons, as the 1 ringu <iue rP.qu i rP.ntP.n t ~ hcivP. 1 i nr.nrrnr;:i t i na
suggest ions from al 1 parts of the softi.Jare con101uni ty. 1 t 1.Ji 11 also sp i n o ff
more detai led requirements in specific areas such as software too ls or cont r o l
faci 1 i t ies.

The themc behind the inclus i on of any ~ opic has heen t o list al 1 methods which

have come to be recognizcd as necessary for the production of rel iable
sof t~are.

This is a preliminary document for generating comments and wide latitude has
been al lowed in describing requirements. Late~ versions wi 11 strive for
greater rigor.

Commcnts and furthcr material are activelu sol icitArl from the reader. They may
be transmittcd directly to the HOLWG through its chairman:

Lieutenant Colonel Wi 11 iam A. Whitaker
DARPA
1400 Wi lson Boulevard
Arl ington, Virginia 22209, USA

1.2 Reference Docurnents

o Standard Definition Oocument for the Common High Order Language (tobe
defined}.

o DoD Requirements for High Order Computer Programming Languagcs, STEELMAN,
June 1978.

o DoO Requirement for High Order Cor,1puter Programming l,..anguages, IRONMAN,
Revised July 1977.

o DoO Requirement for High Order Computer Programming Languagns, TINMAN, June
1976.

o DoD High Order Language Program Management Pl8n, January 14, 1977.

o The Navy Fortran Validation System, Patrick M. Hoyt, AFIPS Volume 46, 1977.

o Design and Implementation of Programming Languages, DoD Sponsored Workshop,
lthaca 1976, Lecture notes in Computer Science Number 54, Springer - Verlag.

o DoD's Common Programming Language Effort, David A. Fishcr, Computer, March
1978.

o Proceedings from Workshop an Environment and Control of OoD Cornmon High Order
Language, University of California, lrvine, June 1978, (to !Je published).

1.3 Definition of Requiremcnts Terms

The fol lowing terms have been used throughout the text to indicate wh~re and to
what degree individual requirements apply.

Shal 1 - indicates a requirement on the environment
.

Should - indicates a desired goal but one for which there is no objective test

May - indicates a requirement to provicle an option to the user (user is
subjectl

Must - indicates a requiren1ent placed on the user b~i the environment (user is
sub j ec t l

Wi 11 - indicates a consequcnce that is expected to fol 101~ or indicates an
intention of OoD

Chapter 2

Language Standard

2.1 Standard Definition Oocument

The syntax and semantics of the OoO Common High Order Language Jre to be
described in a document which shal 1 become the stanciard for dec i ding whether or
not compi lers conform to the language specification . That document shal 1 be
referred to as the Standard Definition ·Oocument. The Configurat i on Contra!
Board shal 1 maintain and interpret this document.

2.2 Critieria for the Language

The goal of the OoO Common High Order Language effort is to reduce total cpsts
of software incurred by DoD. To this end a language is being designcd with the
fol lm.iing general cri teria :

1. General ity - The language should be of a general nature appl icable to a
wicfc range of embedded systcms computer application s .

2 . Rel iabi 1 ity - The language should promo t e, cncouragc, and cnforce the us e
of techniques which lead to rel iable software.

3. Main t a i nab i 1 i ty The 1 anguage shou 1 d emphas i ze reaclalJ i 1 i ty and
understandabi 1 i ty of programs and lead to less costly maintenance.

4 . Eff i ciency - The language should al low compi lers which produce eff icient
objcct programs .

5. Simpl icity - The language should reduce unneces sary complexity by means of
uni form syntactic conventions and cons i stent semantic s tructure.

G. Implementation - The language should faci 1 itate production of compi lers
that are easy to implement and are effic ient.

7. Machinc Indcpcndence - The language should ctrive for machine independence
to make possible the trans- portabi 1 ity of appl icat ion programs .

8. Formal Definition - There should be a formal defini t ion of the language .

2 • .3 Expl ici t Pol icy and Controls for Stanclardization

In order for the HOL to ach ieve e><pected benefits, there shal 1 be no variants
o f the Language. Organ i za t i ons suppor t i ng the Common Languag e sha 1 1 nion i tor
and oppose any attempts at non - conformancc to thc publ ishc cl standard.

Once the Common Language is definecl it wi 11 bc added to the 1 ist of approved

higher order languages in DoO 5000.31.

A Mll-STO wi 1 l be prepared and coordinated.

Rcgistration of the Language as a Federal Information Processing Standard wi l 1
be useful so that i t may be usccl throughout the Feclcral .Government.

The supporting organization will monitor activities in use of the Languagc and
participate to promote further stanclarclization of the Language. Submissions to
the American National Standards Institute ancl the International Standards
Organization may be appropriate to expancl the user base and further reciuce the
l ikel ihood of variants.

2.4 Approach

All environmental elements of this clocument support thc above goals for thc
Common Language. Elements necessary for succcss are describecl in subsequent
sections as fol lows.

1. The primary necessity is an organization
promote development of its supporting software.
organizational structure.

to control the Language and
Chapter 3 describes this

2. Methods for control 1 ing the Common Languagc ancl its compi lers are rcquircd
.to permit managecl change when necessary for technical growth. T~ese methods
are described in Chapter 4.

3. Chapters 5 through 11 discuss the v;:irious types of tools ~1hich are
nccessary for the success of the Common Language.

4. Chapter 12 discusscs rcquircmcnts
Common Language. The methocls described
embedded systems.

for application programs writlcn in the
1.1ill lc.:;cl to high port.:ibility for

5. Diverse training will be required for successful implementation of the
Common Language. Chapter 13 addresses these training requirements.

' 6. Chaptcr 14 dcscribes methods for col lection and dissemination
Language materials Ctools, compilers, training aids, etc.) so
embedded computer software community wi 11 have ready access to al 1
Common Language information.

of Common
tha t the
rcquircd

Chapter 3

Control and Support Organizations

The fol lowing paragraphs describe the organization of
groups which have been proposed to effectively control
DoO Common High Order Language and provide support.

3.1 Configuration Control Board

faci litics .and user
standardization of the

/\ Con f i gura t i on Con tro 1 Board fCCBJ sha 1 1 be es tab 1 i shed by DoD ancl be
rcsponsible for custody and maintcnance of thc standard clcfini tion of non
Common High Order Language. Primarily, tl1e function of the CCB shall be to
minimize changes to the Language and prevcnt the occurence of variant
translators.

The CCB shal 1 be
Language definition.
Language def inat ion.
a prompt response.

the
A II
A II

final arbiter in any interpretation dispute of the
official interpretations shall become part of the
requcsts for changes and interpretations wi 11 receive

To recluce potential influence of special interest groups. the CCB sh.:il 1 bc
autonomous of compi ler or appl ications developers.

Me mhership of the CCO may include representation from major Federal user
communities within the United States. Expansion ' of the CCO to include
rcpresentatives from outside the U.S. wi 11 be appropriate as other nations
makc a major commi tmcnt to thc Lanuuogc. Rcsponsibi 1 i ty for the cc:B mau
eventual ly be transfered outside the DoD.

Thc CCB shal 1 be operational as soon as the language is frozen and submi tted
for standarclization. At that time, formal clefini tion of the OoD HOL shal 1 be
control led by the CCB.

3.2 Compiler Validation Faci lity

A fici 1 i ty shal 1 be establ ished to val idate that compi lers .are complete ancl
correct implementat ions of thc OoO HOL. The f<1ci 1 i ty shal 1 not per form any
function other than compi ler validation and shal 1 be independent reporting only
to the CCB.

As a minimum, validation shal 1 be conducted by subjecting compi lers to a sct of
test progra~1s. Development and maintenance of test programs shal 1 be the
responsibi 1 i ty of the val idat ion faci 1 i ty. Trouble reports from users 1.1i 11 be
used to refine and update test programs in an effort to develop the mos t
comprehensive test programs possible. Al 1 test programs shal 1 be docume nted
and made avai lable to implementors who wish to test compi lers independently
prior to formal val idation. Formal val idation shol 1 cons is t o f revie~ing

ccimpi ler documentation and running the tcst programs . Mor e cl.:iborate
val idation wi 11 be conducted ~hen such methodologi cs can be c st .:i b l ishcd.

A val idation report shal 1 be prepared and publ ished by the faci 1 ity.

Va 1 i da t i on L.J i 1 1
cleveloped and
at the start of

be required hy Oefense projects when compi lers are initial ly
L.Jhen mocli fied. A requirement ~ii 11 be to val idate the compi lers
any project which plano to uoe thc compi ler.

The val iclation faci 1 i ty
from the selection of the
offices of the validation

shal 1 be establ ished and operational L.Jithin one year
Common Languaße. When ~ctivity warrents, additional
faci 1 i ty may be establ ished.

3.3 Language Support Facility

A Language Support Facility (LSFl shall be established. lt L.Jill be the focal
point for most translator, support tool, ancl 9cncr3I libr;:iry ctevelopn1r.nt · anct
maintenance activity for the Comnton Language.

The LSF shal 1 be the primary inlerface for user and irnplementor communi ties.
IT L.Ji 11 develop and maintain documentation, clevelop and concluct training
courscs and responcl to al 1 user and ir.iplementor inc11;iries.

Al 1 compi lers, support tools, 1 ibraries, ancl lanau.19e documentation maintained
by the LSF shal 1 be readi ly avai lable to any lcgitimate and qual ified lanau~ue

user or implementor.

3.4 Application Libraries

flpplication libraries, in the long ternt, ~Jill beco111e very large and diverse.
An cffort will be unclertaken to dcmonstrate the utilitu of a centr .3llu
supportcd application library. Scvcr31 promising r;pcciali;:ccl application cireas
are signal processing, clisplay processing, ancl co1m.1unication net~1cwks. Tl1e
ARPANET is a particularly wel 1 known appl ic~tion that may bo providccl as a
common application package.

Once developed, appl ication 1 ibraries could be supported and maintainecl by
their specific support facilities. These facilities 1-1ould be formecl as clesirecl
for particular appl ications, in sonte cases colocated with the Language Support
Faci 1 i ty.

3.5 User Organizations

User organizations are necessary to serve as a technical forum for common
interests of those using the common language.

The Common Language Support Faci lity will fester user organizations by giving
thc~ rccognition, disocminaling information Gbout their mcetinas and rurposes,
participating in their meetings, and giving duc conoiclcration to user
organization proposals.

The organizations may be grouped by special interest such as the fol lowing:

1. Use of a particular compi ler

2. Use cf a particular computer

3. A particular application area

Chapter 4

Configuration Management

4.1 Objectives and Strategy

The strategy for managing the Common
control change, al lowing for evolutional,
compi ler, development tools, and test
control led by the responsible agencies.

Languagc and Environmen! wi 11 be to
stcppcd gro1Jth of the 1 anguage,

tools. Appl ication program5 wi 11 he

4.2 Conf iguration Management of the Common Language

Authorizations for al 1 changcs to the Common Language shal 1 be under control of
thc Configuration Control Board (CCBl, Exccpt for errors, tThc CCB shal 1 only
implement changes which are upward corapatiblc with the current Standard
Definition Oocument.

All proposals for changes shall be acceptecl and recorded, but, in g"eneri:ll,
• changes wi 11 not be undertaken due to the cost impact. Proposed changes wi 11

be i nves t i ga ted for bei ng par t of a gener i c requ i remen t. The CCß 1.1 i 1 1 be
supported by the LSF to investigate the impact and necessity for any proposed
changcs. Changes wi 11 be groupcd and incorporatcci at the ciccision of the CCA.
Either a time limit or a quantity of changes 5hal 1 be usecl to make a change to
the language.

4.3 Configuration Management of Compilers

4.3.1 General

A 1 1 camp i 1 er s used blJ the Feder a 1 Governmen t, 1.1he ther 01Jned or not, mu s t be
control led. Those owned by the Fcderal Govcrnmcnt shal 1 bc contral led by a
Common Language organization. Those not owneci wi 11 be control lecl through
val idation procedures which shal 1 be required for al 1 compi lers usecl on fecleral
projects. In both cases, complete descriptions of the procluct ancl accurate
confi~uration information shal 1 be maintained. Compilers wi 11 be val iclated
after each modification. Compilers used outside the Fecieral Government are
strongly encouraged to take advantage of validation faci 1 ities .

4.3.2 Compiler Validation Procedures

The purpose in val idating the compi lers is to ensure conformance to thc
Language as described in the Standard Definition Oocument. Conformance wi 11 be
measured against the syntax and semantics of the language. The Common Language
shal 1 be specified in a manner which promotes val idation and decreases the
chances for misinterpretation by the developer.

°The · f i rst method of val iclation shal 1 be to compi le and execute a stanclard
series o f programs written in the Common Language to test for correct

translation. The test set of programs 1-1i II val idate single statements and
sequences. The tests 1-1i 11 be comprehensive for al I statements as 1-1el I as for
extremities and crucial cases. Tests wll I be made to assure that the I imi ts of

the Language Defination are not exceeded producing de facto extensions. The
tests 1-Ji 11 also represent examples of embedded systen,s appl ications. A
valicfation report shall bc publishcd stating the rcsults of the tests and the
rcsources used.

The testing shal I be performecf b!:J the Languagc Val id.:ition Factl i ty. · The
Validation Faci I ity shal I be responsible for preparing the set of standard
tests, compiling the validation information, ancf approving the material. The
Faci I i ty wi 11 ei ther official l!:J val idate the translator or state necessary
corrcctive actions prior to official valicfation. The implementor shal I be
rcquired to certify that there are no unauthorized extensions to the language
translator.

Bodies responsible for maintaining compi lers shoulcf report ne1-J types of faul ts
or bugs to the Validation Facilitv as the users are notifiecf so that the test
sui te can be updated.

Anu publ ished test set must be recognizt:d as being inco111plete. Val iclation may
bc clcnicd should the compi ler fai I anv acldecf tests.

As part of the val idation
speecl, compi lation memory
usage wi 11 be required.

e ff or t,
usagc,

bcnchmark
object

te:sts to
coclc spe:ccf,

4.4 Configuration Management for Supporting Software

cfescribe compi lation
and objcct coclc mcmory

Support soft1-Jare that is owned by the LSF wi 11 be control led by establ ishing
proccdures to identify the configuration and thcn managing approved changes.
Al I such programs shal I be recorcfcd and catalogccf by thc LSF for promoting
transferabi I i ty.

4.5 Configuration Management of Appl ication Programs

Appl ication programs wi II be control led by the development agencies. The
clcvclopment agencies 1-1ill he requested to furnish the LSF with a de�cription of
appropiate ncw programs clcvclopccl. The dcscriptions wi 11 be catalogecl by the
LSF. The cfescription wi II be in a standarcl Jb:Jtr.:ict form.

Development agencies may be required to search the catalog prior to devcloping
new appl ication programs in order to use existing, proven soft1-1are rather than
developing more.

Chapter 5

Properties of Software Tools

Thc Common Language should be designed to work in conjunction with a variety of
uscful software tools and appl ication support packas1es. These wi 11 be
developed as early as possiblc and 1-1i 11 includc ecli tors, ii"lterpreters,
diagnostic aids, program analyzers, documentation aids, testing aids, software
maintenance tools, optimizers, and application I ibraries. There wi 11 bc a
consistent user interface �or these tools. Where practical software tools and
aids wi 11 be written in the langua9e. Support for the clesign, implementation,
distribution, and maintenance of translators, soft1.1are tools and aids, ancl
appl ication I ibraries wi 11 he provided indepen�anlly of the individual projects
that use thcm.

The Common Language is only
process for automated systems.
process may be described by the

one tool in thc wholc dcsign and dcvclopment
A possible total structure of • the clevclopmcnt
fol l01�ing steps:

A Understanding the Problem 8 Oescribing the Problem C Sketching a Solution D
Rcfining the Solution E ldentifying the Resources F f18king the Solution Work Fl
Ocvc I opmen t o f Acid i t i ona I Harcll.1are F2 Oe ta i I ed So f ti.1are Design F3 Cod i 11�1 r-4
Componcnt Test FS IntcgrJtion and SysteM Test F5 Acccptance G Maintaining the
Resulting System

Considerations in this document shal I be restrictecl to tools which are rela�ccl
to the Common Language in a sense that they are either in1111ecliatellJ necess.:wy
for its use,such as translators, help to in:prove its perforn1ance
significantly,such as symbolic debuggers,or are uniquel�1 relatec! to tl)e
technology of the Common Language.

One of the most important goals is that tools shoulcl bc machine-incfepenclcnt to
the greatest possible extent ancl that they shoulcl run on the standard mi I i tary
computers so as to provide maximum useabi I ity.

There wi 11 be a modular
nceds of applications and
tcchnological progrcss.
ncccssary [Note that the
sequence in time]:

set of tools "1hich can
"'h i eh can be updated

To ensure this the
order of thc f O 1 1 01-1 i na

be tai lored to the i nd i v i t!ua 1
anc! extencled according to

fol lowing 111ec1sures wi 11 be

points c!oes not inipl\J a

- A common framework shal I be establishecl into which the software tools,
lib�aries, and data base fit. This frame1-1ork shall comprise the definition of
a consistent methodology as weil as the iclentification ancl eventual
stonclardization of Interfaces between tools.

-··Thc tools,while modular 1-1ith rcspect to the comnion frame"1ork,
themselves be developed in smal I pieces 1-1hich can bc casi ly composed
tradi tional software development ancl maintenance tasks, which should

shal I in
to pcrform
be able to

run individual ly on rather small machines, and which can be easi ly replaced by
more advanced versions,

- The methodology shall faci litate iteration between development steps.

- Documcntation shal I be an -integral part of al I dcvelopment steps. The tools
shal I be designed in a way that thc mcthods uscd arc cither self-documenting or
produce supporting documentation automatically, thus cnsuring a proper floM of
information between the design levels.

- Design and implemention of
of software maintenance.
problcms in this arca.

the tool environment should emphasize the problems
Further research should help to solve the urgent

Semiautomated tools shal I be uti I ized when ful ly automated tools are
infeasible or too expensive.

lt should be possible to apply appropriate analysis and verification methods
to each development step.

Test and debug tools both
tcsting shal I be integratecl into
incluclc mcthocls for systcmatic
from earl ier development stages.

for off-1 ine and 011-I ine (static and dynamic)
the pro9r am dt'!vc 1 011rnen t s�,s t em. They sha 1 1
tcsting 1.1hich clcrivc thcir control informc1tion

The interfaces between tools (and between parts of tools) as wel I as the
handl ing of the tools should be standardized for mi I itary appl ications.

A list of essential tools 1.hich n1ay be considerecl to make up a basic
programmers workbench shall bc providcd 1.ith a clescription of ,.,hat e<'!ch Mi 11
contribute to ancl expcct from thc data bJse.

- The procluction of new p�werful tools for the Common Language by lndustry and
the acaden1 i c commun i ty 1., i 1 1 be encouraged. Governr:1en t supp I i ecf too I s 1-ii 1 1 be
chiefly I imi ted to those simple tools in most common use.

Chapter 6

Design and Preparation Tools

6.1 General

The proper analysis of the requirernents for a problern solution. is highly
dcpcndent on the technology concerned. lt can therefore not be expected that
therc is one uniform methcd by which the requirements fcr a system can be
identified, formulaled and· specified. On the other hancl,there should be
methods and tools which guide, support and, if necessary, force the designer to
express his rcquircments in a way which is un�mbiguous (at least as far as
fc.Jsiblc), appropriate for further automatccl proccssing ,11hcr-c practical, .ind
oriented towards computerizcd systcrns.

The development of a variety of tools shoulcl be encouraged, including
textbooks, deve I opment standards, cookbooks, case stud i es, s tanclarcl i zecl
representations, computer aided design systems, both off-1 ine ancl interactive.

Thc mcthods and tools avai lable in this area should also faci I i tate inlegratecl
• clcs i gn o f hardware and so f t1�.:ire and shou I d suppor t s tr uc t ur ed dP-compo s i t i on ·
They should include graphic rnethods anct rcpr�scntations and bc fit for
automation, preferrably in an interactive �1c1q. lt riiight be erwis.;1gecl that thcy
support the more detai led levels cf system ci�sign wi th a highcr cic0ree of
aulomation, uti I izing data bases which contain information on avai lable system
components and their methocl of interconnection. Siniul,:,tion c1ncl testing

tcchniques should be integraled in such a �iau lhat lhe d�sig11 support system
gcncrates input information for simulation pack3(Jf'S and the lesting pr·ocess.

6.2 Editors

Editor programs to al low • generation and changes to source programs shal I be
They must al low
which are edi ted.

required. These may be either batch or interactive.
integration with the library system which maintains the fi les

Editors shal I optional ly output source listings in a wel I structurecl standard
format. The should allo1-J local formatting st.:ind.:irds and convcntions to bc
incorporatecl. More elaborate versions may be able to procluce f lowch�1rts of a

given program or to do some parsing in order to faci litate interactive program
procluc t i on by ear I y recogn i t i on of cer ta in errors.

Edi t-ors should optional ly be able to produce compressed versions of· source
programs , e. g. in ordcr to save f i I e space .

6.3 Preprocessors

There may
trans I at i on

also be
phase,

preprocessors
are able to

for
test

source -programs,which, prior the
for compliance to project coding

standards, to capture data for tracing requirements throughout the project, and
to symbol ical ly execute the code for analysis.

Thcy should also be able to optimize programs on source Jevel for input to
higher level language machines. Thcre m<iy also bc prE'procc5sors to_ .transform
higher level structured mechanisms or co~Jletc vcry high lcvel appl ication
oriented languages into the Common Language.

6.4 Design and Simulation

Design tools which are related to the language should include appl ication
librarics which facilitatc the composition of !arge systems from partially
reuseable modules, interface description aids,stub-gcnerators,tools for proof of
correctness, etc.

The input information for simulation packages should be produced automatical ly
from an analysis of the structure of the programs. Programs to generate
s i mu 1 a t i on tes t da ta by ana 1 ~1z i ng the code sha 1 1 be requ i red. These progra111s
wi II help to ensure that the tcst data provides full cover·age (pxecution of all
in5tructions) with the fc1~c5t possiblc test cJc,cs.

6.5 Automatie Translation Aids

Whi le i t wi 11 not be possible to take ful 1 advantage of the Lcinguage
capab i 1 i t i es when transcr i b i ng from programs des i gnecl and i mp 1 er:1en tecJ in o tller
languagcs, there are occasions on which it wi 11 be desirable to translate some
portion5 of an existing program from an old language into lhe new Cornmon
Languagc. Packages ancl tcchniqucs wi 11 bc dcvelopec! to faci 1 i tate this. In
most cases complete automation is not rcquirecl, just machinc ;:iicf to a
programmer. Languages on the OoD lnstruction 5030.31 list are the best
canclicfates for such aids.

Chapter 7

Translation tools

7.1 General Properties

Translators shal 1 implement the standard definition.
able to process any syntactical ly correct program.
avai lable to the user shal 1 be defined in the
1 ibrary, or in the source program.

Every transla..tor shal 1 be
Evcru fcature that is

standard, in an accessible

Translators shal 1 be responsible for reporting errors that are detectable
during translation and for optimizina object cocle. Translators shal 1 be
rcsponsible for the integritu of object cocle in affi:ctccl translation units ~1hen
any scparately translatcd unit is modifiecl, and shal 1 ensure that shared
clefinitions have compatible reprcsentations in all translation units.
Tr8nslatorsshfllldo· fuilsynteix t:md type checkinu. sh<ill check th ~1t cili
l~nguagc imposed rcstrictions are met, ancl shoulcl provide warnings ~1hen::

cons truc t s 1,..1 i 1 1 be clangcrous or unusua 1 1 y expcns i ve in execu t i on and sha 1 1
attempt to detect exceptions during translation. lf the translator clctcrm·1ncs

·that a call on a routine 1.1ill not terminate normally, the exception 5hall bc
reported as a translation error at the point of cal 1.

Translators shal 1 fai 1 to translate othen1ise correct programs ontv 1.1hen t11e
program requires more resources cluring transl<ition than are avai labte on the
host machine or ~1hen the program calls for resources that ;:we unavai l :;ib l 8 in
thc spccificcl objcct systcm configuration. IJcithcr thc l .:m911:'l(J E' n or its
translators shal 1 impose cirbitrary resti-ictions on language featur·cs. For
exan1ple, they shall not impose restrictions on the nunobcr of array climcnsions,
on the number of identifiers, on the length of iclentifiers, or on the numbcr of
nested parentheses levels.

7.2 Technology of translators

Translators for the language 1,..1i 11 be written in the language and wi 11 be able
to produce code f or a var i e ty o f ob j cc t mach i ncs. Thc mach i ne i nclcpcndC"n t
parts of translators shoulcl be separate from cocle gcnerators. Al~iough i t i s
desirable, translators neecl not be able to execute on eve1· v object machine.
The internal characteristics of the translator (i.e., the translation methocl)
shal 1 not be specified by the language definition or standards.

In this arca the best of existing and emerging technolo9y wi 11 be used.
ComJji lers shal 1 bc portable to the grcatcst possible e><tf'nt,1,..1hi le separ<1te
code-generators shal 1 al low incxpcnsivc adaptation to various targct machines.
Host compi lation is preferred because of its greater possibi 1 i ties for
optimization and its faster throughput. Self-hosted compi lers should be
developed 1,..1here technical and organizatorial reasons prevent other solutions.

In t e rpr eters and incremental compi lers shal 1 be provided for environments where

fast response tin1es during testing are required.ln case of errors the

translators shal I output the maximum possible amount of information compatible

with their respective designs. Whereas it con not necessari ly be cxpcctccl that
al I translators have the same stanclarclizecl error messa�1cs, attempts shal I bc
macle to stanclardize format ancl contents of such messages i f they occur;

Input for compi lers shall be prepared by editors and program structuring tools
in such a way that the card-image is no langer a restriction for the formatting
of source programs.

Translators shal I optional ly provide outputs 1Jhich contain the information
necessary to interface with runtime test ancl clebug tools.

Translators shal I be unforgiving in identifying al I syntax and semantic errors.

Compilers shal I generate efficient code.

Tr anslators shall bc valiclatccl as crror frec as f.ir as practical given the
state of technology.

Each translator shal I have optimization features which may be used to optimi ze
memory useage or execution speed.

Translators shal I be wri tten in a modular fashion ,�hich al lo�Js inclusion of
approved language changes.

lt is not intencled generally to prescribc thc t�jpc of intermC?diate language(s}
usecl cluring the compi lation process. However a machine independent root
compi ler wi 11 be macle avai lable for common use.

A compi ler generator or cocle generator-generator program n1ay be developed to
spccd production or adaptation of translators for al I larget computers.

7.3 Interfaces

7.3.1 Handling of Translators

A hancll i ng package shal I be provided with each translator which permits the
control of the execution of the various steps or phases of a translator, to
select the input source,output target,terrninate translation ,"repeat step-s,etc.

Th is package has to operate either in an interactive mode
controlled by an appropriate job-control language UCLJ.It is
the control instructions and/or the functional capabi I i ties of
package are stanclardi zecl for OoD appl ications.

or in batch,
desirablc that

the hancl I i ng

l t shal I be possible to limit acess to language features,which are part icularly
unsafe or error prone.

7.3.2 Input to Translators

7.3.2.1 Source statements (tobe compi led l

The compi ler must accept the standard input format as del ivered by the editor.

7.3.2.2 Compiler control and option parameters

A translator shal 1 accept target machine ~haracteristics,such as:

Machine model,memory size,special hardware
optional instruction sets avai lable, I ibraries
support }.

opt i ons, per i phcra 1· cqu i pmci:t,
avai labte (including runt1me

The translator may accept this data either from the program input source,
direct query, or from a separate source.

Inputs to control the options of the tranalatora chal 1 includc:

from

Listing controls,debugging controls (such as 1-1hether or not to output code for
subscript-checking,assertion-checking,etc.l,optimization opt i ons. The
translator shal 1 accept this information from the input source,from the machine
Sßecification or from a separate source.

7.3.3 Output of Translators

7.3.3.1 Code and Control information

The object code output of the compi ler shal 1 be format ted in accorclance ~ii th
the conventions for the standard link-loaders.

Adi tional ly thcre shal 1 bc information pauscd from thc compi ler to the run-time
support routines for various purposeu such as cumbolic dcbugging, formattccl
dufups,error-checking,etc.

7.3.3.2 Listings

The compi ler package ,through the combination of a set of appropiate modules ,
shal 1 be capable of optional ly producing at least the fol lowing 1 istings :

Source as input to the compi lcr and beforc any conditional compi lation
statements are processed.

Source,but including, in the same format,any input statements retrieved from a
source 1 ibrary by the compi ler.

Sourcc aftcr all library retrievals and conditional compilation statements have
been processed. [Note: al 1 these 1 isting formats shal 1 permi t the user to see
s tatemen t identification or linc number(for crror displaysl,thc occurcncc of
e~r ors, and the block level.J

Paralle l 1 isting of source and object code (when appropiatel with the same

options as the source-only 1 istings.

A symbol attribute listing

A cross reference 1 isting

A program structure map,which shall show the structure of the program wi th
regards to blocks where data,procedure,function or path are declarecl. In
addition, the map shal 1 show any fetchs of definitions or input sburce from a
1 i brciry.

A compi ler resource usage listing which shows the amount of cornputer resources
used (Examples are amount of computer time uscd,perccntagc and sizc of
symbo 1 tab 1 e used)

A program resource usage estimate,showing e.g.the minimum ~xecution time of
procedures and processes,maximum buffer space,etc.

7.3.3.3 Error messages

Compilers shal 1 be requircd to usc a standard diJgnostic and warning messauc
forma t 1.Jherever app 1 i cab 1 e. A 11 error mcssagcs sha 1 1 bc un~mlJ i guous. Tl"rc
implen1entor shall attempt to provide the follm1ing with each error: a plain
1 anguage (as opposed to code number) cJescr i p t i on, the o f fencl i ng S\jmbo 1 or
entity, and identification of the source context.

In casc the error mcssages are mixed 1.Jith the source and/or object 1 istings,
thcre shal 1 also be an error summary listing giving a total count for each
error and the 1 ine numbers on 1.Jhich that crror occurrcd.

Chapter 8

Link/Load Tools

8.1 General Requirements

Link/Load tools shall be developed which are adapted to the special
requirements of multiprocess systems. They should be able to link
program-pieces which have becn scpcratcly compi lcd .These pieces ma~ have been
written in the Common Languagc or in othcr programming languages. Assembled
code may be 1 inked,too,but extensive checks shal 1 be proviclcd to try to
minimize the inherent risks of this technique.

The 1 ink/load tools shal 1 also check the type conventions as provided by the
Common Language as wel 1 as other bui lt-in protection mechanisms.They shal 1
occcpt namcs of indefinite lcngth.

Link/load faci 1 ities wi 11 bc rcquired making it possible to dynamical lij 1 ink
new modules to existing systems. Some may to support maintenance by thc
inclusion of patching into the general link/load hanism.

8.2 Interfaces

The 1 ink/load tools shal 1 have a standard input-interface wt1ich accepts the
standard output of the rcspcctivc compilcr passcs. In orcier tobe able to 1 ink
code which has been prod~ccd by a different compi lation process, i t may be
necessary either to provide additional information to thc 1 ink load tools or to
apply an interface adaptation tool to the foreign code.

Additional control information may be necessary to completely control the
1 ink/load process which can either be provided by the translator's handl ing
package or be contained in the output of the translation.

Besides program modules proper the link/load tools shal 1 be able to accept as
input mathematical packages,executive modules,1/0-routines,and the contents of
pre-compi led appl ication 1 ibraries.

As output the 1 ink/load tools shal 1 provicie error-messages,e.g.
non-matching inputs,and,optional ly,memory maps which describe
structure of the program after the 1 ink/load process.

concerning
the final

Chapter 9

Auntime Tools

9.1 General

The necessary mathematical, J/O, and executive support routinc~ shal 1 be
provided in the form of runtime support packages , wherever practical. These
packages shal 1 be written in a modular fashion,such that the support package
which i s actual ly required for a particular program can be generated at
1 ink/load time in order to reduce runti~e overhead.

The runtime packages shall include routines which are necessary to interface
the progr ams wi th runtime test and debug tools.

The runtime support routines may prodace a s ummary of computer resources used
in the execution of the pr ogram.An example is t he amount of computer time and
stor age used.

9.2 Virtual Language Machinc

A package shal 1 be prov ided together wi th the translator which contains al 1
necessary support routines for language elements which are nei ther directly
compi led nor avai lable on the respective target (virtuall machine.This package
wi 11 either prov ide an adaptation to the existing operating system and runtime
pack a ges or wi 11 extend the capab i lities of the bare machine i n que stion to
match the requirements of the language.

9.3 Extended Virtual Machine

Where practical,packages shal 1 be provided,either with the compi ler or from a
separate source,which extend the capabi 1 ities of the language machine to ward s
more powerful constructs,but are not appl ication de1lendenl in a strict sens e .

Such packages wi 11 include:

Formatted-I/O
Graphic-1/0
Frequently used
Matrix calculation

non-standard-I/O

Resource management routines,etc.

9.4 Auntime Test and Oebug Tools

These runtime
debug tools in
an interactive

support packages sha ll be in tegrated with the run time test and
such a way that the latter can r efer to source code and work in
way wherever pr actica l .

The runtirne displays for errors shal 1 include the subprograrn,def.ini tion
rnodule,or path,the procedure and the statement number on which the error
occurred.The implementor shall attempt to displau the offending sumbol if
any. The display shal 1 also include a trace back of al 1 currently executing or
pending procedures,functions,paths, etc. A dump of al 1 active varia~les may be
at the option of the user.

The outputs of run-time debugging shal 1 contain information simi lar to the
error d i sp 1 ay.

The tcst and dcbug toois shal 1 include the fol lowing:

9.4.1 Branch and Timing Counters

Methods of recording which branches of a program have been exercised shal 1 be
developed for testing. Frequency of execution anci amount of CPU time required
shal 1 be given by the counter program. This program may be used to deterrnine
if al .1 instructions in a program have been executed.

9.4.2 Trace and Breakpoint

Methods of recording the sequence of execution
shal 1 be developed for testing. The capabi 1 ity
instructions shal 1 also be provided in order
cond i t i ons.

9.4.3 lntcractive Symbolic Debugger

of instruc- tions or programs
of stopping at prescribed

to examine or change the test

Th i s too 1 sha 1 1
on the status
queues, indicate

al low inspection of
of processes at

resources used by a

the contents of variables, give information
the user's request, show the 'contents of
given process,etc.

Modifications to such entities should only be possible uncier the most stringent
safcty precautions.

9.4.4 Symbol ic Dump

Methods
program
program

of relating the results of tests (memory dumpsl back to the source
shal 1 be provideci. The intent is to al low the programmer to debug his

in the common language rather than on assembly or machine code level.

Chapter 10

Maintenance

10.1 General

As maintenance has become the main ~ost-factor in the 1 ifecycle of an automated
S\Jstcm, al 1 possible efforts shal 1 be made to rech1ce this factor. Efforts to
cJcsign the development tools in a 1Jay that maintcn<1ncc is faci 1 i tatcd shal 1 be
unclertaken. Äclcli tional ly, the human factors of the 1Jork process i tsel f as wcl 1

as the properties of the environment, in 1-1hich maintenance ·takes placc, shal 1
be investigated in orcler to derive improvecl methocls, proceclures ancl tools for
maintenance.

10.2 Maintenance Orientecl Precautions

Documentation shal 1 be proviclcd in a 1-1ay,prcfcrr.:ibly automcitical ly, that i t
helps to facilitate maintenance in case it should be ncccss.:iry. This sh.:ill
hole! for the clesign clocumentation as 1Jell as for all 1 istin9s ancf supporting
information which are createcl during the prograMming process proper.

The 1 ibrary system used for maintaining pro9ra1t1s shal 1 be capable of. recorcling
al 1 changes to programs. Prompting mav be u::ecl to encouraae the programmer to
iclcnti fy information for unclerstanding what was changed and why.

The translators shal 1 pass as much symbol ic information from sourcc
the object level as is practical in order to facilitate reference
original information during maintenance.

10.3 Maintenance tools

lcvcl to
to the

Inverse assemblers ancl compi lcrs as mcthocls of clcriving source code from object
cocle shal 1 be investigatecl to assist in m<iintaining cocfc for 1.1hich soiJrce is
not avai lable.

lncremental compi lers,though typical ly test tools shal 1 be investigated as to
their potential of the hanclling of maintenance oriented changes.

A mcthod of symbol ical lv patching programs should be investigated,because i t
ma\J help to increase the understanding of a change ancl to clecrease the chance
of error in making the change.

Chapter 11

Management Tools

11.1 Genera 1

Methods, standards and tools shal 1 be developed which wi 11 make it possible to
determine whether the resulting systems and proqrams are sufficiently buq-free
and whether they meet the specified rec~irements . as to functional ~apabi 1 iti~s
as 1.-1el 1 as to time and space constraints. J t is also clesiral)le that this
process be formalizecl and that the necessary control informat i on be clerivecl
from earl ier development stages.

Man3gcmcnt should also havc thc possibi lity to rc s trict tha use of potential ly
dangereous language featurcs to certain pcrsons or cases where they are safe to
use.

11.2 Libraries

Appl ication 1 ibraries, both on source-code and on link-load level shal 1 be
maintained in order to spead up program d~velopmcnl and minimi ze du!ll ication of
effort. A library syste~1 shall be clcvelopecl to f.:icilitate retrieval of program
moclules. lt is clcsirablc that such a ~:i,ist·~m is intcgr.:it ccl into the rl e sion
tools. The libraries shall also be cap ~1blc of r:iaintaining pr·ogr.:im
speci fications, program change historics and test cases.

11.3 Interface monitor

Programs to test interface specifications between modules wi thin a software
systcm shal 1 be developcd to assist in el iminating a major source of bugs.

Chapter 12

Appl ication Software

One of the goals in the use of the Common Languagc is to incrcase portabi 1 i ty
of programs written in the Common Language. For those appl ication programs
written in the Common Language, portability wi 11 be promoted by the fcil lowing
methods.

1. Information concerning appl ication programs wi 11

Language Support Agency and cataloged by type of program.
format wi 11 be employed .

be rnaintained by the
A standard abstract

2. Major types of embedded systems wi II be ident i fied and basic tasks within
these types wi 11 be identified for catalog purposes.

Sorne types of embedded systems are:

a. Cornrnand and Control

b. Communications

c. Avionics

d. Shipboard

e. Test Equipment

f. Trainers and Simulators

g. Miss i le Guidance

h. Space Systems

i. Radar

j. Gun Control

k. Data Management

3. Organizations concerned with the Common Language wi 11 encourage spec i a l
interest groups within user organiz~tions to · address the ma jor type s o f
ernbcdded systems as wel 1 as common funct i on~ across al 1 emb edded systems.

Chapter 13

Training Support

Initial training wi 1 1 be required for programmer s using the language, for

dcvclopcrs of
courscs for
t r a i n i ng 1,..1 i 1 1
background of

compi lers ancl support tools, and for management . Preparation of
each of the various ·1cvels 1.1i 11 bc rcquired. Different modes of
also be required due to diverse loca- tions, schcdulcs, and
those requiring training .

13.1 Types of Training Required

13.1.1 Programmers Using . the Common Language

Ouring the language introcluction phase, tra in i ng wi 11 bc provid~d for all
programmers 1.1ho wi 11 1.1rite programs in thc Cornmon Language . Training 1.1i 11

consider ne1.1 as 1.1el 1 as experienced programmers and wi 11 consist of bcginning,
intermediate and advanced levels.

Training 1.1i 11 be required f~r language use as wel 1 as tool use. Language
aspccts 1.1hich help accompl ish project objectives such as rel iabi 1 i ty, eff icient
mcmory usage, eff icicnt ccntral processor usage, maintainabi 1 i ty, and standard
styles should be taught.

Training aids 1.1i 11 inclucle manuals for programmers fami 1 iar 1~ith other HOL's.
F or ins tance, documenta t i an and cour ses ma iJ be r equ i recl f or pr ogr ammcr s
presently using Jovial, CMS-2, FORTRAN, etc. These must inclucle not only the
d i fferences in the constructs of the langua ~1es. but also improvecl metlK•clologies
maclc possible by thc use of the Common Language .

13.1.2 Compiler Ocvclopcrs

Training 1.1i 11 be provicled in the syntax ancl semantic s of thc langua gc for
personnel developing ~ompi lers . Experiences 1.1i 11 bc sharecl 1.1hencver possible.

13.1.3 Management of Projects Using the Common Language

The management of projects using the language 1.1i 11 require overview training
for the language and its environ- ment . Training in techn i ques which promote
success in project development should also be pr~parccl.

13.2 Training Modes

Methods of training shal 1 include the fol lowing.

1. Classroom Jnstruction

2. Video Tape Courses

3. Computer Automated lnstruction

4. Self-lnstruction Manuals

Material for al 1 o f these methods shal 1 inclucle liberal use of prograrnming
examples 1.1ith vari ous levels of complcxity and shal 1 depict the required steps
in arriving at a so lut ion.

Mater i a 1 s 1-1 i 1 1
other languages,
encouraged.

be provicled
especial ly

in Engl i sh.
in the NATO

The cxtcnsion of thcse matcrials to
communi ty 1~i 11 be fosterccl ancl

Chapter 14

Information Col lection, Dissemination, and Promotion

I t shal I be the responsibi I i ty of the Language Support Faci I i ty (LSFJ to
col lect and disseminate al I information concerning the Common Language.

The LSF 1.1 i 1 1 ma i nta in i nformat i on about the Language as �,e 1 1· as programs

written in the lanauage which support the language. This infor- mation wi 11 be
catalogcd in a hierarchical document which contains sections on a l I types of
documents 1.1hich pertain to thc Common Languagc. Thc catalog wi 11 contain a
briet description of each itcm of documen- tation in thc form of a stanciard
abstract. Each description wi 11 include title, purpose, author, revision
level, size, and key 1-Jords. The catalog will also include a
Key-Word-ln-Context (KWICJ listing for search purposes.

The LSF shal I maintain statistical information about the use of the Common
Languagc. Statistics shal I include the number of projects using the Language,
�umber of compi lers, ancl number of computcrs for both hast ancl targRt. Reports
from the field must inclucle Information about thc clc,toil usc of th"' l�inguage>

• and compilers. The information should include error stuclies, clifficult to UGC
constructs, and amount of machine cocle usecl. These statistics shal I bc
publ ished periodical ly as part of a Common Language report. This report shall
include the present status and plans for the langu.':Jtle,

Al I of this information wi 11 be made avai lahle to the Common Language cornrnunity
to cnsure that a l I users and potential users arc working with accurate, curre.nt
information.

A periodic bul letin may be distributed in publ ished form and possibly computer
accessible (i.e. on the ARPANETl. ' The bulletin 1�ould 5=ontain information
about the language and the environment.

,._ ,._

"' äJ
0

"' 0

E
0
~

OORNJER
Dornier System GmbH

ANHANG 6

TARTAN

Language Design for the Ironman Requirement:

Ref erence Manual

Mary Shaw
Paul Hillinger
Wm A. Wulf

Computer Scicnce Deparlmenl
Carnei;ic-Mciion University

Pillsburgh, Pa. l 5213

June, 1978

DEPARTMENT

of

COMPUTER SCIENCE

CMU-CS-73-133

Carnegne-Me!ion Unsversety

TARTAN

Language Design for the Ironman Requirement:

Reference Manual

Mary Shaw
Paul Hillinger
Wm. A. Wulf

C-,mputer Science 0epartment
Carne(ie-Mellon University

Pittsburih, Pa. 15213

June, 1973

11

CMU-CS-78-1:33

Abstrac:!: Tartan is an experiment in language cesign. The ,oal was !o delermine whether
a ·simple" languagc c::uld meet sucstanlially all of the [ronman reqiirement lar a c:,mmon
high-order programming language.

We uncertook this experiment :::eczuse we believed that all the designs done in the lirst
phase ot the DC0 effort were too !arge and too complex. We saw that complexity as a
serious failure cf the designs: exce5s complexily in a progrsmming language can interf_ere with
its use, even to the exlent lhal any benelicial properiies are of little c:cnse�t'1Ce. We wanted
to find out whether the rec;uirements ir,herently lead to such c:omplexity er whether a
substantially simpler lar,guage wculd suffi�

Three grcund rules drove the experimenl. First, no more than lwo months -- April 1 to
May 31 -- would be devoled tc the projed Sec:ond, lhe language would meet all th-e
lronman requiremenls exc:ept for a few poir,ts at which it would anlicipate Sleelman
rec;uiremenls. F'urther, the language would conlain no extra features unless lhey resulted in c1
simpler language. Third, simplicily would be the overriding objective.

The resulling language, Tartan, is based on all available inlormation, including the designs
already produced. The language definilion is presenled here: a companion report provices an
overview ol tr.e language, a number ol examples, ar.d more exposilory explanations ol some ol
the language lealure5.

We believe thal Tartan is a subslantial improvemenl over tne earlier cesi�ns, partic:ularly in
its simplicity. There is, of ccurse, no objective measure of simplic:ty, bul the syntax, the si.:e
of the delinilion, and the number of conc:epls rec;uired are all smaller in Tartan.

Moreover, Tar!an subslantially meels 3fl cf the (ronman reG1,JiremenL (The exceplions lie in a
few plac:s where we anlic:ipated Steelman req.iiremenls and where delails are still missing
from lhis report.) Thus, we believe that a simple language can meet the Ironman requiremenL
Tartan is an existence proof of thaL

We must emphasize aiain that this eifert is an experiment, not an altempl to compete with
DO□ cor.lraclors. Tartan is, however, an open challenge to the Phase [I conlractors: Tne
langua,e can be al least this simple! Can you do better?

This work was supported by the Cefense Advanced F�esearch ?rojects Agenc:y under contract
F44620-73-C-0074 (monitored by the Air Forca Clfice ol Sc:entific: Researc!"l).

Tartan Reference Manual

1. Basic Conccpts and Philosophy
2. Basic Structures

2.1. Primitive Expressions
2.2. [dentifiers
2.3. Lexicat Considerations

3. Expressions

3.1. Invocations
3.2. Oynamic Allocation

4. Statements

4.1. Blocks
4.2. Sequenced Statements
4.3. Assignment Statement
4.4. Conditional Statements
4.5. loop Statements
4.6. Unconditional Control Transfer
4.7. Exceptions
4.8. Parallel Process Control

5. Types

5.1. Scalar Types
5.2. Composite Struclures
5.3. Oynamic Types
5.4. Process Control Types
5.5. Oefined Types

6. Definitions and Declarations

6.1. Oeclarations
6.2. Modules
6.3. Routines
6.4. Exceptions
6.5. Type Definitions
6.6. Generic Definitions
6. 7. Translation lssues

I. Standard Definili ans

1.1. System-Oependent Characterislics
1.2. Properties ot Types

L2. l. Fixed
1.2.2. F'loat
1.23. Enumerations
1.24. Boolean
1.2.5. Characters
1.2. 6. Latches
1. 2. 7. Arrays
1.2.8. Sets
1.2. 9. Oynamic Types
1.2.10. Records
1.2.11. Variants
1.2.12. Strings
1.2.13. Activations
1.2.14. Actnames
1.2.15. Files

1.3. Alphabets

II. Colleeted Syntax

1

3

3

4
5

6

7

8

9

9

9

9

10

11

11

11

12

13

13

13

14

14

14

15

15

16

16

16

17

17

18

19

19

19

19

19

19

20

20

20

20

20

20

20

21

21

21

21

21

21

22

Tartan Reference Manual -1-

1. Basic Concepts and Philosophy

A pro,ram is a piece of text that describes a sequence of actions intended to effect a computation.
The process of "executing a program" to obtain this effect is called elaboration of the text.1

Programming languages are used for communicatinf programs, both between people and between
people and machines. Although the program !ext is static, the concepts being communicated are
dynamic. This dynamic nature of a computation can make it difficult to communicate the ideas
underlying a program, and especially to comnx.micate these ideas between people. To expedite the
communication, we impose struclure on the way languages are used. Although this stn.scb.Jre restricts
what can be written, it results in regular patterns for expressing decisions. The human reader benefits
from this by developing expectations about how these ideas will be expressed.

Programming languages encourage the imposilion of structure by providing notations for the
-structures . whose use their designers wish to promote. Ouring the process of language design, our
beliefs about programming melhodology and the state of language processing technology lead us to
formulate concepts and structural rules. We lhen select syntactic forms and stn.scturing features to
emphasize these concepts. We expect that this will simplify the task of describing programs with the
attributes we view as "good structure" and !hat programmers will, as a result, be encouraged to
organize their programs this way. ·

We distinguish three dominant slructures in Tartan programs: (1) the lexical structure, which
organ1zes the static program !ext, (2) the control struclure, which organizes the dynamic execution, and
(3) lhe data slruclure, which organizes the information on which computalions are perlormed

- Lexical slruclure is a property of the program texl Programs are divided hierarchically into
sections, called lexical scopes, thal share information about data. Scope determiries the
interpretation of identifiers, so all the lexl in a given lexical scope shares the same
vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with
the same interpretatlon in several lexical scopes.

The c:ontrol structure of the program determines the order in which ils statements are
exeOJled

- The structure imposed on data involves the concepts of type, values, and variables.
Ultimately, compulalions are performed on values: we take that notion to be primitive: values
exist, and each has exactly one type, which determines the legal operations on the value.
Values are stored in variables, which are objecls produced by efaborating type definitions.
Variables, too, have types: these types delermine the sets of values !hat may legally be
stored in the variables.

These fundamental slruclures interact in a rumber of ways. Two major interactions appear as the
concepts of extent and bindin,. The control and lexical structures interact to determine extent. The
extent of a variable is its lifetime -- the time Wring which it affects or is affected by lhe efaboration
of the program. Bindinc rules are invoked by both lexical and control structures: they associate
identifiers with program enlities (objects, modules, routines, types, labels, and exceptions).

In Tartan, programs are composed of definitions, declaralions, end executable statemenls. A
definition binds an identifier to a module, rcutine (procedure, function, or process), type, or exception:
it is processed during translation. A declaralion binds an identifier to an object (i.e., a variable or
vafue): il is processed at n.m time, usually to allocate storage. Exec1.1table statements are elaborated at
run time to effect actual computations -- manipulation of values.

Lexical structure is imposed on Tartan programs by blocks and modules, whicti delimi t lexical
scopes. These scopes may be nested arbilrarily. Both constructs may use identifiers defined in other

· scopes: both may define identifiers !hat can be used in other scopes. Blocks and modules di ffer only

1 We use the word "elaboration·, in preference to ·execution", to connote aclions taken during
translation as well as during execution. Elaboration may be thought of as an idealized, direct execution
of the textual version of the program.

Tartan Reference Manual

in their scope rules and in their effeds on the extent of variables. Tartan has two scope rules:

An open scope inheri\s (imports automatically) all the identifiers that are defined in its
enclosing scope. lt may not expert any identifiers. Blocks are opef) scopes excepl when
used as routine bodies.

- A closed scope inherits all identifiers !hat are defined in its enclosing scope except those for
labels and nonmanifest objects. l lt may explicitly import identifiers for objects, provided they
have global extent. All modules are closed scopes, as are blocks when they are used as
routine bodies. A closed scope that is a module may expert identifiers !hat name variables,
modules, routines, types, or exceptions.

-2-

ldentifiers that are exported from an inner scope or imported from an outer scope have the status of
identifiers delined in the scope. Redefinition ol identifiers within a scope is not permitted; however,
this does not prohibit overloading of routine names. In addition, the same idenlifier may be imported
with different meanings from two different scopes. Such identifiers are qualified with the names of . lhe
l'nodules in which lhey were defined; thus they are not duplicate definitions. Similarly, literals and
constructors are qualified with their types to prevent ambiguity. In either case, lhe module or type
qualifier may be omitted if no ambiguity arises.

In Tartan, extent is controlled exdusively by blocks. Only instantiated objeds (variables, constants)
have extenl Variables are inslanlialed by the elaboralion of declarations (for named variables) and by
explicit construction of variables having dynamic types (dynamically created variables). Named
variables have extent coincident with the surrounding block. Oynamically created variables have extent
coincident with the block containing the definitions of their dynamic lypes. Formal paramelers of
routines are considered lo have extent coincident with the rouline body.

Tartan provides a facility for making 'eneric definitions of routines and modules. This allows the
programmer to write a single textual definition !hat serves as an abbreviation for many closely-related
specific definitions. The definitions may accepl parameters; the parameters are ccmplelely processed
during translation. The effect of using a generic definilion is that ol lexically substituting the delinition
in the program at the point of use.

The syntactic definition of Tartan uses conv.entional BNF with the following addilions and
c onventi ons:

- Key words (reserved words) and symbols are denoted with boldface. ·

- Metasymbols are denoled by lower·case letters enclosed in angular brackels, e.g„ ''<stml>".

- The symbols { and } (not in boldface) are meta-brackets and are used to group ccnstructs in
the meta-notation.

- Three superscr ipl characters, possibly in combination wilh a subscript character, are used to
denote the repetition of a construct (or a group of constructs enclosed in {}):

••• denotes "zero or more repetitions ot•
·+" denotes •one or more repetitions of"
••• denoles "precisely zero or one instance of".

Since it is often convenienl to denote lists of things !hat are separated by some single
punc:tuation mark, we denote this by placing the punctualion mark direclly below the
repetition character.

The semantics of the language are described in English. In the interest of a compact and regular
syntax, we have allowed synlactic constructs that are disallowed on semantic grounds. This is
consistent with standard practice with respect to, for example, undeclared idenlitiers.

lLiterals and identifiers for variables lhat are declared manifest are manifest objects: hence
they are inherited.

Tartan Relerence Manual

2. Basic Structures

2.1. Primitive Expressions

<consl> ••• <digit>„ { . <digit>• }• 1 tru• 1 f•lse 1 nit 1 closed 1 open 1 mint 1 empty
1 <conslructor> 1 <id> 1 «1ual id> ' <consl> 1 <type> ' <const> 1 <expr>

<constructor> ::• (<expr>,•) 1 ({ <option> ·> <expr> J,•) 1 • <char>• •

Some examples are:

123.456
Color'green
true
Person' ("Sarw" .21.malel
"e fg"
(1. . 2->0 . 1, 3 •• 4->0.5, olhers->1.0J

-3-

Primitive expressions form the basis for the recursive defintion ol expressions. They are the
elements relerred to as constants, titerals, and constructors in programming languages and as
'generators in algebras.

Constants and lilerals denote values. The type ol a constant is determined by its declaration The
types ol literals are determined as follows:

- 'A sequence ol digits containing no decimal point is of type lnl Type lnt is defined · in terms
cf type fixed for each machine as described in Appendix l. l.

- A sequence of digits containing a decimal point is of type Real. Type Real is delined in
terms of type float lor each machine as described in Appendix l. l.

- lt a sequence of digits, with or without a decimal point, is qualified by a fixed or float type
or by a defined type !hat is ultimately defined in lerms of fixed or float, the type · of the
literal is determined by the qualifier.

- True and falsc denote boolean values. Nil denotes the null value for any dynamic type. Open
and closed denote values for latches. Empty denotes the empty sel Mini denoles an
activation ol any process in mint stale.

A character string containing one character is a literal of type char. Any olher character
string is a constructor of type strinc.

Literals and maniiest expressions are evaluated dt.;ring lranslaticn with the same algor-ithms and
accuracy as are used during executicn.

Jf an <id> is to be a <const>, it must have been declared consl or be a member of an enumerated
type. lf an <expr> is tc be a <Consl>, it must be a manifest expression.

The type cf a ccnstructcr may be indica!ed by a prefixed qualifier. lf the qualilier is omilted, the
cons!ructor is assumed tc give the value of an array indexed wilh integers beginning at 1.
Constructors are provided for composi!e and dynamic types.

Jf the constructor has a record type, the <expr>s in paren!heses give lhe lield values in lhe
order of their declaraticn.

- Jf the constructor has an array type, the paren!hesized list gives the element values. lt the
constructor is a simple expression !ist, it gives the values in order from lowest index to
highesl lf the ccnstructor uses the form with options, the expressions in the <option>s
indicate the array pcsition to which each value corresponds. The special constant others may
appear as the last <Option>: il will match any constant that is not included in any cther
<Option>. The constructor form with options is legal only for arrays and for types ultimately
delined in terms ol arrays: the expressions in the <option>s must be manifest

lf the conslrudor has a variant type, the first expression in the parenlhesized lisl is lhe tag
and the remainder cf the list is a constructor for the corresponding vari anl

Tartan Reference Manual -4-

- lf the constructor has dynamic type, the resul! is a pointer to a new variable having the
attributes supplied in the type qualifier and lhe value given by the parenthesized list.

A construdor containing no <expr> provides an uninitialized instance of the indicated type.

2.2. ldentitiers

<var id> ::- <qual id> 1 <var id> (<•cluals> l 1 <var id> . <id> 1 <var id> (<range>) 1 Rep' <id>

<expr> . . <expr> 1 <type> .-:=range> ::•

<option> ..• { <const> 1 <range> 1:
<qual id> ::- { <id> ·1· <id>

<id> ..• <letter> <letter or _ or digit>•

Some examples are:

Ani mal 'Cat
V!3l
V 11 •• Nl
Sam.Age
ldent_ui tl"l_mark

ldentifiers have no inherent meaning5. They are associated with objects, rcutines, modules, types,
staternents, and exceptions. Declara!ions and definitions eslablish the meanings of identifiers within
particular scopes.

ldentifiers may be 5imple, or they may be qualified with module or type names in order to resolve
ambiguity among names expor!ed from several modules.

ldentifiers that name objects are <var id>5. They may be simple identifiers, they may be qualified
to indicate where they were defined, or they may name elements or substruc!ures of composite
structures.

Simple <Var id>s (i.e„ <qua! id>s used as <var id>s) are iden!ifiers declared in variable
declarations or by the <formals> in a routine header.

- The form <var id>{<actuals>}, where <var id> denotes an array, denotes the element of that
array indexed by the <aclual>s. The types of the actuals musl match the index types for the
array. 1

- The form <var id>{<acluals>), where <var id> denotes a variable of a variant type and the
<actual>s consist of a single <expr>, indicales lhat the tag field of . the <Var id> must be
<expr> and denotes the value of lhat oplion of lhe variant type. On the left side of an
assignment, this form has the effect of setting lhe lag field: the expression on the right side
of the assignment must be of compatible type.

- The form <var id>(<range>) denoles a subarray. The <Var id> must denote an array and the
limits of the <range> must match the declared type of the array's index sei and be a
subrange of the declared range. The subarray consists of the indicated elerr.ents of the <var
id>, in the same order as they appear in the <Var id>. II the index type of the array is fixed
or defined in terms of fixed, the subarray is indexed by integers beginning with 1: otherwise
it is indexed from the minimum value of the index sei of lhe array.

- If <Var id> denotes a record object, the form <var id>.<id> denotes the field named <id> in
that record ob ject II <var id> denotes an object of dynamic type, then <var id>.<id> denotes
the field named <id> in lhe record object pointed to by lhe value of <var id>; <var id> must
not have the value ni l. This form is also used to access the value of a variant tag or the
attributes associ aled w ith the type of a value or variable. In addition, if T is a variable of
dynamic type, T.all is the complete value (all components) of the object associaled with T.

lNole that the index types include range restrictions.

Tartan Reference Manual

- The form Rep'<id> is used in lhe same scope as the definition of lhe <id>'s type to indicate
that the <id> is to be regarding as having the underlying type. This permils operations on
the underlying type to be used for defining operations on the new type.

ldentifiers that refer to definilions (e.g., of routines, types, or modules) are <qual id>s.

-5-

When an ldentifier is exporled from a mociJle, in the scope to which it is exported it is referred to
by a <qual id> or <var id> constructed by pretixing the idenlifier wilh lhe name of lhe module from
which it is exported. The qualifier is separated from the identifier wilh an apostrophe. Qualifiers may
be omitted if no ambiguily results.

A <type> used as a range must be fixed, an enumeraled type, or a delined type that is ultimately
delined in terms ol lixed or an enumeralion.

2.3. Lexical Considerations

Spaces may be inserted freely belween lexemes wilhoul allering the meaning of the program. An
end-oHine is equivalent to a space and inay not be part ol a lexeme. Al least one space must
appear between any two adjacent lexemes composed ol letlers, diiits, underbar, and decimal points. In
identifiers, all characters are significant, bul alphabetic case is not

Comments are introduced by lhe character ·i- and terminated by the next following end-of-line.
They have no elfect on the elaboration of the program. ·

Although the language as presented in this report takes advantage of characters that are not in the
64-character ASCII subset, simple substitution to map programs inlo that alphabet are defined in
Appendix 1.

Tartan Reference Manual -6-

3 . Expressions

<expr >

<unop>

<binop>

<func call>

<actuals>

::• <unop>• <var id> 1 <unop>• <const> 1 <unop>• <func call>
1 <unop>• (<exor>) 1 (<expr>) . <id> 1 <expr> <binop> <expr> „. -1 -

::• "' 1 / 1 • 1 • 1 < 1 i 1 > 1 ~ 1 • 1 I 1 /\ 1 und 1 v 1 car 1 f
::• <qual id> (qctuals>)

::• <exor> *
1

Some examples are:

X

X + V
sinhcl
- !.>c '"rlJ + ;:,·, ...)
!Roo t. P tr J • oll

Expressions describe computations !hat yield values. The elaboration of an expression produces an
object containing the value of the expression. The type of the objec:l is determined by the following
rules:

- The type of an <expr> !hat is a <var id>, <consb, <func call>, or selection of a field from a
computed composite value is determined by the appropriate declaration (or rule for literals).

- The type of a parenthesized expression is the type of the expression inside the parentheses.

- The type of a binary infix expression or a unary expression is delermined by the definition
of the appropriate binary or unary operator definilion. These operators represent
invocations of func!ions !hat may be overloaded. The appropriale operator delinition must
therefore be determined on the basis of the types of the operands.

The usual operations are associated wilh the operators +, -, •, /, i, -, "• v , c:and, c:or, <, ::;, ~. >, =,
and .,:.. The progr ammer may overload these funclion narr.es, bul lhe added delinilions must be unary
or binary to conform to the established syntax. Precedence rules for the unary and binary operators
ar e given by the following table, in which operators on a singie line have the same prec:edence and
operators higher in the table bind more tightly than operators lower in the table. Unary. operators
have the highest precedence.

i
• I
+ -
< 5 ~ > • ;i
1\ cand
v c:or

Within prececlence levels, associativity is left-to-right.

For all oper ators except c:and and cor, elaboration ol an expression proceeds as if lhe expression
were written in functi onal form (see seclion 3.1). For cand and cor, the lelt operand is elaborated first
and the right operand is elaborated only if necessary.

A manifest expression is a lileral, a value of an enumeration type, an identifier declared with
manifest binding, a generic parameter, a manifest type attribute, a constnxtor involving only manifest
expressions, or any expression involving only these expressions and language-defined operations. The
value of a manifest expression is known during translation.

Tartan Reference Manual

3.1. Invocations

Some examples are:

F !SJ
Sequence ' 1 nser t (5. SJ
p ()

-7-

An invocation causes the elaboration of a proced.rre or function body with the elemenls of the
<formals> li st of the roul ine bound to the elemenls of the <acluals> lisl provided by the invocation. lf
a routine name is overloaded, the definition whose formal parameler types malch lhe types of lhe
actual parameters is selected. Procedure and function invocalions (<proc call> and <func call>) differ in
that procedure invocations are statemenls, whereas function invocalions are expressions having values.
An invocalion consists of the following steps:

- Elaborate each of the <acluals> in an unspecified order, yielding a sequence of object.s.

- For each result formal, create a variable having lhe same type and attributes as !he
corresponding aclual. Bind lhe result formals to lhese variables.

- For each const or manifest formal, create an object of lhe specified type with lhe same
attributes as the corresponding actual. Copy lhe value of the actual inlo lhe new objecl 1

- Bind each var formal to the corresponding actual, which musl be a variable (i.e., a <var id>).
Thus var formals are passed by reference.

- With the bindings eslablished, elaborate the body of lhe rouline.

- For each result formal, copy the final value of the variable bound to lhal formal back into
lhe corresponding actual, which must be a variable (i.e., a <var id>). Note !hat this aclual is
determined before the elaboration of the routine (i.e., for the actual A(i), it is lhe initial and
not the final value of i that delermines the variable that receives the resull). ·

The result of a funclion is treated as a result parameter instanlialed al the call site with extent as
described above and passed as an implicit parameter lo the function. Ouring lhe elaboralion of lhe
function, its value is developed in this resull parameler.

During elaboration of a function, assignmenl to a variable lhal is not local lo the funclion body (or to
the body of a routine it invokes, directly or indirectly) is permitted only if the function is never
invoked in a scope where such a change is made to a variable or component that · is directly
accessible by the caller.

Actuat parameters are matched wilh formal parameters positionally. They musl satisfy restrictions on
type, binding and aliasing.

- The type of an actual parameter is acceplable if its <lype name> exactly ~atches the <type
name> cf the corresponding formal parameter. Type atlribules (instantiation parameters of a
type) play no role in type checking. Chapler 5 &ives rules for de!ermining <type name>s.

- The binding of lhe actual parameler is acceptable if it malches the <binding> of the
corresponding formal parameler according lo the following rules:

If the formal parameler is lhen lhe actual parameler may be
var <var id> deelared var
const <expr>
manifest any manifest <expr>
result <Var id>

- Finally, lhe sei of actual paramelers must sa!isfy lhe following nonaliasing restriction: A
variable may not be used in more lhan one var or result positi on cf a single procedure or

lNote that for dynamic lypes, this is a pointer copy.

Tartan Reference Manual

process call. For the purpose ol testing this reslriction, imported variables are considered to
be actual parameters bound as specified in the import lisl

3.2. Dynamic Allocation

-8-

Each use ol the constructor ' for a dynamic type creates a dislinct element ol the type. Each such
element remains allocated as lang as there is an access palh to il

Attributes of the dynamic type are provided when lhe constructor is used. Thus it is possible to
associale objects wilh different attributes with the same dynamic variable at different times.

Tartan Reference Manual

4. Statements

<slmt>

<proc call>

<block>

::• <proc call> 1 <id> : <slmt> 1 <empty> 1 <block>
1 <var id> „ <excr>
1 if <expr> !hen <slml>.• r elif <expr> !hen <slmt>t 1• (eise <slml>;• 1• fi
1 case <excr> { on <oplion> -> <slml>.•)+ euc
1 whil• <expr> do <slmf>; • od 1 for <id> in <range> do <slml>;* od
1 ::oto <id> •
1 sicnal <qual id> 1 resir:nal 1 usert <expr>
1 <stmt> r (on <id> + -> <slmt>.* 1· 1
1 crHle <var id> (<actuals>) '

::• <qual id> (<ac!uals>)

::• <code body>

<code body> ::• becin (<def-decl> ; I* <stml>;* end

-9-

Statements designate actions to be performed. Their elaboration results in chan~es in lhe execution
state of the program The <emply> statement has no elfecl Labels are used by coto statements in
altering the flow of control in a program. A labet is accessible only wilhin lhe <stmt> it labels and
within a compound statement (sequence of <slmbs separated by semicolons) of which it is a <stmb.

4. l. 81 oc.ks

Seme examples are:

ber:in var ><: boole•n; >< ; • tru• end
b•cin >< : • y; y : • :;:: : end

Blocks control extent. A <block> is elaboraled when conlrol flows into it, either because the <block>
is lhe body of a rcutine that has been invoked or because the elaboration of anolher <slml> has
transferred conlrol to it. First, all declarations and the lexts of all module definilions are elaboraled, in
1exical order. Nexl, the <stmbs are elaborated as described elsewhere in lhis chapler. Finally, the
<block> is exi led or terminated. lt il is exited, conlrol waits for all activations declared in this <block>
to become dead or mini, then the exlent defined by the <block> is closed and all nondynamic variables
instantialed in the <block> are c!eallocaled lt the <block> is lerminaled, all activations declared in lhe
<block> are forcibly lerminaled, and lhen the <block> is exiled The choica between· exiting and
lerminating the block depends· on how control arrived at lhe end cf the block. ff lhe block came to
an end because a handter completed or an enclosing process was lerminated, the block is terminated.
Otherwise, it is exiled.

A <block> is not permilted lo export identifiers. Except when used as a routine body, it is an open
scope and has no need to import any.

4.2. Sequenced Statements

Same examples are:

„ : • 1: y : • 2: % : - 3
SumSq :• 0: for 1in1..10 do SumSq :• SuniSq • V(IJ1'2 od

Sequenced stalemenls are elaborated in lhe order &iven, excepl when that order is interrupted by a
cota or an exception.

4.3. Assicnment Statement

Some examples are:

VCSJ.Sum :• 0
)(: • 13 + "'' ,., y

The assignment slatement -V :• E• is a procedl.!re call on an appropriate assignmenl operator,
defined

Tartan Reference Manual -10-

proc: ": •" (var LHS: T, cond RHS: il

for arbitrary type T. The value of the second parameter is assigned to the objecl named by the first
parameter. The parameters are of the same type, and the normal type-checl<.ing rules apply.

Assignment operators are defined for all primitive types. Assignment operators are defined far
arrays, recards, variants, and programmer-defined types if and only if they have no components that
are declared const or are nonassignable by virtue of this rule. An assignment operator that capies the
whole value is aulomatically supplie{j for each user-defined type. For dynamic lypes this is a pointer
copy. Although assignment may be invoked with any variable and value of the type, it rec;uires that
the attributes of its lefl and right operands be identical, and signals the BadAssign exception if they
are nol The BadAssign exception is älso signalled if an assignment involving mismatched array, slring,
.or set sizes or an activation not in mint state is altempted

4 • .q, Conditional Statements

Some examples are:

if A < 3 then >< : • y li
jf >< " 0 cand y/>< > 0 \hen Z : • ut (y/x) eise U : • l. 8; q : • 'J/X fi
cas• Ti nt

on fuchsia -> Hue :•cool: Oescription :• "Purplish-red"
on puce -> Hue :• „arm: Oescription :• "Srouni,h-purple"
esa:c

In the statement "il 8 lhen Sl eise 52 fi", 8 must have type boolean. First, B is elaboraled. lf the
resulting value is true, S 1 is elaborated; otherwise 52 is elaborated. In the. absence of an eise clause,
S2 is taken to be the empty statement, which has no effecl

The expression

if 81 then 51 eiif 62 then 52 , . • alif Sn lhen Sn eise 5,-, fi

is equivalent to

if 81 then 51 eise
if 82 then 52 eise

if Bn then Sn eise 5,-, fi

li
fi

In the statement

cas• E0
on Ell •••• ,Elk -> 51
on E2l, ••• ,E21 -> 52

on Enl .••. ,Enm ->Sn
on olhen -> s,·,
8SIC

The E's must all be expressions of the same type, and all except EO must be manifest. The type oi
the E's must be fixcd, an enumerated type, or a defined type that is ultimately defined in · terms of
fixed or an enumeration. Any of tr.e E's except EO may be a <range>; such an Eij is treated as the
sec;uence of values in the range. First, EO is elaborated The Eij are elaborated and the results are
compared to EO (in unspecified order). II EO is equal to some Eij, the corresponding Si is elaborated.
1f all comparisons yield false, 5• is elaborated. Exactly one Si is elaborated for each correct
elc.boration of the case statemenl. lf the special constant others does not <1ppear as the last <Option>
and no match is found, an exception (CaseFailed) is signalled

Tartan Reference Manual

4.5. Loop Statements

Some examples are:

while >< < 2.5 do >< :• F!y.xl; 'J :• G!y,xl od
for 1 in 1 • • 10 do V (i J : • 1 od
for hue in color do Ti nt(huel :• hue od

-11-

The loop while E do S od repeatedly elaborates if E then S fi until E becomes false. lf E is
initially false, lhe loop has no effect (other than the possible hidden effects or exceptions caused by
the elaboration of E.) ·

The for statement for i in R do S ad repeats the s!eps

- Sind i (as a constant) lo a value in the range R.

- Elaborate S.

once for each element cf the range R, in orde~. [f R has no elemen!s, the loop has no effect. ·The
scope of the loop conslant is restricted to lhe loop. .

4.6. Unconditional Control Transfer

An example is:

coto L

The effect of a goto statement is to force conlrol to the beginning of the statement with lhe given
labe!. Since the scope rules prevent inheritance of labels across closed scope boundaries and
.importation of labels, a goto can not be used to transfer out of a routine or module.

4. 7. Exceptions

Some examples are:

1ignal TooB i g
auerl .)(< a
r-ead(f i le,xl (on EOF -> coto Exit}
>< :• ><+l { on Over-flo„ -> x :• 0 J

Exceptions are processed by handler clauses associated with individual statements. Each handler
clause associates processing code with given exceptions. The special identifier others may· appear as
the last <id> list of a handler clause; it matches any exception that is not named In some other
exceplion <id> list of the same clause.

When an exceplion is signalled, conlrol is transferred to the nearest dynamically enclosing handler
clause that handles the exceplion, ei!her explicilly or through an o!hers clause; the elaboration ot the
handler replaces the elaboration of the remainder of the stalemenl Jf lhis handler is not in the
currently-executing block, all intervening blocks will be lerminated lt a handler i·s not found w i thin
the currently-executing routine, that rouline is lerminaled and the exception is resignalled at the point
of call of the routine. lf a handler is not found wilhin the currenlly-executing process, that process is
terminated and lhe exception is resignalled at lhe end of the block in which the process activ ation
was declared alter waiting for control to reach that poinl and for all other activations declared in that
block to terminale. lt no handler is found in the scope of the exceptlon name, a default handler will
be supplied to terminale !hat block..

Exi ting a handler causes lermination of the <slmb with which it is associated (f the handler
resignals the same exception or raises a new one, the normal rules for exception processing apply.

The resi gnal ccmmand may be used in any handler body to resend the signal that caused that
handler to be invoked.

Tartan Reference Manual -12-

The assert statement raises the assertion exception if the <expr> is false. lt is exactly equivalent
to the statement "if ~ <expr> lhcn signat assertion fi".

There is one exception lo the rule thal an exception must be handled by the block in which it is
signalled or by a caller ol lhat block: the Notify operation on activations or aclnames. The effect of a
l'Jotily is as if the Terminate exception were signalled in the currently-execuling statement of the
activation named by the Notify command.

4.8. Parallel Proccss Control

Some examples are:

crule PCS)
activateCPll
if 1sB1 ocl<.ed !Pl l lhen . • •

1 ne create command instantiates a process, P, as an object ol type activation-of-P. The <var id>
in a create must name an oöject of type adivation-of-P lhat is in mini state. lf a process takes any
var parameters, the corresponding actual parameters must have extent at least as great as the
activation variable. The effect of the create is to instantiate an activation of P, bind the actuals of the
creale to the form.als of P, and set the activation in suspendcd state.

Each activation has a unique identifying token value of type actname, and it may be named by one
or more objects ol type aclname. Except for crcate, all operations that c::introl parallelism are special
·routines that operate on either actnames or aclivations. These routines control the processes and
parallelism by changing and interrogating the states of individual activations; they are described in
Appendix 1.2.

Note that the extent rules require an activalion to be dead or mint before the block in which it is
dedared can be exited. This provides an implicit join operation. A fork can be obtained with a
series of creales and activatc~.

Tartan Reference Manual

5. Types

<type> ::• fixed(<acluals>) 1 float(<actuals>) 1 boolean ! latch 1 ch1r 1 lile(<ac:!uals>)
1 •num{ <id> + J 1 •num{ { • <char" • J +] 1 <expr> .. <expr"
1 sei(<actua'ls>) 1 slrinc(<actuals>) '
1 1rny (<range" +) of <type" 1 racord (<declaration> •]
1 variant <declara'tion> ({ on <option> •> <type> J•J '
1 dynamic <type" .I 1ctiv1lion of <qual id> 1 1ctn1me
1 <type name> { (qctuals>) !•

<type name> ::• fixed 1 f101t 1 boolun 1 l1lch 1 ch1r 1 fil• 1 s•t 1 strinc
1 enum(<id> + J 1 enum(1 • <char> • l + J ·
1 arny (<type name" + j of <type na,;,e> 1 r•cord ({ <id> + : <type name> l, +]
1 variant (<type name'„ { on <option> ·> <type name> J• i
1 dynamic <type name> 1 1ctiv1tion (<qual id> J l 1tln1me
1 <qual id> { [<qual id>,+ J j•

-13-

In Tartan, a <type name> may be either a simple identitier or an identifier intlected with additional
type names. The <type name> so formed captures all the information needed for type checking.

- The <type name>s for the primitive scalar and simple nonscalar lypes are lhe keywords used
to declare lhcm: fixed, float, boolean, lalch, char, sei, slrinc, attname, flle.

- The <type name> for an array declared "array(a.b) of o• is "array[l,Of, where l is the <type
name> of a and b.

- The <type name> tor an enumeralion decfared enum[Ll,L2~ .. Ln] is enum(Ll,L4..,Ln].

- The <type name> for an activation declared aclivation of P is ac!ivalion(Pi

- The <type name> for a dynamic type declared dynamic T is dynamic T.

- The <type name> for a record type is based on lhe sequence of field names and <type
name>s in its declaration. For a record declared "record(Fl:Tl, F2:T2, ..• , Fn:Tn)" the <type
name> is "record[Fl:TNl, F2:TN2, ... , Fn:TNnr, where lhe Fi are lisls of field names, the Ti
are lypes, and the TNi are type names. Bindings in the declaration do not appear in the
type name.

The <type name> for a ·variant is "variant[TT,Tl->Vl,T2->V2,..., Tn->Vnr, where TI is the
<type name> of the tag, Ti is the jth vafue of the tag type, and Vi is the <type name> that
corresponds to the ilh vafue of the tag type. As a result, two variant <type>s are the same if
they specify the same <type>s for all vafues of the tag.

- The <type name> for a defined type is the name &iven in the type detinition.

5.1. Scalar Types

Some examples are:

Real
1. .10
enum(fuchs i a, ochr-e, puce. saffr-on]

Built-in scalar types include fixed, float, boolean, latch, and character. Integer and real must be
construcled as special cases of fixed and float. Ordered scalar erumerated types are defined by
providing an ordered list of values.

Types fixed and float require <actuals> lists to provide range, scale, and precision when they are
used in declarations. These are attributes and do not affect the type. Although bindings for attributes
may in general be const or manifest, the specifications of lixed and float require manifest attributes.

T o define a type, the <expr>s in an explicit range rrusl be const or manifest.

5.2. Composite Slruclures

Seme examples are:

Tartan Reference Manual -14-

array!l •. 101 of Color
array(Colorl of Real
strin~ !101
record[Name:str i ngl3S), Age:lntl
variant b: boolHn (on lrue -> [n t on falsa -> charl

Nonscalar data structures may be built up in three ways: with arrays (homogeneous indexed linear
structure), with rec:ords (nonhomogeneous structures with named fields), and with varianls (structures
whose substruc.ture may vary wilh time). In addition, the nonscalar types sei, strinc, and file are

defined

Legal bindings for fields of records and variants are var, c:onsl, and manifesl II a <binding> is

empty, it is taken to be var.

A variant type must have exactly one tag field The special constant olhers may appear as the last
<Option> of a <variant type>: it matches any conslant lhat does not appear in any other <Option>.

The syntax for arrays provides an abbreviation . for a sei of types pre-defined as
"array[lxType,EltType](rt where IxType is the inde>< type, El!Type is lhe element type, and r is a
(sub)range of JxType. Thus "array(l.. 10) of float• means ·array(int,tloal)(l..lOt. lts type name,
"array[int,floatr, is written •array[int] of floaf. As for any type, when an <array type> is used as a
formal parameter, the attributes are not supplied The type ·array(A,8) of r- is an abbreviation for
"array(A) of array(B) of r·. Similarly, the array accessor '"V(i,jr is an abbreviation for "V(i)(j)".

5.3. Dynamie Types

Some examples are:

dyn1mic Rea 1
dynamic record CData: lnt, Ne><t: ListElt, consl lnde><: lnt ~· Kl

Values of a dynamic type are pointers lo variables whose structure ccrresponds lo lhe type
definition. They are initialized to nil. The e><tent of these variables covers the entire scope of the
type definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable
di stinct from all others. The constructor supplies !he attributes for this variable: !hey are not supplied
in the declaration of the named variable ol lhe dynamic type. ihus a named variable of dynamic type
may at different times point to. several different variables having different attributes.

5.4. Process Control Types

Some examples are:

acl ivalion of P
aclnam•

Parallel processes are controlled with data of two types -- activations of processes and actnames,
or names of aclivations. Activations are instantiations of a given process; an activation may contain at
most one process activation during its lifetime and then only of lhe process given in its <type>. An
actname value is a pointer to an activation. Aclname variables may contain pointe(s to activations of
any processes; an actname variable may refer to different instanliations of different processes from
time to time.

An activat i on is used to control parallel or pseudo-parallel execution of a process. At any time it
may be in one of four states: min~ active, su~pended, and dead. The extent of an activation variable
coincides with its scope. The immediately enclosing block cannot be exited unlil all activations declared
within it are dcad or minl An activation is associated with exactly one process, which must be named
by the <qual id>.

An actname may refer to any instantiated process. A newly-declared ac!name or aetivation variable
is initialized to minl

5.5. Defined Types

Some examples are:

Tin!
Sequence Cintl 158!

Pr ogrammers may define new types. See seclion 6.5 on Type Definitions.

Tartan Reference Manual

6. Defin~tions and Declarations

<del - decl> :: •

<declaration> ::•
<mod del> ::-

<mod tex t> ::•

<rou ti ne del> ::-

<func text> ::-

<proc text> ::-

<type def> ::-

<generic def> ::•

<remote inst> ··-
<form als> ::•

<binding> ::•

6.1. Decl arati ons

<dcclaration> 1 <mod del> 1 <routine def> ! <tyoe def> 1 <iteneric def> ! <emotv>
1 imports <quai id> + 1 exports <qual id>, + 1 exc•plion <id>, + 1 diubl• <id>, +
1 pra: <proc call>; + ;• :arp

<binding> (<id>: (: <type> 1• (:• <expr> 1• J,• 1 <binding> (<id>,+: <type name> J,+
module <id> <mod text>

; <code body> 1 <remote inst>

proc <id> <proc text> 1 func <id> <func text> 1 prOCHI <id> <proc text>
1 func " (<unop> 1 <binop> 1 " <func texl>

(<formals>) <id> : <type> ; <block> 1 <remote insl>

(<lormals>); <block> 1 <remote insl>

type <ty pe name> ((<lormals>) j• • <type>

:•neric module <id> [<formals> l <mod !ext> 1 :•n•ric lunc <id> r <formals> l <lunc texl>
1 :•neric proc <id> r <formals> l <proc lext> 1 c•neric procass <id> [<formals> l <proc texl>

is <qual id> r <acluals> 11 i1 usumed (<id>)

(<binding> <id>,+ : <type name> 1,*
<empty> 1 v•r 1 consl 1 m•nilell 1 nsull

Some examples are:

var x: Rea 1
consl y: • true
var Huel. Hue2 . Hue3: Color
var · Tint :• enum[saffron. puce, fuchsia , ochrel
var V: array(S • • 71 of lnt
v•r . Ml:Mark(5). M2:Mark(7)
manifest PI: Real :• 3.14

-15-

The syntax for decfarations allows three kinds ol abbreviations. lt the initialization expression
appears, the type of the variable is evident from lhe <expr> and lhe · :<type>• may be omitted. In
addition, lists of <id>s with the same types or bindings may be condensed These abbreviations are
illustrated by the following five declarations, all of which have the same effect:

var x,y :• 0
var ><,y: [nt :• 0
Vlr X : • ß, y : • ß
v ar ><: 1 n t : • 0. y: 1 n t : • 0
var x:lnt :• 0; var y:lnt :• 0

Elaboration of a dedaration causes instantiation of an objecl which is the variable. Each variable
has a type and a value. The type is delermined when it is instantiated, but lhe value may be changed
by further elaboration ot the program. A variable may be restricted to be const (vallie fixed at block
entry) or manifest (value fixed c!uring translation).

Elaboration of a declaration proceeds as follows:

- Evaluate lhe <expr>, if present. lt must be present in manifest er conct declarations. lt must
be manifest in manifest declaralions.

- If lhe <binding> is manifest, bind the value of lhe <expr> to the identifier(s).

- lt the <binding> is const or var, elaborate any <actual>s in the <type> and instantiate a new
variable with the indicated type and attributes for each idenlifier. lf there was an <expr>,
assign its value lo each of the new variables.

When lhe type is dynamic, the declaration supplies lhe <type name> only (no attributes). In this case,
only lhe pointer is allocated at block enlry; the attributes are supplied when the dynamic type is
actuaily (dynamically) allocaled

Tartan Reference Manual

5.2. Modules

An example is:

module Count er Oe f;
be:in
exports Counter. Reset. lncr, Value;
type Coun t er • lnt:
proc Rese t ! re~ult C: Count erl : begin C : • 0 end:
proc l ncr { v•r C: Ccun t er): be;in C : • C • l end;
tune Value (consl C:Coun t erlx:Coun t er: begin" :• C end
end

-16-

The elaboration of a module takes place during lhe elaboration of declarations for !he block in
which the module is defined. This elaboration consists of elaborating the declarations of the module in
lexical order, then elaborating !he statements of the module.

A module or routine inherits identifiers for definitions (modules, routines, exceptions, and types) lrom
its enclosing scope. lt may expiicitly import identifiers ol objects from that scope, provided the
objects have global extenl A mocule, but not a rcuiine, may expert definition and object identifiers to
its enclosing scope. Types, named routines, field accessors for records, and variables are exported by
including their names in the exporls list of the module. The right to apply infix operators,
constructors, subscripts, ·.all", er the creale command for a type T are exported by including the
special names rinfix, rcons!r, T'subscr, T'all, and T'crea!e, respectively, in !he exports list. Literals
of enumerated types are exported automatically if the types are exported.

5.3. Roulines

Same examples are:

proe F {var x : J n t); b.gin)(: • - >q end
proc G is Ger:G (5)
tune lsNi 1 !x:OynTl•d:boole•n: be,in y : • (x • nill end
tune •• +" (a, b: gorp) c: gcrp:

begin ·
impods Bias;
c :• gorp' (a. left+b. left+Bias, a.right+b . r i ght+Biasl
end

A routine i s a closed scope whose body is a block. Thus its body controls extent for local
declarations, but c!oes not inherit idenlifiers for (non-manifest) objects or labels. The <fcrmals> lis t
decl ar es the identifiers for paramelers.

A r outi ne may be a func:ion (func), which returns a value and has no visible side effects: it may be
a p r ocedure (proc), which can modify its psramelers but must be called as a statement; or it may be a
proces s, which is a potentially-parallel procec!ure. Special type-specific routines are c!escribed in
A p pendix 1.2.

Routine names may be overloaded by binding the same identifier to severat definitions with different
numbers or types of parameters. The functions for which special inlix notation is provided are
obvious candidate s for overloading.

)f a <bindi ng> in a routine header is omitted, it is assu"lled to be consl. The result binding may be
used only in procec!ur es. Mo duplication of ic!enli fiers wi thin the <formals> lisl is permitted, and
parameter names may not confli ct w ith declarations or imporls in the routine body.

6.4. Exceptions

Some examples are:

excaplion TooBig, TooSmal 1, Lat e, S ingu l ar
diubl• r 008 i g, T ooSma 1 1

Tartari Reference Manual -17-

The scope of an exception name is the block in which il is declared. A disable declaration in an
inner block :iuppres:ies detection of the exceptions il names. A handfer clause associates recovery
code with a statement !hat may generate an exception (see section 4.7).

The disable dectaration permits exceptions to be individually suppressed wilhin a given scope.
Should an exceplion occur when its detection is suppressed, lhe ccnsequences are not defined. An
exception must not be signalled or redecfared in a scope in which il is suppressed. Note that
suppression of an exception is not an assertion that the condition !hat gives rise to the exception will
not occur.

Standard exceptions will be dectared in lhe global extenl

6.S. Type Definitions

Seme examples are:

type Counter - Int
type Matri><(n:lntl. arny(l..n.l..nl of Rul

A user may introduce a new type into his program with a type definilion. The type definition itself
merely introduces the <type name> and defines the representalion of the type. Operations are
introduced by writing routines whose formal parameters are of the newly-defined type. Scope
boundaries, particularfy module boundaries, play no rofe in lhe definilion of the type. · There is, as a
consequence, no notion of the ccmplele set of operations on a type.

A type definition may be paramelerized. The bindings in the formal parameter !ist must be consl or
manifest lf a <binding> is omilted, it will be assumed to be const. The names ot the formal parameters
of !he type are avaifabfe throughout the efaboration ot the program as conslants, called attribules.
They are accessed by treating the <var idenl> as a record and the type attribute as a field.
Attributes for primitive types are given as part ol the type definitions.

Within the scope in which lhe type is defined, lhe qualifier Rep may be used to indicate !hat the
object named by the identilier Rep qualilies is lo · be lreated as if it had the underlying type. This
.allows operations on the new type to be written using operations on its representation. When no
ambiguity arises, the Rep qualiiication may be omilted

6.6. Generic Definitions

Seme examples are:

ieneric proc Re'5et CT: h1oeJ (var ><:Tl; becin >< : • ><'min end
proc ResetColor is ResetCColorl
proc Rese tX is Reset [S<1mp 1 el
module Stack it Hsumed !St ackDe f}

i•neric module R i ngOe 1 [K: 1 n t] :
bei:in
exporb Ring. Ne><t:
type Ring • lix..:1(1,0.0,K-ll:
tune Ne„ t CR:R i ngl N: fixed Cl, 0, a,K-11; becin N : • nod !R•l.X'I 1 end
end

module RS it R i ngOe 1 [5]
module RS is R i ngOe f CSJ

A generic definition is syntaclically like the ccrresponding specific definition excepl that it is
prelixed by the word gcncric and it may have a sei of 11eneric parameters (enclosed in square
brackets) afler the definition name. F'or generic definilions, type is acceptable as a formal <type name>.

. T~~ ac~al p~rameters supplied in an inslantialion of a generic definition may be any delined
rdenbfrers, rnctuding !hose for variables, functicns, types, or modules, or any expression When the
generic definition is instantiated, the text of the actual paramelers replaces the identi l iers that
rep~esent the. formal .para~eter~. The substitution is done on a lexical, rather than a strictly textual,
b~srs. That rs, the rdent1 frers in the generic definition are renamed as necessary to avoid conflicts
wrth the identifiers in the actual parameters.

Tartan Reference Manual -18-

Both generic definitions and remotely-dcfined modules or routines may be incorporated in a program
as remote instances. A remote instance may be an instantiation cf a generic definition or a reference
to a definilion given elsewhere.

A module or routine that is used by the program but whose definition is given elsewhere (e.g., in a
library) is incorporated by writing is assumed(<id>) as the body cf a module er routine definition. The
<id> is used by a pragmat to locate the remole definition.

A generic definition is inslanliated by referring to it as the bcdy cf a module er routine definition.
The effect of the instantiation is as if the generic definition were lexically substituted in place of the
reference to it. Thal is, the body of the module or routine being defined becomes a copy of the
generic definition.

An instantiation of a generic ·definition may be used as the body of a specific module or routine. The
usual restrictions on defining new identifiers apply to the module or routine being defined in terms of a
generic.

Generk type definitions arise from generic moc!ules. They are instantiated when the module is
instantiated. Thereafter, they may be used in c!eclarations er definitions.

lt the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correponding types and be syntac!ically suitable for substitution.

lf. a generic definition is instantiated more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

6.7. Translation Issues

An example is:

prag Optim ize{gpacel: Listing!Off) :1rp

A program is a <blocb. The extent defined by the ouler block cf lhe program is the i:lobal extent.

The translator may be guided by <pragmal>s. Pragmals have the same syntax as proceeure calls.
The set of pragmat names and the inlerpretations cf the arguments are delermined by each lranslalor.
Translators will ignore pragmats whose names they do not recognize.

A program may be broken into separately defined segments. This decomposition must take place in
the global extenl The units ol separate c!efinition are mociules and routines. The definition

module Q is ossum•d (1)

in a segment has the effec! of making lhe semanlics of lhe segmenl lhe same as if the (separaiely
cefined) !ext of Q had been substituted for "is assumed(l)". The identifier 1 refers to a file, library, er
other facilily for storing separately defined segments. The relation between the idenlifier 1 and that
storage facilily may be established by a pragmal

lt is a matter of oplimization whelher the separate definition is included as text er separately
translated and linked in. In order to perfcrm independent lranslation of a separately defined .component,
it is nccessary to embed the moc!ule er rouline being translated in an environment that supplies
definitions for all lhe names it inherits or imports. This environment must form a complele program.
lt is assumed that the translation system provides commands for selec!ing which components ol such a
transiation to save and for delermining where and in what form they are lo be saved.

Tartan Reference Manual -19-

I. Standard Definitions

I.1. System-Dependent Characteristics

The lranslalor for each system is assumed to provide a module in the global extent that defines
appropriate syslem conslants. Such constants are assumed at various points in the language detinition;
these and certain others are summarized here in the form of a skeleton module.

moduJe Sys:
beg:in
expods •

type 1 nt • Jixed(.

exports all defini tions below

.) · appropriate to the machine
Note Int.Min and lnt.Max give range

type Rea 1 • Jlo•t ! . . .) appropriate to the machine

consl

proc • • •

•XC•ptions

•nd

Attributes give range, precision, scale

constants that descibe properties of the
object machine

procedures for accessing faci 1 itles of the
operating and ti le systems

System-defined exceptions such as As!ertion. SadAssign ••••

1.2. Properties of Types

All lypes have assignment operators and routines for conversion to appropriate other types. In
particular, the scalar types have routines for converting to and from character strings. An nonscalar
types have constructors. The sections below sketch some imporlant properties of lhe buift-in types .

. I.2.1. Fixed

Liter als:
Attributes:
Infix operations:
Special routines:

I.2.2. Float

Uterals:
Attributes:
Infix operaticns:
Spec:i al routines:

1.2.3. Enumerations

digit strings
Min, Max, Precision, Scale
Arithmetic and relational
rounding, truncalion

digil slrings with decimal point
Min, Max, Radix, Precison, MinExp, MaxExp
Arithmelic and relational
rounding, trvncation

All enumerations are ordered The literals are assumed to appear in the declaration in inc:reasing
order.

Literals:
Attributes:
Infix operations:
Special routines:

As given in definition
Min, Max
Relational
succ, pred

Tartan Reference Manual

1.2.4. Boolean

Literals:
Attributes:
Infix operations:
Special routines:

1.2.5. Charac:ters

Literals:
Attributes:
Infix operations:
Spec:ial routines:

1.2.6. Latc:hes

true, false
none
logic:al
none

Quoted charac:ters
Min, Max
none
as for erumerations

-20-

A latc:h is a simple spinloc:k for mutual exclusion. lt the lalch is open, it is available for siezure; if it
is c:loscd, a Loc:k command will wait on iL

Literals: open, closed
Attributes:
Infix operations:
Spec:ial routines:

I.2. 7. Arrays

Literals:
Attributes:
Infix operations:
Special operations:

I.2.8. Sets

none
none
Lock, lflock, Unlocx

none
Range, EltType
none
subscript, subarray, catenation, upper bound, lower bound

"Sets" are boolean vectors on which some additional operations are defined.

Li teral s:
Attributes:
Infi x operations:
Special operations:

1.2.9. Cynamic Types

Literal s:
Attributes:

Infix operations:
Spec:ial operati ons:

Speci al routines:

1.2. 10. Rec:ords

Literals:
Attributes:
Infix operations:
Spec:ial operations:
Special routines:

empty
EltType, MaxSize
logic:al
subscript

nil
The named variable does not itself have atlributes, but lhe dynamic
variable that it references may.
none
.all denotes whole value of dynamic object, as distinguished from
the reference. A dynamic constructor alloc:ates a new dynamic objecL
none

none
individually defined with record type
none
field selection, C:)nstructors
none

Tartan Reference Manual

1.2.11. Varianls

Literals:
Attributes:
Infix operations:
Special operations:
Special routines:

1.2.12. Slrings

Literals:
Attributes:
Infix operalions:
Special operations:

1.2.13. Activations

Literals:
Attributes:
Infix operations:
Special operations:
Special routines:

none
individually defined with variant lype
none
variant l'T'l.lst be designated lo reference contents
none

Quoted strings
Length
none
subscript, substring, catenalion

mini
none
none
create
To change slate: Activate(A), Suspenci(A), UnlockAndSuspend(A,L),

UnlockAndAclivale(A,L), LockAndSuspend(A,L), LockAndActivate(A,L},
Terminate(A)

To query stale: lsMint(A), lsAcl(A), IsSusp(A), IsTerm(A)
Tc obtain aclname: NameOf(A), Me()
To sent exceplion: Notify(A)
Other: Priorily(A), Se!Priority(A), Time(A)

where A is an ac!ivalion ·ar aclname and L is a lalch

-21-

Assignment causes lhe BadAssign exception if eilher the value or the variable to which it is being
assigned is in a state other than minl

I.2.14. Actnames

Literals:
Attributes:
Infix operalions:
Special operalions:
Special routines:

1.2.15. Files

mini
none
none
none
Same as for aclivations

A minimal inpul-cutput facilily will be provided.

1.3. Alphabets

The following context-free subsli!utions reduce the alphabet used in this report to the standard
64-character ASCII subsel Note lhat some iden!ifiers are pre-empled as a resull

For the publicalion character:
lower case a.z
s
~

-1'
1\

V

{
}

Substitute lhe ASCII slrinc:
upper case A-Z

<>
and
or
<<
>>

Tartan Reference Manual

II. Collected Syntax

<consl> ::• <digi t>+ { . <digit>+ l• l true 1 l•lse 1 nil 1 closed 1 open 1 mini 1 emply

<construclor>

<var id>

<range>

<oplion>

<qual id>

<id>

<expr>

<unop>

<binop>

<tune call>

<actuals>

<stmt>

<proc call>

<block>

<code body>

<type>

<type name>

<de f-<:lec l>

<declara lion>

<mo d def>

<mod text>

<routine def>

<func !ext>

<proc !ext>

<type def>

<generic def>

<remote inst>

<formals>

<bindln1p

1 <conslructor> 1 <id> 1 <qual id> ' <const> 1 <type> ' <const> 1 <expr>

::-

··-
··-
::•

::•

::•

:.-

::•

::•

::•

::•

::-

;:•

::•

::•

::•

(<expr>,*) 1 ({ <option> ·> <expr> 1:) 1 • <char>• •

<qual id> 1 <var id> (<Ktuals>) 1 <var id> . <id> 1 <var id> (<range>) 1 Rep' <id>

<exor> .. <expr> 1 <type>

{ <consl> 1 <range> l,+

{ <1d> ·r· <id>

<letler> <tetler or _ or digit>*

<unoo>• <var id> 1 <unop>• <const> 1 <unop>• <tune call>
1 <unop> • (<expr>) 1 (<expr>) . <id> 1 <expr> <binop> <expr>

· ·I.
• 1 / 1 • 1 • l < l ! l > l ~ 1 • 1 # 1 " 1 ca,,.f 1 v 1 cor l t
<qual id> (<Kluals>)

<expr>,*

<proc: call> 1 <id> : <slml> 1 <empty> l <block>
l <var id> !" <exor>
1 if <expr> then <stmt>.• { elif <expr> lhen <stmt>.• }* { eise <stmt>.• ;• fi
1 cas• <expr> { on <oplion> ·> <stmt>.• 1• HK ' '

1 while <expr> do <slmt>.• od 1 tor <id> in <range> do <stmt>.* od
1 :oto <id> ' . '
1 signal <qual id> 1 resi~n.i 1 •ssert <npr>
l <slmt> 1 { on <id> + ·> <slmt>.• l+ 1
1 create <var id> (~actuals>) '

<qual id> (<actuals>)

« :ode body>

begin [<def-<lecl> ;)" <stmt>;" end

fixed(<actuals>) l 11o•t(<actuals>) 1 boolHn l l1lch 1 ch•r 1 file(qctuals>)
1 •num(<id>,+] 1 enum({ • <char>. \• l 1 <expr> .. «expr»
l sei(<acluals>) 1 strinit(qctuals>)
1 1rr1y (<ronge> +) of <type> 1 record [<declaratlon> +)
1 vari•nt <declaraiion> [{ on <optio'n> ·> <type> 1•1 '
1 dynamic <type> 1 1cliv1tion of <quat id> 1 1ctn1me
l <type name> { (<actuals>) l•

::- fixed 1 1101! 1 booleon 1 l•lch 1 chor 1 file 1 „1 1 strinc
1 enum{ <id> •] 1 enum{ ! • <char> " 1 • J
1 1r ray [<ty'pe name> • j of <type na-.:.e> 1 record [(<id> + : <type name> } +)
1 variant [<type name'> { on <option> •> <type name> }•]' '
1 dyn1mic <type name> 1 1etiv1tion [<qual id> J 1 actname
1 <qual id> [[<quat id>, + J 1•

::• <declarat ion> 1 <mod def> 1 <routine def> 1 <ty~e def> ! <generic def> 1 <emply>
1 imporls <qual id> + 1 nports <quat id>

1
+ 1 excaplion <id>,+ 1 disable <id>,+

1 prac <proc call>; + ;• &arp

" • <bindi„g> { <id>,+ { : <type> 1• { !" <expr> 1• 1,+ 1 <binding> { <id>,+ : <type n1me> J,+
••• rnodule <id> <mod lexl>

::• ; <code body> 1 <remole insl>

::• proc <id> <proc lext> 1 tune <ld> <tune lext> 1 procH1 <ld> <proc lexl>
1 tune • { <unop> 1 <binop> l • <func !ext>

::• (<formals> l <id> : <type> ; <block> 1 <remote inst>

::• (< f o rm al ~>); <block> 1 <remote inst>

::- type <type name> { (<formals>))• • <type>

::- c•neric modute <id> [<formals> l <mod tut> 1 :•neric func <id> [<forrnals>] <func text>
1 ceneric proc <id> [<formals> l <proc tex t> 1 &•n•ric proc111 <id> [<formals>] <proc te'Xf>

::• is <qual id> [<acluals> J I is usumed (<id> l
::• (<bi„ding> <id>,+ : <ty pe narne> J,•
::• <empty> 1 v•r 1 const 1 m1nifest 1 result

-22-

OO~NIER

Dornier System GmbH

A N H A N G 7

TARTAN

Language Design for the Ironman Requirement:

Notes and Examples

Mary Shaw
Poul Hilfinger
Wm A. Wulf

Computer Science Dcparlment
Carncgie-Mellon Universily

Piltsburgh, Pa. 15213

June, 1978

DEPARTMENT

of

COMPUTER SCIENCE

cr1U-CS-78-132

TARTAN

Language Design for the Ironman Requirement
Notes and Examples

Mary Shaw
Paul Hiltinger
Wm. A. Wulf

C.,mputer Scienca Oepartment
Carnecie-Mellon Univenily

Plttsburch, Pa. 15213

June, 1978

CMU-CS-78-132

Abstraci: The Tartan lan&Uaie was desii"ed as an experiment to see whelher lhe [ronman
requirement for a common high-order programming language c:uld be salistied by an extremely
simple language. The restJlt, Tartan subslantially meels 11"\e lronman requirement. We believe it
is subslantially simpler than lhe four designs that were done in the first phese of lhe coa-1
effort. The languag9 delinition appears in a cornpanion report: this report provides a more
exposilol")' diSCtJssion of some of the language's features, some examples of its use, and a
disOJssion of some facilitles !hat could ennanc:a the basic design at relaüvely litUe ccsl

This work was sa.:ppo~ted by the Defense Advanced Research PTojects Arency unc!er contract
F44620-73-C-0074 (monitored by the Air Force Office ot Scientific Research~

Tartan: Notes and Examples

1. Notes on lmportant lssues

1.1. Vocabulary
1.2. Scope and Extent

1.2. l. Scope
1.2.2. Extent

1.3. Modules and Routines ·
1.3.1. Modules
1.3.2. Routines

1.4. Generic Definitions
1.4.1. Writing and Using Generic Definitions
1.4.2. Separate Definitions

1.5. Types .
1.5.1. Characteristics and Attributes
1.5.2. Type Names
1.5.3. Array Types
1.5.4. Declarations
1.5.5. Type Checking
1.5.6. Defining Types
1.5.7. Operations on New Types

1.6. Parallel Processes
1. 6.1. Activations
1.6.2. Fork and Jein
1.6.3. Activation Names

l. 7. Unresolved lssues
1.7.1. Machine-Dependent Code
1.7.2. Simulation
1.7.3. Definition of lntegers
1.7.4. Low-Level Input and Output
1. 7.5. Higher-Level Synchronization

2. Procramminc Examples

21. Simple Slatic Data Type
2.2. Simple Dynamic Data Type
2.3. Selecting Representations
24. Safe Data

3. Optional Additions to the Lancuace
References

1

1
2
2
2
3
3
3
4
4
5
6
7
7
8
8
8
9
9
9
10
10
11
11
11
11
12
12
12

13

13
13
14
15

16
16

Tartan: Notes and Examples -1-

1. Notes on Important Issues

The Tartan reference manual is the defining document for the Tartan language. However, some of
the facilities designed in response to the (ronman requirement deserve more unified and expository
explanations !han can be included in a reference manual. This chapter discusses the Tartan solutions
to several imporlant problems posed by lhe lronman req.Jiremenl .

The Tartan language draws heavily on the Pascal tradition. Bolh the reference manual and these
notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the lronman
requirements [1] and the Tartan referenc:e manual [2}

1.1. Y ocabulary

A Tartan program is made up of definitions, declarations, and (executable) slalemenls. A definition
binds an identifier to a module, routine (funclion, procedure, or process), type, or exception: it is
processed during lranslation. A declaration binds an identifier to an object (l.e., a variable or value): it
is processed at run time, usually lo allocate storage. Executable statements are elaborated at run time
to effect computations -- manipulation ot values.

Identifiers can be bound to modules, routines, lypes, objects, statemenls, and exceptions. Individual
identifiers are qualified with the names of the modules in which they are defined in order to avoid
conflicts with names declared in olher modules.

The compulation described by a program is carried out by elaboratinc lhe program. We use the
Word "elaboralion", in preference to "execution", lo connole actions taken during lranslation as weil as
lhose !aken during execution. Elaboration may be lhought of as an idealized dired execution of the
lextual version of lhe program. The effect of elaborating each construct in lhe language is given in the
reference manual.

Although lhe language prohibits making a declaration !hat gives new meaning to an identifier in a
given scope, duplicale idenlifiers might arise in three situations. These situalions, and lhe way Tartan
deals with lhem, are:

- T.he same identifier is exporled from lwo modules. The ambiguity is prevented by name
qualification: All idenlifiers exported from a module are prefixed with the name of the
module that exported them; lhe prefix is separated from lhe identifier by an apostrophe.
Thus if identifier x is exporled to the same scope by both modules M and N, we write

M'><
N•><

! for the x exported fro~ M
1 for the x exported fro• N

The qualification may be omitted if no ambiguity arises.

- An identifier is used as an overloaded rcutine or type name. That is, lhe same rout ine name
is given several definitions with different numbers or types of parameters. Operator
overloading is permitted so !hat similar operations on dislinet types, particularly infix
operalions, can be given the same names. The idenlifiers for the routines or types are
disambigualed by examining the parameter types and choosing the routine whose formal
parameter types are matched by lhe types of the actuals. A similar situation exists wilh
ic!entifiers for families of ..elated lypes. In order to discuss lhese situations, we introduce lhe
notion of sicnature:

- The signature of a rouline is the routine name logelher with its formal paramete r types.
The type ot lhe value relurned by a function is not inc:luded In its signature.

- The signature of a type is its simple type name together with its generic characteristlcs.
Generic characlerislics are discussed in Section 1.5.1.

- A literal or constructor might polentially be of two or more different types. The ambiguity is
resolved by qualifying lhe lileral or construetor with lhe intended type ineluding its
~~s. . •

Tartan: Notes and Examples -2-

1. 2. Scope and Extent

Scope determines the interpretation of identifiers, so all the text in a given lexical scope shares the
same vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with the
same interpretation in multiple lexical scopes. ·

The extent of a variable is its lifetime -- the time during which it ;;iffects er is atfected by the
elaboration of the program. The interac!ion of control and lexical struclure determir.es extent. Binding
is the association of identifiers with program entities (objects, modules, routines, types, statements, and
exceptions). The bindings in effect at any time result from the interaction of control and lexical scope.

1.2.1. Scope

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical
scopes. There are no restric!ions on lhe ways these scopes may be nested. Both constructs may use
identifiers defined in other scopes; both may define identifiers that can be used in other scopes.
Scope rules govern the legal bindings of identifiers in a lexical scope to program entities; they also
control the importinC' and exportin{ cf identifiers to other scopes. Blocks and modules differ only in
their scope rules and in their effec!s on the extent of variables. Tartan has two scope rules:

- An open scope inherils (imports automatically) all the identifiers that are defined in its
enclosing scope. lt may not expert any identifiers to its enclosing scope. Blocks are open
scopes except when used as routine bodies.

- A closed scope inherits all identifiers that are defined in its enclosing scope except those for
labels and objects. 1 lt may explicitly import identifiers for objects (variables and constants),
provided they have global extenl A closed scope !hat is a module may expor1 identifiers that
name variables, definitions, er exceptions; the exporled identifiers have the status of any
other identifiers defined in the enclosing scope. All modules are closed scopes, as are blocks
when they are used as routine bodies.

l dentifiers !hat are exported from an inner scope er imported from an outer scope have the status of
identifiers defined in the scope. Redefinition of identifiers within a sccpe is not permitted. The
convenience of being able to do so does not offset lhe danger of confusion. This does not, however,
prohibit overloading cf routines names: the differences in signalures suffice to prevent confusion. In
addition, the same identifier might be imported with different meanings from two different modules;
such identi fiers are qualified with the names of the modules in which they were defined. Thus they
are not duplicate definitions. Similarly, literals and constructors are qualified with their types to
prevent ambigui ty. ln eilher case, the module or type qualifier may be omilted if no ambiguity arises.

1.2.2. Extent

Extent rul es govern the lifetimes cf objecls. Extent is controlled by blocks, independent cf whether
they correspond to cpen or closed scopes. Nolhing except blocks contrcls extent. The static data cf a
block is allocated when the declarations cf lhe block are elaboraled (in lexical order) at block entry.
lt is deallocated when the block is exited or terminated. Note that modules do not define extents, so
the extent of data defined in a module coincides with the extent of its surrounding block.

Values of dynamic types point to dynamically allocated variables. The type of object that may be
pointed at is part of a dynamic type. The extent of dynamically allocated variables is coincident with
the bloe!<s in which the associated dynamic types are declared. Since type names are not accessible
outside the blocks in which they are defined, no references can outlive the block with wnich the
extent is assoeiated.

lLiterals and identifiers tor variables that are declared manifest are inherited

Tartan: Notes and Examples -3-

1.3. Modules and Routines

Modules and routines are closed scopes. Modules serve as an encapsulation mechanism, protecting
the privacy of definitions and declarations without restricting their extent. Routines are used for
program structuring and abstraction of operators; they define operations lhat may be invoked during
elaboration of a program.

1.3.1. Modules

A module is a closed scope that atlows (ocal definitions lo be shared wilhout making lhem public.
lt also serves to bundle up related definitions for administrative (program organization) purposes. lt
may expert identifiers for definilions and objects to the scope in which it is defined A module has no
parameters.

A module is purely a scope-defining device. Its elaboralion takes place during the elaboration of
decfarations for the block in which lhe module is defined. This elaboration consists of efaborating the
definitions and decfarations of lhe module in lexical order, then elaboraling lhe statements of lhe
module.

A module or routine inherits identifiers for definitions (modules, routines, types, and exceptions),
literals, and manifest objects from its enclosing scope. lt may explicitly Import identifiers of objects
from that scope, provided the objects have global extent. A module, but not a r.outine, may expori
identifiers other than labels to its enclosing scope.

1.3.2. Routines

A routine is a closed scope whose body is a block. Thus its body controls exlent for local
decfarations, but does not inherit identifiers for variables er non-manifest constants. The <formals> list
decfares the identifiers for paramelers.

A rouline may be a function (func), which relurns a value and has no visibl!! side effects: it may be
a procedure (proc), which can modify its paramelers but musl be called as a stalement; or il may be a
process, which is a polentially-parallel proeedure. Special type-specific routines for m~ny types are
listed in the Tartan Reference Manual.

The symbols for the unary and binary operators are used as routine names in order to provide
overloaded delinitions for those operations.

lf a <binding> in a routine header is omilted, it is assumed lo be const. The result binding may be
used only in <formals> lists of procedures. Functions are permilted to specify var parameters in order
to avoid the copy associated with consl l However, as noted below, visible side effects on such
parameters are prohibited No duplication of idenlifiers within lhe <formals> list is permitted. Further ,
formal parameler names may not conflict with declarations or imports in the routine body.

lt a routine name is overloaded, the definition whose sienature matches the call is selected

Ouring elaboration of a function, assignment to a variable that is not local lo the function body {or to
the body of any routine it invokes, directly er indirectly) is permitted only if lhe function is never
invoked in a _ scope where such a change is made to a variable or component that is directly
accessible by the caller. Such variables may be imported by lhe func!ion from a module wi lhin which
the function is defined. They ·may also be fields of var paramelers if !he type of !he parameter is
defined in the same module as lhe function and !he field name is not expor!ed. An example of the
latter case appears in sec!ion 2.4.

Thi s is a comprornise solution to the side-effect problem. Many routines are c;'wite reasonably coded
as value-relurning: Gel of section 2.4, monitoring routines, random number generators, and Pop for
stacks. However, the current state cf lhe art does not offer a sharp rule from dis!inguishing safe from
unsafe side effects.

lrn the presence of parallelism, it may not be safe !o optimize away the copy of a const pararneler
even if the routine does not alter it.

- Tartan: Notes and Examples -4-

Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on
type, binding and al iasing.

- The type of an actual parameter is acceptable if its <type name> exactly matches the <type
name> of the corresponding formal parameter. Type attributes (instanliation paramelers of a
type) play no role in type checking.

The binding of the actual parameter is acceptable if it matches the <binding> of the
corresponding formal parameter according to the following rules:

If the formal parameter is then the actual parameter may be
var <var id>
const <expr>
manifest any manifest <expr>
reS\Jll <var id>

- Finally, the set of actual parameters lll.lst satisfy the following nonaliasing restric!ion: A
variable may not be used in more than one var or resull position of a single procedure or
process call. For the purpose of testing this restriction, imported variables are considered to
be var parameters.

1.4. Generic Definitions

A facility for making ceneric definitions is provided in order to allow the programmer to write a
single textual definition that serves as an abbreviation for many closefy-related specific definitions.
Modules and routines may be defined generically.

A generic defini tion is instanliated by referring to it as the body of a module or routine definition.
The effect of lhe instantiation is as if lhe generic definition were lexically substituted in place of the
reference to il That is, the body of the module or routine being defined becomes a copy of the
generic definition.

1.4.1. Writing and Using Generic Definitions

A generic definition is syntactically like !he corresponding specific definition except that it is
prefixed by the word generic and it may have a sei of generic parameters (enclosed in square
brackets) alter the name of the construct being defined. The paramelers may be any defined
identi fiers, including !hose for variables, routines, types, or modules, or any expression. When the
generic defini tion is instantiated, lhe text of !he actual parameters replaces the identifiers that
represent the formal parameters. The subslitution is done on a lexical, rather that a strictly textual,
basis. Thal is, the identifiers in lhe generic definilion are renamed as necessary to avoid conflicts
w ith the identifiers in the actual parameters.

For example, the collection of functions

func F2 1X:lntly:lnt; be,in y :• 2 _,,X end
func F31 X: lnt ly : lnt; be,in y :• 3 t: X end
func F4 IX : Intly: Int ; be,in y :• 4 .~X end

and so on

can be defined by the generic definition

ceneric tune F lMul t: lntl IX: lntly : l nt; becin y :• Mul t ,~X end

and the specific instantiations

func: F2 is F (2]
func F3 is F (3]
func F4 is F (4]

and so on

An instantiation of a generic definition may be used as the body of a specific module or routine. The
usual restrictions on delining new identifiers apply lo lhe mod.Jle or routine being defined in lerms of a
generic.

Generic type definitions arise from generic modules. They are instantiated when the module is
instantiated. Thereafter, they may be used in declaralions or delinilions.

.Tartan: Not es and Examples -5-

lf the generic definilion has generic parameters, the actual paramelers supplied with the
instantiation must have correponding types and be syntactically suitable for substitution.

If a generic definition is instantialed more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

1. 4. 2. Separate Definitions

Tartan supports separate delinitions, and potenlially separate compilation, in the same way as it
supports generic definitions. A program may be broken into separately defined segments. This
decomposilion must take place in the global extenl The units of separate definition are modules and
routines. The delinition

modul• a is 1ssumed (!)

in a segment has the effect of making the semantics of the segment the same as if the (separately
defined) text of Q had been substituted lor is assumed(I)9. The identifier 1 refers to a file, library, or
other facility for storing separalely delined segments. The relation between the identifier 1 and that
storage facility may be established by a pragmal

Suppose we want to devefop and mainlain a program with the following structure:

bei:in
module COM: bei:in exporl X: • • • end;
module Ml: bei:in import X, Y: export Z: , • " end;
module M2:

bei:in import X, Z:
export W:
module M3: bei:;in • • • end;

end1
ver Y: ... :
! Main program using W, X, Y, Z
end;

lf the definitions cf COM, Ml, and M2 are stored in a library, the following program will have the
same effect:

b•cin
prac RequirelComOef,LIB.COM. TXTJ: RequirelMIOef,LIB.Ml.RELJ:

Require !M20ef,LIB.M2.RELJ; cup:
module COM is nsumed !COMOe fJ :
modul• Ml is ISSU,,,.d !MlDe f J ;
module M2 is .ssumed !M2De f J 1
var Y: ••• ;
! Main program using W, X, Y. Z
end:

We assume here that the second argument cf the Require pragmat is interpreted by the system as a
poi11ter inlo a library. From lhe standpoint of the language, it is a matter of optimization whether the
separate definitions are included as !ext or separately translated and linked In.

In order to perform independent translations of a separately defined module, it is necessary to
embed it in an environment that provides the c!elinitions it depends on. This environment must . form a
complete program. The translation system is assumed to provide commands for seleeting which
components of sueh a translation lo save and for delermining where and in what form they are saved.
In the examples here, we will simulate that facility with a pragmat loc:a!ed outside the program. In the
example above, module COM i:foes not depend on any external detinitions. In order to compile it
separately, we write simply:

prag Save!Com,LiB.COM. TXTJ; carp:
becin
modul• COM: b•gin export X: • • • end;
•nd

Module Ml depe_nds on the X exported from COM and the Y dedared In the main program. To
translate M 1 separately, we must therefore write:

Tartan: Notes and Examples -6-

prag Save!Ml.LIB.Ml.REll: ~arp;
ber;in
prag Requ i re !ComOe f. LIB . COM . TXTl: &arp;
module COM is usumed !COMOe f l :
module Ml: begin import X. V; .xport Z; • , • end;
var V: ••• :
end

Jf module M2 were translated monolithically, its translation environment would look much the same.
Suppose, however, !hat the definitions of M2 and M3 are to be separated They can be translated
independently with the following two programs:

prac Save!M2,LIB.M2.REll; :up;
b•cin
prac Require!ComOet.LIB.COM.TXTl: RequirelMlDe f ,LIB. Ml.REll :

Requ i re !M3De f, LIB. M3. REU; carp:
module COM is assumed !COMOe f 1 ;
module Ml is nsumed !MlOefl ;
module M2:

ber;in import X,Z:
exporl IJ:
module 113 is usumed IM30ef);

end:
end

prac Save !M3, LIB. M3; RELJ: :arp:
begin
pr•c Requ i re!ComOef,LIB.COM. TXTl: Require!MlOef,LIB.Ml.REll: :1rp
module COM is assumed !COMOefl:
module Ml is assumed !MlOe fJ 1
module M2:

end

ber;in imporl X, Z:
export IJ;
! Only the declarations of M2 that are requ i red by M3 appear
module M3; ber;in • • • end ;
end;

1.5. Types

The notion of type is introduced into languages to govern the ways operations are appl ied to
objects. Types delermine certain properlies of data (values}, including what operations on the values
are legal and precisely what lheir effecls are. Every objecl has a fixed type. This type is
determinable during transla!ion. Tne <type name> is delermined by lhe signalure of the type as
descr ibed in seclion 1.5.2. Tartan provides certain built-in lypes; these include both simple and
composite types. The user may define new types on the basis of lhese primitives. Bolh user-de fi ned
and buil t -in types are used to ensure lhat the aclual parameters passed to a routine malch the
corresponding formal parameters. The types of the formal parameters are also used to conslruct lhe
signature of a routine in order to resolve overloading ambiguities.

In Tartan, every value has exactly one type. This type is determined

- by the declaration cf a variable or definilion of a function

- by the lexical form and conlext of cx:currence of a literal

Types appear in four contexts:

- in declarations, to give the type and altributes of an object

- in type definitions, to give the base representation of a newly-defined type

- in formal parameter lisls, to reslrict the objects !hat may be passed as parameters

- in function definitions, to give the tyi:;e of the resul t

Tartan: Notes and Examples -7-

1.5.1. Characteristics and Attributes

Some ot the properties of a type are the same for all values and objects of the type. These are
called ~eneric characleristic:o and are discussed below. Other properties of a type, called attributes,
may differ from one value or object of the type to anolher. For example, in Tartan the type of the
values used to index the elements of an array (the type of the index sei) is a generic characteristic,
whereas the exact bounds of the array (which values are in the index set) are altributes.

The sei of attribute names associated with a type and the lypes of the corresponding · attribute
values are given in the definition of the type. For example, objects of type fixed have attributes Max,
Min, Precision, and Scale.

Note that the attributes values of an object are not part of ils type. lt is therefore possible to
wri te routines that operate on objects with different attributes. For example, it is straightforward to
write routines that operate on arrays of arbitrary size.

lt is often convenient to define families of related lypes with similar properties, and in which the
differences can be captured through differences in generic properties. A type definition parameterized
in this way can be cast as a ceneric type definilion. Members of. the family wi th distinct
characteri stics are distinct types.

Generic types are introduced through generic module definilions. F or example,

&•neric rnodul• Blocker(T:typel;
b•i:in
typ• Block CTJ !Order: Intl • 1rr1y(l. . Orderl of T;
proc Blocklt(v.r B:Block[TJ); becin. '. • end
end

defines a set of types Block(...] and a set of corresponding procedures. The definitions

module lntBlock is BlockerCJntl:
mod~• RealBlock ~ Blocker(Reall;
module MyB 1 eck is B 1 ocker [My Type];

introduce, respedively, the types

Block(Jntl !Order:fnt)
Block[Reall fOrder:fntl
Block[MyType] (Order: fntl

each of which has an Order attribute. Note also that the procedure Blocklt is overloaded to operC1te
on all these types, and !hat il is indifferent to the Order attribule of its argumenl

1.5.2. Type Names

In Tartan, a <type name> may be either a simple identifier or an identilier inflected with additional
type names. The <type name> so formed captures the signature of the type. F or example, the <type
name>s in the example above are

B 1 eck Cl ntl
8 1 eck CRea 1 J
8 1 ock CMy Type}

Although the definitions of these three types are closely related (they arise from instantiations of the
same generic module), the types are entirely distincl

The <type name>s for the primitive scafar and simple nonscalar types are the keywords used to
declare them: fixed, float, boolean, lateh, char, se~ strinc, actname, lile.

The <type name> for an array declared •array{a .. b) of o· is •array(J,O]", where J is the <type
name> ot a and b. See section 1.5.3 for the derivation.

The <type name> for an enumeration declared enum[Ll,L4..Ln] is enum[Ll,L2,. .. ,ln].

The <type name> for an activation declared activation of P is aclivation[P].

The <type name> for a dynamic type declared dynamic T is dynamic T.

The <type name> for a record type is based on the sequence of field names and <type name>s in
its declaration. For a record declared ·record(F l:Tl, F2:T2, ... , Fn:Tn]" the <type ~ame> is
"re.cord(Fl :TNl, F2TN2, : ··• . Fn:T~n]", where the Fi are lists of field names, the Ti are types, and the
TNt are type names. Bind1ngs tn the declarati on do not appear in the type name. Thus, in the code

Tartan: Notes and Examples

fragment
proc P (var x: r•cord Ca. b: Reil 1 ll; b•iin . • . end:
var y:record[a,b:Real):
var z:r•cord[c.d:Real):

variables y and z have different <type name>s and only y is acceptable as a parameler to P.

-8-

The <type name> for a variant is ·variant[TT,Tl->Vl,T2->V2r··•Tn->Vnr, where TT is the <type
name> of the tag, Ti is the itl"I value of the lag type, and Vi is the <type name> that corresponds to
the ith value of the lag type. As a result, two variant <type>s are the same if they spedfy the same
<type>s for all values of the lag. Th.Js for

type Color - enum [red, green, blue. \jel lo"I:
variant T:Color (on red-> x:lnt on blue -> y:Marid51 onolhers -> z:1rny(l..Sl of · [ntl

the <type name> is •variant(Color, red->lnt, green->array[lnt,lnt), blue->Mark, yellow->array(lnt,lnt~".

The <type name> for a defined type is the type name given in the type delinition, as illustrated
above for Block(„.).

1.5.3. Array Types

The built-in array type is in fact a generic family. Arrays have uniform properties in that every
array is a structure for storing a linear homogeneous fixed-length sequence of values indexed by a
given ordered set of values. However, arrays with different element types or different types ol
indices are distinct types.

This particular generic family of types is so common that Tartan, like most languages, provides
special syntax for it. There is a sei of types pre-defined as "array(lxType,EltType](rr where IxType
is the index type, EltType is the element type, and r is a (sub)range of lxType. The syntax "array(r)
of EltType" is provided as an abbreviation for each such type. Thus "array(LlO) of float" means
"array(int,float](l.. lOt. Its type name, "array(int,tloatr, is written "array[int] of float". Thus if we
have declared

var V: array ll .. 101 of Float
var B: orray (red •. green) of boolean

the generic type of both 8 and V is array, but their <type name>s are differenl The <type name> of
8 is array(int,float], whereas lhe <type name> of V is array(color,boolean).

The type "array(A,8) of T" is an abbreviation for "array(A) of am1y(8) of T•. Similarly, the array
accessor 'i/(i,j)" is an abbrevialion for -V(iXj)".

1.5.4. Oedarations

The attributes of a variable become fixed at lhe time of its allocation. For static variables, this
occurs _ during elaboration of the declaralion. Variables of dynamic types do not themselves have
attributes. The dynamically allocated objeds they refer to do, however, have attributes; these are
supplied whenever a conslructor is execuled

The declaration of a static variable must provide both a <type name> and values for the attributes
associated with that type. For example, the declaration "var V: array (m„n) of lnl", which is an
abbreviation for "var V: array(lnl,lnt](m..n)", computes the current values of m and n to obtain the
range of the index sei, then statically allocales a suitabie block of storage. However, the program
fragment

type Arr !n: lnt) • dyn•mic •rny !1..nl of lnt1
Y•r V: Arr;
V : • Arr!Sl 0;

allocates the variable V with type Arr, no attribules, and all values undelined. The declaration
allocates a reference to V and sets it to nil. The constructor dynamically creates a new object of
type array(lnl) of lnl with subscript range altribule "l..5" and associates this object with variable V.
A subsequent assignment to V might use a constructor with a different bound

1.5.5. Type Checking

The type checking rule for matching aclual önd formal parameters is based on the types (but not
the attributes) ot the parameters. The actual parameter is acceptable iff the <type name> from its
declaration exactl y matches the <type name> of lhe formal parameler.

-9-
Tartan: Notes and Examples

The attributes of the values returned by a funclion invocalion are determined immediately before
calling the function. They must therefore be specified in terms of input values of the function. For
example, if Str is a type with attribute Length, the delinition

func Concat!S, 1: StrlR~Str-: bei:in ••• end;

would not be legal, since the attributes of the functional result are not specified. The following,
however, would both be legal (but would have different meanings):

func Conca t !S, T: S tr l R: S Ir !27l: bei:in • • • end:
tune Concat !S, T: StrlR:Str-!S.Length+T.Lengthl: be,in • • • end;

This simplilies the implementation, but it predudes the definition of functions !hat return values whose
attributes can only be determined during the evaluation of the function. This should not usually be a
stringent constraint: in the worst case a dynamic type may be used to return the value.

1.5.6. Defining Types

A user may introduce a new type into his program with a type definilion. The type definition itself
merely introduces the <type name> and defines the representation of lhe type. Operations are
introduced by writing routines whose formal parameters are ol the newly-defined type. Scope
boundaries, particularly module boundaries, play no role in !he delinition ot the type. There is, as a
consequence, no notion ot lhe complele sei of operations on a type.

A type definilion may be paramelerized with altributes. The bindings in the formal parameter list
must be const or manifest lf a <binding> is omitted, it will be assumed to be consl The names of the
formal parameters of the type are available lhroughoul !he elaboration of the program as constants,
called attributes. They are accessed by treating the <var ident> as a record and !he type attribute as
a const field. Attributes for primitive types are given as part of the type deiinitions.

1.5.7. Operations an New Types

Operations on new types are introduced by routine definilions. These may be either roulines called
w i th normal invocation syntax or definilions lor infix functions. In order to make it possible to wri te
basic operations on the new type, Tartan provides a means of applying operations ol the underlying
representation to objects of the new type. Within the scope in which the type is defined, the
qualifier Rep may be used to indicate that the object named by the identilier it quali fies is to be
treated as if it had the underlying type. lt is not exportable. This allows operations on the new type
to be written using operations on its representation. When no ambiguity arises, the Rep qualification
may be omitted. F'or example, we may write

type Mark • !nt:
tune "+" (a,b: Marklc:Mark; becin Rep'c :• Rep'a + Rep'b end:

Rep qualification is intended to be used within a module in order to wrile primitive operations and lo
extend operators to the new type. II is obviously possible to abuse the facility.

An assignment operator is automatically supplied for user-defined types. Although it may be
invoked with any variable and value of lhe type, it signals the BadAssign exception if the attributes of
its left and right operands are not idenlical or if eomponent-by-component assignment would fail. Sizes
of nonscalars are thus guaranteed to be c:mpalible. Clearly, assignment may be well-defined in cases
where this rufe disallows it. Such assignment operators could be provided if user-defi ned assignment
were compatible with the requi°rements.

When a module is used to encapsulate the definition of a type and its operati ons, the type name
and some of lhe operations must be exported from the module. Types, named routines, field
accessors for records, and variables are exported by including their names in the exports list of the
module. The right to apply infix operators, constnJctors, subscripts, · .all•, or the create command are
exported by including the special names rinfix, reonstr, r subscr, T"all, and rcreate, respectively, in
the exports list. Literals of enumerated types are exported automatically if the types are exported

1.6. Parallel Processes

Parallel proce~se~ are controlled wi th data of !wo types -- activations of processes and aclnamos,
or n~mes of achv atron~. ~n activation variable :nust be an inslantia_tion of a given pr ocess: it may
contarn o:Jt most on~ achvatron of thal process ciuring its lifetime. An actname variable is a pointer to
an acti vation. A srngle actname may be associated with different instantiations of di fferent processes

Tartan: Notes and Examples -10-

from time to time.

Processes are similar to procedures. The syntactic distinction between procedures and processes is
imposed bccause we believe ~he potential for parallel execution should be indicated explicitly in the
program.

Note that aclivati ons and aclnamcs control only the parallel control flow of the program. No
synchronization is supplied with the processes; lhis must be coded explicitly with lhe primitive laiche!>
or with other, nonprimitive synchronization.

1.6.1. Activations

Activations of processes are used to conlrol parallel or pseudo-parallel execution of instances of
the named process. lf P is a process and x is a variable of type aclivation of P, then x can contain an
independently-executing instantiation of P, called an activation of P. An activation of P may be in one
of several states:

- Mint: A mint activation has not yet been started up as a process. The only Operations !hat
can be performed on it are ereatc, NameOf (i.e., the function that returns the aclivation's
name), and the state-interrogalion predicates. A newly-declared aclivation or actnamc is
initialized to the literal minl

- Suspended: A su:;per.ded activation can have no effect on any objects; in essence, it is not
executing and will not execute until it is activated (see be!ow).

- Active: An adive activation is one in which it is feasible for elaboration to take place. lt
may atfect objeds, and its clock may advance.

- Dead: A dead ac!ivation admits of no further elaboration. lt cannot be revived and it can play
no further role in the program. An activation becomes dead when it exits normally, when it
fails to handle an exception raised durin-s its elaooration, or when it is named by a Terminale
command

The extent of an activation variable is delermined by the block in which it is declared. When such
a variable is dec!ared, an activation of lhe named process is instantiated, sei to state mint, and
associated with lhe declared process name. The immedialely enclosing block cannot be exited until all
acti vati ons declared within it are dead or stiil mini. An activation is associated with exactly one
process, but a single process may be instantiated multiple times for different aclivations.

l t x has been declared as an activation of P and is in mint state, the statement Mcreate x(...)"'
creates a new activat ion of P in suspended state. The formals of P are bcund to lhe actuals supplied
in the cr eate in the same way as actuals are bound for a procedure call . lt a process takes a var
parameter, the corresponding aclual parameter must have exlent at least as great as lhe activation's
extent. F or purposes of this rule, an activation passed as a var parameter to a routine is lreated as if
its scope w ere !hat of the process definition. As a result, translators need no dynamic extent checking.

Except tor ·create, all operations on activalions are syntactically routine invocations. These routines
conrol the processes and hence lhe parallelism by changing and interrogating the slate of individual
activations. They are listed in the Tartan Reference Manual.

1.6.2. Fork and Join

The extent rules requi re each aclivation to complete (exit or terminale) or still be mint before the
block in which it is declared can exi l This provides an implicit join operation. A fork can be
obtained with a series of creates and aclivates. For exampie,

be,in
process P { const ><: (n t l ; b•i:in • • . end;
var V: 1rr1y (1 •• 101 of activation of P ;
for i in 1..10 de crul• 'l[i] li): ictivatelP(i]} od

•nd

declares ten adivation!> of a process, us~s c:rea:e to stört them up with different val4es of the input

Tartan: Notes and Examples -11-

variable (using the loop index as the input value as well as to index the array of activations), moves
each activation into ac!ive state, and waits at the end of the block for the activations lo terminale.
After starting the activations af P, the main program may continue with other computation, monitor the
progress of the aclivations, or simply wail tor the activations to terminale.

1.6.3. Activation Names

An actname may name any activation. An aclname variable is not permanently associated with any
particular activation, and there is no requirement about the state of the activation named by an
actname when the extent of !hat actname variable is exiled or terminated This permits routines to
operate on aclivations wilhout knowine what processes they are activations of. For example, it makes
it possible for routines !hat are generally useful for manaeine activations to be defined in a large
scope without requiring all process definitions and aclivation variables to include !hat scope. A single
activation may be named by more than one aclname. There is no dangling reference problem: Even
though the reference (ac!name) may outlive the activalion, the activation will be dead (lerminated or
mini) alter its block is exiled (and thus no unexpecled computalional results can be induced). l Since
the create command cannol be applied to an actname, the process cannot be restarted

Activation variables may not be the objecls of assignmenls and may not appear in resull parameter
positions. Howevcr, each activalion has a namc, of type aclname. This name may be oblained by
invoking the lunclion NameOf on an aclivation. All operations on activations excepl creale extend to
actnames. Thus, Suspend(NameOf(x)) has the same effect as Suspend(x) The special operation Me()
returns the actname ol the current process. In addition, actname variables may appear in assignments.
(Thus users may write programs thal operate on anonymous activations, for example to do
special-purpose scheduling.) The exlenl of an actname variable may dominate the extent of the
activat ion it names. II that situation arises, alter lhe exlent ol lhe activation is exited, the actname will
refer to a terminated process, and no damage can be done.

The Notify operation on aclivalions or actnames signals the Terminale exceplion in the
currently-executing slatement ot the aclivation named by the command. Within the activation in which
it is raised, Terminale is treated like any other exception. This is the only mechanism provided by
Tartan that enables one activation to interrupt another.

1. 7. Unresolved Issues

We did not obtain solutions to all the lronman rec;uirements in the two-month period aflotted to this
design. In this seclion we skelch lhe way we would address lhe unresolved issues.

1. 7 .1. Machine-Oependent Code

Machine-dependent code presenls two issues: delini tion of operalicins and definilion of data. Tartan
will permit separalcly-delined machine-dependent roulines to be incorporated in the same way as
other separate delinitions. This is consistent with the Steelman requiremenl We · have not yet
addressed the problem of machine-dependent declarations (data layout).

1. 7.2. Simulation

We believe Tartan supporls a programmed solution to the simulation requiremenl For example, the
facilities ol Simula 60 can be provided for Tartan programs:

- Tartan activations can serve lhe same function as Simula actlvities.

- A coroutine cafl discipline may be programmed using the routines Activate and Suspend.

- A scheduler !hat manages simulated time can be prowammed, again using operations on
activations.

1 Th:8 activ.ation record ilsell may be allocated in the heap: it does not become eligi ble for garbage
collect1on unt1I all references have been broken. Thus no aclname can become an uncontrclled pointer.

Tartan: Notes and Examples -12-

1. 7 .3. Definition of Integers

In the reference manual we chose fixed as a primitive and defined Int as a special case by
choosing attributes appropriately. We believe it is possible to lreat int as primitive and define Fixed
as nonprimitive by associating range/precision bookkeeping with the operations.

1. 7.4. Lew-Level Input and Output

We included file as a primitive data type but did not specify its properties. Given lhe ability to
write machine-dependent code to access the devices and the ability to use processes to maintain state
(and hence to avoid, for example, re-opening a file for each operation), we believe a wide variety of
l~w-level 1/0 can be implemented effectively.

1. 7 .5. High er-Level Synchronization

Numerous synchronization disciplines have been proposed or are in active use. None of them
clearly dominates the others; none is appropriate in all cases. We have elected to provide a very
primitive synchronization tool, a lalch. Conceptually, a lalch is a spinlock; failure to sieze such a lock
does ·not necessarily release the processor. By choosing a primitive mechanism, we hope to avoid
pre-empting the implementation of higher-level synchronization techniques. We believe alternative
mechanisms can be implemented effectively in Tartan. lndeed, we believe thal lhis is the correct
approach.

Tartan: Notes and Examples -13-

·2. Programming Examples

Several sample Tartan programs are presented here. Seme show the use ot various features of the
language; others provide programmed (nonprimitive) solutions to certain (ronman requirements.

2.1. Simple Static Data ·Type

A circular buffer is implemented in a vector. The definition is generic in the type of the elements;
the length of the buffer is an attribute of the type. This implementation keeps a pointer to the
current head of the buffer (Head) and a pointer to the element one past the current end of the buffer
(Tail). All arithmetic on these pointers is done modulo the size of the buffer.

ceneric module C i „ cu 1 arBu f f er' IT: type] ;
begin
exports Ci rcBuf [Tl,

Clear , Append, Remove, Ful I, Empty,
BufOvf 1:

type, attribute Size
routines
except i on

type Ci rcBu+cTl (5 i ze:! nt l • record CB f:array (0„Si ::e-lJ of T, Head, Ta i 1: 1 ntl ;

exceplion Bu fOv f 1 ;

proc Clearlr.sull C: Circ:Buf(Tll: b•cin C.He<1d:•0; C.Ti!il:·0 end;

proc Append (v1r C: Circßuf(Tl, const Val! Tl;
begin
if Fu 1 1 !Cl then sicn1I BufOvf 1:
C.BflC.Taill :•Val;
C. Tai 1 : • modlC . Tai l+l. C.Sizel:
end;

proc Remove{v1r C:C i rcSufCTl , result Val1 Tl;
begin
assert - Empt •JICI:
Val : • C.Bf!C.Headl;
C.Head :• mod!C.Head+l, C. Sizel:
end;

func Fu 11 !C : Ci rcBuf [Tl IF: boolHn; becin F : • !C.Head • mod{C. Tal 1 +l, C. S J zel 1 end;

func Empty!C:C i rc8uf[TJJE:boole1n; becin E :• !C.Head • C.Talll •nd:

end ! module CircularBuffers

2.2. Simple Dynamic Data Type

We detine a list-processing module. Each list cell contains a value of a specific type; the definition
of the module is generic in this type.

c•neric module Li s tOe f 1 T: type! ;
becin
exporls List [TJ, Oata, Next,

Clear, Insert, Oelete. Last ;
1 type and f i eld na•ee
1 rout ines

type List [T] • dyn1mic r•cord COa ta: T, Nex t : List IT1l :

proc C 1 ear {result L:L ist CTJ 1: becin L : • nil end;

proc lnsert(v1r Elt:List[TJ, Val:TJ:
becin
it E 1 t • nil

lhen EI t : • Liet CTJ' (Val , nill
eise E 1 t. Ne>ct : • Li s t !Tl ' (Va 1 , E 1 t. Ne x t 1

end;

proc Oe 1 et e ! v.r E 1 t: L i ' t !Tl 1 : be_cin usert E 1 t " nil; E 1 t 1 • E 1 t. Nex t end;

func Las t CL:L i st CTJ lp:Li s t [TJ:
begin
P : • L :
if P • nil then while p. Nex t - nil do p : • p. Next od fi;
end;

end ! Module L istOef

Tartan: Notes and Examples -14-

2.3. Selecting Representations

Although Tartan lreats types wilh different representalions as different types, it is possible to use
the variant and case facilities to define generic lypes that provide simiilar types with different
representations. The representation is fixed during translation, when the generic definition is
instantiated.

This example defines two alternative representations of queues. lt has two generic parameters.
The first is the type of the elements being queued, and it is used as in the previous examples. The
second is a manifest constant, which is used to select which represenlation of queues is to be used.
Since the variant is fixed during lranslation, there should be no loss of execulion efficiency.

The two representations of queues are defined in terms of the circular buffers of section 2.1 and
the lists of section 2.2.

c•n•ric modul• QueueDe f IT: type. F: enum CF i x, F 1 exl l ;
begin
nporis Queue [TJ ,

Clear, Enq, Oeq, Empty, Full,
ODvf 1:

modul• Lst is ListOefCTl:
modul• C3f is CircularBuffersCTJ;

type Queue Ci] !Si;:e:[nt) •
vuiant manifest Fx: enum{Fi><,Fle><l :• F

type, attr i bute Si~e
routines
exception

C on Fi>< -> Circ9uf(TJ !Size) on Fle>< -> Li,t[TJ l

exceplion QOvfl; ! can anly be raised an Queue!Fi><I

proc C 1 ear (resull 0: Queue CTJ l :
b•cin
c:an Fan Fi>< -> r;:learlO(Fi><I) on Flex -> Clear(Q(Flexll Hac
•nd:

proc Enq (var 0:
becin
cn• F

Queue CTJ , consl Va 1 : Tl :

an Fix -> Append(Q(Fixl, Val! 1on8uf0vfl -> 1i1n1! QOvfl)
an Flex -> [nsert{Last(Q(Flexll, Val)
HK

•nd;

proc Oeq(var 0 : OueueCTl. ruull Val: Tl;
b•cin
cn e F

on F i x -> Remove(Q(Fi><J, Val)
on F l ex - > becin Val :• Q(Flexl .Data; Oelete(Q(F lex)) end
euc

end:

func Emp t y<O:OueueCTJ IE:boolHn:
begin
cn • F

on Fix -> E :• Empty!Q!F i xll
on F 1 e x -> E : • (Q !F 1 e>< J • nill
asac;

func Ful 1 !Q:OueueCTllE : baolHn;
begin
cas• Fon Fi>< - > E : • Full CQ!Fi>cl.Fl>·Rep) on Flex -> E I• lalse Hac
end;

end ! module OueueOe f

Tartan: Notes and Examples -15-

2.4. Safe Data

Tartan does not provide indivisible operators for fetching and storing values. lt parallel processes
are operating, the programmer needs to take precaulions lo ensure lhe indivisibility of these
operations. This program illustrates a solution that will work well with types for which fetching and
storing the whole value makes sense.

becin

modul• Comp 1 ex is usumed !Comp 1 e><L i bl ; Comp 1 ex e><por t s type Co111p

&•neric module SafeOataCT:typel:
begin
exports 5-Jf'!I CTJ, Get, Put; 1 type na••· fetch and store raut ines

type Safe [TJ • record CLk: latch, Oatat Tl:

func Get(var S:Safe[TJJR:T: b•cin Lock!S.Lkl; R :• S.Oata; Unlock!S.Lkl end:

proc Put(var S:Safe[TJ, v.r R:TI; becin Lock!S.Lkl; S.Oata r• R; Unlock!S.Lkl end;

•nd: ! module SafeOata

module SafeComplex is SafeOataCComp]:

v1r x,y,=: Safe(Compl;
Put!x, Camp' !1.,0.ll:
Put(y, Comp'(0„l.Jl;
Put!z, Getl><l+Getlyll;

end:

Functlon Ge! lakes a Safe[T) (here, a Safe[Comp] as a var parameter. Since the Lk field is not
exported from module SafeOata, Ge! may use the procedures Lock and Unlock on that lalch in order to
protect the fetch.

Procedure Put specifies var parameters in both positions. Even lhough it does not alter R, a const
specification would cause a copy.

The generic SafeOata module is instantlated specifically for numbers of type Comp (the type
exported by module Complex).

In the main program, lhe Comp constructor is used lwice to generale values !o store in the
variables. The newly-conslructed values in the calls on Put are accessible only in this program, so
the cor.structor it5elt dces not need to be lndivisible. In the lhird assignment (call on Put), the
addition is the addition fcr type Comp exported by module Complex.

Tartan: Notes and Examples -16-

3. Optional Additions to the Language

ln the course of the Tartan design, we encountered a number of features \hat seemed attradive but
"could not be admitted because they violated either lhe lronman requirement itself or lhe rule of
minimality \hat we adopted for the design experiment. We list some of these here, indicaling what
they might add to the language and what they might cosl

Abbreviations for compound names. The import rule as stated can lead to the need for a substantial
amount of qualification because all exported names, especially of types and routines, are potentially
available pervasively. A renaming facility would reduce the need for explicit qualification. The
renaming facility might involve renaming on import, or it might be a general with-clause. lt would add
convenience and probably improve the readability of the language. However, it would introduce a new
construct in the language and introduce a new way to create aliases.

Less-than-gtobat storage pools. As the language is defined, all dynamically allocated variables share
the same heap. lt would be possible to add the ability to declare a local sub-heap (zone) on the
stacl<. and allocate designated dynamic variables from it instead There might be several zones active
at once, with certain groups of variables sharing different ones. Alternatively, zones might be
associated with blocks and all dynamic types defined in a block would share storage from a common
zone. The cost is an additional mechanism and more complex scope rules. The benelit would be more
control over dynamic variables and possibly more efficient storage recovery.

Resumable and paramelerized exceptions An interrupt-style exception that has the semanlics of a
procepure call (resuming where it was raised) would be a useful thing to add. lt would provide better
control over many exception situations. Almost all the necessary mechanism must already be there to
deal with the Notify command (i.e., the Terminale exceplion). In addition, the ability to pass paramelers
would be helpful, although it would complicate lhe synlax.

Richer control construcls. A loop exit and explicit function relurn could reduce lhe number of golos
and awkward conditional statements in programs. A richer collection of loop structures (downward
counting, repeat with exilif, and so on) would add convenience. However, each such construct adds to
the size of the language.

Assertions in dedarations. As presently formi.Jlated, assertions are statements. lt could be useful to
permit them in declarations in order to check values of altributes and to ~ard initialization
expressions. lt would, however, require additional complexity in the syntax.

User-definable assignmcnt. As noted in section 1.5.7, a default definition of assignment cannot
anticipate all reasonable type definitions and all situations in which assignmenl makes sense. Only the
programmer has the knowledge to do so. Tartan already permits infix operators lo be overloaded for
new types: there would be liltle additional cost for allowing · :·· to be overtoaded as weil.

References

[l] Department of Defense Requiremenls for High Order Computer Programming Languages,
Revised · rronman•, July 1977. Appeared in SIGPlan Notices, 12, 12, December 1977 (pp.
39-54)

[2] Mary Shaw, Paul Hilfinger, Wm. A. Wulf, IARTAN Language Design for the Jronman
Requirement: Reference Manual·, Carnegie-Mellon University Technicat Report, June 19 78.

....
~
CO
0

"' 0
E
0 ...
Ji
0

COii=lNIE:R

Dornier System GmbH

, .

A N H A N G 8

6 JUNE 1978

SET OF SAMPLE PROBLEMS FOR PHASE ll OF lHE DESIGN CONTRACTS OF .THE
000 HOL COMMONALITY EFFORT.

INTROOUCTION :
•~=o•c-=E•CD•s

THIS SET OF SAMPLE PROBLEMS HAS BEEN,SELECTED FROM A LARGER SET OF PROPOSALS
MAINLY ON THE BASIS OF THE FOLLDWING CONSJOERATIONS:

- THE RESULTING PROGRAMS SHOULD BE LARGE ENDUGH TO ALLOW TO JUOGE THE
'APPEARANCE' AND THE 'READABILITY' OF PROGRAMS

- THEY SHOULD ALSO BE OF SUFFICIENT COMPLEXITY TO TEST INTERACTIONS
BETWEEN LANGUAGE FEATURES

- ANO,LAST BUT NOT LEAST,THEY SHOULD HAVE SOME RELATIONS TO ACTUAL
APPLICATJONS.

AS TO THE AREAS TO BE INVESTitATED,THE MAIN EMPHASIS WAS LAIO UPON
NOVEL LANGUAGE FEATURES,LIKE E.G. PARALLELISM,EXCEPTION HANDLING,AND NON- .
STANDARD 1/0.

LIST OF SAMPLE PROBLEMS :

1 POLlED ASYNCHRONOUS INTERRUPT
2 PRIORITY INTERRUPT SYSTEM
3 A SMALL FILE HANDLING PACKAGE
4 OYNAMIC PJCTURES
5 A DATABASE PROTECTION MODULE
6 A PROCESS CONTROL EXAMPLE
7 ADAPTIVE ROUTING ALGORITHM FOR A

NODE WITHIN A DATA SWITCHING NETWORK
8 GENERAL PURPOSE REALTIME SCHEOULER
9 OISTRIBUTED PARALLEL OUTPUT
10 UNPACKING AND CONVERSION OF DATA

STRUCTURING OF EXAMPLES:
========================
THE OESCRIPTION OF AN EXAMPLE CONTAINS :

1 A STATEMENT ON THE PURPOSE OF THE EXAMPLE
2 A DESCRIPTION OF THE PROBLEM TO BE SOLVED
3 ASSUMPTJONS ABOUT THE UNDERLYING CONFIGURATION

· 4 SOME GUIDELINES FOR THE SOLUTION

EX 1

POLlED ASYNCHRONOUS INTERRUPT

PURPOSE:

AN EXERCISE TO PROGRAM A DEVICE AND INTERRUPT HANDLER RELYING
PRIMARILY UPON POLLING TECHNJQUES.

PROBLEM:

1 A CHANNEL HANDLER WILL EXPECT INPUT BY THE FUNCTION PROCEDURE CALL

'read(DEVJCE-NUMBERl'

ANO RETURN A CHARACTER FROM THAT DEVICES' INPUT-STREAM.

2 THEN SHOULD BE A MINIMUM DELAY FROM THE TIME A CHARACTER IS JNTROOUCED
l·NTO THE CIRCULAR BUFFER ANO THE TIME IT MAY BE ACCESSIBLE BY A 'read'.
(THE INPUT WILL BE DISPLAYED ON THE APPROPRIATE CRT BY THE read!NG PROCESS.
ÄPPARENT SIMULTANEITY OF HITTING THE KEY AND APPEARANCE ON THE CRT IS
DESJREO,I.E. THE SYSTEM SHOULD BE REASONABLY EFFJCIENT AND THUS PROVJDE
GOOO RESPONSE-TIME.)
3 NO ~NPUT SHALL BE LOST.

ASSUMPTJONS

1 A 16-BT,BYTE ADRESSABLE MACHINE

2 AT LEAST 10 ASYNCHRONOUS INPUT DEVICES (KEYBOARDSlSHARING I/O CHANNEL0.
1

3 A HARD-WIRED CIRCULAR BUFFER OF 128 BYTES LOCATED AT BYTE-LOCATION
500f8l. TWO POINTERS ARE PROVIOEO IN CONJUNCTION WITH THE CIRCULAR
BUFFER:
headpoi nter - A POINTER TD THE MOST RECENT INPUT
tai lpointer - A POINTER TO. THE TAIL DF·THE CIRCULAR INPUT QUEUE

4 THE I/O CHANNEL WILL INITIALIZE BOTH THE HEAD- AND THE TAIL-POINTER TO
. THE SAME LOCATION WHEN THE SYSTEM IS RESET. '

5 A DIFFERENCE IN THE CONTENTS OF THE HEAD- AND THE TAIL-POINTER INDICATES
THAT INPUT HAS OCCURREO. MAINTENANCE OF THE HEAD-PDINTER IS THE . .
PROVINCE OF THE I/O CHANNEL. MAINTENANCE DF THE TAIL-PDINTER IS THE PRDVINCE
OF THE CHANNEL HANDLER.

6 NO INTERRUPT SHALL OCCUR WHEN INPUT IS CLEAREO EXCEPT AS NOTED IN 7 BELOW.
THE HEAD-POINTER IS INCREMENTEO AND THE INPUT STORED IN TWO BYTES SPECIFIED BY
THE ADDRESS CONTAINED IN THE HEAD-POINTER.

7 AN INTERRUPT WILL OCCUR WHEN THE HEAO POINTER IS POINTING TO THE INPUT­
ENTRY JUST BELOW THE ENTRY INDICATED BY THE TAIL POINTER TO INDICATE THAT
PROCESSJNG MUST-OCCUR TO PREYENT LOSS OF INPUT.

8 THE INTERRUPT LOCATJON FOR CHANNEL 0 IS 440(8) AND IS TWO BYTES IN LENGTH
TO SPECIFY THE LOCATION OF THE INTERRUPT HANDLING ROUTINE.

9 AN INTERRUPT CAUSES AN IMPLICIT cal 1 OF THE SPECIFJED ROUTINE. WHEN PRO­
CESSING OF THE INTERRUPT HAS SEEN COMPLETED,A return WILL CAUSE THE INTER­
RUPTEO PROCESS TD RESUME.

10 TO SIMPLIFY MATTERS,ASSUME
' 1

1) THE CONTEXT DF THE INTERRUPTED PROCESS IS
AUTOMATICALLY SAYED AND RESTORED, THAT

2) NO PRIORITY INTERRUPT LEVELS NEEO BE CONSIOERED;ANO
31 NO CLEARING OF THE INTERRUPT IS REQUIREO.

3.SCREMARK)
EACH INPUT CONSISTS OF TWO BYTES:
BYTE 0 CONTAINS THE ascii CHARACTER
BYTE 1 CONTAINS THE DEVICE IDENTIFIER,0-9 TO lDENTJFY THE SENDING

KEYBOARD .

GUIOELINES

IT SHOULD BE TRIED TO FORMULATE THE PRDGRAM AS HARDWARE-INDEPENDENT AS
POSSIBLE AND CLEARLY SEPARATE THE INTERFACE TO THE HARDWARE-DEPENDENT .
INFORMATION.

EX 2

PRIORlTY INTERRUPT SYSTEM

PURPOSE :

AN EXERC!SE TD PROGRAM AN INTERRUPT KERNEL SUPPORTING FOUR
LEVELS OF PRIDRITY

PROBLEM :

AN INTERRUPT HANDLING MECHANJSM SHALL BE DESCRIBED WITH THE FOLLOWING
FUNCTIONAL CAPAB!LJT!ES:

1 HIGHER PRIORlTY INTERRUPTS SHOULD BE ABLE TO PREEMPT LOWER PRIORITY
INTERRUPT PRDCESSES.

2 AS MUCH PROCESS!NG AS POSSIBLE SHOULD BE DONE WITH HJGHER PRIORlTY
INTERRUPS ENABLED . (REMARK: lN GENERAL, INTERRUPTS SHOULD ONLY BE OISABLED
FOR THE SHORTEST POSSIBLE TJMEl

3 A PROPER MECHANISM FOR THE RESUMPTION OF PROCESSJNG OF PREEnPTEO LOWER
LEVEL INTERRUPT(HANOLERIS MUST BE PROVIDEO.

4 TO SlMPLIFY MATTERS THE BODY OF EACH INTERRUPT HANDLER MAY BE SIMULATED E.G.
BY A COUNT OF THE INTERRUPTS FOR THAT PRIORITY LEVEL.

ASSUMPT!ONS :

·1 THERE ARE FOUR INTERRUPT PRIORITY LEVELS: 0,1,2,3.
THE LOWER THE NUMBER , THE HIGHER THE PRJDRITY.

2 THEnE 15 AN INTERRUPT VECTOR LOCATED AT 20(8) WITH 4 BYTES FOR EACH
PRIORITY LEVEL:
20(8l:PR JORITY 0,24(8l:Pl,30(8J:P2,34(8l:P3

THESE LOCATIONS SPECIFY THE ADDRESS OF THE INTERRUPT HANOLER FOR THE CORRE­
SPONDI NG PRJORITY LEVEL.

3 THE INTERRUPT ROUTINE IS INVOKEO BY AN IMPLICIT CALL WHEN THE INTERRUPT
OCCURS.
AT COMPLETI ON OF THE HANDLER'S PROCESSING,A return IS TO BE PERFORMED.

4 . TO SIMPLIFY MATTERS,ASSUME THAT THE INTERRUPTED PROCESSES' CONTEXT
IS AUTOMATICALLY SA VEO AND RESTDRED UPON cal 1 AND return .HOWEVER,THE
INFORMATION CONCERNING THE ENABLEMENT AND OISABLEMENT OF INTERRUPTS IS
NOT PART OF THE CONTEXT.

5 INTERRUPTS ARE ENABLED AND DISABLED WiiH A 'SET INTERRUPT INSTRUCTION':

sin ~OPERAND>.

THE INTERRUPTS TD BE ENABLED/DISABLED ARE SPECIFIED BY BITS 0-3 IN THE WORD
ADDRESSED BY THE OPERAND.THE BIT FJELDS ARE:
BIT 01LSBJ : PRIDRITY 0,BIT 1 : PRIDRITY 1 ,ETC.

THE VALUES OF THESE FJELDS ARE:
0 : DISABLE 1 : ENABLE

'
IN ORDER TO OISABLE ALL INTERRUPTS,PERFORM AN JNSTRUCTION
sin DISABLE ALL,WHERE THE CONTENTS OF DA=0

6 NO CLEARING OF THE INTERRUPTS JS REQUIRED.

GUIDELINES :

SAME AS FOR EXl. IT SHDULD ALSO BE EASY TO REPLACE THE BODIES OF THE
INTERRUPT-HANOLERS. IE.G. AT RUNTIME, TO ALLOW FOR FLEXIBLE REACTIONS TO AN
INTERRUPT,ACCORDING TO CIRCUMSTANCESJ

EX 3

A SMALL FILE HANDLING PACKAGE

PURPOSE :

AN EXERCISE TO SHOW HOW HlGHER-LEYEL 1/0 FUNCTIONS CAN BE
CONSTRUCTED AND USED.

PROBLEM : "
PROGRAM A FILE SYSTEM ACCORDING TO THE FOLLOWING SPECIFICATIONS:

1 FILES ARE BU I LT BY PRODUCERS WHO CAN PERFORM THE FOLLOW 1 NG OPERA T 1 DNS: .

create l FILENAME,ESTIMATEO-SIZEl
~rite (FJLENAME,DATA-AREA.l
end~rite l FILENAME l

THE OATA,CONTAINED IN 'DATA-AREA' ARE WRITTEN ON THE FILE WITH 'FILENAME'.
'DA T A-AREA' CAN BE ANYTH 1 NG FRDM A S 1 NGLE VAR 1 ABLE TO AN ARRAY OF

STRUCTURES IN MEMORY.

FILES ARE SEQUENT l AL, SO EACH UR 1 TE AODS A RE CORD TO THE END. ·
end~rite · SIGNALS COMPLETION OF WRITING.

2 FILES ARE READ B Y DNE OR MORE CONSUMERS UHO USE THE FOLLOW ING OPERA T 1 ON:

read (FILENAME,RECORO-NO.,OATA-AREA)

HERE,OATA ARE READ FROM A.GIVEN RECORD FROM FILE 'FILENAME'.

3 ONCE ALL REAOING IS COMPLETE,THE FILE MAY BE DESTROYED BY CALLING:

. destroy < FILENAME J

EXCEPTIDNS SHALL BE RAJSED IN AT LEAST THE FDLLOUING CASES:

A) IF A PRODUCER WANTS TO CREATE A FILE WITH AN ALREAOY EXISTING FILENAME

8) IF A USER WANTS TO WRITE ON A NDNEXISTENT FILE .

Cl IF A CONSUMER WANTS TO REAO .FROM A NONEXISTENT FILE DR FROM AN EXISTING
FILE WITH A NONEXISTENT RECORD NUMBER

Dl IF A FILE SHALL BE DESTROYED WHILE IT IS STILL USED BY. SOMEBDDY ELSE.

ASSUMPTIONS :

ASSUME A DISK AS STORAGE MEDIUM.

GUIDELINES :

THE DESIGN SHOULD PREYENT DEADLOCK OF FILE STORAGE,ALLOW DISK OPERATIONS
TOBE SCHEDULED ACCORDING TD ANY SCHEOULE (WHERE THE SCHEDULER GOES,SHOULO
BE INDJCATEDl,AND PREYENT USERS FROM ACCESSING ANYTHING BUT THE ABOVE FIVE
OPERATIONS.

EX 4

OYNAMIC PICTURES .

PURPOSE :

AN EXERCISE TO SHOW HOW A GRAPHIC DISPLAY OF A DYNAMIC SITUATION
CAN BE PRDGRAMMED.

PROBLEM :
.
'

ON A DISPLAY SCREEN A RECTANGULAR PATTERN OF E.G.10 HORIZONTAL
AND 10 VERTICAL LINES SHALL BE DRAWN. !ONE MIGHT ALSO IMAGINE THAT THE
BACKGROUND ISA SIMPLIFIED MAP.l

WITHIN THIS GRID TWO MOVABLE OBJECTS SHALL BE SHOWN. THEY SHALL BE
OISCRIMINATED EITHER BY COLOR DR BY SHAPE.
THE SPEED AND DIRECTION OF EACH OBJECT SHALL BE CONTROLLEO BY AN INPUT­
DEVICE,E.G.A JOYSTICK.
THERE SHALL BE A RESET-BUTTON, WH! CH ALLOWS TO BRl"NG THE OBJ!::CTS 1 NTO
SOME PREDEFINED POSITION AND A START-BUTTON,WHICH CAUSES THEM TO MOVE.
I F THE OBJECTS COLLI DE, THEY SHALL START' TO BLINK ANO, AFTER SOME SECONDS,
RETURN TO THEIR HOMING-POSITION . THIS SHALL BE EQUIVALENT TO A reset •

· ASSUMPT I DNS :

THE 'start' AND THE 'reset' BUTTON SHALL BE CONNECTED TO THE INTERRUPT­
HANDLING MECHANISM OF . THE UNDERLYING SYSTEM IN A WAY THAT DIFFERENT INTERRUPTS
OCCUR WHEN DIFFERENT BUTTONS ARE PRESSED.

THE CONTROLLING INPUT DEVICES SHALL BE PURELY PASSJVE,I.E.THE POSITION OF THE
STICK Cleft,right,forward,reversel AND ITS DEVIATION FROM 'POSITION ZERO', ·
CONTROLLING THE SPEED OF THE OBJECTS,HAVE TOBE READ IN EXPLICITELY BY THE
PROGRAM. THE POSITION DF THE INPUT-DEVICE SHALL ·BE ACCESSIBLE TO .THE PROGRAM
VIA TWO 16-BIT REGISTERS CTWO BYTESl,ONE FOR EACH COORDINATE. EACH BYTE
SHALL CONTAIN A SIX-BIT INTEGER NUMBER CRIGHT AOJUSTEOJ WHICH REPRESENTS
THE DEFLECTION IN THIS PARTICULAR DIRECTION IN THE MOMENT OF READ-IN.
THERE EXIST ALL KINOS OF 'REASONABLE COMBINATIONS' OF THESE VALUES,
E.G. 15right-60for~ard ,561eft-10reverse .THE CONSTRUCTION OF THE
HARDWARE SHALL BE SUCH THAT •·uNREASONABLE COMB 1 NA Tl DNS' CANNOT OCCUR, LI KE E. G.
101 eft-20r i ght.

GU IOELI NES :

THE HARDWARE CHARACTERISTJCS OF THE DISPLAY-DEVICE WERE MAINLY LEFT OUT
TO PREVENT THE SOLUTIONS FROM BECOMING TOD LENGTHY.

THE ALGORITHMS SHALL BE INDEPENDENT OF THE ACTUAL CHARACTERISTICS
OF THE ·DISPLAY OEVICE,E.G.IT SHALL NOT MATTER WHETHER THE DISPLAY DEVICE

HAS A VECTOR GENERATOR DR WHETHER IT IS JUST ABLE TO PLOT RANOOM POINTS,
WHETHER THE OBJECTS CAN BE CREATEO BY A PATTERN GENERATOR,
OR WHETHER THE~ HAYE TO BE PUT TOGETHER FROM POINTS ANO/OR LINES.
THE NECESSARY HARDWARE OEPENDENCJES SHOULO NEYERTHELESS BE CLEARLY IDENTIFIEO
AND AS WELL LOCALIZEO AS POSSIBLE. . .·
THE PROGRAM ·sHALL BE WRJTTEN ANO STRUCTURED IN A WAY THAT IT WILL WDRK.
WITH THE MOST PRIMITIVE DISPLAY-HAROWARE.E.G. A RANOOM-POINT DISPLAY,WHICH HAS
A PRECJSJON OF 10 BITS FOR EACH COOROINATE.BUT THAT THE RDUTINES NECESSARY FOR
SJMULATJNG MORE COMPLEX DISPLAY CAPABJLITIES CAN BE EASILY REMOYED.

TO SIMPLIFY MATTERS.IT CAN BE ASSUMED THAT THE LOWEST LEVEL OF OUTPUT­
ROUTINES NEED NOT BE INCLUDEO IN THE'EXAMPLE,I.E.AS FAR AS THE PROBLEM fS
CONCERNED. THE OUTPUT SHALL BE REGARDED AS COMPLETED.AS SOON AS THE COORDINATES
OF POINTS (LINES.OBJECTS,E.T.C.JHAYE SEEN DEPOSITED AS INTEGER NUMBERS IN THE
APPROPRJATE BUFFERS . .

IT IS LEFT TO THE DESIGNER HOW HE CHOSES TO IMPLEMENT THE GRAPHIC REPRESEN­
TATION,E.G. BY FORMATTJNG PROCEDURES(SIMILAR TD CHARACTER FORMATSJDPERATING
ON BUILT-IN DATA TYPES OR BY SPECii\-DATA STRUCTURES.
IT IS ALSO LEFT TO HIM HOW HE WANTS TO IMPLEMENT THE EMERGENCY REACTION,
EG.SV A SOFTWARE-INTERRUPT DR BY EXCEPTJONS.

EX 5

A DATABASE PROTECTION MODULE

PURPOSE :

AN EXERCISE TO DEMONSTRATE HOW COMPLEX SYNCHRONIZATION MECHANISMS CAN
BE CONSTRUCTED ON USER LEVEL.

PROBLEM :

A OBMS SHALL CONTAIN A MODULE WHICH CONTROLS ACCESS TO GIVEN DATA AREAS.

THE USER C DR A RUNNING PROCESS } SHALL BE ABLE TO INDICATE WHETHER HE
REOUIRES EXCLUSIVE ACCESS TO A CERTAJN PART OF A DATA BASE ('DATA-SET'} DR
WHETHER HE lS WILLING TO SHARE THIS RESOURCE WITH OTHER USERS CE.G.FOR
READING) .

THE RESPECTJVE OPERATIONS SHALL LOOK LIKE THE FOLLOWING:

exclus ive (OATA-SET-NAME,PREEMPTJON-PARAMETERl;

shared CDATA-SET-NAME,PREEMPTION-PARAMETERl;

BY THE FOLLOWJNG OPERATION THE USER SHALL BE ABLE TO INDICATE THAT HE NO
LONGER WANTS TO USE THE DATA-SET:

free CDATA-SET-NAMEl ;

IT SHALL BE POSSIBLE TO SPECIFY,EITHER BY AN EXECUTABLE· STATEMENT AT ANY TIME
DR BY A KIND OF DECLARATION AT SCOPE ENTRY DR AT COMPILE-TIME:

A> WHETHER AN EXCLUSJVE RESERVATION HAS PRIORITY OVER A SHARED RESERVATION

8} HOW MANY USERS MAY SHARE A RESOURCE
CTHIS NUMBER MAY E.G.BE LIMITED BY THE LENGTH OF SOME WAITING QUEUESl

Cl WHICH USERS MAY EXECUTE WHICH KIND OF ACCESS

0} WHETHER PREEMPTION IS POSSIBLE ANO,IF NOT,WHETHER
AN EXCEPT ION SHALL BE RAISED IN CASE DF AN ATTEMPT TO USE THE PREEMPTION
PARAMETER .

El WHETHER DIFFERENT USERS HAVE DIFFERENT PRIORITJES,ANO,IF SO,WHICH ONES

F) WHETHER THE DEMANOI NG PROCESS SHALL JUST WAIT FOR THE AVAILABILITY
OF THE DESIRED RESOURCE DR WHETHER IN THIS CASE AN EXCEPTION SHALL BE
AAISED TO ALLOW FOR EVASIVE ACTION.

NOTE THAT 'USER' MAY IN THIS EXAMPLE ALSO ALWAYS MEAN :'RUNNING PROCESS'.

THE MODULE SHALt BE CODED IN THE COMPLETE FORM IT WOULD REQUIRE TO PUT IT
INTO A LIBRARY.

PROPER PROCEDURES FOR CLEANUPS SHALL BE PROVIOED IN CASE OF PREEMPTlON.

ASSUMPT!ONS :

NO SPECIFJC ASSUMPTIONS AS FAR AS THE HARDWARE IS CONCERNEO.

GUIDELINES :

IT IS THE IMPLEMENTOR'S OPTION WETHER HE PREFERS.TO PROVIOE ONE VERY GENERAL
MODULE W!TH ALL THESE CAPAB!LIT!ES OR .WETHER HE WANTS TO USE GENERiC
FACILITIES TO CREATE MODULES WITH A PROPER SUBSET OF THE FUNCTIONALITIES
DEPENDENT OF THE ACTUAL REQU!REMENTS AT THE POINT OF INSTANTIATION.

EX 6

A PROCESS CONTROL EXAMPLE

PURPOSE :

AN EXERCISE TO TEST lNTERACTIONS BETWEEN PARALLEL PROCESSING AND EXCEPTION
HANDLING.

PROBLEM :

ASSUME FOUR PROCESSES:

process a WHICH READS IN DATA FROM THE ENVIRONMENT AND STORES THEM
IN A BUFFER. AREA

process b WHJCH PROCESSES THE DATA IT FINDS IN THE BUFFER AREA ACCORDING TO
SOME ALGORJTHM AND STORES THEM IN A 'RESULT AREA'.

process c WHJCH PRODUCES OUTPUT AS A CONSEOUENCE OF THESE DATA
lEITHER IN HUMAN-ORIENTEO FORM DR AS CONTROL-OUTPUT FOR THE PROCESS
TO BE ·CDNTROLLEDl

process d MONITORS AND CONTROLS THESE THREE {AND POSSIBLY OTHERl PROCESSES
AND INTERACTS WITH THE OPERATOR VIA A KEYBOARD CONSOLE.

IT SHALL BE FURTHER ASSUMED THAT process a AND process b JNTERACT IN THE
FOLLOWJNG SPECIFIC WAY: .

THE BUFFER IS ORGANIZED AS A 'DOUBLE-BUFFER',l.E.,AFTER ONE OF ITS TWO AREAS
HAS BEEN FILLED BY process a,process b IS NOTIFJED AND STARTS TO READ OUT OF
THE BUFFER. process a CONTJNUES BY DEPOSJTING DATA IN THE SECDNO BUFFER AREA .
IF TH IS IS FULL,process a TRIES TO DEPOSIT DATA IN THE FIRST AREA AGAIN.
pr oce ss b,IN TURN,NOTJFIES proc~ss a AFTER HAVJNG READ ONE DATA AREA.

IT 15 ILLEGAL TO READ A BUFFER AREA WHJCH HAS NOT PREVIOUSLY SEEN FILLED
AND TO WRITE INTO A BUFFER AREA WHICH HAS NOT SEEN COMPLETELY REAO lEXCEPT
IN THE IN ITIAL IZATION PHASE l.

THE PROGRAM SHALL BE STRUCTUREO IN A WAY THAT IT IS POSSIBLE TO REPLACE
pr ocess a BY APPROPRJATE HARDWARE WJTHOUT HAVING TO CHANGE THE PROGRAM PARTS
FOR PROCESSES b, c, ANO d •

·IT SHALL ALSO BE POSS IBLE TO TERMINATE process a AND b AT ANY TIME
WITHOUT LOSING OATA, I . E.BEFORE TERMINATION A CLEANUP OPERATION SHALL BE INVOKED
WHICH CAUSES PROCESSING OF ANY REMAINING DATA IN EITHER OF THE TWO BUFFER
AREAS.

ASSUMPTIONS :

NO PARTICULAR ASSUMPTIONS AS FAR AS HARDWARE IS CONCERNED.

THE BUFFERS AND THE 'RESULT AREA' CAN BE ORGANIZED AS ARRAYS.

GUIDELINES ;

TO SIMPLIFY MATTERS,IT CAN BE ASSUMEO THAT ACTUAL INPUT-OUTPUT ,I.E. THE
COMMUNICATION WITH THE HARDWARE.AS WELL AS THE PROCESSING OF THE DATA IN
process b IS OONE BY GIVEN LIBRARY ROUTINES.
THE ALGDRITHM IN process d MAY ALSO BE OESCRIBED IN A HJGHLY SUMMARIZED
FORM,BECAUSE THJS JS NOT WHAT THE EXAMPLE JS TO TEST.

1 •

EX 7

ADAPTIVE ROUTING ALGORITHM FOR A NODE WITHIN A DATA SWITCHJNG NETWORK

PURPOSE :

TEST FOR LANGUAGE SUITABILITY FOR MULTJCOMPUTER AND COMMUNICATlONS
APPLICATIONS.

i
\

PROBLEM :

Develop the program for a multiprocessor within one node of a
data switching network to maintain the tables of
ll distances,
21 minimum delay time, and
31 routing for the following adaptive routing ~lgorithm:

Each node in a network maintains a table of distances and a table
of m1n1mum delay t imes between itself and il 1 other nodes. The
d i stance metric is the minimum number of hops required to reach
each other node. Both tables are maintained through updates in
the form of table exchanges which occur only between neighbor
nodes (nodes of distance, onel. Each node maintains a routing
table which directs routing through that neighbor node which
achieves the minimum delay time.

In parallel with , and at the same periodic rate as this computing.
process, separate comput1ng processes at each node are computing
the mi nimum delay times to neighbors; and reading into computer
memory the updated distance table of each neighbor, and the
updated minimum delay time table of each neighbor. Initial ly
each node knows only the distance to each neighbor, which is one,
and the minimum delay time to each neighbor. Dther distances and
m)nimum delay times are initial ly considered infinite. Each node
i teratively bui lds up its own distance and m1n1mum delay time
table~ from the distance and minimum delay time tables exchanged
with its neighbors, and updates tables containing such
informati on about itself. Other computing processes transmit
this information between such neighbors. Hence, the routing
table at each node is established and periodical ly updated
adaptively from the minimum delay times.

When a 1 ink is broken or established, a separate computing
process at each of the two former or new neighbors, corrects the
distance and minimum delay time tables.

The reason a distance table must be mined is that if the
network is disconnected the algorithm causes the distance between
disconnected nodes to increase without limit. Thus whenever the

distance between two nodes becomes greater than the number of
nodes in the network, this distance and minimum delay time is
considered inff~ite, and the node is considered unreachable.

In the example program, consider that the number of nodes In the
net~ork, the neighbors of the programmed node, and the periodic
Update interval are constants known at compi le time.

ASSUMPTlONS :

NONE AS FAR AS THE HARDWARE IS CDNCERNED.

_GUIDELINES:

THE ACTUAL INTERCHANGE BETWEEN THE NOOES CAN BE ASSUMED TO BE PERFORMED
BY GIYEN llBRARY ROUTINES

EX 8

GENERAL PURPOSE REAL-TIME SCHEOULER

PURPOSE :

AN EXERCISE TO TEST THE POSSIBILITIES FOR RELATING COMPUTATIONAL
PROCESSES TO REAL TIME.

PROBLEM :

A LIBRARY MODULE SHALL BE WRITTEN WHICH ALLOWS TO SCHEDULE COMPUTATIONAL
PROCESSES IN ACTUAL REAL TIME. THE NUMBER OF THESE PROCESSES SHALL BE
VARYING,DETERMINABLE AT LINK-TIME.
THE SCHEDULER SHALL RECEIVE THE 'TICKS' OF THE REAL-TIME CLOCK OF THE SYSTEM
CE.G.BY REACTING TO THE RESPECTIVE INTERRUPTlANO TRANSFORM THEM INTO ACTUAL
REAL TIME,E.G.BY APPLYING THE PROPER COMPILE-TIME CONSTANTS.

TO S!MPLIFY MATTERS,THE TIME SPAN WHICH CAN BE HANDlED BY THE SCHEDULER,MAY
BE RESTRICTED TO 24 HO.URS, I .t.ALL TIMES WILL BE COMPUTED MODULO 24 HOURS.

THIS 'REAL TIME' SHALL BE ACCESSIBLE TO THE PROGRAM BY THE COMMANO

time lOPERANDl

WHICH SHALL DEPOSIT THE TIME lAT THE POINT IN TIME THE OPERATION IS EXECUTEOl
IN THE LOCATION INDICATED BY 'operand' AS AN ascii CHARACTER STRING W!TH
THE FOLLDWING CONVENTIONS:

FIRST TWO CHARACTERS: HOURS
SECOND TWO CHARS : MINUTES
THIRO TWO CHARACTERS: SECONDS

BUT THE MAIN PURPOSE OF THE SCHEOULER SHALL BE THE INITIATION OF THE
EXECUT 1 ON OF COMPUT AT 1 ONAL PROCESSES ACCORD 1 NG TO PREDEF 1 NEO CONDI Tl ONS
IN REAL TIME. THIS SHALL BE POSSIBLE EITHER ONCE DR REPEATEOLY.

PROCESSES SHALL BE CONNECTED TO THE SCHEDULER BY OPERATIONS OF THE FORM:

execute PRDCESSNAME,TIME
execu t e T 1 ME / i·:MEAN 1 NG THE PROCESS WH 1 CH PERFORMS TH 1 S OPERA T 1 ONi·:/
execute PROCESSNAME,START-TIME,REPETITION-INTERVAL

INTENTI ONALLY NO EXACT REPRESENTATION FOR THESE OPERATIONS IS GIVEN IN
THE EXAMPLE !ESPECIALLY IT SHALL NOT BE IMPLIED THAT THEY ARE PROCEDURE
CALLS) . THE REPRESENTATION SHALL BE PROPOSED BY .THE LANGUAGE DESIGNER
JN ORDER TD :
1) FIT INTO THE TEXT OF A USER PROGRAM AS SIMPLY AND NATURALLY AS POSSJBLE
ANO
2) BE EFF l Cl ENTL Y l MPLEf1ENTABLE 1 N THE LANGUAGE PRDPOSEO.

IF TWO PROCESSES ARE OUE FDR EXECUTJON AT THE SAME POINT IN TIME,THEY SHALL
BE ACTIVATED IN PRIORITY ORDER. . ~

NOTE,THAT IN ORDER TO ACHIEVE THIS,A LIBRARY ROUTINE MAY HAVE TOBE USED . .
WHICH SORTS .rHE CONTROL BLOCKS OF THE SCHEDULED PROCESSES ACCORDJNG TO THEIR
PRIORITY. BECAUSE SUCH A SORTING ROUTINE JS OF GENERAL JNTEREST,IT SHOULD
ALSO BE USEABLE FOR OTHER DATA-TYPES. IT SHOULD BE DEMONSTRATEO,HOW THE
PARAMETER PASSING MECHANISM OF SUCH A ROUTINE IS FIT FOR THIS PURPDSE WITHOUT
CAUSING TOD MUCH RUNTIME OVERHEAD. ,
FOR THE PURPOSE OF THE EXAMPLE THE SORTJNG ALGORITHM PROPER MAY BE SIMPLE
ANO INEFFJCJENT,BECAUSE IT IS NOT RE~EVANT FOR THE DEMONSTRATION.

IT MUST ALSO BE POSSJBLE TO DISCONNECT PROCESSES FROM THE SCHEDULER AT ANY
POINT IN TIME.EITHER BY ACTION FROM THEMSELVES OR ' FROM OTHER PROCESSES.

ASSUMPTIONS :

ASSUME A SYSTEM CLOCK WHICH DELIVERS 'TICKS' OF A FREOUENCY WHJCH IS SUFFJCJENT
TO 00 THE NECESSARY COMPUTATJONS WJTH THE NECESSARY PRECISION.
THE WAY,HOW PROCESSES CAN BE MADE KNOWN TO THE SCHEDULER,DEPENOS ON THE
I~PLEMENTATION MODEL,WHICH UNDERLIES THE LANGUAGE PROPOSAL.

EX 9

DISTRIBUTEO PARALLEL OUTPUT
~===c==c=cc==================

PURPOSE :

· AN EXERCISE TO OEMONSTRATE THE ABILITY OF PROCESSING PARALLEL EVENTS
WHICH NEEO NOT PROGRESS AT THE SAME RATE.

'
PROBLEM :

THIS PROGRAM HAS ENCOUNTERED A MULTIPLE ADDRESSEE MESSAGE TO BE OUTPUT
OVER A NUMBER OF ASYNCHRONOUS LINKS.
EACH LINK IS CONTROLLED BY AN INDIVIDUAL PROCESS WHICH PERFORMS ALL LINK
RELATED PROCESSING. EACH PROCESS CAN ACCEPT ONE PACKET OF THE MESSAGE AT A
TIME AND WILL NOTIFY THE PROGRAM WHEN THE LAST PACKET FURNISHED TO IT HAS SEEN
ACKNOWLEDGED BY THE DISTANT STATION.
WHEN ALL TRANSMISSIONS ARE COMPLETE,THE PROGRAM SHALL PURGE THE MESSAGE.

ASSUMPTIONS :

1 THE MESSAGE HAS FIVE ADDRESSEES,BUT THESE CAN BE DIFFERENT FOR EACH
MESSAGE.

2 THE MESSAGE IS FIVE PACKETS LONG.

3 EACH PACKET 15 80 BYTES LDNG.

4 THE BUFFERS CONT Al N l NG THE MESSAGE ARE CONT 1 GUOUSL Y LOCA TED.

5 AT INITIALIZATION THE PROGRAM SHALL BE FURNISHED THE ADDRESS OF THE
FIRST BUFFER,THE NUMBER OF BUFFERS,AND THE IDENTITY OF THE FIVE LINKS
OVER WHICH THE MESSAGE IS TO BE SENT CEACH LINK IS CDNTROLLED BY AN
INDIVIDUAL PROCESS,NAMEO L0 .. L9).
THE LINK IDENTIFICATJON SHALL BE IN THE FORM (Ln,ln,Ln ... lWHERE N HAS
LEGAL VALUES BETWEEN 0 AND 9.

6 AN 8 BIT MACHINE <ONE OF TODAY'S TYPICAL MICROPROCESSORS }

7 THE PROGRAM WILL BE CAPABLE OF PROCESSING UP TO TEN ADDRESSEES.

8 THERE IS ND QUEUING DELAY,l.E. THE .LINK-PROCESSES ARE DEDICATED AND CAN
REACT IMMEOIATELY.

remark : ONE CAN ASSUME THAT THE INDIVIDUAL LINK PROCESSES ARE RESIDENT IN
OEOJCATEO MICROPROCESSORS AND THAT THE COORDINATION IS OONE IN ANDTHER
PROCESSOR TO WHICH THEY ARE CONNECTED BY A BUS.

GU l DELI NES :

NONE.

