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Vorwort

Die Entwicklung einer neuen héheren Programmiersprache fur integrierte
Rechnersysteme (embedded computer systems) im US-Verteidigungsministerium
findet groBe Aufmerksamkeit in der internationalen "computing community".
Diese Aufmerksamkeit wird hervorgerufen durch verschiedene Aspekte des

Sprachentwicklungsprogramms :

1. Die Sprachentwicklung ist von grofem wissenschaftlichen Interesse,

da international anerkannte Fachleute daran mitarbeiten.

2. Die Organisation und Zeitplanung des Sprachentwicklungsprojektes ist
aufsehenerregend, da bisher alle Termine eingehalten wurden. Dies ist
erstaunlich, da die Terminvorgaben nach allgemeinen Erfahrungen bei
derartigen Projekten sehr knapp bemessen sind.

——_

3. Gelingt es tatsdchlich, die entstehende Sprache verbindlich fir alle
Projekte des US-Verteidigungsministeriums vorzuschreiben, so hat dies
auf Grund der politischen Lage zur Folge, daB die Sprache primdr im
Verteidigungsbereich und sekunddr im industriellen Bereich auch in
Deutschland wirtschaftlich bedeutsam werden kdnnte. Um die mdégliche
wirtschaftliche Bedeutung dieser Sprachentwicklung fiir die Bundesre-
publik abzusch&tzen und einen intensiven Informationsfluf zwischen bei-
den Seiten herzustellen, wurde Herr Elzer, Firma Dornier-System GmbH,
Friedrichshafen, im Rahmen des PDV-Projekts im Auftrag des BMFT fir
ca. 1 Jahr nach USA delegiert. Herr Elzer ist dort Mitarbeiter in der

Gruppe, die das Sprachentwurfsprojekt koordiniert.

Als weitere Publikation lber die Ziele und den Verlauf des Sprachprojekts ist
ein Artikel von W.A. Whitaker, dem Leiter dieser Sprachgruppe, zu nennen /1/.
Es so0ll nicht unerwdhnt b}eiben, daB an der Vorgehensweise beim Sprachentwurf
und an der Qualitdt der bisher vorliegenden Sprachentwiirfe heftige Kritik ge-
Gbt wurde /2/, /3/. Eine Abgrenzung der Anwendungsgebiete fiir die neu entwicke

Sprache des US-Verteidigungsministeriums und fiir PEARL wird in /4/ gegeben.
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KURZFASSUNG

Dieser Bericht gibt eine gedrangte Darstellung von Geschichte, Zielen und Organisa-

tionsstruktur des Projektes zur Schaffung einer gemeinsamen hoheren Pro-
grammiersprache fiir integrierte Rechnersysteme des US-Verteidigungsministeriums. Es
wird der Stand der Arbeiten an Sprache und Softwareumgebung im September 1978

beschrieben, sowie eine Reihe von begleitenden Aktivitdten geschildert und ein Ver-
gleich mit PEARL versucht.

ABSTRACT

This report gives a condensed presentation of history, aims and organisational structure
of the US-DoD project for a Common High Order Language for embedded computer
systems. It describes the state of the work on language and software-environment in
September 1978, as well as some supporting activities. A comparison with PEARL is

attempted.
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O. EINLEITUNG

Im Jahre 1975 wurde vom US-Verteidigungsministerium ein Projekt begonnen mit dem
Ziel, fir den Verteidigungsbereich eine einheitliche hohere Programmiersprache fiir
integrierte Rechnersysteme“) zu schaffen. Dabei wurde von Anfang an angestrebt,
auch die fiir einen rationellen Einsatz dieser Sprache notwendigen Softwarehilfsmittel,
wie Computer, Laufzeitpakete, Betriebssystemergdnzungen, Testhilfen, etc. in der
Sprache selbst erstellen zu kénnen, um maximale Portabilitat zu erzielen. Parallel zur
eigentlichen Sprachentwicklung wird deshalb auch die notwendige Softwareumgebung
mit definiert. AuBerdem sind Organisationen zur Pflege der Sprache, Uberwachung
ihrer Implementierungen und Unterstiitzung ihrer Anwendungen geplant. Ein Projekt-

ziel ist es, bis 1980 die endgiiltige Sprachspezifikation, sowie mindestens einen Pro-
duktionscompiler zur Verfiilgung zu haben.

Im vorliegenden Bericht wird versucht, einen knappen Gesamtiiberblick iiber die
Geschichte des Projektes, seine Ziele und seine Organisationsstruktur zu geben, sowie
andere relevant erscheinende Aktivitaten, die nicht immer organisatorisch mit dem
Sprachentwicklungsprojekt verkniipft sein miissen, zu identifizieren. Wenn auch vor
Veroffentlichung der endgiiltigen Sprachvorschlage im Friihjahr 1979 keine exakten
Aussagen iiber Charakter und Funktion von Elementen der Sprache gemacht werden
kénnen, so wird doch versucht, die bereits an Hand der veroffentlichten technischen

Anforderungen erkennbaren Unterschiede zu und Ahnlichkeiten mit PEARL zu
charakterisieren,

Fir den Leser, der an eingehender Information interessiert ist, sind die wesentlichsten
Originaldarstellungen als Anhénge beigefiigt.

(1) dies ist der Versuch einer Ubersetzung des amerikanischen Fachbegriffs

“embedded computer system’’, der nicht vollstindig dem deutschen Begriff des
*Realzeitsystems” entspricht.
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1. DAS EIGENTLICHE SPRACHENTWICKLUNGSPROJEKT

1.1 Vorgeschichte und organisatorische Grundlagen

In diesem Abschnitt soll nur ein zusammenfassender Uberblick gegeben werden, da
eine sehr eingehende Gesamtdarstellung der Geschichte des Projektes, seiner Ziele und
seiner Organisationsstruktur bereits im April 1978 in der Zeitschrift ‘Computer’ der
IEEE erschienen ist. Dieser Aufsatz ist als Anhang 1 beigefiigt.

Bereits in den Jahren 1973 und 1974 wurden Studien durchgefiihrt [1,2] um Daten
iber Hohe und Verteilung der Softwarekosten im US-Verteidigungsbereich zu erhalten.

Zwei Ergebnisse waren besonders wesentlich:

— Die Kosten fiir integrierte Rechnersysteme stellten mit 56 % den Hauptanteil der
jahrlichen Ausgaben von 3 Mrd. Dollar fiir Software im US-Verteidigungsbereich
dar.

— Bei einer Berechnung iiber die gesamte Lebensdauer eines Systems iibertrafen die
Kosten fiir die Wartung die fiir die Entwicklung und Herstellung bei weitem.

Weiterhin stellte sich heraus, daR im gesamten Verteidigungsbereich liber 200 Rechner-
modelle und iliber 450 verschiedene Programmiersprachen (einschlieflich Assembler)
verwendet wurden. Aus dieser Zersplitterung ergab sich weiter, dal3 die fiir eine ratio-
nelle Softwareentwicklung und -wartung notwendigen Hilfsmittel nur in den seltensten
* Fallen und dann auch meist nur in rudimentirer Form vorhanden waren. Eine
Schiliisselrolle spielte auch hier das Fehlen einer einheitlichen Programmiersprache.

Aus diesen Griinden wurde im Januar 1975 auf Initiative des ‘‘Director of Defense,
Research and Engineering”(z) ein gemeinsames Programm der Teilstreitkrafte formu-
liert. AuBerdem wurden keine weiteren Mittel fiir Entwicklung und Einsatz neuer
Programmiersprachen in wesentlichen Projekten des Verteidigungsbereiches mehr be-
reitgestellt, bis das Problem einer zufriedenstellenden gemeinsamen Nutzung software-
bezogener Hilfsmittel geldst wire.

(2) heute: Undersecretary of Defense, Research and Engineering’’
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Ungefahr zur selben Zeit wurden andere Programme gestartet, z.B. zur Untersuchung

der Mdoglichkeit einer einheitlichen Rechnerfamilie fiir den Verteidigungsbereich (MCF:
“military computer family’’).

Globale Richtlinien fiir die Behandlung der Probleme rationelleren Rechnereinsatzes
gab die Anweisung 5000.29 [3]. Eine Zusammenstellung verschiedener Artikel iiber die
erkannten Probleme und Vorschldage zu ihrer Behebung erschien im Oktoberheft 1975
des *“Defense Management Journal”’ [4].

Um die Arbeiten an der Sprachentwicklung zu koordinieren, wurde im Januar 1975 die
“High Order Language Working Group ( = HOLWG)” gegriindet. Stimmberechtigte
Mitglieder sind Vertreter der US-Armee, Marine, Marineinfanterie und Luftwaffe, sowie
des Amtes fiir Nachrichtenwesen, des Nationalen Sicherheitsbiiros und der DARPA(3).
Der Vorsitzende der HOLWG, z.Zt. Lt. Col. W.A. Whitaker, wird vom USDRE ernannt.
Dr. D. Fisher vom “Institute for Defense Analyses (IDA)" ist der technische Berater
dieses Ausschusses. Die HOLWG ist gegeniiber dem USDRE verantwortlich und auBer-
dem tatig als einer der Unterausschiisse des ‘“Management Steering Committee for
Embedded Computer Resources (MSC—ECR)".

lhre Aufgabe ist es, ““Mdglichkeiten zur Einfiihrung der minimalen Anzahl gemeinsamer
hoherer Programmiersprachen zu untersuchen, die bei Entwicklung, Beschaffung und
Betrieb von Rechnern in militdrischen Systemen verwendet werden sollen”. Insbeson-
dere sollen die technischen Anforderungen an derartige Sprachen definiert, die Eignung
von existierenden Sprachen untersucht, eine erfolgsversprechende Vorgehensweise fest-
gelegt, und die notwendigen MaBnahmen iiberwacht werden.

Der maogliche Nutzen des Sprachentwicklungsprojektes wurde in mehreren Wirtschaft-
lichkeitsanalysen untersucht, die zu positiven Ergebnissen fiihrten. Anhang 2 enthélt
die Zusammenfassungen von zweien dieser Analysen.

(3)

““Defense advanced research projects agency”, eine zentrale Forschungsforderungs-
stelle des US-Verteidigungsministeriums.
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1.2 Entwicklung der technischen Anforderungen

Im Gegensatz zum Vorgehen bei verschiedenen anderen Sprachentwicklungsprojekten
betétigt sich die HOLWG nicht als Sprachentwicklungsausschuf® im iiblichen Sinne,
sondern férdert die Entwicklung durch unabhangige Auftragnehmer auf Wettbewerbs-
basis.

Als Arbeitsgrundlage wurden die technischen Anforderungen an eine hohere Sprache
zur Programmierung von integrierten Rechnersystemen zusammengestellt. Dieses Do-
kument diente dann spater als Grundlage fiir eine Ausschreibung, lieferte einen allge-
mein anerkannten Bewertungsmal3stab und verhinderte, daR véllig unvergleichbare
Sprachentwiirfe entstanden.

Die gegenwartigen technischen Anforderungen, die in dem als Anhang 3 beigefiigten
’Steelman”-Papier zusammengestellt sind, sind das Ergebnis eines evolutioniren
Prozesses, der von 1975 bis 1978 dauerte.

Am IDA wurde eine Serie von Vorschldgen ausgearbeitet, wobei jeweils die Kommen-
tare zum vorhergehenden Vorschlag eingearbeitet wurden, die seitens potentieller
Benutzer, Auftragnehmern des Militirbereichs und anderer interessierter Organisa-
tionen eingingen. Auf diese Weise konnten die einschlagigen Erfahrungen eines groRen
Teiles der Fachwelt genutzt werden. In gewissen Zeitabstinden wurden einzelne Ver-
sionen durch militarische Dienststellen offiziell genehmigt und als die folgenden Doku-
mente veroffentlicht:

STRAWMAN April 1975
WOODENMAN August 1975
TINMAN Januar 1976
IRONMAN Januar 1977
revised IRONMAN Juli 1977
STEELMAN Juni 1978

Als ein Beitrag zur Diskussion um TINMAN wurde im Herbst 1976 ein Seminar mit
anerkannten Wissenschaftlern auf den Gebieten Sprachentwurf und Compilerbau an
der Cornell-Universitit in Ithaca, N.Y., veranstaltet. Die Ergebnisse dieses Seminars
sind in Buchform erhiltlich [5).



DORNIER

Dornier System GmbH

Insgesamt gingen wahrend der Entwicklung der technischen Anforderungen iiber
2000 Seiten an Kommentaren von 184 Institutionen und Einzelpersonen ein.

Die Entwicklung der technischen Anforderungen erbrachte aber noch ein weiteres
wesentliches Ergebnis: Es wurde festgestellt, daB in allen Bereichen des Verteidigungs-
sektors die gleichen Anforderungen an eine hohere Programmiersprache fiir integrierte

Systeme galten. Dieses Ergebnis war als nicht selbstverstandlich vorauszusetzen ge-
wesen.
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1.3 Untersuchung von Kandidatensprachen

Da nicht von vornherein feststand, daR eine neue Sprache entwickelt werden muRte,
wurden im Laufe des Jahres 1976 23 existierende Programmiersprachen daraufhin
untersucht, wie weit sie den aufgestellten technischen Anforderungen geniigten. Diese
Vergleiche wurden nach von der HOLWG aufgestellten Richtlinien von insgesamt 16
Auftragnehmern durchgefiihrt.

Folgende Sprachen wurden betrachtet:

ALGOL 60
ALGOL 68
CMS-2
COBOL
CORAL 66
CS-4

EL-1
EUCLID
FORTRAN
HAL/S
J3B

J73

LIS

LTR
MORAL
PASCAL
PDL 2
PEARL
PL/I
RTL/2
SIMULA 67
SPL/1
TACPOL

Jede Sprache wurde von mindestens zwei Bewertungsgruppen begutachtet, die Er-
gebnisse von einem Ausschuss aufbereitet und der HOLWG vorgelegt. Das gesamte
wahrend der Auswertung entstandene Material ist auf Mikrofilm erhiltlich [6].
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Wesentliche Ergebnisse waren:

— Keine der Kandidatensprachen erfiillte die technischen Anforderungen in ausrei-

chendem MaR, um als ““die”” endagiiltige einheitliche Programmiersprache akzeptiert
werden zu kénnen.

— Aus der Tatsache, daB mehrere der Kandidatensprachen bereits eine Anzahl der
aufgesteliten Anforderungen erfiillten, ergab sich, da das Problem im Rahmen des

Standes der Technik ldsbar war, d.h. ein geeigneter Sprachentwurf erschien mach-
bar.

— Eine vollstandige Neuentwicklung erschien deshalb nicht als notwendig, weil alle
diejenigen Sprachen, die die technischen Anforderungen zu einem groRen Teil erfiill-
ten, abgeleitet waren von ALGOL 68, PASCAL oder PL/Il. Diese drei Sprachen

wurden deshalb als Basissprachen fiir die Entwicklung der gemeinsamen Program-
miersprache vorgeschlagen.
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1.4 Die Interim List

In der Zwischenzeit wurde auch ein Vorhaben verwirklicht, von dem man sich eine
wesentliche Verbesserung der Situation schon vor der Durchsetzung einer gemeinsamen
Programmiersprache versprach. Es wurde eine Liste von einigen wenigen
Programmiersprachen zusammengestellt, deren Verwendung fiir neu zu beginnende
Projekte integrierter Rechnersysteme vorgeschriebén werden konnte.

Kriterien fiir die Auswahl dieser Sprachen waren vor allem, daB sie

— ihre Eignung durch praktischen Einsatz bei mindestens einem der Armeeteile
bewiesen haben
und

— durch ein geeignetes Definitionsdokument festgelegt sein

muBten. Aufnahme in die aufzustellende Liste setzte auBerdem die Verpflichtung zur
weiteren Betreuung der Sprache seitens der sie nominierenden Organisation voraus.

Diese Voraussetzungen waren bei folgenden, im VS-Verteidigungsbereich bereits seit
einiger Zeit verwendeten Sprachen erfiillt: '

CMS-2

SPL-1

TACPOL
J3JOVIAL

J73 JOVIAL
ANSI COBOL
ANSI FORTRAN

Diese Sprachen wurden in einer Anweisung 5000.31 [7] als verbindlich fiir den Einsatz
bei neu zu beginnenen Projekten erklart, “falls nicht nachgewiesen werden kann, daR
die Verwendung einer anderen Sprache iiber die Lebensdauer des Systems gesehen
kostenwirksamer ist” (cit. 5000.31).
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1.5 Der bisherige Verlauf der Sprachentwicklung

Nach der Formulierung eines Projektplanes wurde dann im April 1977 die
Sprachentwicklung international ausgeschrieben. Von den 18 eingegangenen
Angeboten wurden folgende vier ausgewahlt:

Cll-Honeywell-Bull (Paris, Minneapolis)

Intermetrics (N&he Boston)

Softech (N&he Boston)

Stanford Research International (Ndhe San Francisco).

Alle vier erfolgreichen Anbieter schlugen eine Sprachentwicklung auf der Basis von
PASCAL vor. Die Arbeiten begannen im August 1977 und die Ergebnisse der ersten

Phase, die vorlaufigen Sprachentwiirfe, wurden termingerecht im Februar 1978
ausgeliefert.

Diese Sprachentwiirfe wurden dann einem Bewertungsverfahren unterzogen, an dem
tiber 70 Teams und Einzelpersonen aus aller Welt teilnahmen. Um die Urheberschaft
der einzelnen Sprachen geheimhalten zu konnen, wurden die Sprachen durch einen
Farbcode (griin, rot, blau, gelb) identifiziert. Die Ergebnisse dieser Einzelbewertungen
wurden durch eine Expertengruppe ausgewertet und mit Empfehlungen der HOLWG
zur Entscheidung vorgelegt. Es wurde beschlossen, die Sprachentwiirfe “griin”
(ClI-Honeywell-Bull) und “rot” (Intermetrics) weiterentwickeln zu lassen. )

Eine Kurzdarstellung des Auswerteverfahrens mit statistischen Daten findet sich in [8].
Eine Zusammenfassung des Projektverlaufes bis zur Vergabe der Entwicklungsauftrage
gibt ein Vortrag von Lt. Col. W.A. Whitaker, dessen Manuskript als Anhang 4 beigefiigt
ist. Ein Gesamtbericht {iber die Auswertung ist auf Mikrofilm erhaltlich [9]. Er enthalt
folgendes Material:

Anleitung zur Durchfiihrung der Analyse’’revised IRONMAN, alle vier Sprachvorschlage

der Phase |, alle Einzelanalysen, die nach Sachgebieten umgeordneten Analysen, und
das “STEELMAN"-Dokument.

AnschlieRend an diese Auswertungsphase begann im April 1978 die zweite Phase der
Sprachentwicklung, die Feindefinition, die mit der Vorlage der vorlidufigen
vollstandigen Sprachbeschreibung im Marz 1979 beendet sein soll.
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1.6 Weitere Planungen

Wiahrend der zweiten Phase der Sprachentwicklung werden durch Vertreter der
HOLWG in vierteljahrlichen Abstédnden Fortschrittskontrollen bei den Auftragnehmern
durchgefiihrt, deren Ergebnisse allerdings aus wettbewerbsrechtlichen Griinden
vertraulich behandelt werden miissen. Bei der zweiten derartigen Veranstaltung im
November 1978 werden auch Vertreter ausgewahlter Bewertungsteams hinzugezogen
werden.

Im April 1979 soll dann die Entscheidung fiir eine der beiden in der zweiten Phase
entwickelten Sprachen fallen. Daran wird sich bis Dezember 1979 eine Phase
eingehender Tests anschlieBen, wahrend der auch noch evtl. notwendige
Verfeinerungen vorgenommen werden sollen. Auch an dieser Phase sollen ausgewahlte
internationale Teams beteiligt werden. Zur Unterstiitzung dieser Arbeiten sollen im
April 1979 auch Testiibersetzer fiir die in der zweiten Phase entwickelten Sprachen auf
dem Arpanetz verfiigbar sein.

Gleichzeitig soll mit der Erstellung der ersten Produktionscompiler begonnen werden,
und es wird erwartet, dall bis Mitte 1980 zumindest einer zur Verfiigung stehen wird.

Im Oktober 1978 wird mit der Vorbereitung von Kursmaterial begonnen werden, um
den Beginn von Ausbildungskursen im Friihjahr 1979 zu ermdglichen. Auch die
organisatorischen Vorbereitungen fiir eine Betreuungsstelle werden schon im
Herbst 1978 anlaufen, damit diese Stelle im Friihjahr 1980 ihre Arbeit aufnehmen
kann.
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2. BEGLEITENDE AKTIVITATEN

2.1 Die Softwareumgebung

Das Sprachentwicklungsprojekt solite von vornherein nicht als isolierte Aktivitat
gesehen werden, sondern eingebettet in allgemeine Bemiihungen, die
Softwareproduktion auf dem US-Verteidigungssektor insgesamt zu konsolidieren und
damit schlieBlich zu rationalisieren und zu verbilligen. Es war deshalb von Anfang an
beabsichtigt, die Anwendung der Sprache durch entsprechende Softwarewerkzeuge zu
unterstiitzen. AuBerdem sollten Organisationen geschaffen werden, die sowohl
Kontrolle iiber die Sprache selbst ausiiben, als auch eine Qualitatspriifung der erstellten
Compiler vornehmen und Anwenderberatung vornehmen kdnnten. Entsprechende
MaRBnahmen sind deshalb bereits in den technischen Anforderungen an die Sprache
angedeutet (vergl. Kap. 13 des “STEELMAN"’-Dokuments).

Es ist nun beabsichtigt, eine Reihe von Dokumenten zu entwickeln, die ahnlich wie die
STRAWMAN-STEELMAN-Serie eine  Reihe immer weiter konsolidierter
Anforderungen an Organisationen und Softwareumgebung beschreiben sollen.

Als Vorbereitung dazu begannen bereits 1977 Arbeiten an der Definition der
Anforderungen an Betreuungsorganisationen und Softwareumgebung. Zwei
Unterauftragnehmer fertigten unter der technischen Aufsicht eines Vertreters der
US-Marine Vorstudien an, die im Januar, bzw. April 1978 ausgeliefert wurden. Diese
Studien dienten als Basis fiir die Erstellung eines Dokumentes, das, dhnlich wie
‘STRAWMAN'" fiilr die Sprache, die Diskussion {iber die Eigenschaften der
SoftwareumgeBung auf breiter Basis er6ffnen soll.

Nachdem aber auf diesem Gebiet an mehreren Stellen Neuland betreten werden mufte
und sollte, erschien es niitzlich und notwendig, gleich zu Beginn im Rahmen eines
Workshop die Meinung von Fachleuten zu den Themen Softwarewerkzeuge und
Sprachbetreuung einzuholen. Dieses wurde im Juni 1978 in Irvine, Universitat von

Kalifornien, abgehalten. Die Ergebnisse sollen noch im Laufe des Jahres 1978
veroffentlicht werden.

Im folgenden soll eine sehr kurze und deshalb vielleicht etwas schlagwortartige

Zusammenfassung der als besonders wichtig erkannten Problemgebiete gegeben
werden,
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— Die gréRten Schwierigkeiten treten bei Entwurf und Wartung von Software auf

— Die Wartung und laufende Anpassung verschlingt einen noch hoheren Anteil der
Lebensdauerkosten eines Systems als bisher schon angenommen, namlich bis zu 95 %.

— Die im Verteidigungsbereich (speziell bei Wartungsstellen) und bei
forschungsorientierten Institutionen jeweils angewandte Softwaretechnologie klafft
um Jahre, wenn nicht um eine Generation auseinander. Dagegen unterscheiden sich
die zu l6senden Probleme kaum in ihrer Komplexitat.

— Man verspricht sich sehr viel von Rechnerunterstiitzung bei Problemanalyse,
Programmerstellung, und Test. Allerdings erfordern die bisher erprobten Methoden
erhebliche Rechnerkapazitit.

— Programmverifikation auf formaler Basis hat noch nicht den technischen Stand
erreicht, der ihren praktischen Einsatz auf breiter Basis ermdglichen wiirde.

— Verifikation und Test von Compilern werden von den bisher damit befaRten
Dienststellen nach ganz verschiedenen Methoden durchgefiihrt, die duRerst stark von
den jeweiligen politischen Gegebenheiten abhingen. Keine Methode hat bisher alle
Anforderungen erfiillen kénnen.

— Eine Benutzerorganisation ist notwendig.

Der Hauptnutzen des Workshop fiir die laufende Arbeit bestand jedoch in den
zahlreichen Detailbemerkungen zu den einzelnen Kapiteln des urspriinglichen Papieres
zur Softwareumgebung. Dieses wurde daraufhin nach langeren Diskussionen volistandig
iiberarbeitet und neu gegliedert.

Erste Bemerkungen, die seitens der HOLWG und iiber das ARPA-Netz (sieche 2.6)
eingingen, wurden eingearbeitet und das resultierende Dokument, ““Pebbleman’’, im
Juli 1978 zur Diskussion und Kritik versandt. Es ist als Anhang 5 beigefiigt. )

Zur Zeit werden Moglichkeiten zur Verwirklichung der darin skizzierten Konzepte und
die organisatorischen Voraussetzungen fiir die Einrichtung der erwihnten
Betreuungsorganisationen gepriift.

Es ist beabsichtigt, zur Jahreswende 1978/79 eine zweite Version dieses Dokumentes
zu erstellen. Erste Modellimplementationen notwendiger Softwarewerkzeuge sind ab
Mitte 1979 geplant.
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2.2 '‘TARTAN'-— ein Sprachmodell

Da einer der wesentlichsten Kritikpunkte bei der Auswertung der Sprachentwiirfe aus
Stufe | ihre Komplexitat und ihr Umfang gewesen waren, wurde im Auftrag der
DARPA am “Department of Computer Science’” der Carnegie-Mellon Universitat in
Pittsburgh eine Studie durchgefiihrt, mit dem Ziel;“zu prifen, mit welchem Minimalauf-
wand sich die Forderungen von “revised” IRONMAN erfiillen lieRen.

Das Ergebnis dieser Studie war das im Juni 1978 veroffentlichte Sprachmodell
'‘TARTAN'. Das “reference manual’’, das 22 Seiten (!) umfaRt und ein Heft mit Be-
merkungen und Beispielen sind als Anhange 6 und 7 beigefiigt.

Die Verfasser dieses Sprachentwurfs konnten auf die Sprachvorschlage aus Phase |,
sowie auf eigene Erfahrungen mit der Entwicklung von ALPHARD [10,11] und BLISS

aufbauen. Das Hauptgewicht beim Entwurf wurde auf das Typkonzept, generierende
Definitionen und das Modulkonzept gelegt.

Die Ergebnisse der Studie wurden den beiden Auftragnehmern der Phase 11 zur Verfi-
gung gestellt.
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2.3 Testprobleme

Im Juni 1978 wurde den Auftragnehmern der Phase |l ein Satz Beispielprogramme
zugestellt, an Hand derer die Flexibilitdt und Problemgerechtheit der entstehenden
Programmiersprache demonstriert werden sollen. Die Beispiele sind hauptsachlich dem
Bereich der Systemprogrammierung entnommen. Es ist nicht beabsichtigt, die entste-
henden Programme irgendwelchen statistischen Auswerteverfahren zu unterwerfen. Die
vollstandigen Testprobleme sind in Anhang 8 enthalten.

Folgende Beispiele wurden ausgewahlt:

Erkennung asynchroner Unterbrechungen durch Abfrage
Unterbrechungsbehandlung unter Prioritidten

Ein kleines Dateibehandlungspaket

Darstellung bewegter Bilder

Ein Schutzmodul fiir eine Datenbasis

Ein Beispiel aus der Prozessteuerung

Adaptiver Wegeschaltalgorhythmus fiir einen Dateniibertragungsknoten
Allgemeiner Zeitsteuerungsmodul

W 00 N O H WN -

Parallele Ausgabe im verteilten System
Entpacken und Konvertieren von Eingabedaten.

-—
o
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2.4 Untersuchungen zur Ein-/Ausgabe

Unter der fachlichen Aufsicht eines Mitarbeiters des “’Electronics Command’’ (Fort
Monmouth) der US-Armee wurden im Rahmen einer Doktorarbeit Méglichkeifén zur
Klassifizierung maschinenunabhéngiger Primitivfunktionen der Ein-/Ausgabe unter-
sucht [12]. Grundlage waren einschlagige Arbeiten von Wirth (MODULA) und Hoare,
sowie die Sprachentwiirfe aus Phase |.

Es wird versucht, verschiedene Ein-/Ausgabevorgdnge nach ihrer inneren Funktion zu
klassifizieren, etwa ““Status—"' oder “’Unterbrechungsgesteuert” mit den jeweiligen Un-
terklassen. Die fiir die einzelnen Klassen relevanten Operationéh und Steuerparameter
werden identifiziert, und dazugehorige Betriebssystemtechniken und -bausteine unter-
sucht. Auerdem werden Methoden zur Abbildung von Datenstrukturen auf Maschi-
nendarstellung betrachtet. '

Die Arbeit kann wohl am besten als der Versuch charakterisiert werden, die Implemen-
tation von E/A-Funktionen so durchzustrukturieren, daR hohere Funktionen (wie z.B.
die in PEARL) in maschinenunabhéangiger Weise auf die in der fertigen DoD-Sprache
vorgesehenen Primitivfunktionen abgebildet werden kdnnen.
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2.5 Implementationsvorbereitungen

Nachdem bereits einige Dienststellen innerhalb des Verteidigungsbereiches an einer
Verwendung der zukiinftigen gemeinsamen Sprache interessiert sind, werden Vorunter-
suchungen betrieben, durch die festgestellt werden soll, an welchen Stellen méglicher-
weise |mplementationsschwierigkeiten zu erwarten und welche Technologien im Ein-
zelfall am erfolgversprechendsten sind.

So wird z.B. die Verwendbarkeit von “‘secure UNIX' als unterliegendem Betriebs-
system gepriift. Verschiedene Zwischensprachtypen werden auf ihre Eignung hin unter-
sucht, als Grundlage fiir einen standardisierten, portablen Compiler zu dienen. Hierbei
spielen besonders Effizienz- und Optimierungsaspekte eine Rolle. Unter diesem Ge-
sichtspunkt miissen auch die Forschungen an der Carnegie-Mellon Universitat gesehen
werden, die sich z.B. mit Messungen der statischen Codeeffizienz von Compilern und
mit der Entwicklung eines generierbaren, maschinenunabhéangigen, portablen Compilers
befassen. Um verbessertes statistisches Material zu dem Verfahren iiber Effizienz-
messungen zu gewinnen, soll es in nachster Zeit auf existierende Compiler im Verteidi-
gungsbereich angewandt werden. AuBerdem wurde eine spezielle Untersuchung iiber
Fragen der Softwarewartung begonnen.
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2.6 Das ARPA - Netz

Dieser mehrfach erwahnte Begriff steht fiir ein Rechnernetzwerk von betrachtlichen
Ausmalen, das in den Jahren 1969 bis 1972 unter Forderung der ARPA aufgebaut und
seitdem fiir eine Vielzahl von Forschungs- und Entwicklungsvorhaben benutzt wurde.
Es umfalt Uber 125 Rechner, an mehr als 67 iiber die ganzen USA verteilten Stellen,
die untereinander durch kommerzielle Telefonleitungen verbunden sind. Uber Wahllei-
tungen und Datensammelstationen kann praktisch eine unbegrenzte Anzahl von schrei-
benden Terminals angeschlossen werden. Die durchschnittliche Belastung wahrend der
normalen Arbeitszeit schwankt zwischen 500 und 700 Benutzern. Uber Satellitenver-
bindungen sind AuRenstationen in Europa und Hawaii angeschlossen.

Auf diesem Rechnernetz steht eine breite Palette von Softwarewerkzeugen vom Simu-
lator fiir CPU s iiber Compiler fiir praktisch alle wesentlichen Programmiersprachen bis
in zum Nachrichteniibermittlungssystem, das mit einem Datenbankmechanismus ge-

koppelt ist, zur Verfiigung. Da iiber das ARPA-Netz viele der an der Sprachentwicklung
beteiligten Stellen miteinander verbunden sind, hat es sich als eine groRe Hilfe bei der

Vorbereitung von Dokumenten und Sitzungen oder bei der Durchfiihrung von Auswer-
tungen erwiesen.

Wenn die Arbeit am Terminal fiir einen Techniker zundchst auch sehr gewohnungs-
bediirftig ist und die Aneignung einiger neuer Arbeitsgewohnheiten notig macht, so
erhoht sich doch die Effizienz von Teamarbeit durch die Verwendung eines solchen
speichernden Kommunikationsmittels auRerordentlich.
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3. DIESPRACHENTWICKLUNG DES US-DEPT. OF. DEF.
IM VERGLEICH MIT PEARL

3.1 Zielsetzung

In diesem Abschnitt soll der Versuch eines Vergleiches zwischen PEARL und der
zukiinftigen gemeinsamen Programmiersprache des US-Verteidigungsbereiches gemacht
werden. Dies liegt nahe, da beide Sprachen sich in ihrem Hauptanwendungsgebiet, der
Programmierung von Realzeitsystemen, iiberlappen. Leider sind jedoch zur Zeit einem
solchen Vergleich beziiglich seines Grades an Detailliertheit aus mehreren Griinden enge
Grenzen gesetzt:

— Die Sprachentwiirfe der Phase | sind zu groRen Teilen als liberholt zu betrachten, da
wiahrend der Bewertungsphase Anderungsvorschlage und zum Teil berechtigte Kritik
in so groBem Umfang eingingen, dal die Sprachen vermutlich erhebliche Veridnde-
ru'ngen erfahren werden, wenn auch nur ein kleiner Teil der Vorschlage beriicksich-
tigt wird.

— Die technischen Anforderungen erfuhren beim Ubergang von “revised IRONMAN"
zum “STEELMAN"’-Dokument erhebliche Anderungen. Manche davon, wie z.B. die
das Tasking-Modell betreffenden, waren sogar grundsatzlicher Art.

— Uber den derzeitigen Zustand der Sprachentwiirfe wird aus Wettbewerbsgriinden
selbstverstandlich Stillschweigen bewahrt.

Unter all diesen Einschrankungen kann aber doch versucht werden, einige generelle
Unterschiede zu identifizieren.

Zunéchst sind Entstehungsgeschichte und Zielsetzung der beiden Sprachen véllig unter-
schiedlich. PEARL wurde auf Initiative von Anwendern in enger Zusammenarbeit
zwischen Herstellern, Softwarehiusern und Anwendern entwickelt. Ein Ziel dabei war,
die Kommunikationsliicke zwischen dem Spezialisten mit dem Wissen um den ProzeR
und dem Datenverarbeitungsspezialisten dadurch zu schlieBen, daR dem ProzeRent-
wickler, sei es nun der Ingenieur, der Physiker oder der Chemiker, ein Mittel in die
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Hand gegeben wird, das ihm erlaubt, einen groRen Teil der anfallenden Programmier-
aufgaben selbst zu erledigen. Dazu war ein Instrumentarium nétig, da es gestattete,
weitestgehend von speziellen Eigenschaften des Rechnersystems einschlieBlich der In-
terfacehardware zu abstrahieren. Dafiir wurde an manchen Stellen eine gewisse Inflexi-
bilitat in Kauf genommen. AuRerdem war es notwendig, dem ‘‘gelegentlich Program-

mierer’” einen gewissen Komfort zu bieten, der natlirlich manchmal mit entsprechen-
dem Implementationsaufwand erkauft werden muR.

Die Sprachentwicklung des US-Dept. of Def. war dagegen von vornherein fiir den rein
professionellen Programmierer gedacht. Sie soll speziell auch fiir die Erstellung von
grofen militdrischen Realzeitsystemen eingesetzt werden konnen, bei denen Fragen der
Programmzuverlassigkeit und der Verteilbarkeit des Arbeitsaufwandes eine groRe Rolle
spielen. AuBerdem war es wegen der groRBen Verschiedenartigkeit der Anwendungen
notig, besonders ausgefeilte Anpassungsmoglichkeiten an Charakteristika des Rechners
und der Interfacehardware zu fordern. Auch spielen Effizienzfragen bei militarischen
Anwendungen mit ihren manchmal drastischen physikalischen Einschrankungen eine
groRere Rolle als beim industriellen oder gar labormaRigen Rechnereinsatz.
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3.2 Technische Gesichtspunkte

Es ist auBerdem moglich, aus den im ‘STEELMAN’-Dokument zusammengestellten
Anforderungen einige technische Unterschiede zu PEARL abzuleiten, die die zukiinf-
tige Programmiersprache fiir den Bereich des US-Dod mit sehr groler Wahr-
scheinlichkeit aufweisen wird:

Zunichst wird sie ‘kleiner’ sein als Full-PEARL, da eines der Hauptprinzipien beim
Entwurf ist, moglichst keinen Mechanismus in die Sprache einzubauen, der durch
andere, bereits enthaltene Mechanismen dargestellt werden kann. Natirlich setzen
Handlichkeit und Anwendbarkeit der Sprache der strengen Durchsetzung dieses
Prinzips gewisse Grenzen.

Aus diesem Prinzip ergibt sich aber, dal die Sprache wohl kaum héhere Ein-/Ausgabe-
anweisungen wie in PEARL, ja selbst kaum solche wie in herkdmmlichen Programmier-
sprachen enthalten wird. Vielmehr sollen benutzerorientierte Ein-/Ausgabefunktionen
mit Hilfe der vorzusehenden Expansionsmechanismen aus einigen wenigen primitiven
Operationen aufgebaut und dem Benutzer in (z.T. standardisierten) Anwenderbiblio-
theken zur Verfiigung gestellt werden. Fiir den Benutzer soll dann aber ihr Aufruf nicht
von dem in die Sprache eingebauter Funktionen unterscheidbar sein. Die allgemeine
Form haufig gebrachter Ein-/Ausgabefunktionen soll aber schon in der Sprachbeschrei-
bung festgelegt werden.

Auf leistungsfahige Mechanismen zur Definition von Typen, Operatoren, Modulen und
Abstraktionen wird deshalb bei der Entwicklung der Sprache groBtes Augenmerk ver-
wandt werden miissen. Man darf wohl sagen, daR der Erfolg der Sprache in der Praxis
mit der Qualitat, Handlichkeit und Benutzerfreundlichkeit dieser Mechanismen stehen
oder fallen wird.

Was die angebotenen Datentypen und darauf anwendbaren Operationen, das Prozedur-
konzept und die Kontrollstrukturen angeht, so werden Unterschiede zu PEARL nur im
Detail feststellbar und hauptséchlich durch das strenger eingehaltene Typkonzept be-
dingt sein.
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Die im “STEELMAN" formulierten Anforderungen an die Konstruktionen zur Steue-
rung paralleler Prozesse wiirden von PEARL voll erfiillt werden, jedoch bleibt abzu-
warten, wie diese Anforderungen von den Entwerfern ausgelegt werden, bevor irgend-
ein Vergleich gezogen werden kann. Bei den Synchronisationsmechanismen ist —

entsprechend dem Stand der wissenschaftlichen Diskussion auf diesem Gebiet — alles
offen.

Die Mechanismen zur Behandlung von Fehlern und Ausnahmereaktionen werden in der
“DoD-Sprache” voraussichtlich dem neuesten Stand der Technik entsprechen. Ein wei-
teres relativ neues Sprachmittel werden die “assertions” sein, die es gestatten, selbst-
kontrollierende Algorithmen zu schreiben. Ihre Semantik ist jedoch in PEARL durch
entsprechende Verwendung des “SIGNAL’’-Mechanismus nachbildbar.

Sprachmittel zur Beschreibung der statischen Systemkonfiguration auRerhalb des ei-
gentlichen Rechners, wie sie der Systemteil in PEARL zur Verfiigung stellt, wird es
nicht geben. Dafiir wird es mdglich sein, logische Datenstrukturen auf physikalische
Speicherelemente im Rechner abzubilden. Ein Teil der Aufgaben des Systemteils, wie
z.B. Bereitstellung von Steuerinformation fiir Betriebssystemgeneratoren oder Opti-
mierungsparametern fiir Compiler, wird durch andere Sprachelemente ibernommen. So
ist z.B. an bedingte Ubersetzung gedacht. Ein Grundprinzip, namlich Trennung von
maschinenabhéngiger und maschinenunabhangiger Information, soll jedoch, ahnlich
wie in PEARL, gelten.
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;. DoD’s common programming language effort is

" aimed at reducing the development and maintenance
cost and improving the quality of software for
embedded computer systems. Here is a brief review
of the background, scope, goals, and methods of
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DoD’s

David A. Fisher

Common Programming
Language Effort

Institute for Defense Analyses

As long as there were no machines, programming was no problem at
ell; when we had a few weak computers, programming became a mild
problem, and now that we have gigantic computers, programming has be-
come an equally gigantic problem. In this sense the electronic industry
has not solved a single problem, it has only created them—it has created

the problem of using its products. E. W. Dijkstra

Turing Award Lecture

As has often been noted, the past 25 years of
‘digital computing have been characterized by
striking increases in computing speed, memory
capacity, and hardware reliability, with simultaneous
decrcases in power consumption and hardware
cost. What is perhaps not so widely recognized is
that these trends have led to inflated expectations
for automating not only those tasks that had been
previously performed manually, but also for auto-
mating some tasks that hadn’t even been attempted
before. Much of the burden of these increased
expectations has fallen on software.

Within the Department of Defense, systems
requirements for software have been expanded, as
exemplified by automation of control functions in
systems such as Tacfire, the Safeguard ballistic
missile defense system, the Airborne Warning and
Control System, the Trident ballistic missile sys
tem, and the Minuteman system.

Costs. Studies conducted in 1973 and 1974 pro-
vide some quantitative data on the size and makeup
of the software problem.'* Although little infor-
mation is available, these studies jrive some
conservative estimates that provide reliz .le lower
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bounds on the cost of software in the DoD. For
example, in" 1973 digital computer software costs
were estimated at $3 billion to $3.5 billion annually
and were growing in dollars and in proportion to
other computer costs. An additional $2 to $3 billion
were spent in the same year for the support and
operation of computer systems. These studies also
showed that the greatest software problems in the
DoD, as measured by their cost, are associated
with so-called embedded computer systems (Fig-
ure 1), and that the majority of costs are incurred
in software maintenance rather than development.

The rising cost of compuler resources has resulted
in increased attention by the highest levels of man-
agement, and a number of technical and managerizl
procedures have been undertaken.® Initial guidance
was provided by DoD Directive 5000.29, Manage-
ment of Computer Resources in Major Defense
Systems.*

At one time DoD was a major innovator and con-
sumer of the most sophisticated computer hardware,
but now it represents only a small fraction of the
total market. In software, that unique position still
remains: a significant fraction of the total software
industry is devoted to DoD-related programs—and
this is true in even larger proportion for the more
advanced and demanding systems. Thus, as it once
had for hardware technology, DoD now has the
opportunity and responsibility to ensure that its
influence on software technology is beneficial.

Common language effort. One of the major tasks
undertaken by DoD to alleviate software problems

COMPUTER






has been the common programming language effort.
This effort is based on the idea that many of the
support costs for software increase with the number
of languages, and that languages must be suited to
their applications. Furthermore, with a common
programming language, a software development
and maintenance environment could be built, pro-
viding centralized support and common libraries,
that could be shared by several projects working
in the same application area. Ideally, support soft-
ware, including translators, could be developed in
the source language so that any existing tools
could be made available on a new machine at the
cost of developing a new code generator for a
standard compiler.

Embedded computer systems. Because the major-
ity of softwarc costs in the DoD are associated
with embedded computer systems, the common
language effort is concerned primarily with embed-
ded computer software. The term ‘‘embedded com-
puter system’ was first used in 1974* to denote
one that is logically incorporated in a larger
system—e.g., an electromechanical device, a tactical
system, a ship, an aircraft, or a communications
system—whose primary function is not computation.
Included ‘in the concept of embedded computer
systems is Lhe support software necessary to design,
develop, and maintain them. Computers used
primarily for data processing, scientific, or research
applications are not normally included in the
embedded computer systems category.

Embedded computer software often exhibits
characteristics that are strikingly different from
those of other computer applications. The programs
are frequently large (50,000 to 100,000 lines of
code) and long-lived (10 to 15 years). Personncl
turnover is rapid, typically two years. Qutputs are
not just data, but also control signals. Change is
continuous because of evolving system require-
ments—annual revisions are often of the same
magnitude as the original development.

. Mission rclationships. Software requirements vary
from system to system depending upon the mission.
The relative importance of execution efficiency, mem-
ory utilization, program modifiability, reliability, and
program production time vary widely among appli-
cations and among components of a single system.
Many embedded computer applications require soft-
ware that will continue to operate in the presence of
faults, whether the faults are in the computer hard-
ware, input data, operator procedures, or the soft-
ware.

At least 200 models of computers are used in em-
bedded computer systems at DoD. In many appli-
cations, the computers must be installed in configu-
rations that are incompatible with general-purpose
installations. For example, the applications may re-
quire monitoring of sensors, control of equipment,

display, or operator input processing. They must in-

terface special peripheral equipment like radar, real-
time clocks, and analog devices. Software must some-
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Figure 1. Breakdown of estimated $3
billion annual DoD software
costs.

times be able to respond at periodic (real time) inter-
vals, to service interrupts within limited times, and
to predict computation times. The time intervals
vary from microseconds in device interface handling,
through milliseconds in sensor monitoring, and
seconds in control applications, to days in report
generation.

Special-purpose executive programs must be de-
veloped for many applications that cannot afford the
overhead (and do not require the generality) of gen-

eral-purpose operating systems. Systems program-.

ming capability is also needed Lo develop and main-
tain support software, including translators, software
develocpment tools, and testing aids, as well as
their host operating systems.

In many applications, including comimand and con-
trol, training, and software development, it is neces-
sary to access, manipulate, and display large quanti-
ties of data. Much of this data is symbolic or textual
rather than numeric, and must be organized in an
orderly and accessible fashion. Memory space rather
than execution time is often the critical resource.
On the other hand, a substantial numeric processing
capability may still be essential, especially in simula-
tion, sensor processing, and equipment control.

Software problems. Difficulties with embedded
computer software are not atypical. Software prob-
lems that require or are susceptible to technical
solution arise primarily from the nonsuitability of
existing languages for embedded computer applica-
tions, from inadequate tools for software develop-
ment and maintenance, and from insufficient con-
cern ior maintenance during software development.
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Others, listed below, suggest management solutions
in conjunction with technology.

Software development and maintenance are con-
strained by the availability of dollars, development
time, machine resources, competent personnel, and
useful programming tools. As with any activity in
which expectations exceed the available capability,
something must give. In this case, the symptoms
appear in the form of software that is nonrespon-
sive to user needs, unreliable, excessively expensive,
untimely, inflexible, difficult to maintain, and not
reusable.

Much has been said about the problems of soft-
ware reliability. DoD software has all the common
symptoms—occasional system crashes, inability to
deal with user errors and ill-formed data, and errors
which occur so frequently in a complex program
from an apparently minor change. Software relia-
bility, however, is particularly important in the
military environment where errors can have severe
consequences.

One little-recognized problem is that few useful
software tools are available to the embedded soft-
ware developer and maintainer. One reason is that
resource limitations on hardware have led to an
over-reliance on assembly language programming.
There has been little incentive for individual projects
to expend the effort and resources necessary to
provide facilities that would be generally useful,
especially when there are few, if any, other projects
using the same programming language. This may
also account for the lack of off-the-shelf software.

Finally, there is little cost accountability. This
situation has been created by the lack of visibility
of software to management, inaccessibility of soft-
ware costs, and failure to give software the same
scrutiny as hardware.

At least 450 general-purpose programming languag-
es and (incompatible) dialects are used in DoD embed-
ded computer applications—and none is widely used.
With few exceptions the only common (i.e., widely-
used) languages are Cobol (in data processing ap-
plications) and Fortran (in scientific and engineer-
ing applications). The remaining languages are
used almost exclusively in embedded computer
applications.

Programming languages

The present diversity of programming languages
used in embedded computer systems did not cause
most of the problems—nor would a common pro-
gramming language cause them to disappear. Never-
theless, the existing language situation unquestion-
ably aggravates them and inhibits some potential
solutions.

The programming language is the central element
in the design, development, and maintenance of soft-
ware. It is the one software component that pervades
all software component activity. It provides the
building blocks from which software is con:iructed.

Together with its implementation (as a c_ompller).
it acts as the final arbitrator for the behavior of ap-
plication software and associates an interpretatllon
with each program. The programming language 18 a
major concern when developing software tool.s and
aids, when communicuting techniques and algorithms,
when writing manuals, and when training personnel.

Ill effects. The large number of programming lan-
guages and the lack of any widely-used language
have had many ill-effects:

Excessive cost. There is enormous duplication 'of
costs for the design, implementation, testing, main-
tenance, and training that must be repeated for the
translators, software tools, application software, and
support packages for each language.

Slow commaunication. Transfer of new software
technology to practical use is severely retarded.
The diversity of languages creates artificial bound-
aries that complicate communication, reduce under-
standing, and lead to mutual mistrust among users.

Scattered resecrch. There is little research on the
problems of software for embedded computer systems.
Lack of programining language commonality makes
it nearly impossible to gather quantitative data about
problems that are unique to these applications.

Unnecessary ties to vendors. When a language
is unique to a single project, so must be the support
software. In consequence, the software maintenance
is tied to the original vendor. This tendency 1s
strengthened in the common situation in which the
translator and support tuols for the language are
written in still anotler language that remains the
property of the vendor.

Diversion from important tasks. The development
of a new programming language for each project
diverts energy from the real task. Of necessity, pro-
jects are concerned with their own application; their
primary goal must be to develop the application
software. Project personnel may have neither the
inclination, time, funds, nor expertise to develop more
powerful or more gencrally useful software tools that
are needed to support their language.

Diffused expenditures. The large number of lan-
guages diffuses the available funds so that only
the most primitive software aids can be afforded.
Potentially useful software tools are limited to users
of the associated language and, thus, provide little
leverage.

Risk in using existing languages. When the
existing languages are poorly supported (as they
must be when there is no widely used language)
and a new compiler must be developed for each
new system (as is typical in embedded computer
applications), the adoption of an existing language

COMPUTER



by a new project is often more risky and less cost
effective (at least during development) than it is to
develop a new language specialized to the applica-
Lion.

History

The common language effort has had a short but
lively history. It began in 1974 when groups in each
of the military departments independently proposed
the adoption of a common programming language
for developing major defense systems. Those efforts
included the Army *‘Implementation Language for
Real-Time Systems’' study, the Navy CS-4 effort,
and the “High Order Language Standardization
for the Air Force” study. In January 1975 a joint
service program was formulated on the advice of
the Director of Defense Research and Engincering.*
He also instructed that no further funds be
expended for the implementation of new program-
ming languages in major defense systems until the
problem of software commonality (i.e., of insufficient
sharing of software resources) had been resolved.®

Working group. To coordinate the activities of
the common language effort, a high order language
working group was subsequently formed with
official members from the Army, Navy, Air Force,
Marine Corps, Defense Communications Agency,
National Security Agency, and Defense Advanced
Research Projects Agency. NASA and other offices
within DoD have also participated. A representa-
tive of the British Ministry of Defence has been
working full time in the United States since January
1977. The author acts as technical advisor. The
high-order language working group is chaired by a
representative of the Undersecretary of Defense
Research and Engineering.

The working group is chartered to * mvestlgate
the establishment of a minimal number of common
high-order computer programming languages to be
used in the development, acquisition, and support
of computer resources embedded within Defense
Systems.”"” In particular, it is to define the technical
requirements for a common language, compare
them with existing languages, recommend adoption
or implementation of the necessary languages, and
to monitor and assist any such actions. Thus, the
working group coordinates all the activities of the
common language effort but does not participate
directly in the design or implementation of program-
ming languages or their associated software.

The major concerns of the common language
effort are to reduce the number of programming
languages and to provide a useful, well supported
environment for those that remain. The working
group realized carly that it'would be impractical
to convert existing programs to a common language;

*Now the Undersecretary of Defense, Research and Engineering,
USDRE.
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hence the common language effort applies only to
new systems.

Interim list. A first step in reducing the number
of programming languages was to adopt an interim
list of approved languages. The military depart-
ments each nominated a limited number of lan-
guages. Those nominations resulted in the issuance
of Dol Instruction 5000.31.° This instruction
specifies that only approved high-order languages
(Table 1) will be used to develop new defcnse sys-
tem software, unless another language can be
shown to be more cost effective over the system
life cycle.

Table 1. Interim list of approved progiamming languages.
CMS-2
SPL-1
Tacpol
J3 Jovial
J73 Jovial
ANSI Cobol
ANSI Fortran

Generating the requirements. In the spring of
1975, the working group began the process of deter-
mining the characteristics of a general-purpose
programming language suitable for embedded com-
puter applications. The characteristics were to be
given in the form of requirements which would act
as constraints on the acceptability of a language,
but would not dictate specific language features.
The requirements are not a language specification;
instead, they attempt to rigorously define the
needed characteristics in a form that can be
critically reviewed.

STRAWMAN. Although there are several widely
accepted general goals and criteria (such as effi-
ciency, reliability, readibility, simplicity, and imple-
mentability), they do not lend themselves to quan-

tifiable assessment. At the opposite extreme are °

specific language features, advocated by some,
which if adopted as requirements would impose
strong constraints on the form but not necessarily
increase the effectiveness of the language. The
arguments for or against any specific language
feature are often applicable to a class of features
sharing certain properties, and they often depend
on other characteristics of the language. The
requirements attempt to isolate the needed prop-
erties from the features that implement them.
Initially, rigorous definition at the level of require-
ments proved difficult, so a srrawman of prelim-
inary requirements was established. STRAWMAN
was widely circulated within the military depart-
ments and to a lesser extent in the academic com-
munity and industry.

WOODENMAN. The reviews of STRAWMAN re-
sulted in inputs which were formed into a fairly
complete, but still tentative, set of requirements
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1

called wOODENMAN.® This document contnined
descriptions of the general (i.e.. nonquantiiiible)
characteristics which were desired; it also cont.nined
many other desirable characteristics whose fcasi-
bility. practicality, and mutual compatibility had
not been tested. WOODENMAN, too, was widely
distributed. not only within the military depart-
ments but also to other government agencies, the
computer science research community, and industry.
Additionally, a number of technical experts outside
the United States were solicited for comments, the
European community being especially responsive.

TINMAN. Based on the various inputs and the
official responses from each of the military depart-
ments, a TINMAN'®'" set of requirements was
derived. TINMAN removed former requirements for
which there was no sound rationale, restricted
unnecessarily general requirements, and modified
others to be practical within existing technology.
Each requirement in TINMAN had its own justifi-
cation. TINMAN requirements were officially ap-
proved by the assistant secretary for research and
development of each of the military departments
in January 1976.

The documeit was circulated widely for comment,
and in October of that year a workshop'? was held
at Cornell University to discuss the technical issues
that had been raised by the requirements and to
further investigate their feasibility.

IRONMAN. A new version of the requirements,
called IRONMAN,"” was issued in January 1977.
IRONMAN requirements were substantiallv the
same as those of TINMAN, but modified for feasibility
and clarity and presented in an entirely different
format. TINMAN was discursive and organized
around general areas of discussion. IRONMAN, on
the other hand, is very brief and is organized like
a language description or manual. It is essentially
a specification with which to initiate the design of
a language. However, it is still sufficiently general
to constrain the structure of a language without
dictating the details of its design. A more recent
revision, the Revised IRONMAN,'* was issued in
July 1977 andl is avzilable for comment.

At each iteration, comments were gathered and co-
ordinated by the services and their working group
representatives, thea analyzed and reformulated as
requirements by the Institute for Defense Analyses.
In all, 74 con:mands and offices within DoD, 66 in-
dividuals outside of DoD), and 43 companies and or-

ganizations (not rcounting the workshop at Cornell
or the language evaluation efforts) have contributed
over 2000 pages ol commentary on the requirements.
Not all of the suggestions have been adopted, and
many have been modified before acceptance, but
each has been considered in sufficient detail to de-
termine why it should or should not be followed.

Beginning with wOODENMAN, each iteration has
reduced the number and generality of the capa-
bilities requesterl. As the needs of the application
have become belter understood, as the application

needs have been examined with respect to known
language features, and as more emphasis has been
placed on the general requirements for reliability,
maintainability, and efficiency, many of the require-
ments have become bolth more precise and less
restrictive.

Similarity of requirements. One surpising result
of the requirements effort has been the similarity
of the requirements among the different application
areas. Early in this program, it appeared that dif-
ferent user communities might have fundamentally
different requirements with insufficient overlap to
justify a common language or might have critical
requirements that were incompatible. Such com-
munities include avionics, guidance, command and
control, communications, and training simulators.
However, it has been impossible to single out differ-
ent sets of requirements for particular cormmnunities.
Almost all the potential users had the same
requirements, although priorities diffcred. Often
the priorities varied among segments of a task. All
users needed input-output, real-time facilities, strong
data typing, etc.

Upon reflection, the technical rationale for this
outcome was clear. The surprise was historical and
was based on the observation that in the past the
different communities have favored different language
approaches. Further investigation showed that the
origin of this disparity was primarily administrative
rather than technical. This did not, however, estab-
lish that a single language could raeet all the stated
requirements, only that, if a language meeting all
requirements were found, it would satisfy the per-
ceived needs.

Language evaluation. During 1976, 23 program-
ming languages {Table 2) were evaluated against
the developing requirements. These evaluations
were performed by 16 companics and crganiza-
tions.

Most of the languages received at least two
evaluations. In several cases the designers of a
language were included among its evaluators. The

report'* consolidating the evaluations includes the
following findings:

* No language satisfied the requirements so well
that it could be adopted as a common language.

¢ Several of the languages were sufficiently com-
patible with the technical requirements so that
they could be modified to produce an acceptable
language. All of Lhe languages in this group are
derivatives of Algol-68, Pascal, or PL/I.

e  Without exception, the evaluators found all the
interim approved languages to be inappropriate as
a basis for developing a common language.

¢ It was the consensus of the evaluators that it
is currently possible to produce a single language
that would meet essentially all the requirements.

COMPUTER



Table 2. Examples of languages that were evaluated
against the technical requirements.

1. Languages currently being used for embedded computer
applications in DoD, such as

CMS-2

Jovial

SPL/1

Tacpol

2. Languages being used for pracess control and similar
applications in Europe, such as

Coral 66

LIS

LTR

Pearl

RTL/2

3. Research languages known to satisfy specific requirements,
such as ‘

Euclid

Moral

ECL

4. Languages widely used outside DoD, such &s
Cobol
Fortran
Pascal
PL/I

The latter finding means that no technological im-
pediment to a single language was found and that it
is likely that divergent requirements, such as those
for readable programs, avoidance of unnecessary com-
plexity, implementable compilers, semantic and syn-
tactic consistency, machine independence, and object
code efficiency, can be met.

As might be expected, the more modern languages
tended to satisfy the requirements for reliability
and maintainability, while languages intended for
process control and DoD applications satisfied the
requirements that reflect the special needs of
embedded computer applications.

Design competition. Since no existing language
simultaneously satisfied the needs of embedded
computer applications, of reliable and maintainable
software, and of machine independence, and since
it appeared feasible to satisfy all the requirements
without new technology, the services undertook a
joint engineering design effort Lo produce a com-
mon language that would satisfy the requirements.
Because all the languages that were identified as
appropriate for modification are derivatives of
Algol-68, Pascal, or PL/I, it was decided that the
common language also should be a derivative of
(but not nccessarily upward compatible with) one
of those three. Several competing designs were
planned. Most of the fifteen proposals received,
including the four best, were based on Pascal.
These four—CII-Honeywell Bull, Intermetrics,
SofTech, and SRI International--began parallel
design efforts in August 1977.
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We 2now that we design a language 'to simplify the expression of an
unbounded number of algorithms created by an important class of prob-
lems. T'e design should be performed only when the algorithms for this
class impose, or are likely to impose, after some cultivation, considerable
traffic on computers as well as considerable composition time by pro-
grammers using existing languages. The language, then, must reduce the
cost of a set of transactions to pay the cost of its design, maintenance,

and improvement.
Alan J. Perlis

1966 Turing Award Lecture

The philosophy of the technical requirements

The technical requirements for the common
language reflect six major. goals: (1) that it be suit-
able for software in DoD embedded computer
applications; (2) that it be appropriate for the
design, development, and maintenance of reliable
software for systems that are large, long-lived, and
continually undergoing change; (3) that it be suit-
able as a common language (i.e., complete, unam-
biguous, and machine-independent standards can
be established); (4) that it will not impose execution
costs in applications where it provides unused or
unneeded generality; (5) that it provide a base
around which a useful software development, main-
tenance, and support environment can be built;
and (6) that it be an example of good current
language design practice. At the highest level, the
requirements take the form of general design
criteria (i.e., constraints) that are most strongly
influenced by the first three goals.

Application needs. Many facilities must be pro-
vided in a language that is suitable for embedded
computer applications, but four stand out because
they are not usually provided in general-purpose
languages for data processing and scientific appli-
cations:

User input-output interface specification. These
applications use specialized input-output devices

" whose characteristics may not be known at the

time of language design.

Exception handling. Tt must be possible to wrile
programs that will automatically recover from
errors, whether in the hardware, software, or
data.

Real-time control. It must be possible to access
real-time clocks, to control external devices in real
time, and to respond within real-time constraints.

Parallel processing. It must be possible to write
programs that control many devices in parallel,
that share processors through interleaved execu-
tion, and whose parts may be executed concur-
rently on multiprocessors.
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Needs of cnvironment. The characteristics of
military software and its environment impose
several general design criteria on a suitable language:

Reliability. The combination of extremely complex
systems with life-and-death implications may not
be unique to the military, but it certainly requires
that language characteristics which promote the
production of reliable software be weighted very
highly.

Modifiability. Perhaps as much as 90 percent of
software costs in embedded computer systems go
for software maintenance. Language features that
contribute to the maintainability of reliable and
efficient programs should have a major impact on
software costs.

Efficiency. Physical limitations of military systems
(e.g., an airplane) may impose limitations on the
time and space for computations. In consequence,
the efficiency of abject programs is a legitimate
and sometimes critical concern in military applica-
tions. Software that cannot meet these constraints
may be, in effect, worthless.

Needs of commonality. Moreover, the desire for
a language that can be widely used throughout
DoD adds still more design criteria:

Machine independence. With over 200 computer
models used in DoD, the language must be suf-
ficiently machine-independent that it can be made
available on a variety of object machines.

Practicality. The language must be sufficiently
easy and inexpensive to implement that its wide
use will be ercouraped.

Complete dejinition. The language must have a
complete and unambiguous definition to assure
that software can be shared and incompatible
implementations can be avoided.

Easily acceszible support software. The avail-
ability of useful and easily accessible support
software is, cf course, the ultimate technical goal
of the common language effort, but the ability
to build such 2 support environment can be
strongly influenced by the language character-
istics.

General requirements. The design criteria were
then translated into eight formal requirements
dealing with the gencrality, reliability, maintain-
ability, efficiency, simplicity, implementability,
machine-independence, and formal definability of
a suitable language. ‘These eight, which constitute
the first chapter of the technical requirements,'
are further expanded into specific constraints on
the design in the remaining chapters.

Attempts to expand the general requirements to
a more detailed level where quantifiable measures
could be applied, raised questions about Lhe relative
priorities of the general requirements and about

how conflicts in requirements should be resolved.
Some of the tradeoffs that were considered are
outlined below. Others are given in references 11
and 16. Together they constitute a design philosophy
for a common language, a philosophy of not making
concessions on the general requirements unless
absolutely necessary, and only after careful con-
sideration of the implications.

Safety vs. efficiency. Intuition and historical
observation tell us that there is a tradeoff between
safety and efficiency in programs. Languages such
as Euclid have emphasized safety but do not have
efficient implementations. At the same time there
are numerous examnples in language designs of con-
cessions to efficiency at the expense of safety (e.g..
the “free union’’ in Pascal). The apparent tradeoff
may not be inherent. Euclid was a vehicle for
research and was not intended for use in large
software efforts. The information nceded to guar-
antee safety includes the type and ranges of values
of variables (to limit their use in a program). That
is, safety requires the same information as is
needed by an optimzing compiler to determine
what optimizations can be safely applicd. This
suggests that the same answer (i.e., languages that
provide more information in programs) may pro-
vide partial solutions to the problems of safety,
maintainability, and efficiency. This idea was
pursued in the requirements development phase,
and thus far no case has been found in which the
efficiency of a correct program must be reduced in
order to guarantee safety (although the compiler
may be more complex).

Generalization vs. specialization. A general-purpose
language can satisfy a variety of needs and can be
applied to meet many, possibly unforeseen, situations,
while a special-purpose language with built-in facili-
ties for a particular application is often more effi-
cient and therefore less expensive in use. The ques-
tion is how to achieve both in the same programming
language. The approach taken was Lo aim for a sim-
ple- general-purpose language that would have the
power needed for the intended applications, but would
not yet be specialized for any particular application.

Such a language should have a few general
purpose struclures, cach providing a single primitive
capability that can be combined with the others to
form more specialized structures. Predefined applica-
tion-oriented library definitions should be available
in the language. As definitions made within the lan-
guage. they can be independently controlled. need
not add to the complexity of other applications, and
need not affect the implementation of the language
itself.

Programming case vs. program safety. The more
tolerant the programming language. the less it
imposes on the programmer Lo specify his intent and
assumptions in his programs, and thus the coding
task is easier.
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The safety of programs, on the other hand, is
enhanced by requiring specification of the program-
mer’s intent (e.g., specifying the range and types of
variables), allowing redundant specifications (e.g.,
types determinable from either the formal or actual
parameters), restricting the mixing of data types
(e.g., prohibiting implicit type conversions), permit-
ting restricted access to program components
(e.g., specifying the scope of access for variables),
and denying access to non-essential properties of
data and programs (e.g., encapsulated type defi-
nitions). )

A safe language allows the translator to check for
program consistency and to verify that the program-
mer has, in fact, conformed to his stated intent and
his own conventions in each program.

Considering that coding is a tiny fraction of the
total software cost and that there are major software
reliability and maintenance problems in embedded
computer systems, the tradeoff between program-
ming ease and program safety has been resolved in
favor of safety.

Achieving efficiency. The desire for efficiency in
software is often in conflict with other important
goals such as minimal development cost, timely
delivery, reliability, and functional utility. Systems
requirements for efficiency ultimately take the form
of space and time constraints imposed by the com-
puter hardware. No additional benefit is derived from
failure to use available space or failure to use an idle
processor. Consequently, efficiency should be viewed
as a constraint and not as an optimization criterion
when developing programs.

Without automated software tools to identify which
parts of 2 program are consuming the computational
resources, the whole program must be optimized.
Without efficient high-level Janguages suited to the
task, the most capable programmers must be used
to hand-tailor the machine ccde. The complexity of
the task coupled with other constraints when devel-
oping a system seldom permits an optimal solution.
More important, because a military system under-
goes change throughout its lifetime, what may have
initially been an efficient implemeuntation becomes
inefficient when changes occur in the assumptions
and system characteristics against which it was op-
timized.

To be efficient, a high-order language must contain
features that are appropriate to the applications. That
is, it must have features that permit. the user to ex-
press what is to be accompliched by the computa-
tion without dictating the details of how it is to be
implemented. The translator can then select the most
efficient implementation as a function of the gen-
erality and context of its use.

The language must be built from features that
have efficient implementations on most machines;
if the features are too general ot teo specialized, they
ofter will not have efficient representations. It must
be possible to combine built-in features to produce
higher-level mechanisms that are specialized to a
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particular application, task, or program without
imposing run-time cost for multiple levels of proce-
dure calls. An efficient language will require the pro-
grammer to provide more formal documentation
and will encourage the use of structured control
primitives. Finally, whenever possible, features should
be chosen to maximize the amount of processing
that can be done during translation.

Current activities and plans

Three phases are planned for the design and
implementation of the common language. The first
phase or preliminary designs will be completed in
February 1978. The preliminary designs will be
incomplete but are supposed to be sufficiently
detailed to determine the likelihood of their satisfying
the major goals for the language. In particular,
they are to address the most difficult design issues
and to explain the rationale for each design decision.

The preliminary designs will be analyzed by a
variety of teams from the military, industrial, and
research communities on a voluntary basis between
February 16 and March 13, 1978 (i.e., 390 individuals
from 125 teams). The aim of the analyses'’ is to
identify the major weaknesses. errors, and over-
sights in the preliminary designs and to determine
their severity. The analyses will be used to identify
the strengths and weaknesses of the individual
designs, to obtain independent appraisals of the pre-
liminary designs with respect to a number of specific
design criteria, to help determine which subset of
the design efforts will be continued into the second
phase, and to provide feedback to the design con-
tractors as they complete their designs. It is antici-
pated that the preliminary designs, the results of
the individual analyses, and a summary evaluation
report will be publicly available.

The candidate language designs will be completed
in 1979, after which there will be an analysis and
review of each design, leading to selection of one as
the common language. A complete prototype trans-
lator (possibly in the form of an interpreter) will
be available at that time.

The technical requirements continue to be refined
with minor revisions issued at 6-month to l-year
intervals. The final version of the requirements and
the final language design will be consistent with one
another. Inconsistencies discovered during the pre-
liminary design efforts are expected to impose
changes in the requirements. A revised version,
STEELMAN, is planned for late spring 1978.

During the remainder of 1978, the primary
concern of the high-order language working group
will be with the support and environment for a
common language. Possible approaches will be identi-
fied and plans laid for language standards; translator
certification; a root compiler; a common library;
automated tools for software design, development,
and maintenance; and a common (host) user-interface.
A working paper outlining alternatives and initial
positions will be issued by the working group in the



spring of 1978. Further input will be provided by the
National Bureau of Standards technical sympc:ium
on “Tools for Improved Computing in the #)'s”
to be held in June 1978, and by a proposed workshop
to be sponsored by the military departments follow-

ing the NBS symposium.

Several parallel activities are planned for the third
phase (i.e.. the year following selection of the comumon
language). These include test programming of DoD
applications; fine tuning of the language design: and
development of production compilers, the common
library. support facilities, software development and
maintenance tools, translator certification and test
facilities, and special-purpose application libraries.

The language will not be made available for
production use in DoD applications until the testing
and implementation phase has been completed (i.e.,
1980 in the current schedule). The common lan-
guage, upon nomination by the military services,
would then be added to the list of languages that
are approved for use in DoD systems. No compiler
will be certified until a standard definition of the

language is adopted at the end of the third phase.

If the common language effort is successful
(1) there will be a reduction in the number and a rise
. in the level of the general-purpose languages used
for new software in DoD) embedded computer systems,
(2) there will be an effective and useful software
development and maintenance environment built
around the languages that remain, and (3) duplicate
efforts to develop and maintain similar software
tools and support systems will be reduced. The wider
the acceptance and use of the language (inside and
outside DoD), the greater will be the benefits to DoD.
Its acceptance and usefulness, in turn, depend on
its appropriateness for potential applications; on the
quality of its design, implementation, and support;
and on the econemic implications of its use as seen
by potential users. Consequently, the effort has
encouraged and continues to encourage active parti-
cipation from industry as well as from potential
users within DoD. Interested organizations are
encouraged to contribute to the continuing revision
of the technical requirements, the development of a
strategy to assure commonality among implementa-
tions of the language, and the planning and construc-

tion of a suitable environment for the language.
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Decisions and Designs Incorporated, under contract to DARPA, produced
an additional economic analysis of the DoD High Order Language strategy.
This study was based upon the decision analysis techniques produced
under previous DARPA contracts. The work used pieces of existing
software and was implemented on the IBM 5100 desk top minicomputer.

This work was briefed and demonstrated at the Management Steering
Committee meeting of 20 October 1977. Models were actually rerun at

the meeting break with parameter variations suggested by the committee.
The program is available for further exercise on request. Three pro-
grams were involved:

o] DECISION provides the decision tree, tracing the various
alternative scenarios. .

o  SPREAD calculates the mixture of language usage as a result
of those scenarios, growth of programs, distribution of
projects by phases, etc.

o EVAL calculates the actual value of savings due to a
particular language mix. It considers the difference
between languages in a dozen different categories, quanti-
tatively calculates their advantage over a baseline of
Assembler, and sets up the commonality auvantages as a
function of the mix of language usage. The savings quoted
are entirely software savings but there are also calculations
of hardware savings implied by various language mixes.

All savings are compared against the baseline which would result from

the exclusive use of Assembler; therefore, any model considering even

the present use of high order languages, will exhibit savings. The

impact of the common language program is therefore the differencc between
any proposed scenario with a common language, both savings and costs, less
the savings calculated from present trends.

Technical savings expected even from the use of existing languages are
quite significant. They are based upon some detailed consideration of
the individual languages. Indeed, if significant savings were not
expected, then the present policy towards high order languages would be
ill-conceived. The proposed new common high order language is examined
in detail and expected to give significantly higher technical savings.
All savings are baselined against a flat software expenditure from now
on of $3.2B per year and all savings are proportional to this number.



Runs were primarily directed towards examining the sensitivity of the
introduction date and the rate of introduction. Detailed results are
given in the attached figures. An introduction date of 1980 and total
acceptance in 1985 may be compared with an introduction in 1985 and
total acceptance in 1990 or with an introduction in 1980 and a slower
acceptance, being complete only in 1990, etc. Both the saving rate per
year and the integral savings to 1996 are shown. It must be noted that
even the total acceptance of a language means that only new programs
are being initiated and older programs in other languages continue for
their life cycle; therefore, savings take some time to build up. On
the other hand, the savings when established are enormous and pay back

of language development costs can easily occur in much less than a year,
once use is established.

-

An examination of the results based upon the total savings to 1996 gives
the following trend:

o For a five-year introduction period, delay of the year

of introduction through the period 1980 to 1987, with a
corresponding delay of the complete adoption from 1985
to 1992, gives an average reduction in savings of about
$1.5B per year delayed. This is simply the average
magnitude of savings once full use is established.

Keeping a constant total acceptance date of 1985, delay

of the introduction from 1980 to 1982 costs about $1B
per year delay.

Having established an introduction date, slow acceptance

or delay of the total usage date costs about $1B per year
delay.

o All these figures are proportional to the total software
costs envisioned. $1.5B corresponds to about 10% of the
calculated additional savings due to the use of the new
language. Thus a delay of one year in the introduction
could only be justified if it resulted in an offsetting
integrated savings of more than 10%, indicating an improved
maximum savings rate increase of up to 20%.

It is recommended that the DoD Single Common Higher Order Language be
introduced as rapidly as possible without penalizing technical quality

or acceptability much more than 10%. Costs are small in all cases, being
less than 1% of savings.



The High Order Language Working Group has established a third economic
_model for a DoD High Order Language commonality. This model is an out-
growth of the work done by Decisions and Designs Incorporated and its
first version resembles the DDI model in many details. It has also
received considerable input from discussions with the MITRE modelers.
The main unique feature of the model is the fact that it is available
on the ARPANET account of HOLWG for continued use and modification by
the Working Group. It will continue to be maintained and updated during
life of the program and will be used as a decision aid in the future.
It is presently running on a PDP-10, is written in FORTRAN for trans-
portability.

This model may be conceptually divided into three portions similar to
the DDI structure but the elements are somewhat different.

o DECISION is a routine which allows the implicit input of
events or decisions which can affect either the use of a
particular language, the costs generated, or its effective-
ness. Such decisions include the introduction of a language
at a particular date, the rate of its adoption, the existence
of control for that language, phasing out or restricting new
starts in a language, permission to recode previous software
from one language to another when cost effective, etc.

0 PROS processes each one of these decisions and integrates
an evolving world model up to the input time, including the
amount of effort in each programming language by each
Service, by size of program and phase of development and
possibly application area. These are all derived numbers
based upon input decisions and the resulting new starts.
Ten languages are followed including all seven DODI 5000.31
languages plus Assembler, the common language and a lumped
figure for all minor HOLs. For the baseline, a steady growth
in the software produced from 1955 to date is postulated.
This corresponds to past data. Future growth may continue
or decrease as indicated by decision.

o EVAL gives an evaluation of the total value of the particular
scenario at each time on the basis of benefits calculated from
some thousand factors based on language phase of development
and size of program. The coefficients were obtained informally
from the organizations responsible for the individual languages.
They are available for modification and it is expected that both
the coeffieients and the definition of factors will evolve with
continued study. The gross properties of the languages can be



checked against their general acceptance. For instance, a
particular situation in which we find FORTRAN and JOVIAL to
have similar utilization might be expected to correspond to
similar magnitudes of technical benefit. Further, we can
expect magnitude of technical benefit to be significant
(factor of 2) in those cases where historically we see a
large voluntary adoption rate. A 10% benefit would not be
expected to have resulted in much acceptance, a 90% benefit
should imply almost total adoption to the exclusion of
Assembly language. All benefits (both positive and negative)
and costs are reference to Assembly language.

Costs are calculated for training, compiler generation,
introduction and maintenance, tools, and control. All costs
are positive and, except for training, are not generated

for Assembly language efforts. The benefits of commonality

as calculated by the code are therefore evidenced in reduction
in costs. These costs are then compared to technical gains

to find the total benefit. Note that the benefit resulting
from additional hardware commonality and from sharing and
transportability of applications programs is not calculated

in the present version but will be added later. These can

be expected to give quite large savings but are also dependent
on factors outside the pure software environment and will
require a more inclusive world model.

The advantages of this model include its wide availability,
its continued existence, the explicit use of decisions, a
considerable accounting detail in the evolution of the world
model, and the technical detail in the factors appropriate to
the individual languages. It is expected that the model will

continue to evolve and play a significant role in program
decisions for this and other efforts.

The benefits calculated and the general results are only
slightly less percentagewise than that of the DDI model and
the resulting recommendations would be the same. It is
improtant to note that all the technology commonality factors
in the two programs were independently derived. This program,
unlike the MITRE effort, is not deliberately conservative in
the factors considered. It purports to be the current best
estimate. It is, however, conservative in the omission of
significant factors which have not yet been included.



The baseline case for this program normally considers an
expanding software commitment, perhaps coupled with a decreas-
ing cost of hardware, to increase the total fraction of
computer resources devoted to software. Because of the
benefits herein envisioned, the growth of functionality in
software is calculated to be much more rapid than the growth
of expenditures. With the inclusion of additional saving
factors, it may be possible to get the cost of software in
1977 dollars to flatten out, even if the functionality
increases by an order of magnitude.
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PREFACE

The Department of Defense Common High Order Language program was
established in 1975 with the goal of establishing a single high order computer
~ programming language appropriate for DoD embedded computer systems. A
High Order Language Working Group (HOLWG) was established to formulate the
DoD requirements for high order languages, to evaluate existing languages
against those requirements, and to implement the minimal set of languages
required for DoD use. As an administrative initiative toward the eventual goal,
DoD Directive 5000.29 provides that any new defense systems should be
programmed in a DoD approved and centrally controlled high order language.
DoD Instruction 5000.31 gives an interim list of approved languages: COBAL,
FORTRAN, TACPOL, CMS-2, SPL/1, and JOVIAL J3 and J73. Economic
analyses that were used to quantify the benefits from increased use of high
order languages, also showed that the rapid introduction of a single modern
language would increase the benefits considerably. The requirements have
been widely distributed for comment throughout the military and civil
communities, producing successively more refined versions from STRAWMAN
through  WOODENMAN, TINMAN, IRONMAN, and the present STEELMAN.
During the requirement development process, it was determined that the single
set of requirements generated was both necessary and sufficient for all'major
DoD applications. Formal evaluation was performed on dozens of existing
languages concluding that no existing language could be adopted as a single
common HOL for the DoD but that a single language meeting essentially all the
requirements was both feasible and desirable. Four contractors were funded
to produce competing prototype designs. After analysis of these preliminary
designs the number of design teams was reduced to two. Their designs will be
completed and a single language will emerge. Further steps in the program will
include test and evaluation of the language, production of compilers and other
tools for software development and maintenance, control of the language, and
‘validation of compilers. Government-funded compilers and software tools, as
well as the compiler validation facility, will be widely and inexpensively
available and well maintained.






THE TECHNICAL REQUIREMENTS

The technical requirements for a common DoD high order programming language
given here are a synthesis of the requirements submitted by the Military Depar:tments.
They specify a set of constraints on the design of languages that are appyopna}e for
embedded computer applications (i.e, command and control, qommumcatlons, avionics,
shipboard, test equipment, software development and maintenance, ‘and support
applications). We would especially like to thank the phase one a_nal)"sas teams, the
language design teams, and the many other individuals and organizations that have
commented on the Revised Ironman and have identified weaknesses and trouble spots in
the technical requirements. A primary goal in this revision has been to reduce the

complexity of the resulting language.

This revision incorporates the following changes. Care has been taken to ensure .
that the paragraph numbers remain the same as in the Revised Ironman. There have been
several changes in terminology and many changes in wording to improve the
understandability and preciseness of the requirements. Several requirements have been
restated to remove constraints that were, unintended but were implied because t.he
requirement suggested a particular mechanism rather than giving the underlying
requirement. The requirements for embedded comments (2I), unordered enumeration
types (3-2B), associative operator specifications (7D), dynamic aliasing of array
components (10B), and multiple representations of data (11B) have been deleted because
they have been found unnecessary or are not adequately justified. The minimal source
language character set has been reduced to 55 characters to make it compatible with the
majority of existing input devices (2A). The do together model for parallel processing has
been found inadequate for embedded computer applications and has been replaced by a
requirement for parallel processes (section 9). The preliminary designs have
demonstrated the need for additional requirements for explicit conversion between types
(3B), subtype constraints (3D), renaming (3-5B), a language distinction between open and .
closed scopes (5G), and the ability, but preferably not special mechanisms, to pass data
between parallel processes (9H), to write nonverifiable assertions (10F), to wait for several
signals simultaneously (9J), and to mark shared variables (SC).

The Steelman is organized with an outline similar to that expected in a language
defining document. Section 1 gives the general design criteria. These provide the major
goals that influenced the selection of more specific requirements in later sections and
provide a basis for language design decisions that are not otherwise addressed in this
document. Sections 2 through 12 give more specific constraints on the language and its
translators. The Steelman calls for the inclusion of features to satisfy specific needs in the
design, implementation, and maintenance of military software, specifies both general and
specific characteristics desired for the language, and calls for the exclusion of certain
undesirable characteristics. Section 13 gives some of the intentions and expectations for
development, control, and use of the language. The intended use and environment for the
ldang_uage has strongly influenced the requirements, and should influence the language

esign.



A precise and consistent use of terms has been attempted throughout the document.
Many potentially ambiguous terms have been defined in the text. Care has been taken to
distinguish between requirements, given as text, and comments, given as bracketed notes.

The following terms have been used throughout the text to indicate where and to
what degree individual constraints apply:

shall #

should

shall attempt
shall require
shall permit
must

may

will

translation

execution

indicates a requirement placed on the language or translator
indicates a desired goal but one for which there is no objective test

indicates a desired goal but one that may not be achievable given the
current state-of-the-art, or may be in conflict with other more
important requirements

indicates a requirement placad on the user by the language and its
translators (language is subject) '

indicates a requirement placed on the ianguage to provide an option to
the user (language is subject)

indicates a requirement placed on the user by the language and its
translators (user is subject)

indicates a requirement placed on the language to provide an option te
the user (user is subject)

indicates a consequence that is expected to follow or indicates an

intention of the DoD; it does not in any case by itself constrain the
decign of the language

refers to any processing applied to a program by the host or object
machine before execution; it includes lexical analysis, syntactic error

checking, program analyses, optimization, code generation, assembly,
and loading

refers to the processing by the object machine to carry out the actions
prescribed by the program.



1. General Design Criteria

1A. " Generality. The language shall provide generality only to the extent necessary to
satisfy the needs of embedded computer applications. Such applicatlons_mvolve real
time control, self diagnostics, input-output to nonstandard -peripheral devices, parallel
processing, numeric computation, and file’processing. A

1B. Reliability. The language should aid the design and development of reliable
programs. The language shall be designed to avoid error prone features and to
maximize automatic detection of programming errors. The language shall require some
redundant, but not duplicative, specifications in programs. Translators shall produce
explanatory diagnostic and warning messages, but shall not attempt to correct

programming errors.

1C. Maintainability. The language should promote ease of program maintenance. It
should emphasize program readability (i.e., clarity, understandability, and modifiability of
programs). The language should encourage user documentation of programs. It shall
require explicit specification of programmer decisions and shall provide defaults only for
instances where the default is stated in the language definition, is always meaningful,
reflects the most frequent usage in programs, and may be explicitly overridden.

1D. Efficiency. The language design should aid the production of efficient object
programs. Constructs that have unexpectedly expensive implementations should be
easily recognizable by translators and by users. Features should be chosen to have a
simple and efficient implementation in many object machines, to avoid execution costs for
available generality where it is not needed, to maximize the number of safe optimizations
available to translators, and to ensure that unused and constant portions of programs will
not add to execution costs. Execution time support packages of the language shall not be
included in object code unless they are called.

1E. Simplicity. The language should not contain unnecessary complexity. It should

-have a consistent semantic structure that minimizes the number of underlying concepts.
It should be as small as possible consistent with the needs of the intended applications.
It should have few special cases and should be composed from features that are
individually simple in their semantics. The language should have uniform syntactic
conventions and should not provide several notations for the same concept. No
arbitrary restriction should be imposed on a language feature.

1F. Implementability. The language shall be composed from features that are
understood and can be implemented. The semantics of each feature should be
sufficiently well specified and understandable that it will be possible to predict its
interaction with other features. To the extent that it does not interfere with other
requirements, the language shall facilitate the production of translators that are easy to
implement and are efficient during translation. There shall be no language restrictions
that are not enforceable by translators. - -
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1G. Machine Independence. The design of the language should strive for machine
independence. It shall not dictate the characteristics of object machines or operatmg
systems except to the extent that such characteristics are implied by the semantics of
control structures and built-in operations. It shall attempt to avoid features whose
semantics depend on characteristics of the object machine or of the object machine
operating system. Nevertheless, there shall be a facility for defining those portions of
programs that are dependent on the object machine configuration and for conditionally
compiling programs depending on the actual configuration. :

1H. Complete Definition. The language shall be completely and unambiguously defined.
To the extent that a formal definition assists in achieving the above goals (i.e., all of
section 1), the language shall be formally defined.



2. General Syntax

2A. Character Set. The full set of character graphics that may be used-in-source
programs shall be given in the language definition. Every source program shall also
have a representation that uses only the following 55 character subset of the ASCII

graphics:

%8 (Vx+,-./:3<=>?
9123456789
ABCDEFGHI JKLMNOPOQRSTUVWXYZ _

'Each additional graphic (i.e., one in the full set but not in the 55 character set) may be
replaced by a sequence of (one or more) characters from the 55 character set without
altering the semantics of the program. The replacement sequence shall be specified in

the language definition.

2B. Grammar. The language should have a simple, uniform,-and easily parsed grammar
and lexical structure. The language shall have free form syntax and should use familiar
notations where such use does not conflict with other goals.

2C. Syntactic Extensions. The user shall not be able to modify the source language
syntax. In particular the user shall not be able to introduce new precedence rules or to
define new syntactic forms.

2D. Other Syntactic Issues. Multiple occurrences of a language defined symbol
appearing in the same context shall not have essentially different meanings. Lexical
units (i.e., identifiers, reserved words, single and multicharacter symbols, numeric and
string literals, and comments) may not cross line boundaries of a source program. All key
word forms that contain declarations or statements shall be bracketed (i.e., shall have a
closing as well as an opening key word). Programs may not contain unmatched brackets
of any kind. '

2E. Mnemonic Identifiers, Mnemonically significant identifiers shall be allowed.
There shall be a break character for use within identifiers. . The language and its
translators shall not permit identifiers or reserved words to be abbreviated. [Note that
this does not preclude reserved words that are abbreviations of natural language words.]

2F. Reserved Words. The only reserved words shall be those that introduce special
syntactic forms (such as control structures and declarations) or that are otherwise used
as delimiters. Words that may be replaced by identifiers, shall not be reserved (e.g.,
names of functions, types, constants, and variables shall not be reserved). All reserved
words shall be listed in the language definition.

!

2G. Numeric Literals. There shall be built-in decimal literals. There shall be no‘
implicit truncation or rounding of integer and fixed point literals.



2H. String Literals. There shall be a built-in facility for fixed length string literals.
String literals shall be interpreted as one-dimensional character arrays.

21. Comments. The language shall permit comments that are introduced by a special
(one or two character) symbol and terminated by the next line boundary of the source
program.



3. Types

3A. Strong ‘Typing. The language shall be strongly typed. The type of each var:iable,
array and record component, expression, function, and parameter shall be determinable

during translation.

3B. Type Conversions. The language shall distinguish the concepts of type (specifying
data elements with common properties, including operations), subtype (i.e., a subse:t of
the elements of a type, that is characterized by further constraints), and representations
(i.e., implementation characteristics). There shall be no implicit conversions between
types. Explicit conversion operations shall be automatically defined between types that

are characterized by the same logical properties.

3C. Type Definitions. It shall be possible to define new data types in programs. A
type may be defined as an enumeration, an array or record type, an indirect type, an
existing type, or a subtype of an existing type. It shall be possible to process type
definitions entirely during translation. An identifier may be associated with each type.
No restriction shall be imposed on user defined types unless it is imposed on all types. .

3D. Subtype Constraints. The constraints that characterize subtypes shall include
range, precision, scale, index ranges, and user defined constraints. The value of a
subtype constraint for a variable may be specified when the variable is declared. The
language should encourage such specifications. [Note that such specifications can aid
the clarity, efficiency, maintainability, and provability of programs.]

3.1. Numeric Types

3-1A. Numeric Values. The language shall provide distinct numeric types for exact and -
for approximate computation. Numeric operations and assignment that would cause the
most significant digits of numeric values to be truncated (e.g., when overflow occurs) shall
constitute an exception situation. ~

3-1B. Numeric Operations. There shall be built-in operations (i.e., functions) for
conversion between the numeric types. There shall be operations for addition,
subtraction, multiplication, division, negation, absolute value, and exponentiation to
integer powers for each numeric type. There shall be built-in equality (i.e., equal and
unequal) and ordering operations (i.e., less than, greater than, less than or equal, and
greater than or equal) between elements of each numeric type. Numeric values shall be
equal if and only if they have exactly the same abstract value.

3-1C. Numeric Variables. The range of each numeric variable must be specified in
programs and shall be determined by the time of its allocation. Such specifications shall
be interpreted as the minimum range to be implemented and as the maximum range
needegl by the application. Explicit conversion operations shall not be required between
numeric ranges.



Approximate Arithmetic

3-1D. Precision. The precision (of the mantissa) of each expression result and
variable in approximate computations must be specified in programs, and shall be
determinable during translation. Precision specifications shall be required for each such
variable. Such specifications shall be interpreted as the minimum accuracy (not
significance) to be implemented. Approximate results shall be implicitly rounded to the
implemented precision. Explicit conversions shall not be required between precisions.

3-1E. Approximate Arithmetic Implementation. Approximate arithmetic will be
implemented using the actual precisions, radix, and exponent range available in the
object machine. There shall be built-in operations to access the actual precision, radix,
and exponent range of the implementation.

Exact Arithmetic

3-1F. Integer and Fixed Point Numbers. Integer and fixed point numbers shall be

treated as exact numeric values. There shall be no implicit truncation or rounding in
integer and fixed point computations.

3-1G. Fixed Point Scale. The scale or step size (i.e., the minimal representable
difference between values) of each fixed point variable must be specified in programs
- and be determinable during translation. Scales shall not be restricted to powers of two.

3-1H. Integer and Fixed Point Operations. There shall be integer and fixed point
operations for modulo and integer division and for conversion between values with
different scales. All built-in and predefined operations for exact arithmetic shall apply

between arbitrary scales. Additional operations between arbitrary scales shall be
definable within programs. '

3.2. Enumeration Types

3-2A. Enumeration Type Definitions. There shall be types that are definable in
_programs by enumeration of their elements. The elements of an enumeration type may
be identifiers or character literals. Each variable of an enumeration type may be
restricted to a contiguous subsequence of the enumeration. :

3-2B. Operations on Enumeration Types. Equality, inequality, and the ordering
operations shall be automatically defined between elements of each enumeration type.
Sufficient additional operations shall be automatically defined so that the successor,

predecessor, the position of any element, and the first and last element of the type may
be computed. : . -

3-2C. Boolean Type. There shall be a predefined type for Boolean values.

3-2D. Character Types. Character sets shall be definable as enumeration types.
Character types may contain both printable and control characters. The ASCII
character set shall be predefined.



3.3. Composit; Types

3-3A. Composite Type Definitions. It shall be possible to define types that are
Cartesian products of other types. Composite types shall include arrays (i.e., composite
data with indexable components of homogeneous types) and records (i.e., composite data

with labeled components of heterogeneous type).

3-3B. Component Specifications. For elements of composite types, the .type of ez-!ch
component (i.e., field) must be explicitly specified in programs and determinable during
translation. Components may be of any type (including array and record types). Rapge,
precision, and scale specifications shall be required for each component of appropriate

numeric type.

3-3C. Operations on Composite Types. A value accessing operation shall be
automatically defined for each component of composite data elements. Assignment shall
be automatically defined for components that have alterable values. - A constructor
operation (i.e., an operation that constructs an element of a type from its constituent
parts) shall be automatically defined for each composite type. An assignable component
may be used anywhere in a program that a variable of the component’s type is permitted.
There shall be no automatically defined equivalence operations between values of
elements of a composite type. '

3-3D. Array Specifications. Arrays that differ in number of dimensions or in
component type shall be of different types. The range of subscript values for each
dimension must be specified in programs and may be determinable at the time of array
allocation. The range of each subscript value must be restricted to a contiguous
sequence of integers or to a contiguous sequence from an enumeration type.

3-3E. Operations on Subarrays.. There shall be built-in operations for value access,
assignment, and catenation of contiguous sections of one-dimensional arrays of the same
component type. The results of such access and catenation operations may be used as
actual input parameter.

3-3F. Nonassignable Record Components. It shall be possible to declare constants and
(unary) functions that may be thought of as record components and may be referenced
using the same notation as for accessing record components. Assignment shall not be
permitted to such components.

3-3G. Variants. It shall be possible to define types with alternative record. structures
(i.e., variants). The structure of each variant shall be determinable during translation.

3-3H. Tag Fields. Each variant must have a nonassignable tag field (i.e., a component
that can be used to discriminate among the variants during execution). It shall not be
possible to alter a tag field without replacing the entire variant.
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3-31. Indirect Types. It shall be possible to define types whose elements are
indirectly accessed. Elements of such types may have components of their own type,
may have substructure that can be altered during execution, and may be distinct while
having identical component values. Such types shall be distinguishable from other
composite types in their definitions. An element of an indirect type shall remain
allocated as long as it can e referenced by the program. [Note that indirect types require
pointers and sometimes heap storage in their implementation.]

3-3J. Operations on Indirect Types. Each execution of the constructor operation for
an indirect type shall create a distinct element of the type. An operation that
distinguishes between different elements, an operation that replaces all of the component
values of an element without altering the element’s identity, and an operation that
produces a new element having the same component values as its argument, shall be
automatically defined for each indirect type. -

3.4. Sets

3-4A. Bit Strings (i.e., Set Types). It shall be possible to define types whose elements
are one-dimensional Boolean arrays represented in maximally packed form (i.e, whose
elements are sets).

3-4B. Bit String Operations. Set construction, membership (i.e., subscription), set
equivalence and nonequivalence, and also complement, intersection, union, and symmetric
difference (i.e.,, component-by-component negation, conjunction, inclusive disjunction,
andtexc!usive disjunction respectively) operations shall be defined automatically for each
set type. '

3.5. Encapsulated Definitions

3-5A. Encapsulated Definitions. It shall be possible to encapsulate definitions. An
encapsulation may contain declarations of anything (including the data elements and
operations comprising a type) that is definable in programs. The language shall permit
multiple explicit instantiations of an encapstilation.

3-5B. Effect of Encapsulation. An encapsulation may be used to inhibit external access
to implementation properties of the definition. In particular, it shall be possible to
prevent external reference to any declaration within the encapsulation including
automatically defined operations such as type conversions and equality. Definitions that
are made within an encapsulation and are externally accessable may be renamed before
use outside the encapsulation.

3-5C. Own Variables. Variables declared within an encapsulation, but not within a
function, procedure, or process of the encapsulation, shall remain allocated and retain
their values throughout the scope in which the encapsulation is instantiated.
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4, Expﬁessions

4A. Form of Expressions. The parsing of correct expressions shall not depend on the
}ypes of their operands or on whether the types of the operands are built into the
anguage.

4B. Type of Exptessions. It shall be possible to specify the type of any expression
explicitly. The use of such specifications shall be required only where the type of the
expression cannot be uniquely determined during translation from the context of its use
(as might be the case with aliteral).

4C. Side Effects. The language shall attempt to minimize side effects in expressions,
but shall not prohibit all side effects. A side effect shall not be allowed it it would alter
the value of a variable that can be accessed at the point of the expression. Side effects
shall be limited to own variables of encapsulations. The language shall permit side
effects that are necessary to instrument functions and to do storage management within
functions. The order of side effects within an expression shall not be guaranteed.
[Note that the latter implies that any program that depends on the order of side effects is
erroneous.]

4D. Allowed Usage. Expressions of a given type shall be allowed wherever both
constants and variables of the type are allowed.

4E. Translation Time Expressions. Expressions that can be evaluated during
translation shall be permitted wherever literals of the type are permitted. Translation
time expressions that include only literals and the use of translation time facilities (see
11C) shall be evaluated during translation.

4F, Operator Precedence Levels. The precedence levels (i.e,, binding strengths) of all
(prefix and infix) operators shall be specified in the language definition, shall not be
alterable by the user, shall be few in number, and shall not depend on the types of the
operands.

4G. Effect of Parentheses. If present, explicit parentheses shall dictate the association
of operands with operators. The language shall specify where explicit parentheses are
required and shall attempt to minimize the psychological ambiguity in expressions.
[Note that this might be accomplished by requiring explicit parentheses to resolve the
operator-operand association whenever a nonassociative operator appears to the left of
an operator of the same precedence at the least-binding precedence level of any

subexpression.]
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5. Constants, Variables, and Scopes

SA. Declarations of Constants. It shall be possible to declare constants of any type.
Such constants shall include both those whose values.are determined during translation

and those whose value cannot be determined until allocation. Programs may not assign
to constants.

5B. Declarations of Variables. Each variable must be declared explicitly. Variables
may be of any type. The type of each variable must be specified as part of its
declaration and must be determinable during translation. [Note, "variable” throughout

this document refers not only to simple variables but also to composite variables and to
components of arrays and records. ]

5C. Scope of Declarations. Everything (including operators) declared in a program
shall have a scope (i.e., a portion of the program in which it can be referenced). Scopes
shall be determinable during translation. Scopes may be nested (i.e, lexically
embedded). A declaration may be made in any scope. Anything other than a variable
shall be accessable within any nested scope of its definition.

5D. Restrictions on Values. Procedures, functions, types, labels, exception situations,
and statements shall not be assignable to variables, be computable as values of
expressions, or be usable as nongeneric parameters to procedures or functions.

SE. Initial Values. There shall be no default initial values for variables.

5F. Operations on Variables. Assignment and an implicit value access operation shall
be automatically defined for each variable.

5G. Scope of Variables. The language shall distinguish between open scopes (i.e,,
those that are automatically included in the scope of more globally declared variables)
and closed scopes (i.e., those in which nonlocal variables must be explicitly imported).
Bodies of functions, procedures, and processes shall be closed scopes. Bodies of
classical control structures shall be open scopes.
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6. Classical Control Structures

6A. Basic Control Facility. The (built-in) control mechanismg'should be of minimal
number and complexity. Each shall provide a single capability and shall have a
distinguishing syntax. Nesting of control structures shall be allowed. There shall be no
control definition facility. Local scopes shall be allowed within the bodies of control
statements. Control structures shall have only one entry point and shall exit to a single
point unless exited via an explicit transfer of control (where permitted, see 6G), or the

raising of an exception (see 10C).

6B. Sequential Control. There shall be a control mechanism for sequencing statements.
The language shall not impose arbitrary restrictions on programming style, such as t'he
choice between statement terminators and statement separators, unless the restriction

makes programming errors less likely.

6C. Conditional Control. There shall be conditional control structures that permit
selection among alternative control paths. The selected path may dgpend on the value
of a Boolean expression, on a computed choice among labeled alternatives, or on the true
condition in a set of conditions. The language shall define the control action for all values
of the discriminating condition that are not specified by the program. The user may
supply a single control path to be used when no other path -is selected. Only the
selected branch shall be compiled when the discriminating condition is a translation time

expression.

6D. Short Circuit Evaluation. There shall be infix control operations for short circuit
conjunction and disjunction of the controlling Boolean expression in conditional and
iterative control structures. -

6E. Iterative Control. There shall be an iterative control structure. The iterative
control may be exited (without reentry) at an unrestricted number of places. A
succession of values from an enumeration type or the integers may be associated with
successive iterations and the value for the current iteration accessed as a constant

throughout the loop body.

6G. Explicit Control Transfer. There shall be a mechanism for control transfer (i.e., the
go to). It shall not be possible to transfer out of closed scopes, into narrower scopes, or
into control structures. It shall be possible to transfer out of classical control structures.
There shall be no control transfer mechanisms in the form of switches, designational
expressions, label variables, label parameters, or alter statements.
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7. Functions and Procedures

7A.  Function and Procedure Definitions. Functions (which return values to
expressions) and procedures (which can be called as statements) shall be definable in
programs. Functions or procedures that differ in the number or types of their
parameters may be denoted by the same identifier or operator (i.e., overloading shall be
permitted). [Note that redefinition, as opposed to overloading, of an existing function or
procedure is often error prone.]

7B. Recursion. It shall be possible to call functions and procedures recursively.

7C. Scope Rules. A reference to an identifier that is not declared in the most quai
scope shall refer to a program element that is lexically global, rather than to one that is
global through the dynamic calling structure.

Functions

7D. Function Declarations. The type of the result for each function must be specified in
its declaration and shall be determinable during translation. The results of functions may
be of any type. If aresultis of a nonindirect array or record type then the number of its
components must be determinable by the time of function call.

Parameters

7F. Formal Parameter Classes. There shall be three classes of formal data
parameters: (a) input parameters, which act as constants that are initialized to the value
of corresponding actual parameters at the time of call, (b) input-output parameters, which
enable access and assignment to the corresponding actual parameters, either throughout
execution or only upon call and prior to any exit, and (c) output parameters, whose values
are transferred to the corresponding actual parameter only at the time of normal exit. In
the latter two cases the corresponding actual parameter shall be determined at time of
call and must be a variable or an assignable component of a composite type.

7G. Parameter Specifications. The type of each formal parameter must be explicitly
specified in programs and shall be determinable during translation. Parameters may be
of any type. The language shall not require user specification of subtype constraints for
formal parameters. If such constraints are permitted they shall be interpreted as
assertions and not as additional overloading. Corresponding formal and actual
parameters must be of the same type.

7H. . Formal Array Parameters. The number of dimensions for formal array parameters
must be specified in programs and shall be determinable during translation.
Determination of the subscript range for formal array parameters may be delayed until
invocation and may vary from call to call. Subscript ranges shall be accessible within
function and procedure bodies without being passed as explicit parameters.
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7L Restrictions to Prevent Aliasing. The language shall attempt to prevent aliasing
(i.e., multiple access paths to the same variable or record component) that is not intended,
but shall not prohibit all aliasing. Aliasing shall not be premitted between output
parameters nor between an input-output parameter and a nonlocal variable. Unintended
aliasing shall not be permitted between input-output parameters. A restriction limiting
actual input-output parameters to variables that are nowhere referenced as nonlocals
within a function or routine, is not prohibited. All aliasing of components of elements of

an indirect type shall be considered intentional.
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8. Input-Output, Formating and Configuration Control

8A. Low Level Input-Output. There shall be a few low level input-output operat.ions
that send and receive control information to and from physical channels and devices.

The low level operations shall be chosen to insure that all user level input-output
operations can be defined within the language.

8B.  User Level Input-Output. The language shall specify (i.e., give calling format and
general semantics) a recommended set of user level input-output operations. These
shall include operations to create, delete, open, close, read, write, position, and

interrogate both sequential and random access files and to alter the association between
logical files and physical devices. :

8C. Input Restrictions. User level input shall be restricted to data whose record
representations are known to the translator (i.e., data that is created and written entirely
within the program or data whose representation is explicitly specified in the program).

8D. Operating System Independence. The language shall not require the presence of
an operating system. [Note that on many machines it will be necessary to provide
run-time procedures to implement some features of the language.]

8E. Resource Control. There shall be a few low level operations to interrogate and

control physical resources (e.g., memory or processors) that are managed (e.g., allocated
or scheduled) by built-in features of the language.

8F. Formating. There shall be predefined operations to convert between the symbolic
and internal representation of all types that have literal forms in the language (e.g., strings
of digits to integers, or an enumeration element to its symbolic form). These conversion
operations shall have the same semantics as those specified for literals in programs.



17

~
9. Parallel Processing

9A. Parallel Processing. It shall be possible to define parallel processes. Processes
(i.e., activation instances of such a definition) may be initiated at any point within the
scope of the definition. Each process (activation) must have a name. It sh_all not be
possible to exit the scope of a process name- unless the process is terminated (or

uninitiated).

9B. Parallel Process Implementation. The parallel processing facility sha]l be
designed to minimize execution time and space. Processes shall have consistent
semantics whether implemented on multicomputers, multiprocessors, or with interleaved
execution on a single processor. - :

9C. Shared Variables and Mutual Exclusion. It shall be possible to mark variables that
are shared among parallel processes. An unmarked variable that is assigned on one
path and used on another shall cause a warning. It shall be possible efficiently to
perform mutual exclusion in programs. The language shall not require any use of mutual
exclusion. :

8D. Scheduling. The semantics of the built-in scheduling algorithm shall be
first-in-first-out within priorities. A process may alter its own priority. If the language
provides a default priority for new processes it shall be the priority of its initiating
process. The built-in scheduling algorithm shall not require that simultaneously
executed processes on different processors have the same priority. [Note that this rule
gives maximum scheduling control to the user without loss of efficiency. Note also that
priority specification does not impose a specific execution order among parallel paths
and thus does not provide a means for mutual exclusion.]

9E. Real Time. It shall be possible to' access a real time clock. There shall be
trahslation time constants to convert between the implementation units and the program
~ units for real time. On any control path, it shall be possible to delay until at least a
specified time before continuing execution. A process may have an accessible clock
giving the cumulative processing time (i.e., CPU time) for that process. :

9G. Asynchronous Termination. It shall be possible to terminate another procéss.
The terminated pracess may designate the sequence of statements it will execute in
response to the induced termination.

9H. Passing Data. It shall be possible to pass data between processes that do not
share variables. It shall be possible to delay such data transfers until both the sending
and receiving processes have requested the transfer.

91. Signalling. It shall be possible to set a signal (without waiting), and to wait for a
signal (without delay, if it is already set). Setting a signal, that is not already set, shall
cause exactly one waiting path to continue.

9J. Waiting. It shall be possible to wait for, determine, and act upon the first
completed of several wait operations (including those used for data passing, signalling,
and real time). - '
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10. Excepti/on Handling

10A. Exception Handling Facility.. There shall be an exception handling mechanism _for‘
responding to unplanned error situations detected in declarations and statements during
execution. The exception situations shall include errors detected by hardware,
software errors detected during execution, error situations in built-in operations, and
user defined exceptions. Exception identifiers shall have a scope. Exceptions should
add to the execution time of programs only if they are raised.

10B. Error Situations. The errors detectable during execution shall include exceeding
the specified range of an array subscript, exceeding the specified range of a variable,
exceeding the implemented range of a variable, attempting to access an uninitialized
variable, attempting to access a field of a variant that is not present, requesting a
resource (such as stack or heap storage) when an insufficient quantity remains, and failing
to satisfy a program specified assertion. [Note that some are very expensive to detect

unless aided by special hardware, and consequently their detection will often be
suppressed (see 10G). ]

10C. Raising Exceptions. There shall be an operation that raises an exception.
Raising an exception shall cause transfer of control to the most local enclosing exception
handler for that exception without completing execution of the current statement or
declaration, but shall not of itself cause transfer out of a function, procedure, or process.
Exceptions that are not handled within a function or procedure shall be raised again at
the point of call in their callers. Exceptions that are not handled within a process shall
terminate the process. Exceptions that can be raised by built-in operations shall be
given in the language definition.

10D. Exception Handling. There shall be a control structure for discriminating among
the exceptions that can occur in a specified statement sequence. The user may supply a
single control path for all exceptions not otherwise mentioned in such a discrimination. It

shall be possible to raise the exception that selected the current handler when exiting
the handler.

10E. Order of Exceptions. The order in which exceptions in different parts of an
expression are detected shall not be guaranteed by the language or by the translator.

10F. Assertions. It shall be possible to include assertions in programs. If an assertion
is false when encountered during execution, it shall raise an exception. It shall also be
possible to include assertions, such as the expected frequency for selection of a

conditional path, that cannot be verified. [Note that assertions can be used to aid
optimization and maintenance.]

10G. Suppressing Exceplions. It shall be possible during translation to suppress
individually the execution time detection of exceptions within a given scope. The
language shall not guarantee the integrity of the values produced when a suppressed
exception occurs. [Note that suppression of an exception is not an assertion that the
corresponding error will not occur.]
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11. Representation and Other Translation Time Facilities

11A. Data Representation. The language shall permit but not require programs to
specify a single physical representation for the elements of atype. These specifications
shall be separate from the logical descriptions. Physical representation shall include
object representation of enumeration elements, order of fiels:ls, width .of fields, presence
of "don’t care” fields, positions of word boundaries, and object machine addresses. In
particular, the facility shall be sufficient to specify the physical rgpresentatlon of any
record whose format is determined by considerations that are entirely external to the
program, translator, and language. The language and its translators shall not gue_at"antee
any particular choice for those aspects of physical representation that are unspecified by
the program. It shall be possible to specify the association of physical resources (e.g.,
interrupts) to program elements (e.g., exceptions or signals).

11C. Translation Time Facilities. To aid conditional compilation, it shall be possible to
interrogate properties that are known during translation including characteristics of the
object configuration, of function and procedure calling environments, and of actual
parameters. For example, it shall be possible to determine whether the caller has
suppressed a given exception, the calldrs optimization criteria, whether an actual
parameter is a translation time expression, the type of actual generic parameters, and the
values of constraints characterizing the subtype of actual parameters.

11D. Object System Configuration. The object system configuration must be explicitly
specified in each separately translated unit. Such specifications must include the object
machine model, the operating system if present, peripheral equipment, and the device
configuration, and may include special hardware options and memory size. The
translator will use such specifications when generating object code. [Note that
programs that depend on the specific characteristics of the object machine, may be made
mecre portable by enclosing those portions in branches of conditionals on the object
machine configuration.]

11E. Interface to Other Languages. There shall be a machine independent interface to
other programming languages including assembly languages. Any program element that
is referenced in both the source language program and foreign code must be identified in
the interface. The source language of the foreign code must also be identified.

11F. Optimization. Programs may advise translators on the optimization criteria to be
used in a scope. It shall be possible in programs to specify whether minimum translation
costs or minimum execution costs are more important, and whether execution time or
memory space is to be given preference. All such specifications shall be optional.
Except for the amount of time and space required during execution, approximate values
beyond the specified precision, the order in which exceptions are detected, and the
occurrence of side effects within an expression, optimization shall not alter the semantics
of correct programs, (e.g., the semantics of parameters will be unaffected by the choice
between open and closed calls).
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12. Translation and Library Facilities.

12A. Library. There shall be an easily accessible library of generic definitions and
separately translated units. All predefined definitions shall be in the library. Library
entries may include those used as input-output packages, common pools of shar_ed
declarations, application oriented software packages, encapsulations, and machine
configuration specifications. The library shall be structured to allow entries to be
associated with particular applications, projects, and users.

12B. Separately Translated Units. Separately translated units may be assembled into
operational systems. It shall be possible for a separately translated unit to reference
exported definitions of other units. All language imposed restrictions shall be enforced

across such interfaces. Separate translation shall not change the semantics of a correct
program.

-12D. Generic Definitions. Functions, procedures, types, and encapsulations may have
generic parameters. Generic parameters shall be instantiated during translation and
shall be interpreted in the context of the instantiation. An actual generic parameter may

be any defined identifier (including those for variables, functions, procedures, processes,
and types) or the value of any expression.
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13. Support for the Language

13A. Defining Documents. The language shall have a complete and unambiguous
defining document. It should be possible to predict the possible actions of any
syntactically correct program from the language definition. The language documentation
shall include the syntax, semantics, and appropriate examples of each built-in and
predefined feature. A recommended set of translation diagnostic and warning messages
shall be included in the language definition.

13B. Standards. There will be a standard definition of the language. Procedures will
be established for standards control and for certification that translators meet the
standard.

13C. Completeness of Implementations. Translators shall irqplement the standard
definition. Every translator shall be able to process any syntact_lcally correct program.
Every feature that is available to the user shall be defined in the standard, in an
accessible library, or in the source program. '

13D. Translator Diagnostics. Translators shall be responsible for reporting errors that
are detectable during translation and for optimizing object code. Translators shall be
responsible for the integrity of object code in affected translation units when any
separately translated unit is modified, and shall ensure that shared definitions have
compatible representations in all translation units. Translators shall do full syntax and
type checking, shall check that all language imposed restrictions are met, and should
provide warnings where constructs will be dangerous or unusually expensive in
execution and shall attempt to detect exceptions during translation. If the translator
determines that a call on a routine will not terminate normally, the exception shall be
reported as a translation error at the point of call.

13E. Translator Characteristics. Translators for the language will be written in the
Janguage and will be able to produce code for a variety of object machines. The machine
indépendent parts of translators should be separate from code generators. Although it
is desirable, translators need not be able to execute on every object machine. The
internal characteristics of the translator (i.e,, the translation method) shall not be
specified by the language definition or standards.

13F. Restrictions on Translators. Translators shall fail to translate otherwise correct
programs only when the program requires more resources during translation than are
available on the host machine or when the program calls for resources that are
unavailable in the specified object system configuration. Neither the language nor its
translators shall impose arbitrary restrictions on language features. For example, they
shall not impose restrictions on the number of array dimensions, on the number of
identifiers, on the length of identifiers, or on the number of nested parentheses levels.
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13G. Software Tools and Application Packages. The language should be designed to
work in conjunction with a variety of useful software tools and application support
packages. These will be developed as early as possible and will include editors,
interpreters, diagnostic aids, program analyzers, documentation aids, testing aids,
software maintenance tools, optimizers, and application libraries. There will be a
consistent user interface for these tools. Where practical software tools and aids will
be written in the language. Support for the design, implementation, distribution, and
maintenance of translators, software tools and aids, and application libraries will be
provided independently of the individual projects that use them.
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-

The United States Department of Defense (DoD) spends more than three billion
dollars a year on computer software. This includes the design, development.
acquisition, management, and operational support and maintenance of such
softuare. Only a small fraction of this effort is involved with the
accounting, inventory, payrolling, and financial management functions which are
defined by the Federal Government as Automatic Data Processing, those functions
that have their exact analogy in the commercial sector and share a common
technology, both harduare and software. A much larger fraction of the DoD's
computer investment is in computer resources which are embedded in, and
procured as part of, major weapons systems, communications systems, command and
control systems, etc. In this environment the DoD finds itself spending an
even larger share of its systems resources on software. As a‘result, this area
is receiving increasing attention from the highest levels of management. A
number of technical and managerial initiatives have been called out to both
reduce the cost and improve the quality of Defense systems softuare. A
management plan has been formulated in this area and initial guidance is
provided by DoD Directive 5888.23, Management of Computer Resources in Major
Defense Systems,

In the area of softuare we may have, at the present time, more flexibility and
a greater influence on the technology than with harduare. Some years ago, the
DoD was a major innovator and consumer of the most sophisticated possible
computer harduare. It now represents only a small fraction of the total
commercial market. In software, that unique position still maintains. A
significant fraction of the total software industry is devoted to DoD related
programs and that is true in even larger proportion for the more advanced and
demanding systems. Thus, there is both an opportunity and a responsibility in
the softuare arena which is past for harduare.

One specific initiative which has been called out by DoD Directive 5888.29 is
the use of high order languages: (HOL) in systems development. The &dvantages
are uwell known and in many communities, for instance, the COBOL financial
management community or the FORTRAN scientific computational community, these
advantages are so persuasive that there has been essentially no alternative to
the use of these common languages for more than "a decade. The obvious
advantages include ease of writing of programs, self-documentation, ease of



maintenance, ease of modification, transportability of programs, simplification
of training, etc.

1t is surprising that a general consensus has not mandated a common high order
language for embedded systems long since. There are, however, 8 number of
managerial technical constraints that have acted against this in the past. For
most Defense~systems applications, very severe timing and memory considerations
have been prominent in the past, often governed by real time interaction with
the exterior environment. Because of these constraints, and restrictions in
developmental cost and time scale, many systems have opted for assembly
language programming. This decision is often substantially influenced by past
experience With poor quality compilers and the fact that the assembler comes
with the machine, while the compiler and its tools usually must be developed
after the project has begun.” The advantages of high order languages, houever,
are compelling and many more recent systems developments have turned to HOLs.
Because of |limitations of available high order languages, the programs
generated most often include very large portions done in assembly code and
linked to an HOL structure, negating many of the expected advantages.

Further, many systems have found it convenient to produce their own high order
language or some perhaps incompatible dialect of an existing one. Since there
is no general facility for control of existing languages, each systems office
has had to do the configuration control on their language and compilers and
continue to maintain such on their particular dialect through the entire
maintenance phase of the system, which may be very long lived. This has had
the effect of practically reducing the contractual flexibility of the
government and restricting competition in maintenance and further development.
This lack of commonality negates many advantages of high order languages
including transportability, sharing of tools, the development of very powerful
tools of high efficiency and, in fact, not only raises the total cost of
existing tools, but in some cases essentially prices them out of the market.
Many development projects are very poorly supported and forced to live with a
technology which is far below the state-of-the-art.

By the early 1978's each of the military departments had underuay studies or
actual language designs which were expected to lead to common languages for
large portions of those departments, in January 1975 the Director of Defense
Research and Engineering set up a Defense-wide program wWith the goal of a
single common military computer programming language for embedded systems. The
intent was to have a real time language to supersede those numerous ones in
existence while maintaining the standards of FORTRAN and COBOL, the success of
which standards had provided impetus to this consolidation program. Further,
to assure non-proliferation during the duration of this effort all other
implementations of new high order programming languages for R8D programs - were
halted. A High Order Language Working Group (HOLWG) with representatives from
DoD and the Military Services was established as the agent for this effort.

Briefly, the logic of this initiative is as follous:

o The use of a high order language reduces programming costs, increases
the readability of programs, the ease of their modification,



facilitates maintenance, etc. and generally addresses many of the
problems of life cycle program costs.

A modern powerful high order language performs these task§ _bet?er
and, in addition, may be designed to serve also in the specification
phase and provide facilities for automatic tests and program
verification. A modern language is required if real time, paraliel
processing, and input/output portions of the program are to be
expressed in high order language rather ‘than assembly language
inserts which destroy most of the readability and transpor tabil ity
advantages of using an HOL. A modern language may also provide
better error checking, more reliable programs, and the capability for
more efficlent compilers.

Many of the advantages of a high order language can only be realized
through computer tools. A total programming environment for the
language includes not just compilers and debugging aids but text
editors and interactive programming assistance, automatic testing
facilities and proofs of correctness, extensive module libraries, and
even semi-automatic programming from specifications. Universal use
of those tools which are available today would significantly reduce
the present cost of software. Development of more pouer ful tools
holds even greater promise. Unfortunately, the average programmer’s
tool box is rather bare. Because of the difficulty of preparing
these tools for each new langudge and machine and operating system,
and the time involved, only the very largest projects have been able
to assemble even a representative set. MHhile in many cases
development of tools can be shown to be desirable in the long run,
day to day pressures usually prevail. There is almost never time to’
do it right. The use of a common high order language across many
projects, controlled at some central facility, would allou the
sharing of resources in order to make available the powerful tools
which no single project could generate. It would even make those
previously generated tools available at the beginning of a project,
reducing start up time. : .

Reducing the number of languages supported to a minimal number,
therefore, provides the greatest economic benefit. There are, of
course, costs associated with supporting any particular project and
general costs of supporting the language. For a sufficiently large
number of users, presumably the basic cost would be proportionally
less. Perhaps 288 active projects contributing to a single support
facility may not be proportionally much cheaper than tuwo facilities
each supporting 188 projects, although the absolute saving would be
significant. ¢

There are, houwever, unique advantages to having a single military
computer language. MWith a single language, one could reasonably
expect new computers proposed for a project to be supplied by the
manufacturer with a compiler. This is, in fact, the experience of
the British with their common language effort. 1f there were five or



ten common languages, that is not a reasonable expectation. In fact,
if there were a single common language, its use in DoD and the
provision of tools by the DoD would make it a popular candidate for
use elsewhere. Sufficient use could be generated that it would be
economically sound to produce machines with firmuare targeted to this
high order language, decreasing cost and increasing efficiency. The
multitude of military languages in the past has not received this
sort’ of acceptance. A single powerful supported high order language
mighf.even be expected to influence academic curricula, improving the
training not so much of individual programmers but the understanding

and capabilities of the general engineering community for support of
DoD programs.

The High Order Language Working Group (HOLWG) was chartered to formulate the
requirements for common DoD high order languages, compare those requirements
with existing languages, and recommend that adoption or implementation of the
necessary common languages. In the very near term, administrative recourse has
been taken. DoD Directive 5888.23 specifies that "DoD approved high order
programming languages wWill be used to develop Defense systems software unless
it is demonstrated that none of the approved HOLs are cost effective or
technically practical over the system life cycle...Each DoD approved HOL will
be assigned to a designated control agent..." Thus, the.use of high order
languages is established and indeed very strongly mandated, since |ife cycle
costs are usually dominated by maintenance where the high order languages have
considerable advantage over assembly language. Approved high order languages
uwill be wused, thereby reducing the proliferation and further, these languages
. Will be controlled by central facilities. DoD Instruction 5888.31, Interim
List of DoD Approved High Order Programming Languages, designates those
languages and assigns control responsibility. COBOL and FORTRAN will be
controlled by the Office of the Assistant Secretary of Defense (Comptroller)
acting with The National Bureau of Standards and The American National
Standards Institute. TACPOL shall be controlled by the Army. CHMS-2 and SPL/1
shall be controlled by the Navy and JOVIAL J3 and J73 by the Air Force.

Formalization of these languages is a2 major step forward and recognizes for the
first time the corporate commitment of the Department of Defense to provide
support for languages in the long term. It stops the proliferation of
languages in that all new systems are to be programmed in one of these
languages, but there is no intent that already existing programs be redone or
that the projects, already committed to a language, change. There are,
however, limitations. The languages themselves are selected from the present
Service inventories and are not, in general, modern powerful languages. They
are generally deficient in tools and in availability of compilers. Further, ue
have only started on the concept of control., It will be some time before they
reach the state of a well supported and controlled language. This is,
therefore, an interim very néar term solution., A more satisfactory technical
solution to the problem is to formulate requirements, evaluate the existing
languages, select the best for modification to meet the requirements, and build
a single common high order language, if that proves technically feasible.

The first charge to the High Order Language Horking Group was to establish
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requirements. In terms of reference, this working group was to consider
general purpose computer programming languages, those which are used by 2
programmer to talk to a -computer, that is, of the level of the interim
standards defined above. This is a limited goal and does not include either
generalized requirements languages or very specific applications packages, .
Which are formulated like languages but have only limited access to the
capabilities~ of the computer. Such applications packages include simulation
brograms such as SIMSCRIPT, or GPSS, automatic test equipment languages such as
ATLAS, which s really for communications between the test engineer and the
technician, or special purpose packages for aerodynamics or civil engineering,
or even generalized query languages or job control languages. Some of these
are under study by other groups.

The goals of such a high order language are well agreed upon.

0 One wishes to have the language facilitate the reduction of the cost
of softuare. This cost must be reckoned on the total burden of the
life cycle, including maintenance and certainly not just the cost of
production or program writing.

o Transportability allows the reusing of major portions of software and
tools from previous projects and the flexibility to modify harduare

configurations.

.0 The maintenance of very long lived software in an ever changing
threat situation requires responsiveness and timely flexibility.

o Reliability is an extremely severe requirement in many Defense
systems and is often reflected in the high cost of extensive testing
and verification procedures.

o The readability of programs produced for such long term systems use
is clearly more important than coding speed.

o The general acceptability of high order languages is determined, at
this time, by the efficiency and quality of the compiled code. MWhile
rapidly falling costs of harduare may make this difficult to
substantiate in general, each project manager uill compare the
efficiency of the object code produced against an absolute standard
of the best possible machine language programming. Very little
degradation is acceptable.

While these and similar goals are well accepted, they do not lend themselves to
8 quantifiable or rational assessment of languages. Alternatively, one could
establish criteria which uere excessively explicit, determining the form but
not necessarily the capability of the language. Rigorous definition of the
exact level of requirement proved difficult. Therefore, a STRAWMAN of
preliminary requirements was established to define this level by illustration.
The STRAWMAN was forwarded to the Military Departments, other government
agencies, the academic community and to industry. Additionally, a number of
technical experts outside the U.S. were solicited for comments, the European



community being especially responsive, all the more vital since language

research has been much more active there than in the U.S. over the last
decade. . 3

The review of the STRAWMAN resulted in inputs from which were put together a
fairly complete, but still tentative, set of requirements called the WOODENMAN.
This too wuas widely distributed for comment. Based on various inputs and the
official responses from each of the Military Departments, a TINMAN set wuas

derived uWhich then represented the desired characteristics for a high order
computer programming language for the DoD.

Early in this program, there was the feeling that different user communities
might have fundamentally different requirements with insufficient overlap to
justify a common language between them. Such communities include avionics,
weapons guidance, command and control, communications, training simulators,
etc. In addition to the embedded computer applications, even the scientific
and the financial management communities were solicited for requirements for
completeness sake. The surprising result was that the requirements so
generated uere identical. 1t was impossible to single out different sets of
requirements for different communities. All users needed input/output, real
time capability, strong data typing for compiler checking, modularity, etc.
Upon reflection, the technical rationale for this was clear. The surprise was
historical, based on the observation that in the past the different communities
had favored different language approaches. Further investigation shouwed that
the origin of this disparity was primarily administrative rather than
technical, and the result that a single set of requirements would satisfy a
broad set of users became less of a surprise. This did not, houwever, establish
that a single language could meet all the stated requirements, only that, if a

language meeting all the requirements existed, it would satisfy the

users
needs. .

Very wide distribution of the TINMAN followed and for a year comments wuere
received on this document. An international workshop was held at Cornel!
University in the fall of 1976 to ifluminate the current state of the art of
programming language design and implementation. In January, 1977, a new
version was issued called the IRONMAN., This is essentially the same set of
requirements as the TINMAN, modified slightly for feasibility and clarity, but
it is presented in an entirely different format. The TINMAN was discursive and
organized around general areas of discussion. The IRONMAN, on the other hand,
is very brief and organized like a language description or manual. It

is
essentially a specification with uhich to initiate the design of a language.
It is still sufficiently general so as not to constrain a particular structure

of the language but just its capabilities. The IRONMAN was revised in July,
1977, mainly to clarify the intent, but also to correct the
inconsistencies that had been identified.

few errors and
The next phase of the work was the :evaluation of existing languages. This was
begun in a formal fashion in the summer of 1876, at which time the current
requirements document was the TINMAN. Differences betueen the TINMAN and the
IRONMAN are sufficiently minor so as not to affect the conclusions of this
evaluation. The purposes of the evaluation were: to examine the existing



languages and determine if one or a combination could satisfy the requirements;
& determine on the basis of evaluation of existing languages Whether the
réquirements themselves were feasible and valid; to determine if it was
Possible uithin the state-of-the-art to have a single language satisfying all
the,se requirements; and to recommend the procedure for arriving at the desired
minimal set of languages.

The languages included in the evaluation were those nominated to the Interinm
Standard List, languages in wide acceptance elseuhere, and certain modern
languages offering advanced capabilities. The main set of languages Was
evaluated very formally by contracts in which each language was evaluated by
more than one contractor and each contractor had several languages to evaluate,
thus'giving a cross check on the results. In addition, a number of individuals
submitted detailed evaluations of specific languages with which they had a
unique familiarity. All these evaluations consisted of a comparison of the
language against each individual point of the TINMAN. They were not mere
existence checks but the languages were also examined for feasibility of
moclification should a particular point not be met and for features beyond the
TINMAN requirements.

The following languages received formal evaluations: FORTRAN, COBOL, PL/1,
HAL/S, TACPOL, CHMS-2, CS-4, SPL/1, J3B, J73, ALGOL 68, ALGOL 68, CORAL 66,
PASCAL. SIMULA 67, LIS, LTR, RTL/2, EUCLID, POL2, PEARL, MORAL, EL-1. Besides

those languages receiving formal evaluation, a number of other |anguages were
examined for specific ‘features or as examples of modifications of these
languages and contributed data to the feasibility and flexibility of the

various language approaches. In addition, some, such as APL, uere immediately
excluded as being inappropriate for Defense systems programming.

Such uas the bulk of these studies that a government committee was put together
to analyze and compare the evaluations and to make recommendations consistent
with them. These conclusions and recommendations were adopted unanimously -by
the High Order Language Working Group as the basis for the next phase of the
project. The conclusions may be briefly summarized as followus:

o0 Among all the languages considered, none was found that satisfies the
requirements so well that it could be adopted as the common language.

o All evaluators felt that the development of a single language
satisfying the requirements was a desirable goal.

o The consensus of the evaluators was that it would be possible to
produce a language within the current state-of- the-art meeting

essentially all the requirements.

o Almost all the evaluators felt that the process of designing a
language to satisfy all the requirements should start from some

careful ly chosen base language.
; 4 _

o Without exception, the following languages were found by the
evaluators to be inappropriate to serve as base languages for a



‘development of the common language: FORTRAN, COBOL, TACPOL, CmMS-2,
JOVIAL J73, JOVIAL J3B, SIMULA 67, ALGOL BB, and CORAL 66.

o Proposals should be eolicited from appropriate language designers for
modification efforts using any of the languages, PASCAL, PL/Il, or
ALGOL 68 as a base language from which to start. These efforts
should be directed toward the production of a language that satisfies

the :DoD set of language requirements for embedded computer
applications.

o At some appropriate time some choice should be made among these

design efforts to determine which are most worthy of being continued
to completion. .

The definition of a base language, which evolved during this procedure, was one
which was familiar to the community so that a number of contractors could use
it as a starting point and provide an audit trail for evolution of the desired
language which could be compared between contractors by government personnel.
Many contractors uWould pass near some intermediate existing language, a
modification of one of the bases in the direction of the requirements. For
instance, PEARL or HAL/S could be considered modifications in the PL/] family
towards our desired real time language. This does not mean that those deemed
inappropriate as a base language are not perfectly adequate for their present
opérational use. Indeed, the presence of COBOL and FORTRAN, to which we are
committed to on a long term basis, belies that implication. Nevertheless,
these languages would not be good starting points in that they have basic

inconsistencies wWith the, requirements or have been superseded by more
appropriate starting points.

At this point uwe had determined, as well as can be done on the basis of paper
studies without actual construction of a language, that a single language could
be constructed to meet the requirements, further, that this could be done with
elements which are mutually consistent and within the demonstrated
state-of-the-art. The next step in the project was, therefore, to provide a
preliminary definition of a language. Alternatively this might be considered
an elaborate feasibility proof. Such definition uas to be informal but fairly
complete and consider the cost and nature of impiementations.

This preliminary definition was done using the IRONMAN Revised as a
specification and drawing upon the previous work done on evaluations. The
procedure was multiple competitive contracts, wWith the best products to be

selected for continuation to full rigorous definition and developmental
implementation.

In August 13977, four contracts were awarded to produce competitive prototypes
‘of the common high order language. These awards came as a result of a request
for proposal and offers received from fourteen firms, both U.S. and foreign.

The successful contractors were Cll-Honeywe!l Bull, Intermetrics, Softech, and
SRI-International.

While different approaches uere offered, all four winning contractors proposed



thereby restricts
Ue
uas

to start from the computer language PASCAL as a base. This
the products in form and makes it somewhat easier to compare the results.
were prepared to deal with three different base languages, so the outcome
coincidental. 1t should .be noted that the requirements against which the
language is being designed are not the same as those driving PASCAL and the
result should not be expected to be a superset of Pascal. However, there will
be some family resemblence and care is being taken not to modify seurviving

Pascal forms without substantial reason.

-

The products of Phase ] , the preliminary designs , Were received in February
1978. The considerable interest that this project has generated in the outside
community made it possible to seek technical input for the evaluation of these
.designs from the industrial and academic communities worlduide. Eighty
volunteer analysis teams were formed and produced extensive technical analysis
of the designs. The period available was quite short, but the designs were
oniy preliminary and the purpose of the analyses Was to determine which should
be continued to completion. On the basis of these analyses, ClI-Honeyuwel |
Bull, and Intermetrics were selected to'continue and resume work in April 13978.

As a result of both the designs and the analyses, the requirements were updated
in June 1376 to a STEELMAN version. Since this may logically be the final set
of requirements, some care was taken to clean it up and particularliy to remove
apparent misunderstandings and discrepancies which surfaced as the result of
the actual design of the four languages. The exceptionally rigorous revieu of
the languages by the analysis teams in the context of the requirements was a
further exceptiona! test. It was the specific goa! of this revision to assure
that the level of the requirements was properly functional, neither too
specific nor too general. Some portions of requirements have been deleted or
modified as a result of these reviews and the parallel processing requirements
have been generalized. The document remains a set of realistic requirements
for large-scale systems in the present state-of-the-art. 1t does not describe
an abstract, ideal language but is limited to one dealing in operational
realities. Restrictions on character set reflect the distribution of input
devices in all communities. The GO TO, remains although restricted, in order
to ensure acceptability in those communities where it is still widely used.

The second phase of the design uill include a language manual and a complete
description, a formal definition of the language, and a test transliator which
The test translator is only an aid in development

will allouw some execution,

and testing of the language and is.not intended to be a production level
compiler. A final selection betueen these two designs will take place in April
1978.

A selection wWill then be made of the single successful contender and that
language will undergo elaborate test and evaluation of the language (as opposed
to test of compilers) by reuriting a number of existing well defined programs
or systems to demonstrate its applicability and advantages. A number of
production compilers will be contracted for from different sources. A major
thrust of this effort is to make the products non- proprietary and widely

—



available. Compilers uill be tested against benchmarks and certified and when

available the language can then be added to the list of approved languages in
DoD1 5888.31. ;

Most recently we have seen the compleation of three different economic
analyses. These were targeted to questions of expectation of savings to
resulting from the successful compleation of this program. They further
examined various introduction strategies and rates. Significant savings were
demonstrated, and these were magnified by rapid introduction.

As the language becomes available, those other vital steps to programming
environment will be provided including control, training, and tools. A
particular technology to be fostered in this area is that of the generation of
efficient compilers. A number of techniques including root compilers,
compiler-compilers and compiler factories will be developed with the eventual
goal of making available very inexpensive techniques for producing a compiler
in this language for a new machine. Certification, testing and comparison of
compilers by the control facility will promote competition and make the
government @ more knowledgeable buyer. UWhile there is no intent to force any
existing project to reprogram in a new language, there might be occasions in
wuhich this could be very profitable. Translation aids will be developed for
converting existing language programs into the new language. It is hoped that
this new language will be so powerfully supported that it will be the language

of choice for future systems. It should be experimentally available by 1873
and available for general use in 1988.

These aspects of the development environment are being explored wusing
procedures similar to that for the language requirements. A document has been
prepared addressing those features of controlled support which would be
required for the optimal utilization of the language. These may be
requirements in a diffeent sense from the rigorous complete set of the
STEELMAN, but the iteration methodology is also appropriate here. An initial
version, SANDMAN, was superseded July 1978 by the PEBBLEMAN. This is still
quite preliminary. Comment is being solicited from the software development
community, 2 somewhat different group than the language experts who primarily
address the language requirements, A meeting was held at the University of
California (Irvine) in June 1378 discussing all aspects of the requirements.
In September 13878, a meeting at Eglin AFB, Florida, discussed primarily the
technology of retargetable compilers.

PEBBLEMAN proposes a configuration control board for the language whose
responsibility is to maintain the definition and resolve any possible
questions. A language control facility would provide validation and
certification of compilers that they conform to the official definition wuithin
the limits of the current ability to test. The bulk of the document is
concerned with defining those tools which could be provided in common to the

use of language and outlining the methodology for producing and inter-relating
those tools.



There is no intent to imply that all possible language requirements have been
uncovered. Neuw environments, new machines, new computer science and technology
Will eventually render the best language obsolete. It is rather surprising
that everything required can be presently met. That may be the result of
setting our sights on what we-knou. George Washington didn't ask for airplanes
or atomic bombs or lasers, all he wanted was more muskets, cannon and sabers.
Future lanquage research is vital to the continued growth of capabilities. It
is not the intent that the existence of this language stifle such research,
rather that " it provide a target and a user, a data and requirements gathering
agency that will be able to survey the state-of-the-art and both direct and

apply future developments. )

Besides the normal interaction between portions of the Depértment of Defgnse
and other agencies of the U.S. Government, this effort has had close relations

With and received a great deal of support and technical input from a number of
outside organizations with similar aims. The appropriate subcommittees of the
American National Standards Institute and the = International Standards

Organization including their MWorking Group on Programming Languages for the
Control of Industrial Processes have been kept closely informed of this work.
The International Purdue Workshops on Industrial Computer Systems have long
held an interest in this area and in particular an affiliate group, Long Term
Procedural Language-Europe (LTPL-E) has as a goal the production of a language
much [ike the one we desire. The goals of this group have recently been
adopted by the European Economic Community and there has been a very intimate
relationship between this group and the HOLKG. This is perhaps the most
closely analogous group, trying to satisfy the requirements of several

countries in many applications areas.

Perhaps the most successful national common language effort has been that of
the British Ministry of Defense in specifying language CORAL B6 for all MOD
real time applications. The HOLWG has received much valuable technical and
managerial insight from the British experience and to enhance this cooperation,
the British have assigned a senior technical expert to the HOLWG to be resident
in Washington, providing both technical input and liaison. More recently, both
the German and French governments have initiated procedures to standardize on
existing high order languages, respectively, PEARL and LTR. The Federal
Republic of Germany has also assigned a technical represenative to the HOLWG in
Washington. The Japanese government, Ministry of Information, Technology . and
Industry, is subsidizing a consortium to produce a software production
environment, central to which is a common programming language. The CCITT has
proposed a common high order language for international use in communications.

It appears that the time is ripe for moving to a common high order language
both technically and administratively, but significant milestones do remain.
The High Order Language Working Group actively solicits comments and the
cooperation the -rthein making this effort a success.
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PREFACE

The Department of Defense High Order Language Commonality language program

11as
established

in 1975 uith the goal of establishing a single high order computer
programming language appropriate for 0OoD embedded computer systems. A High
Order Language Working Group (HOLWG) was established to formulate the DoD
requirements for High Drder Languages, to evaluate existing languages against
those requirements, and to implement the minimal set of languages requircd for
DoD use. As an administrative initiative touard the eventual goal, 0cD
Directive 58@8.23 provides that neu defense systems should be programmed in a
DoB approved and centrally controlled high order |anguage. DeD  Instruction
S0M3.31 gave an interim list of approved languages including COBAL, FORTRAM,
TACPOL, CMS-2, SPL/1, and JOVIAL J3 and J73. Econumic enalysesz were wused to
quantify the benefits of going to high order languages and indicate
considerably yreater benefits associated with the rapid introduction of a
single, modern language. The requirements have heen widely distributed for
comment throughout the military and civil communities, producing successively
more refined versions from STRAWMAN through WOOUENMAN, TINMAN, THONMAN, and thea
present STEELMAN. Ouring the requirement development process, it Has
determined that the single set of requirements generated was both necessary and
sufficient for all major DoD applications. Formal evaluation uas performad on
dozens of existing languages concluding that no existing language could be
adopted as a single common HOL for the DoD hut that & single lanauage m2eting
essentially all the requirements was both fcasible and desirabic. Feur
contractors were funded to produce competitive prototypes based upan FASCAL.

first-phase evaluation reduced the designs to tuo which will he carried to
completion and from which a single language will emerge. Further steps in  the
program uill be the test and evaluation of {he language, production of
compilers and a program development and tool environment, and control of the
language and validation of compilers. The language validation facilities and

government-funded compilers and tools will be widely and cheaply available to
help promote use of the language.

A
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Chapter 1
Introduction

1.1 Purpose

The DOepartment of Defense (DoD) is defining a Common Higher Order Language

(HOL) for embedded systems based upon a language requirements document. The
Language Requirements Document wuas the product of the Military Oepartments
coordinated by the DoD HOL Working Group (HOLWG). It incorporated comments and
suggestions from the government, academic insti- tutions, and industry until
judged to be of sufficient correctness and throughness to be wused as the
requirements document for the design of the DoD Common High Order Language for

embeclded systems.
In order for the Common High Order Language to be successful in achieving the
desired objectives, the environment in which it is used has to be conducive to

its support. The environment includes all supporting activities and aids to
develop programs for all systems applications - small, medium and large. These

aids include for instance:

1. Organizations and methods to control the language and promote development

of tools

2. Compilers for converting the HOL into the machine language of the target
computer

3. Tools to aid in the design, test and dcbug of application programs

4, Organizations and methods to research the use of the language and prepare
for follou on

5. HMaterials and techniques for training users of the language

6. Methods for collecting, cataloging and disseminating information about the
language and programs uritten in the language

Za Project management aids to achieve successful implementation and
maintenance

This document, titled PEBBLEMAN, describes the requirements for the environment

necessary to the success of the Common High Order Language. It uwill go through
A number of iterations, as the language reauirements have, incorporating
suggestions from all parts of the software community. It will also spin off

more detailed requirements in specific areas such as softuare tools or control
facilities.

The theme behind the inclusion of any *opic has been to list all methods which



have come to be recognized as necessary for the production of reliable
softuare.

This is a preliminary document for generating comments and wide latitude has

been allowed in describing requirements. Later versions wuill strive for
greater rigor.

Comments and further material are actively solicited from the reader. They may
be transmitted directly to the HOLWG through its chairman: 3

Lieutenant Colonel William A. Whitaker
DARPA '

1408 Uilson Boulevard
Arlington, Virginia 22283, USA



1.2 Reference Documents

o Standard Definition Document for the Common High Order Language (to be
defined). =

o DoD Requirements for High Order Computer Programming Languages, STEELMAN,
June 1978,

o OoD Requirement for High Order Computer Programming Languages, IRONMAN,
Revised July 1977.

o DoD Requirement for High Order Computer Programming Languages, TINMAN, June
1976.

o DoD High Order Language Program Management Plan, January 14, 1877.
o The Navy Fortran Validation System, Patrick M. Hoyt, AFIPS Volume 46, 1977.

o DOesign and Implementation of Programming Languages, DoD Sponsored Workshop,
I thaca 1976, Lecture notes in Computer Science Number S4, Springer - Verlag.

o 0DoD's Common Programming Language Effort, David A. Fisher, Computer, March
1978.

o0 Proceedings from Workshop on Environment and Control of DoD Commgn High Order
Language, University of California, Irvine, June 1978, (to be published).



1.3 Definition of Requirements Terms

The following terms have been used throughout the text to indicate where and to
what degree individual requirements apply.

Shall - indicates a requirement on the environment

Should - indicates a desired goal but one for which there is no objective test
May - indicates a requirement to provide an option to the user (user is
subject)

Must - indicates a requirement placed on the user by the environment (user is
subject)

Will - indicates a consequence that is expected to follow or indicates an

intention of BoD



Chapter 2

Language Standard

2.1 Standard Definition Document )

The syntax and semantics of the DoD Common High Order Language are to be
described in a document which shall become the standard for deciding whether or
not compilers conform to the language specification. That document shall be
referred to as the Standard Definition ‘Document. The Configuration Control

Board shall maintain and interpret this document.

2.2 Critieria for the Language

The goal of the DoD Common High Order Language effort is to reduce total costs
of softuare incurred by DoD. To this end a language is being designed with the

following general criteria :

1. Generality - The language should be of a general nature applicable to a

wide range of embedded systems computer applications.

2. Reliability - The language should promote, encourage, and enforce the use
of techniques which lead to reliable softuare.
3. Maintainability - The language should emphasize readability and

understandability of programs and lead to less costly maintenance.

4, Efficiency - The language should allow compilers wuhich produce efficient
object programs.

5. Simplicity - The language should reduce unnecessary complexity by means of
uniform syntactic conventions and consistent semantic structure.

6. Implementation - The language should facilitate production of compilers
that are easy to implement and are efficient.

7. Machine Independence - The language should strive for machine independence
to make possible the trans- portability of application programs.

8. Formal Definition - There should be a formal definition of the language.
2.3 Explicit Policy and Controls for Standardization

In order for the HOL to achieve expected benefits, there shall be no variants

of the Language. Organizations supporting the Common Language shall monitor

and oppose any attempts at non-conformance to the published standard.

Once the Common Language is defined it will be added to the list of approved



higher order languages in DoD 5808.31.

A MIL-STD will be prepared and coordinated.

Registration of the Language as a Federal Information Processing Standard will
be useful so that it may be used throughout the Federal Government.

The supporting organization will monitor activities in use of the Languagc and
participate to promote further standardization of the Language. Submissions to
the American National Standards Institute and the International Standards

Organization may be appropriate to expand the user base and further reduce the
likel ihood of variants.

2.4 Approach

All environmental elements of this document support the above goals for the

Common Language. Elements necessary for success are described in subsecquent
sections as follous.

s The primary necessity is an organization to control the Language and

promote development of its supporting softuware. Chapter 3 describes this
organizational structure.

2. Methods for controlling the Common Language and its compilers are required

to permit managed change when necessary for technical growth. These methods
are described in Chapter 4.

3 Chapters 5 through 11 discuss the various types of tools which are
necessary for the success of the Common Language.
4, Chapter 12 discusses requirements for application programs written in the

Common Language. The methods described will lecad to high portability for
embedded systems.

5. Diverse training will be required for successful implementation of the
Common Language. Chapter 13 addresses these training requirements.

)
6. Chapter 14 describes methods for collection and dissemination aof Common
Language materials (tools, compilers, training aids, etc.) so that the
embedded computer software community will have ready access to all required
Common Language information.



Chapter 3

Control and Support Organizations

The following paragraphs describe the organization of facilities .and wuser

groups which have been proposed to effectively control standardization of the
DoD Common High Order Language and provide support.

3.1 Configuration Control Board

A Configuration Control Board (CCB) shall be established by DOQ and be
responsible for custody and maintenance of the standard definition of Nol)
Common High Order Language. Primarily, the function of the CCB shall be' to
minimize changes to the Language and prevent the occurence of variant
translators, ‘

The CCB shall be the final arbiter in any interpretation dispute of the

Language definition. All official interpretations shall become part of Fhe
Language defination. All requests for changes and interpretations uill receive
a prompt response.

To reduce potential influence of special interest groups, the CCB shall be

autonomous of compiler or applications developers.

Membership of the CCB may include representation from major Federal user
communities within the United States. Expansion of the CCB to include
representatives from outside the U.S. will be appropriate as other nations
make a major commitment to the Language. Responsibility for the ccB may
eventual ly be transfered outside the OoD.

The CCB shall be operational as soon as the language is frozen and submitted
for standardization. At that time, formal definition of the DoD HOL shall be

controlled by the CCB.
3.2 Compiler Validation Facility

A ficility shall be established to validate that compilers are complete and
correct implementations of the Dol HOL. The facility shall not perform any
function other than compiler validation and shall be independent reporting only

to the CCB.

As a minimum, validation shall be conducted by subjecting compilers to a set of
test programs. Development and maintenance of test programs shall be the
responsibility of the validation facility. Trouble reports from users will be
used to refine and update test programs in an effort to develop the most
comprehensive test programs possible. All test programs shall be documented
and made available to implementors uho wish to test compilers independently
prior to formal validation. Formal wvalidation shall consist of revieuwing
compiler documentation and running the test prograums. More eclaborate
validation will be conducted when such methodologics can be established.



A validation report shall be prepared and published by the facility.

Validation will be required by Defense projects uhen compilers are init?allg
developed and when modified. A requirement uill be to validate the compilers
at the start of any project which plans to use the compiler. .

The wvalidation facility shall be established and operational within one_gcar
from the selection of the Common Language. When activity warrents, additional
offices of the validation facility may be established. 2

3.3 Language Support Facility

A Language Support Facility (LSF) shall be established. It will be the chal

point for most translator, support tool, and general library development —and
maintenance activity for the Common Language.

The LSF shall be the primary interface for user and implementor communities.

IT will develop and maintain documentation, develop and conduct training
courses and respond to all user and implementor inquiries.

All compilers, support tools, libraries, and language documentation maintained

by the LSF shall be readily available to any legitimate and qualified language
user or implementor.

3.4 Application Libraries

Application |libraries, in the long term, uill become very large and diverse.
An cffort will be undertaken to demonstrate the utility of a centrally
supported application library. Several promising specialized application areas
are signal processing, display processing, and comwunication netuorks. The
ARPANET is a particularly wuell knoun application that may be provided as a
common application package.

Once developed, application libraries could be supported and maintained by

their specific support facilities. These facilities would be formed as desired

for particular applications, in some cases colocated with the Language Support
Facility.

3.5 User Organizations

User organizations are necessary to serve as a technical forum for common
interests of those using the common language.

The Common Language Support Facility will foster user organizations by giving

thcem  recognition, disseminating information about their meetings and purposes,

participating in their meetings, and giving due consideration to  user
organization proposals. :

The organizations may be grouped hy special interest such as the follouing:

1. Use of a particular compiler



2. Use of a particular computer

3. A particular application area



Chapter 4
Configuration Management

4.1 Objectives and Strategy

The strategy for managing the Common Language and Environment will be to
control change, allowing for evolutional, stepped growth of the Ianguagev
compiler, development tools, and test tools. Application programs will be

controlled by the responsible agencies.
4.2 Configuration Management of the Common Language

Authorizations for all changes to the Common Language shall be under control of
the Configuration Control Board (CCB). Except for errors, tThe CCB shall only

implement changes which are upward compatible with the current Standard
Definition Document.

All proposals for changes shall be accepted and recorded, but, in Gé”er?l'
changes will not be undertaken due to the cost impact. Proposed changes will

be investigated for being part of a generic requirement. The CCB will be
supported by the LSF to investigate the impact and necessity for any proposed
changes. Changes will be groupecd and incorporated at the decision of the CCB.

Either a time limit or a quantity of changes shall be used to make a change to
the language.

4.3 Configuration Management of Compilers

4.3.1 General

All compilers used by the Federal Government, uhether owned or not, must be
controlled. Those owned by the Federal Government shall be controlled by @
Common Language organization. Those not owned will be controlled through
validation procedures uhich shall be required for all compilers used on federal
projects. In both cases, complete descriptions of the product and accurate
configuration information shall be maintained. Compilers will be validated
after each modification. Compilers used outside the Federal Government are
strongly encouraged to take advantage of validation facilities.

4.3.2 Compiler Validation Procedures

The purpose in validating the compilers is to ensure conformance to the

Language as described in the Standard Definition Document. Conformance will he
measured against the syntax and semantics of the language. The Common Language
shall be specified in a manner uhich promotes validation and decreases the

chances for misinterpretation by the developer.

The  first method of validation shall be to compile and execute a standard

series of programs wuwritten in the Common Language to test for correct



programs wWill validate single statements and

The tests uill be comprehensive for all statements as well as for
Tests will be made to assure that the limits of
facto extensions. The

systems applications. A
and the

translation. The test set of

sequences.
extremities and crucial cases.
the Language Defination are not exceeded producing de
tests will also represent examples of embedded
validation report shall be published stating the rcsults of the tests

resources used.

the Language Validation Factlity. ~The

The testing shall be performed by
for preparing the set of standard

Validation Facility shall be responsible

tests, compiling the validation information, and approving the material. The

Facility will either officially validate the translator or state necessary
validation. The implementor shall be

corrective actions prior to official
required to certify that there are no unduthorized extensions to the language

translator,

responsible for maintaining compilers should report new types of faults

Bodies
the test

or bugs to the Validation Facility as the users are notified so that
suite can be updated.

Any published test set must be recognized as beinug incowplete. Validation may

be denied should the compiler fail any added tests.

benchnark tecsts  to describe compilation

As part of the validation effort,
cadec spced, and objecct cocde mcmory

speec, compilation memory usage, object
usage Will be required.

4.4 Configuration Management for Supporting Softuare

Support software that is owned by the LSF will be controlled by establishing
procedures to identify the configuration and then managing approved changes.

A1l such programs shall be recorded and cataloged by the LSF for promoting

transferability.

4.5 Configuration Management of Application Programs

by the development agencies. The

Application programs will be controlied
development agencies will he requested to furnish the LSF with a description of
The descriptions will be cataloged by the

appropiate new programs developed.
LSF. The description will be in a standard abstract form.

Development agencies may be required to search the catalog prior to developing
than

new application programs in order to use existing, proven softuare rather

developing more.



Chapter S
Properties of Softuare Tools

The Common Language should be designed to work in conjunction with a variety of
useful software tools and application support packages. These will bhe
developed as early as possible and will include editors, ifterpreters,
diagnostic aids, program analyzers, documentation aics, testing aids, softuare
maintenance tools, optimizers, and application libraries. There will he 3
consistent user interface for these tools. Where practical softudare tools and
aids wiil be written in the language. Support for the design, implementation,
distribution, and maintenance of translators, softuare tools and aids. and

application libraries will be provided independently of the individual projects
that use them.

The Common Language is only one tool in the whole design and dcvelopment
process for automated systems. A possible total structure of - the cevclopment
process may be described by the following steps:

A Understanding the Problem B Oescribing the Problem C Sketching a Solution _D
Refining the Solution E ldentifying the Resources F Making the Solution Work Fl
Development of Additional Harduare F2 Detailed Softusre Design F3 Coding F4

Component Test F5 Integration and System Test F6 Acceptance G Maintaining the
Resulting System

Considerations in this document shall be restricted to tools which are related
to the Common Language in a sense that they are either inmediately necessary
for its use, such as translators, help to improve its performance
significantly,such as symbolic debuggers,or are wuniquely related to the
technology of the Common Language.

One of the most important goals is that tools should be machine-independent tO
the greatest possible extent and that they should run on the standard military
computers so as to provide maximum useability.

There wuill be a modular set of tools uhich can be tailored to the individual
needs of applications and vhich can be updated and extended according to
tcchnological progress. To ensure this the following measures will be

nccessary [ Note that the order of the follouing points does not imply 8
sequence in time ]:

- A common frameuwork shall be established into which the software tools,
libraries, and data base fit. This frameuork shall comprise the definition of
a consistent methodology as well as the identification and eventual

standardization of interfaces between tools.

--The tools,uwhile modular uwith respect to the common framework, shall in
themselives be developed in small pieces which can be easily composed to perform
traditional software development and maintenance tasks, which should be able to



run
more advanced versions.,

individual ly on rather small machines, and which can be easily replaced by

- The methodology shall facilitate iteration betueen development steps.

- Documentation shall be an integral part of all development steps. The tools

shall be designed in a way that the mecthods uscd arc either self-documenting or
thus ensuring a proper flou of

produce supporting documentation automatically,
information between the design levels.

- Design and implemention of the tool environment should emphasize the problems

of software maintenance. Further research should help to solve the urgent

problems in this area.
- Semiautomated tools shall be utilized when fully automated tools are

infeasible or too expensive.

I't should be possible to apply appropriate analysis and verification methods

to each development step.

for off-line and on-line (static and dynamic)
They shall
information

- Test and debug tools both
testing shall be integrated into
include methods for systcmatic
from earlier development stages.

the program dzvelopment sustem.
testing which derive their control

- The interfaces Dbetueen tools (and betuween parts of tools) as well as the
handling of the tools should be standardized for military applications.

considered to make up a basic

- A list of essential tools which may be
what each will

programmers workbench shall be providcd Wwith a description of
contribute to and expect from thc data base.

- The production of new powerful tools for the Common Language by Industry and

the academic community will be encouraged. Government supplied tools will be
chiefly limited to those simple tools in most common use.



Chapter 6

Design and Preparation Tools

6.1 General

The proper analysis of the requirements for a problem solution, is highly
dependent on the technology concerned. [t can therefore not be expected that
there is one uniform methoed by ithich the requirements fer a csustem can he
identified, formulated and specified. On the other hand, there should be
methods and tools which guide, support and, if necessary, force the designer to
express  his  requirements in a way which is unawbiguous (at least as far as
fcasible), appropriate for further automated processing ,uhere practical, and
oriented towards computerized systcms.

The development of a variety of tools should be encouraged, including
textbooks,development standards, cookbooks, case studies, standarcdized
representations, computer aided design systems, both off-line and interactive.

The mcthods and tools available in this area should also facilitate integrated
.design of harduare and software and should support structured decomposition.
They should include graphic methods and representations and be fit for
automation, preferrably in an interactive way. It might be envisaged that they
support the more detailed levels of system dasign with a higher dcriree of
aulomation, utilizing data bases uhich contain infermation on available systew
components and their method of interconnection. Simulation and testing
techniques should be integyrated in such a uay that the design support system
generates input information for simulation packages and the testing process.

6.2 Editors

Editor programs to allouw -generation and changes to source programs shall be
required. These may be either batch or interactive. They must allou
integration with the library system uhich maintains the files which are edited.

Editors shall optionally output source listings in a well structured standard
format. The should allow local formatting standards and conventions to be
incorporated. More elaborate versions may be able to produce flowcharts of 3

given program or to do some parsing in order to facilitate interactive program
production by eariy recognition of certain errors.

Edi tors should optionally be able to produce compressed versions of source
programs , e.g. in order to save file space .

6.3 Preprocessors

There may also be preprocessors for source -programs,uhich, prior the
translation phase, are able to test for compliance to project coding



standards, to capture data for tracing requirements throughout the project, and

to symbolically execute the code for analysis.

They should also be able to optimize programs on source level for input to
higher level language machines . There may also be preprocessors to .transform

higher level structured mechanisms or complete very high level application
oriented languages into the Common Language .

6.4 Design and Simulation .
the language should include application

Ocsign tools which are related to
large systems from partially

libraries which facilitate the composition of
reuseable modules, inter face description aids, stub-generators, tools for proof of

correctness, etc.

The input information for simulation packages should be produced automatical ly
from an analysis of the structure of the programs. Programs to generate
simulation test data by analyzing the code shall Lie required. These programs
Will help to ensure that the test data provides full coverage (execution of all

instructions) with the feuecst possible test cases.

6.5 Automatic Translation Aids

While it will not be possible to take full advantage of the Language
Capabilities when transcribing from programs designed and implemented in other
languages, there are occasions on which it will be desirable to translate some
portions of an existing program from an old language into the new Common
Language. Packages and techniques will be developed to facilitate this. In
most cases complete automation is not required, just machine aid to a
programmer., Languages on the DoD Instruction 5888.31 list are the best

candidates for such aids.



Chapter 7
Translation tools

7.1 General Properties

Translators shall impiement the standard definition. Every translator shall ?e
able to process any syntactically correct program. Every feature that 1Is
available to the wuser shall be defined in the standard, in an accessible

library, or in the source program.

Translators shall be responsible for reporting errors that are detectable
during translation and for optimizing object code. Translators shall be
responsible for the integrity of object code in affected translation units uhen
any scparately translated unit is modified, and shall ensure that shared
definitions have compatible representations in all translation units.
Translators shall do fuil syntax and type checking, shall check that ali
language imposed restrictions are met, and should proyide warnings uhere
constructs will be dangerous or unusually expensive in execution and shall
attempt to detect exceptions during translation. If the translator determincs

*that a call on a routine will not terminate normally, the exception shall be
reported as a translation error at the point of call.

Translators shall fail to translate otheruise correct programs only when the
program requires more resources during translation than are available on the
host machine or uhen the program calls for resources that are

unavailable in
the specified object system configuration. Heither the language nor its
translators shall impose arbitrary restrictions on language featurcs. For
example, they shall not impose restrictions on the number of array dimensions,

on the number of identifiers, on the length of identifiers, or on the number of
nested parentheses levels.

7.2 Technology of translators

Translators for the language will be written in the language and uwill be able
to produce code for a variety of object machines. The machine indcpendent
parts of translators should be separate from code generators. Although it is
desirable, translators need not he able to execute on every object machine.
The internal characteristics of the translator (i.e., the translation method)
shall not be specified by the language definition or standards.

In this area the best of existing and emerging technology will be used.

Comgilers shall be portable to the greatest possible extent,while.

separate
code-generators

shall allow inexpensive adaptation to various targct machines.
Host compilation is preferred because of its greater possibilities for
optimization and its faster throughput. Self-hosted compilers should be
developed uhere technical and organizatorial reasons prevent other solutions.

Interpreters and incremental compilers shall be provided for environments uhere
1



fast response times during testing are required.In case of errors the

translators shall output the maximum possible amount of information compatible
With their respective designs. Whereas it can not necessarily be expected that
all translators have the same standardized error messages,attempts shall bc

made to standardize format and contents of such messages if they occur:

Input  for compilers shall be prepared by editors and program structuring toc?ls
in such a way that the card-image is no longer 3 restriction for the formatting

of source programs.

Translators shall optionally provide outputs which contain the information

necessary to interface with runtime test and debuy tcols.

Translators shaill be unforgiving in identifying all syntax and semantic errors.

Compilers shall generate efficient code.

Translators shall be validated as error free as far as practical given the

state of technology.

Each translator shall have optimization features which may be used to optimize

memory useage or execution speed.

Translators shall be wWritten in a modular fashion which allous inclusion of

approved language changes.

[t is not intended generally to prescribe the type of intermediate language(s)
usecd during the compilation process. However a machine independent root

compiler will be macde available for common use.

A compiler generator or code generator-generator program may be developed to
speed production or adaptation of translators for all ltarget computers.

7.3 Interfaces

7.3.1 Handling of Translators

A handling package shall be provided uith each translator which permits the
control of the execution of the various steps or phases of a translator, to
select the input source,output target,terminate translation ,repeat steps.,etc.

This package has to operate either in an interactive mode or in batch,
controlled by an appropriate job-control language (JCL).It is desirable that
the control instructions and/or the functional capabilities of the handling
package are stancdardized for DoD applications,

[t shall be possible to limit acess to language features,uhich are particularly

unsafe or error prone.

7.3.2 Input to Translators



7.3.2.1 Source statements ( to be compiled )

The compiler must accept the standard input format as delivered by the editor.

7.3.2.2 Compiler control and option parameters
A translator shall accept target machine characteristics,such as:

Machine  model,memory size,special harduware options,peripheral” cquipment,

optional instruction sets available,libraries available (including runtime
support ).

The translator may accept this data either from {he program input source, from
direct query, or from a separate source.

Inputs to control the options of the translators shall include:

Listing controls,debugging controls (such as uhether or not to output code for
subscript-checking, assertion-checking,etc.),optimization options. The

translator shall accept this information from the input source, from the machine
specification or from a separate source.

7.3.3 Output of Translators

7.3.3.1 Code and Control information

The object code output of the compiler shall be formatted in accordance with
the conventions for the standard |ink-loaders.

Aditionally there shall be information passed from the compiler to the run-time
support routines for various purposes such as symbolic decbugging, formatted
dumps, error-checking,etc.

7.3.3.2 Listings

The compiler package ,through the combination of a set of appropiate modules,
shall be capable of optionally producing at least the following listings :

Source as input to the compiler and before

any conditional compilation
statements are processed.

Source,but including,in the same format,any ihput statements retrieved from a
source library by the compiler.

Source after all library retrievals and conditional compilation statements have

been processed. [Note: all these listing formats shall permit the user to see

statement identification or line number (for error displays), the occurence of
erfrors,and the block level.]

Parallel listing of source and object code (when appropiate) uith the same



options as the source-only listings.
A symbol attribute listing

A cross reference listing

A program structure map,which shall shou the structure of the program wuith

regards to blocks uhere data,procedure, function or path are des:lared.f In
addition, the map shall shou any fetchs of definitions or input sburce from a

Iibrarg.

A compiler resource usage listing wuhich shous the amount of computer re?ource?
used ( Examples are : amount of computer time wuscd,percentage and size o

symbol table used )

A program resource usage estimate,shouing e.g.the minimum execution time of

pProcedures and processes,maximum buffer space,etc.

7.3.3.3 Error messages

required to use a standard diagnostic and warning message

Compilers shall be ) -
format wherever applicable. All error massages shall ' be unamhiguous. ] !'.c
implementor shall attempt to provide the follouing with each error: a plain

language (as opposed to code number) description, the offending symbol or
entity, and identification of the source context.

In case the error messages are mixed with the source and/or object listings,
there shall also be an error summary listing giving a total cqunt for each
error and the line numbers on which that error occurred.



Chapter 8
Link/Load Tools

8.1 General Requirements

Link/Load tools shall be developed uwhich are adapted to the Specfa‘
requirements of mul tiprocess systems., They should be able to link
program-pieces which have becn scperately compiled .These pieces may have been
written - in the Common Language or in other programming languages. Assembled
cocde may be linked, too,but extensive checks shall be provided to try to
minimize the inherent risks of this technique.

The link/load tools shall also check the type conventions as provided by the

Common Language as well as other built-in protection mechanisms.They shal |
accept names of indefinite length.

Link/load facilities will be required making it possible to dynamically link
new modules to existing systems. Some may to support maintenance by the
inclusion of patching into the general link/load hanism.

8.2 Interfaces

The link/load tools shall have a standard input-interface which accepts the
standard output of the respective compiler passes. In order to be able to link
code which has been produced by a different compilation process,it may be
necessary either to provide additional information to the link load tools or to
apply an interface adaptation tool to the foreign code.

Additional control information may be necessary to completely control the
link/load process which can either be provided by the translator’'s handling
package or be contained in the output of the translation.

Besides program modules proper the link/load tools shall be able to accept as

input mathematical packages,executive modules,/0-routines,and the contents of
pre-compiled application libraries.

As output the link/load tools shall provide error-messages,e.g. concerning
non-matching inputs,and,optional ly,memory maps which describe the final
structure of the program after the |ink/load process.



Chapter 9
Runtime Tools

9.1 General

The necessary mathematical, 1/0, and executive support routined shall be
provided in the form of runtime support packages, uherever practical. These
packages shall be written in a modular fashion,such that the support package
which is actually required for a particular program can be generated at

link/load time in order to reduce runtime overhead.

The runtime packages shall include routines which are necessary to interface
the programs with runtime test and debug tools.

The runtime support routines may produce a summary of computer resources used
in the execution of the program.An example is the amwount of computer time and

storage used.

3.2 Virtual Language Machine

A package shall be provided together with the translator which contains all
necessary support routines for language elements which are neither directly
compiled nor available on the respective target (virtual) machine.This package
Will either provide an adaptation to the existing operating system and runtime
packages or will extend the capabilities of the bare machine in question to

match the requirements of the language.

3.3 Extended Virtual Machine

Where practical,packages shall be provided,either uith the compiler or from a
separate source,uhich extend the capabilities of the language machine towards
more powerful constructs,but are not application dependent in a strict sense.

Such packages will include:
Formatted-1/0
Graphic-1/0
Frequently used non-standard-1/0

Matrix calculation
Resource management routines,etc.

3.4 Runtime Test and Debug Tools

These runtime support packages shall be integrated with the runtime test and
debug tools in such a way that the latter can refer to source code and work in
an interactive way wherever practical.



The runtime displays for errors shall include the subprogram,defjnitlon
module,or path,the procedure and the statement number on which the error
occurred.The implementor shall attempt to display the offending sgmb9| if
any.The display shall also include a trace back of all currently executing Or

pending procedures, functions,paths, etc. A dump of all active variables may be
at the option of the user.

The outputs of run-time debugging shall contain information similar to the
error display.

The test and debug tools shall include the follouing:

9.4.1 Branch and Timing Counters

Methods of recording which branches of a program have been exercised shall‘ he
developed for testing. Frequency of execution and amount of CPU time required

shall be given by the counter program. This program may be used to determine
if all instructions in a program have been executed.

9.4.2 Trace and Breakpoint

Methods of recording the sequence of execution of instruc- tions or progfams
shall be developed for testing. The capabhility of stopping at prescribed

instructions shall also be provided in order to examine or change the test
conditions.

3.4.3 Interactive Symbolic Debugger

This tool shall allow inspection of the contents of variables, give_information
on the status of processes at the user's request, show the contents of
queues, indicate resources used by a given process,etc.

Modifications to such entities should only be possible under the most stringent
safety precautions.

9.4.4 Symbolic Dump

Methods of relating the results of tests (memory dumps) back to the source
program shall be provided. The intent is to allow the programmer to debug his
program in the common language rather than on assembly or machine code level.



Chapter 18
Maintenance

18.1 General

As maintenance has become the main cost-factor in the lifecycle of an automated
system, all possible efforts shall be made to reduce this factor. Efforts to
design the development tools in a way that maintcnance is facilitated shall be
under taken. Additionally, the human factors of the work process itself as well
as the properties of the environment, in which maintenance takes place, shatll
be investigated in order to derive improved methods, procedures and tools for

maintenance.

18.2 Maintenance Oriented Precautions

way,preferrably automatically, that it
in case it should be neccssary. This shall
listings and supporting

Documentation shall be provided in a
helps to facilitate maintenance

hold for the design cdocumentation as well as for all
information which are created during the programming process propsr.

The library system used for maintaining prograwms shall be capable of recording
all changes to programs. Prompting may be used to encourage the programmer to
identify information for understanding what was changed and why.

shall pass as much symbolic information from source level to

The translators
reference to the

the object level as is practical in order to facilitate
original information during maintenance.

18.3 Maintenance tools

Inverse assemblers and compilers as methods of deriving source code from object
code shall be investigated to assist in maintaining code for wuhich source s

not available.

Incremental compilers, though typically test tools shall be investigated as to
their potential of the handling of maintenance oriented changes.

A mcthod of symbolically patching programs should be investigated,because it
may help to increase the understanding of a change and to decrease the chance

of error in making the change.



Chapter 11
Management Tools

11.1 General

Methods, standards and tools shall be developed which will make it possible to
determine whether the resulting systems and programs are sufficiently byqufee
and uwhether they meet the specified reqhirements as to functional gapab"‘t'?s
as uell as to time and space constraints. It is also desirable that this

process be formalized and that the necessary contrel information be derived
from earlier development stages.

Management should also have the possibility to restrict the use of potentially

dangereous language features to certain persons or cases where they are safe to
use.

11.2 Libraries

Application libraries, both on source-code and on link-load level shall be
maintained in order to speed up program development and minimize duplication of
effort. A library system shall be developed to facilitate retrieval of program
modules. - It is desirable that such a system is integrated into the design

tools. The libraries shall also be capable of maintaining  program
specifications, program change histories and test cases.

11.3 Interface monitor

Programs to test interface specifications betueen modules within a softuare
system shall be developed to assist in eliminating a major source of bugs.



Chapter 12

Application Software

One of the goals in the use of the Common Languagc is to increasg portability
of programs written in the Common Language. For those application programs

Written in the Common Language, portability uill be promoted by the follouing
me thods.

1. Information concerning application programs will be maintained by the
Language Support Agency and cataloged by type of program. A standard abstract

format will be employed.

2. Major types of embecded systems will be identified and basic tasks wWithin

these types will be identified for catalog purposes.
Some types of embedded systems are:
a. Command and Control

b. Communications

c. Avionics

d. Shipboard

e. Test Equipment

f. Trainers and Simulators

g. HMissile Guidance

h. Space Systems

i. Radar

j+ Gun Control

k. Data Management

3. Organizations concerned with the Common Language will encourage special
interest groups within user organizations to- address the major types of
embedded systems as well as common functions across all embedded systems.

Chapter 13

Training Support

Initial training wWill be required for programmers using the language, for



developers of compilers and support tools, and for management. Preparation o:
courses for each of the various levels will be required. Different modes O

training will also be required due to diversc loca- tions, schedules, and
background of those requiring training.

13.1 Types of Training Required

13.1.1 Programmers Using.the Common Language

During the language introduction phase, training will be provided fOF ?::
programmers who will write programs in the Common Language. Tralnlvg i
consider new as well as experienced programmers and will consist of beginning,
intermediate and advanced levels.

Training will be required for language use as uell as tool use. Langudge

aspects which help accomplish project objectives such as reliability, efficient

memory usage, efficient central processor usage, maintainability, and standard
styles should be taught.

Training aids will include manuals for programmers familiar with other HOL's.

For instance, documentation and courses may bhe required for programmers
presently using Jovial, CMS-2, FORTRAN, etc. These must include not only Fhe
differences in the constructs of the languages, but also improved methodologies
made possible by the use of the Common Language.

13.1.2 Compiler Developers

Training will be provided in the syntax and

scmantics of the language for
personnel developing compilers.

Experiences will be shared whenever possibie.

13.1.3 Management of Projects Using the Common Language

The management of projects using the language Will require overvieuw training
for the language and its environ- ment. Training in techniques which promote
success in project development should also be prepared.

13.2 Training Modes
Methods of training shall include the follouing.
1. Classroom Instruction
2. Video Tape Courses
. 3. Computer Automated Instruction
4, Self-Instruction Manuals

Material for all of these methods shall include liberal use of programming

examples with various levels of complexity and shall depict the required steps
in arriving at a solution.



Materials will be provided in English. The extension of thcse materials to
other languages, especially in the NATO community will be fostered and

encouraged.
!



Chapter 14
Information Collection, Dissemination, and Promotion

It shall be the responsibility of the Language Support Facility (LSF) to
collect and disseminate al! information concerning the Common Language.

The LSF will maintain information about the Language as uell- as programs
uritten in the language which support the language. This infor- mation uill be
cataloged in a hierarchical document which contains sections on all types of
documents uwhich pertain to the Common Language. The catalog will contain a
brief description of each item of documen- tation in the form of a standard
abstract. Each description will include title, purpose, author, revision

level, size, and key words. The catalog will also include a
Key-Word-In-Context (KHIC) listing for search purposes.

The LSF shall maintain statistical information about the use of the Common
Language. Statistics shall include the number of projects using the Language,
number of compilers, and number of computers for both host and target. Reports
from the field must include information ahout thc dctail use of the language
and compilers. The information should includzs error studies, difficult to usec
constructs, and amount of machine code used. These statistics schall be
published periodically as part of a Common Language report. This report shall
include the present status and plans for the language. :

All of this information will be made availabie to the Common Language community

to ensure that all users and potential users arc working with accurate, current
information.

A periodic bulletin may be distributed in published form and possibly
accessible (i.e. on the ARPANET), !
about the language and the environment.

computer
The bulletin would contain information
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Absiraci: Tartan is an experiment in language design. The goal was !o cdelermine whether
a "simple” language cculd mee! suostantially all of the [romman recuirement far a comman
high-order programming language. '

We undertook this experiment tecsuse we believed that ail the designs done in the first
phasa of the CCOD effort were loa large and too compiex. We saw that comglexity as a
serious failure c¢f the designs: excess complexily in a progrsmming language can interfere with
its use, even to the extent that any benelficial properties are of little consecuence. We wanted
to find out whether the recuirements inherently lead to such complexity or whether a
substantiaily simpler language weuld suffice.

Three greund rules drove the experiment. First, na more than lwo months -- April 1 to
May 31 -- would be devoted to the project Second, the language would meet all the
[ronman requirements except for a few points at which it weuid anticipate Steeiman
recuirements. Further, the language would contain no extra features uniess they resulted in a
simpler language. Third, simplicily would be the overriding cbjective.

The resulting language, Tartan, is based on all available information, including the designs
already procduced. The language definition is presentad here; a companion regort provices an
overview of the language, a number of examples, and more expository expianaticns of some of
the language features.

We telieve that Tartan is a substantial imorovement over the earlier cesigns, particularly in
its simplicity. There is, of ccurse, no objective measure of simolicity, but the synlax, the size
of the definition, and the number of concepls recuired are ail smailer in Tartan

Moreover, Tarlan substantially meets all of the [ronman requirement. (The exceptions lie in a
few piaces where we anlicipated Steelman requirements and where details are still missing
from this report) Thus, we believe that a simpie language can meet the Ironman requirement
Tartan is an existence proof of that

We must emphasize again that this effort is an experiment, not an attempt to compete with
DOD cortractors. Tartan is, however, an apen challenge to the Phase [l contraciors: The
language can te at least lhis simple! Can you do beller?

This work was supported by the Cefense Advanced Research Projects Agency under contract
F4482C-73-C-0G74 (monitered by the Air Forca Cifice of Scientific Research).
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1. Basic Concepts and Philosophy

A program is a piece of text that describes a sequence of actions intended to effect a computation.
The process of "executing a program” to obtain this effect is called elaboration of the text. 1

Programming languages are used for communicating programs, both between people and between
people and machines. Although the program text is static, the concepts being communicated are
dynamic. This dynamic nature of a computation can make it difficult to communicate the ideas
uncerlying a program, and especially to communicate these ideas between people. To expedite the
communication, we impose struclure on the way languages are used. Although this structure restricts
what can be written, it resuits in regular patterns for expressing decisions. The human reader benefits
from this by developing expectations about how these ideas will be expressed

Programming languages encourage the impasition of structure by providing notations for the
structures. whose use their designers wish to promote. During the process of language design, our
beliefs about programming methodology and the state of language processing technology lead us to
formulate concepts and structural rules. We then select syntactic forms and structuring features to
emphasize these concepts. We expect that this will simplify the task of describing programs with the
attributes we view as "good structure™ and that programmers will, as a result, be encouraged to
organize their programs this way. .

We distinguish three dominant structures in Tartan programs: (1) the lexical siructure, which
organizes the static program text, (2) the control struciure, which organizes the dynamic execution, and
(3) the data structure, which organizes the information on which computations are performed.

= Lexical structure is a property of the program text. Programs are divided hierarchically into
sections, called lexical scopes, thal share information about data. Scope determiries the
interpretation of identifiers, so all the text in a given lexical scope shares the same
vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with
the same interpretation in several lexical scopes.

- The control structure of the program determines the order in which its statements are
executed. :

- The structure imposed on data involves the concepts of type, values, and variables.
Ultimately, computations are performed on values; we take that notion to be primitive: values
exist, and each has exactly one lype, which determines the legal operations on the value.
Values are stored in variables, which are objecis procuced by elaborating type definitions.
Variables, too, have types: these types determine the sets of values that may legaily be
stored in the variables.

These fundamental structures interact in a number of ways. Two major interactions appear as the
concepts of extent and binding. The control and lexical structures interact to determine extent. The
extent of a variable is its lifetime -- the time during which it affects or is affected by the elaboration
of the program. Binding rules are invoked by both lexical and control structures: they associate
identifiers with program entities (objects, modules, routines, types, labels, and exceptions).

In Tartan, programs are composed of definitions, declaralions, and executable statements. A
definition binds an identifier to a module, routine (procedure, function, or process), type, or exception;
it is processed during translation. A declaration binds an identifier to an object (i.e,, a variable or
value); it is processed at run lime, usually to allocate storage. Executable statements are elaborated at
run time to effect actual computations -- manipulation of values.

Lexical structure is imposed on Tartan programs by blocks and medules, which delimit lexical
scopes. These scopes may be nested arbitrarily. Both constructs may use identifiers defined in other

" scopes; both may define identifiers that can be used in other scapes. Blocks and modules differ only

lwe use the word “elaboraticn”, in preference to “execution”, to connote acticns taken curing
transiation as well as during execution. Elaboration may be theught of as an idealized, direct execution
of the textual version of the program
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in their scope rules and in their effects on the extent of variables. Tartan has two scope rules:

- An open scope inherits (imports automatically) all the identifiers that are defined in its

enclosing scope. It may not export any identifiers. Blocks are open scopes except when
used as routine bodies.

- A closed scope inherits all |denhf|ers that are defined in its enclosing scope except those for
labels and nonmanifest objects.l 1t may explicitly import identifiers for objects, provided they
have global extent. All modules are closed scopes, as are blocks when they are used as

routine bodies. A closed scope that is a module may export identifiers that name variables,
modules, routines, types, or exceptions.

Identifiers that are exported from an inner scope or imported from an outer scope have the status of
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted; however,
this does not prohibit overioading of routine names. In addition, the same identifier may be imported
with different meanings from two different scopes. Such identifiers are qualified with the names of .the
modules in which they were defined; thus they are not duplicate definitions. Similarly, literals and

constructors are qualified with their types to prevent ambiguity. In either case, the module or type
qualifier may be omitted it no ambiguity arises.

In Tartan, extent is controlled exclusiveiy by blocks. Only instantiated objects (variables, constants)
have extent. Variables are instantiated by the eiaboration of declarations (for named variables) and by
explicit construction of variables having dynamic types (dynamically created variables). Named
variables have extent coincident with the surrounding block. Dynamically created variables have extent
coincident with the block containing the definitions of their dynamic types. Formal parameters of
routines are considered to have extient coincident with the routine body.

Tartan provides a facility for making generic definitions of routines and modules. This allows the
programmer to write a single textual definition that serves as an abbreviation for many closely-related
specific definitions. The definitions may accept parameters; the parameters are completely processed

during translation. The effect of using a generic definition is that of lexically substituting the deflmtlon
in the program at the point of use.

The syntactic definition of Tartan uses conventional BNF with
conventions:

the following additions and
- Key words (reserved words) and symbols are denoted with boldface.’
- Metasymbols are denoted by lower-case letters enclosed in angular brackets, e.g., "<stmt>".

- The symbols { and } (not in boldface) are meta-brackets and are used to group constructs in
the meta-notation.

-~ Three superscript characters, possibly in combination with a subscript character, are used to
denate the repetition of a construct (or a group of constructs enclosed in {}):

" denotes "zero or more repetitions of”
4" denotes "one or more repetitions of"
b i denotes "precisely zero or one instance of".

Since it is often convenient to denote lists of things that are separated by some single

punctuation mark, we denote this by placing the punctuation mark directly below the
repetition character.

The semantics of the language are described in English. In the interest of a compact and regular
syntax, we have allowed syniactic constructs that are disallowed on semantic grounds. This is
consistent with standard practice with respect to, for example, undeclared identifiers.

1L iterals and identifiers for variables that are declared manifest are manifest objects: hence
they are inherited.
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2. Basic Structures

2.1. Primitive Expressions

<const> u= <digit>* { . <digit>* }* | true | faise | nil | closed | open | mint | emply
| <constructor> [ <id> | <qual id> ' <const> | <type> ' <const> | <expr>

<constructor> = ( <expr>,‘ ) | ( { <option> => <expr> },* )| ® <char>* "
Some examples are:

123.4586

Color’'green

true

Person® ("Sam",21,male)

Ile'gll

(1..2->8.1, 3..4->8.5, others->1.8)

Primitive expressions form the basis for the recursive defintion of expressions. They are the
elements referred to as constants, literals, and constructors in programming languages and as
generators in algebras.

Constants and literals denote values. The type of a constant is determined by its ceclaration. The
types of literals are determined as foilows:

- ‘A sequence of digits containing no decimal paint is of type Int. Type Int is defined in terms
of type fixed for each machine as described in Appendix [.1.

- A sequence of digits containing a decimal point is of lype Real. Type Real is defined in
terms of type float for each machine as described in Appendix L1.

- If a sequence of digits, with or without a decimal point, is qualified by a fixed or float type
or by a defined type that is ultimately defined in terms of fixed or float, the type of the
literal is determined by the qualifier.

- True and false denote boalean values. Nil denctes the null value for any dynamic type. Open
and closed denote values for latches. Emply denotes the emply set Mint denotes an
activation of any process in mint state.

- A character string containing one character is a literal of type char. Any other character
string is a constructor of type string.

Literals and manifest expressions are evaluated curing translation with the same algorithms and
accuracy as are used during execution.

If an <id> is to be a <const>, it must have been declared const or be a member of an enumerated
type. If an <expr> is to be a <const>, it must be a manifest expression.

The type of a constructor may be indicated by a prefixed qualifier. If the gqualifier is omitted, the
constructor is assumed to give the value of an array indexed with integers beginning at 1.
Constructors are provided for composite and dynamic types.

- If the constructor has a record type, the <expr>s in parentheses give the field values in the
order of their declaration.

- If the constructor has an array type, the parenthesized list gives the element values. If the
constructor is a simple expression list, it gives the values in order from lowest index to
highest. If the constructor uses the form with options, the expressions in the <option>s
indicate the array position to which each value correspends. The special constant others may
appear as the last <option>; it will match any constant that is not included in any other
<option>. The constructor form with options is legal only for arrays and for types uitimately
defined in terms of arrays; the expressions in the <option>s must be manifest.

- If the constructor has a variant type, the first expression in the parenthesized list is the tag
and the remainder of the list is a constructor for the corresponding variant.
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- [f the constructor has dynamic type, the result is a.pointer to a new variable having the
attributes supplied in the type qualifier and the value given by the parenthesized list.

A constructor containing no <expr> provides an uninitialized instance of the indicated type.

2.2. ldentifiers

<var id> u= <qual id> | <var id> ( <actuals> ) | <var id> . <id> | <var id> { <range> ) | Rep' <id>
<range> = <expr> , ., <expr> | <type>

<option> um { <const> | <range> }*

<quai id> uw { <id> '}® <id>

<id> um <letter> <letter or _ or digit>*

Some examples are:

Animal’'Cat

v (3)

VIl..N)

Sam.Ag=
ldent_with_mark

Icentifiers have no inherent meanings. They are associated with objects, rcutines, modules, types,

statements, and exceptions. Declarations and definitions establish the meanings of identifiers within
particular scopes.

Icdentifiers may be simple, or they may be qualified with madule or type names in order to resolve
ambiguity among names exported from several modules.

Icentifiers that name objects are <var id>s. They may be simple identifiers, they may be qualified

to indicate where they were defined, or they may name elements or substructures of composite
structures.

- Simple <var id>s (i.e, <qual id>s used as <var id>s) are identifiers declared in variable
declarations or by the <formals> in a routine header.

- The form <var id>{(<actuals>), where <var id> denotes an array, denotes the element of that

array indexed by the <actual>s. The types of the actuals must match the index types for the
array.

- The form <var id>{<actuals>), where <var id> denotes a variable of a variant type and the
<actual>s consist of a single <expr>, indicztes that the tag field of the <var id> must be
<expr> and denotes the value of that option of the variant type. On the left side of an

assignment, this form has the effect of selting the tag field: the expression on the right side
of the assignment must be of compatible type.

- The form <var id>(<range>) denotes a subarray. The <var id> must cdenate an array and the
limits of the <range> must match the declared type of the array’s index set and be a
subrange of the declared range. The subarray consists of the indicated elements of the <var
id>, in the same order as they appear in the <var id>. If the index type of the array is fixed
or defined in terms of fixed, the subarray is indexed by integers beginning with 1; otherwise
it is indexed from the minimum value of the index set of the array.

- If <var id> denotes a record object, the form <var id>.<id> denotes the field named <id> in
that record object If <var id> denotes an object of dynamic type, then <var id>.<id> denoctes
the field named <id> in the record object pointed to by the value of <var id>; <var id> must
not have the value nil. This form is also used to access the value of a variant tag or the
attributes associated with the lype of a value or variable. In addition, if T is a variable of
dynamic type, T.all is the complete value (all components) of the object asscciated with T.

1INote that the index types include range restrictions.
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= The form Rep’<id> is used in the same scope as the definition of the <id>’s type '°atii’;‘:':a;ﬁ
that the <id> is to be regarding as having the underlying type. This permits oper
the underlying type to be used for defining operations on the new type.

Identifiers that refer to definitions (e.g., of routines, types, or modules) are <qual id>s.

When an identifier is exported from a modle, in the scope to which it is exported it is rzf;a!rrefd -
by a <qual id> or <var id> constructed by prefixing the identifier wu.lh the name of the m?r e roam
which it is exported. The qualifier is separated from the identifier with an apostrophe. Quali Ery mey
be omitted if no ambiguity resuits. . .

A <type> used as a range must be fixed, an enumerated type, or a defined type that is ultimately
defined in terms of fixed or an enumeration.

2.3. Lexical Considerations

Spaces may be inserted freely belween lexemes without altering the meaning of the program. Art\
end-of-line is equivalent to a space and may not be part of a lexeme. Al least one space tmuls
appear between any two adjacent lexemes composed of letters, digits, underbar, and decimal points. In
identifiers, all characters are significant, but alphabetic case is not. . .

Comments are introduced by the character “1" and terminated by the next follow1_ng end-of-line.
They have no effect on the elaboration of the program. .

Although the language as presented in this report takes advantage of characters that are nof in ﬂ'?e
64-character ASCIl subset, simple substitution to map programs into that alphabet_are defined in
Appendix I.
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3. Expressions

<expr> = <unop>* <var id> | <unop>® <const> | <unop>* <func call>
| <unop>* ( <expr> ) | ( <expr> ). <id> | <expr> <binop> <expr>
<unop> nw - | -
<binop> wm X | []e]l<I¢I>]2]n]4]Alcand]V]|cor]|?
<func call> m <qual id> ( <actuals> )
<actuals> = <exnr>,‘

Some examples are:

x

x +y

sin(x)

—(x-:rg + zvew)
(Root.Ptr).ail

Expressions describe computations that yield values. The elaboration of an expression produces an

object containing the value of the expression The type of the object is determined by the following
rules:

- The type of an <expr> that is a <var id>, <const>, <func call>, or selection of a field from a
computed composite value is determined by the appropriate declaration (or rule for literals).

- The type of a parenthesized expression is the type of the expression inside the parentheses.

- The type of a tinary infix expression or a unary expression is determined by the definition
of the appropriate binary or unary operater definition.  These operators represent
invocations of functions that may be overloaded. The appropriate operator definition must
therefore be determined on the basis of the types of the operands.

The usual operations are associaled with the operators +, ~, &, /, T, -, A, Vv, cand, cor, <, £, 2, >, =,
and #. The programmer may overload these function names, but the added definitions must be unary
or binary to conform to the established syntax. Precedence rules for the unary and binary operators
are given by the following table, in which operators on a single line have the same precedence and

operators higher in the table bind more tightly than operators lower in the table. Unary operators
have the highest precedence.

1
s /

+ -

< $ 2 > = ¢
A cand

v cor

Within precedence levels, assaciativity is left-to-right.

For all operators except cand and cor, elaboration of an expression proceeds as if the expression
were written in functional form (see section 3.1). For cand and cor, the left operand is elaborated first
and the right operand is elaborated only if necessary.

A manifest expression is a literal, a value of an enumeration type, an identifier declared with
manifest binding, a generic parameter, a manifest lype altribute, a constructor involving only manifest
expressions, or any expression involving only these expressions and language-defined operations. The
value of a manifest expression is known during translation
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3.1. Invocations

Some examples are:

F(S)
Sequence’ [nsert(S,5)
PQ)

An invocation causes the elaboration of a procedure or function body with the elements of the
<formals> list of the routine bound to the elements of the <actuals> list provided by the invacation. [f
a routine name is overloaded, the definition whose formal parameter types match the types of the
actual parameters is selected. Procedure and function invocations (<proc call> and <func call>) differ in
that procedure invocations are statements, whereas function invocations are expressions having values.

An invocation consists of the following steps:

- Elaborate each of the <actuals> in an unspecified order, yielding a sequence of objects.

- For each result formal, create a variable having the same type and attributes as the
corresponding actual. Bind the result formals to these variables.

- For each const or manifest formal, create an object of the specified type with .the same
attributes as the corresponding actual. Copy the value of the actual into the new object.1

- Bind each var formal to the corresponding actual, which must be a variable (i.e,, a <var id>).
Thus var formals are passed by reference.

- With the bindings established, elaborate the bady of the routine.

- For each resull formal, copy the final value of the variable bound to that formal back into
the corresponding actual, which must be a variable (i.e, a <var id>). Note that this actual is
determined before the elabaration of the routine (i.e., for the actual A(i), it is the initial and
not the final value of i that determines the variable that receives the resuit). -

The result of a function is treated as a result parameter instantiated at the call site with extent as
cescribed above and passed as an implicit parameter to the function. During the elaboration of the
function, its value is developed in this result parameter.

During elaboration of a function, assignment to a variable that is not local to the function body (or to
the body of a routine it invokes, directly or indireclly) is permitted only if the function is never
invoked in a scope where such a change is made to a variable or component that is directly
accessible by the caller.

Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on
type, binding and aliasing.

- The type of an actual parameter is acceplable if its <lype name> exactly fnatt_:hes the <type
name> of the corresponding formal parameler. Type attributes (instantiation parameters of a
type) play no role in type checking. Chapter 5 gives rules for determining <lype namess.

- The binding of the actual parameter is acceptable if it matches the <binding> of the
corresponding formal parameter according to the following rules:

If the formal parameter is then the actual parameter may be
var <var id> declared var
const : <expr>
manifest any manifest <expr>
resuit <var id>

- Finally, the set of actual parameters must satisty the following nonaliasing restriction: A
variable may not be used in more than one var or resuit position of a single procedure or

INote that for dynamic types, this is a painter copy.
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process call. For the purpose of testing this restriction, imported variables are considered to
be actual parameters bound as specified in the import list.

3.2. Dynamic Allocation

Each use of the constructor for a dynamic type .creakes a dislinct element of the type. Each such
element remains allocated as long as there is an access path to it.

Attributes of the dynamic type are provided when the constructor is used. Thus it is possible to
associate objects with different attributes with the same dynamic variable at different times.
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4. Statements

<stmt> = <proc call> | <id> : <stmt> | <emply> | <block>

| <var id> = <expr> "
| if <expr> then <stmt>.* { elif <expr> then <stmt>* }* { eise <stmt>* }* fi

case < > { on <oplion> => <stmt>.® }* esac

: whn.. f::;n{do"qtmp;’ od | flor <id> in <range> do <stmt>;' od

| goto <id> *

| signal <qual id> | resignal | assert <expr>

| <stmt> { { on <id>* => <stmt>* }* }

| create <var id> ( <actuals> )
<proc call> u= <qual id> ( <actuals> )
<block> = <code body>
<code body> = bagin { <def-decl> ; }* <stmt>.* end

Statements designate actions to be performed. Their elaboration results in changes in the executlc.m

state of the program. The <emply> statement has no effect. Labels are t{sed by goto s.tatemelnts lg
altering the flow of control in a program. A label is accessible only within the <stmt> it labels an
within a compound statement (sequence of <stmt>s separated by semicolons) of whtch it is a <stmt>.

4.1, Blocks

Some examples are:

begin var x: boolean; x := true end
begin x := y: y := z: end
Blocks control extent. A <block> is elaborated when control flows into it, either because the <block>
is the body of a rcutine that has been invoked or because the elaboration of another <stmt> ha.s
transferred control to it. First, all declarations and the texts of all module definitions are elaborated, in
lexical order. Next, the <stmt>s are elaborated as described elsewhere in this chapter. Finally, the
<block> is exited or terminated. If it is exited, control waits for all activations declared in this <block>
to become dead or mint, then the extent defined by the <block> is closed and all nondynamic variables
instantiated in the <block> are deallocated. If the <block> is terminaled, all activations declargsi in the
<block> are forcibly terminated, and then the <block> is exited The choice between exiting and
terminating the block depends' on how control arrived at the end of the block. If the block ca.me to
an end because a handler completed or an enclosing process was terminated, the block is terminated.
Otherwise, it is exited.
A <black> is not permitted to export identifiers. Except when used as a routine bedy, it is an open

scope and has no need to import any.

4.2. Sequenced Statements
Same examples are:
x tm 1; y tw2; 2z =3
SumSq := @; for | in 1..18 do SumSq := SumSq + V(i)42 od

Sequenced statements are elaborated in the order given, except when that order is interrupted by a
goto or an exception.

4.3. Assignment Statement

Some examples are:

Y(S).Sum := 8
x = (3 4w wy

The assignment statement "V = E” is a procedure call on an appropriate assignment operator,
defined



Tartan Reference Manual -10-

proc ":=" (var LHS:T, const RHS:T)

for arbitrary type T. The value of the second parameter is assigned to the object named by the first
parameter. The paramelers are of the same type, and the normal type-checking rules apply.

Assignment operators are defined for all primitive types. Assignment operators are defined for
arrays, records, variants, and programmer-defined types if and only if they have no components that
are declared const or are nonassignable by virtue of this rule. An assignment operator that copies the
whole value is automatically supplied for each user-defined type. For dynamic types this is a pointer
copy. Although assignment may be invoked with any variable and value of the type, it reguires that
the attributes of its left and right operands be identical, and signals the BadAssign exception if they
are not The BadAssign exception is also signalled if an assignment involving mismatched array, string,
or set sizes or an activation not in mint state is attempted.

4.4, Conditional Statements

Some examples are:

ilA<3thcnx:-gli.

if x » @ cand y/x > @ then z := wut(y/x) else u := 1.3; q 1= y/x fi
case Tint

on fuchsia -> Hue := cool: Oescription := "Purplish-red"

on puce -> Hue := warm; Oescription := "Brounish-purple"
esac

In the statement "if B then S1 else S2 fi", B must have type boolean. First, B is elaborated. If the
resulting value is true, Sl is elaborated; otherwise S2 is elaborated. In the absence of an else clause,
S2 is taken to be the empty statement, which has no effect

The expression

if Bl then S1 eiif B2 then S2 ... alif Bn lhen Sn else Sy fi
is equivalent to

if Bl then S1 else
if B2 then S2 elss
) 'if Bn then Sn elsa Sw fi
. o )
fi

In the st.atement

case EB
on Ell,...,Elk = S1
on E21,...,E21 -> S2

on £Enl,...,Enm -> Sn
on others ~> S
esac

The E’s must all be expressions of the same type, and all except EO must be manifest. The type of
the E’s must be fixed, an enumerated type, or a defined type that is ultimately defined in terms of
fixed or an enumeration. Any of the E’s except EO may be a <range>; such an Eij is treated as the
secuence of values in the range. First, E0 is elaborated. The Eij are elaborated and the results are
compared to EO (in unspecified order). If EO is equal to some Eij, the corresponding Si is elaborated.
If all comparisons yield false, Se is elaborated. Exaclly one Si is elaborated for each correct
elaboration of the case statement. If the special constant others does not appear as the last <option>
and no match is found, an exception (CaseFailed) is signalled.
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4.5. Loop Statements

Some examples are:

while x < 2.5 do x 1= Fly,x); y t= Gly,x) od
for | in 1..18 do V(i) := i od
for hue in color do Tint(hue) := hue od

The loop while £ do S od repeatedly elaborates if E then S fi until E becomes false. If Eis
initially false, the loop has no effect (other than the possible hidden effects or exceptions caused by

the elaboration of E.)
The for statement for i in R do S od repeats the steps

- Bind i (as a constant) to a value in the range R

- Elaborate S.

once for each element of the range R, in order. If R has no elements, the loop has no effect The
scope of the loop constant is restricted to the loop.

4.6. Unconditional Control Transfer

An example is:
goto L

The effect of a goto statement is to force control to the beginning of the statement with th_e given
label. Since the scope rules prevent inheritance of labels across closed scope boundaries and

importation of labels, a goto can not be used to transfer out of a routine or madule.

4.7. Exceptions

Some examples are:

signal TooBig
assert. x < 3

read(file,x) { on EOF -> golo Exit }
x 1= x+1 { on Overflou -> x := 8 }

Exceptions are processed by handler clauses associated with individual statements. Each handler
clause assaciates processing code with given exceplions. The special identifier others may appear as
the last <id> list of a handler clause; it matches any exception that is not named in some other
exception <id> list of the same clause.

When an exception is signalled, control is transferred to the nearest dynamically enclosing handier
clause that handles the exception, either explicitly or through an others clause; the elaboration of the
handler replaces the elaboration of the remainder of the statement If this handler is not in the
currently-executing block, all intervening blccks will be terminated. If a handler is not found within
the currently-executing routine, that routine is terminated and the exception is resignalled at the point
of czll of the routine. If a handler is not found within the currently-executing process, that process is
terminated and the exception is resignalled at the end of lhe block in which the process activation
was declared after waiting for control to reach that point and for all other activations declared in that
block to terminate. If no handler is found in the scope of the exception name, a default handler will
be supplied to terminate that block

Exiting a handler causes termination of the <stmt> with which it is associated. [f the handler
resignals the same exception or raises a new one, the normal rules for exception processing apply.

The resignal ccmmand may be used in any handler body to resend the signal that caused that
handler to be invoked.
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The assert statement raises the assertion exception if the <expr> is false.

It is exactly equivalent
to the statement "if ~ <expr> then signal assertion fi".

There is one exception to the rule that an exception must be handled by the block in which it is
signalled or by a caller of that block: the Notify operation on activations or actnames. The effect of a

Notify is as if the Terminate exception were signalled in the currently-executing statement of the
activation named by the Notity command.

4.8. Paralle!l Process Control

Some examples are:

create P (S)
activate (P1l)
if [sBlocked(Pl) then . . .

The create command instantiates a process, P, as an object of type activation-of-P. The <var id>
in a create must name an odject of type activalion-of-P that is in mint state. [f a process takes any
var parameters, the corresponding actual parameters must have extent at least as great as the

activation variable. The effect of the create is to instantiate an activation of P, bind the actuals of the
create to the formals of P, and set the activation in suspended state.

Each activation has a unique identifying token value of type aciname, and it may be named by one
or more objects of type aciname. Except for create, all operations that control parallelism are special
routines that operate on either actnames or activations. These routines control the processes and

parallelism by changing and interrogating the states of indivicual activations; they are described in
Appendix [.2.

Note that the extent rules require an activation to be dead or mint before the block in which it is

declered can be exited. This provides an implicit jain operation. A fork can be obtained with a
series of creates and activates.
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5. Types

<type> = fixed( <actuals> ) | float( <actuais> ) | boolean [ latch | char | file( <actuals> )
| enum{ <id>* ] | enum( { = <char> " ] * ] | <expr>.. <expr>

| set( <actuals> ) | string( <actuals> )
| array ( <range>* ) of <type> | racord { <declaration> * ]

| variant <declaration> [ { on <option> =» <type> }*]
| dynamic <type> | activation of <qual id> | actname
| <type name> { ( <actuais> ) }*

<type name> = fixed | float | booiean | latch | char | file | sot | strm;
| enum( <id> * ]! enum{ { = <char>" }‘ )} .
| array  <type name> * ] of <type name> | record [ { <id>* : <type name> } * ]

| variant [ <type name> { on <aption> =) <type name> }*
| dynamic <type name> | activation { <qual id> ] | actname
| <qual id> { [ <qual id>* ] }*

In Tartan, a <type name> may be either a simple identifier or an identifier inflected with additional

type names. The <type name> so formed captures all the information needed for type checking.

- The <type name>s for the primitive scalar and simple nonscalar types are the keywords used
to declare them: fixed, float, boalean, lalch, char, set, string, actname, file.

- The <type name> for an array declared “array(a.b) of D is “array{1,D]", where [ is the <type
name> of a and b.

= The <type name> for an enumeration declared enum(L1,L2,.Ln] is enum{L1L2...Ln].
- The <type name> for an activation declared activation of P is activation{P].

- The <type name> for a dynamic lype declared dynamic T is dynamic T.

- The <type name> for a record type is based on the sequence of field names and <type
name>s in its cdeclaration. For a record declared “record[F1:T1, F2:T2, .., Fn:Tn]" the <type.
name> is “record[F1:TN1, F2TN2, .., FmTNn]", where the Fi are lists of field names, the Ti
are types, and the TNi are type names. Bindings in the declaration do not appear in the

type name.
- The <type name> for a variant is "variant(TT,T1->V1,T2-5V2,.,Tn->Vn]", where TT is the

<type name> of the tag, Ti is the ith value of the tag type, and Vi is the <type name> that
corresponds to the ith value of the tag type. As a result, two variant <type>s are the same if

they specity the same <type>s for ail values of the tag.

- The <type name> for a defined type is the name given in the type definition

5.1. Scalar Types

Some examples are:

Real
les 18
enum (fuchsia, ochre, puce, saffron]

Built-in scalar types include fixed, float, boolean, laich, and character. Integer and real must be
constructed as special cases of fixed and floal. Ordered scalar enumerated types are defined by
providing an ordered list of values.

Types fixed and float require <actuals> lists to provide range, scale, and precision when they are
used in declarations. These are attributes and do not affect the type. Although bindings for attributes
may in general be const or manifest, the specifications of fixed and float require manifest attributes.

To define a type, the <expr>s in an explicit range must be const or manifest.

5.2. Composite Structures

Some examples are:
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array (1..18) of Color

array (Color) of Real

string (18)

record (Name: string(35), Age:Int)

variant b:boolean [on lrue -> [nt on false -> charl

Nonscalar data structures may be built up in three ways: with arrays (homogeneous indexed linear
structure), with records (nonhomogeneous structures with named fields), and with variants (structures

whose substructure may vary with time). In addition, the nonscalar types set, string, and file are
defined.

Legal bindings for fields of records and variants are var, const, and manifest. If a <binding> is
empty, it is taken to be var.

A variant type must have exactly one tag field. The special constant others may appear as the last
<option> of a <variant type>; it matches any constant that does not appear in any other <option>.

The syntax for arrays provides an abbreviation for a set of types pre-defined as
"array[IxType,EltTypellr)” where IxType is the index type, EltType is the element type, and r is a
(sub)range of IxType. Thus "array(1.10) of fioal” means "array(int,float](1..10)". Its type name,
“array[int,float]”, is written "array[int] of float™. As for any type, when an <array type> is used as a
formal parameter, the attributes are not supplied The type "array(A,B) of T" is an abbreviation for
"array(A) of array(B) of T". Similarly, the array accessor "V(i,j)" is an abbreviation for "V(i)(j)".

5.3. Dynamic Types

Some examples are:

dynamic Real
dynamic record (Data: Int, Next: ListElt, const Index: Int := K]

Values of a dynamic type are pointers to variables whose structure corresponds to the type
definition. They are initialized to nil. The extent of these variables covers the entire scope of the
type definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable
distinct from all others. The constructor supplies the attributes for this variable; they are not supplied
in the declaration of the named varizble of the dynamic type. Thus a named variable of dynamic type
may at different times point to. several different variables having different attributes.

5.4. Process Control Types

Some examples are:

activation of P
actname

Parallel processes are controlled with data of two types -- aclivations of processes and actnames,
or names of activations. Activalions are instantiations of a given process; an activation may contain at
most one process activation during its lifetime and then only of the process given in its <type>. An
actname value is a pointer to an activation Actname variaoles may contain pointers to activations of

any processes; an actname variable may refer to different instantiations of different processes from
time to time.

An activation is used to control parallel or pseudo-parallel execution of a process. At any time it
may be in one of four states: mint, aclive, suspended, and dead. The extent of an activation variable
coincides with its scope. The immediately enclosing block cannot be exited until all activations declared
within it are dead or minl. An activation is associated with exactly one process, which must be named

by the <qual id>. _

An actname may refer to any instantiated process. A newly-declared actname or aclivation variable
is initialized to mint.
5.5. Defined Types

Some examples are:

T(n)
Sequence (int] (53]

Programmers may define new types. See section 6.5 on Type Definiticns.
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6. Definitions and Declarations

<def-decl> uw <declaration> | <mod def> | <routine def> | <type def> | <generic def> | iemolv>
| imports <qual id> * | exports <qual id>_‘ | exception <id>'* | disable <id>
| prag <proc call>,* ;* garp
<declaration> = <binding> { <id> * { : <type> }* { := <expr> }* 1,* | <binding> { <id>* : <type name> 7>
<mod def> :t= module <id> <mod text>
<mod text> u= 3 <code body> | <remote inst>
<routine def> u= proc <id> <proc lext> | func <id> <func text> | process <id> <proc text>
| fune ™ { <unop> | <binop> } " <func text> 3

<func text> = ( <formals> ) <id> : <type> ; <block> | <remote inst>
<proc text> = ( <formais> ); <block> | <remote inst>
<type def> 1= type <type name> { ( <formals> ) ;*® = <type>

generic module <id> [ <formals> ] <mod text> | generie fune <id> [ <formais> ] <func text>

<generic def> = y
| generic prae <id> [ <formals> ] <proc text> | generic procass <id> [ <formals> ] <proc text>

<remote inst> = is <qual id> [ <actuals> ] | is assumed ( <id> )
<formals> w= { <binding> <id>* : <type name> } *
<binding> u= <empty> | var | const | manifest | resuit

6.1. Declarations

Some examples are:

var x: Real

const y:= true

var Huel, Hue2, Hue3: Color

var - Tint := enum(saffron, puce, fuchsia, ochrel]

var V: array(5..7) of Int

var . Ml:Mark(S), M2:Mark(7)

manifest P[: Real := 3.14

The syntax for declarations allows three kinds of abbreviations. If the initialization expression

appears, the type of the variable is evident from the <expr> and the “:<type>" may be omitted. In
addition, lists of <id>s with the same types or bindings may be condensed. These abbreviations are

illustrated by the following five declarations, all of which have the same effect:

var x,y := 8

var x,y:Int := 8@

var x := 8, y := 8

var x:lnt := 8, y:int := @

var x:lnt := @; var y:lnt :« B

Elaboration of a deciaration causes instantiation of an object which is the variable. Each variable

has a type and a value. The type is determined when it is instantiated, but the value may be changed
by further elaboration of the program. A variable may be restricted to be const (value fixed at block
entry) or manifest (value fixed curing translatien).

Elaboration of a declaration proceeds as follows:

- Evaluate the <expr>, if present. It must be present in manifest or const declarations. It must
be manifest in manifest declarations.

- If the <binding> is manifest, bind the value of the <expr> to the identifier(s).

- If the <binding> is const or var, elaborate any <actual>s in the <type> and instantiate a new
variable with the indicated type and attributes for each identifier. If there was an <expr>,
assign its value to each of the new variables.

When the type is dynamic, the declaration supplies the <type name> only (no attributes). In this case,
only the pointer is allocated at block entry; the attributes are supplied when the dynamic type is
actuaily (dynamicaily) allocated.
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6.2. Modules

An example is:

module CounterQef;
begin
exports Counter, Reset, Incr, Value;
type Counter = Int:
proc Reset{result C:Counter); btegin C := 8 snd:
proc Incr (var C:Ccunter); begin C := C + 1 end;

func Yalue {const C:Counter)x:Counter; begin x := C snd
and

The elaboration of a module takes place during the elaboration of declarations for the block in
which the module is defined. This elaboration consists of elaborating the declarations of the module in
lexical order, then elaborating the statements of the module.

A module or routine inherits identifiers for definitions (modules, routines, exceptions, and types) from
its enclosing scepe. It may expiicitly import icdentifiers of objects from that scope, provided the
objects have global extent. A mocule, but not a rcutine, may export definition and object identifiers to
its enclosing scope. Types, named rcutines, field accessors for records, and variables are exported by
including their names in the exports list of the module. The right to apply infix operators,
constructors, subscripts, ".all", cr the creale command for a type T are exported by including the
special names Tlinfix, T'constr, T°subscr, T’all, and T'create, respectively, in the exports list. Literals
of enumerated types are exported automatically if the types are exported.

5.3. Routines

Some examples are:

proc Fvar x:Int); begin x := - x; end
proc G is GerG (5]
func [sNil (x:DunT)y:boolean; begin y := (x = nil) end
func “+" (a,bigorplcigerps
begin
imporis Bias;

c := gorp’ (a.left+b.left+Bias, a.right+b.right+Bias)
end

A routine is a clesed scops whose body is a block. Thus its body controls extent for local
declarations, but doss not inherit identitiers for (non-manifest) objects or labels. The <fcrmals> list
ceclares the identifiers for paramelers.

A routine may be a function (func), which relurns a value and has no visible side effects; it may be
a procedure (proc), which can modify its parameters tut must be called as a statement; or it may be a

process, which is a potentially-parallel procedure. Special type-specific routines are described in
Appendix 2.

Routine names may be cverloaded by binding the same identifier lo several definitions with cifferent
numbers or types of parameters. The functions for which special infix notation is provided are
obvious candidates for overloading.

If a <binding> in a routine header is omitted, it is assumed to be const. The resull binding may be
used only in procecdures. Mo duplication of identifiers within the <formals> list is permitted, and
parameter names may not conflict with declarations or imports in the routine bedy.

6.4. Exceplions

Some examples are:

excaplion TooBig, TonSmall, Late, Singular
disable TooBig, TooSmall .
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The scope of an exception name is the block in which it is ceclared. A disable def:larahon in an
inner black suppresses detection of the exceptions it names. A handler clause associates recovery
code with a statement that may generate an exception (see section 4.7).

The disable deciaration permits exceptions to be individually suppressed within a glver'! scope.
Should an exception occur when its detection is suppressed, the consequences are not defined. An
exception must not be signalled or redeciared in a scope in which it is .suppressed. No.te th?t
suppression of an exceplion is not an assertion that the conditian that gives rise to the exception will
not occur.

Standard exceptions will be declared in the global extent

6.5. Type Definitions

Some examples are:

type Counter = I[nt
type Matrix(n:Int} = array(l..n.l..n) of Real

A user may introduce a new type into his program with a type definition. The type deﬁnit.ion itself
merely introduces the <type name> and defines the representation of the type. Operations are
intreduced by writing routines whose formal parameters are of the newly-deﬁned. type. ‘
boundaries, particularly module boundaries, play no role in the definition of the type. There is, as a
consequence, no notion of the complete set of operations on a type.

A type definition may be parameterized. The bindings in the formal parameter list must be const or
manifest. If a <binding> is omitted, it will be assumed to be consi. The names of the formal parafneters
of the type are available throughout the elaboration of the program as constants, called attnbt{tes.
They are accessed by trealing the <var ident> as a record and lhe type attribute as a field.
Attributes for primitive types are given as part of the type definitions.

Within the scope in which the type is defined, the qualifier Rep may be used to indicate that Hje
object named by the identifier Rep qualifies is lo-be treated as if it had the underlying type. This
allows operations on the new type to be written using operations on its representation. When no

ambiguity arises, the Rep qualification may be omilted.

Scope

6.6. Generic Definitions

Some examples are:

generic proc Reset (T: type] (var x:T); begin x := x"min end
proc ResetColor is Reset(Color]

proc ResetX is Reset(Samplel

module Stack is assumed(StacxDef)

generic module Ringlef(K: Intl;
begin
exports Ring, Next;
type Ring « fixed(1,8,8,K-1);
func Next (R:tRing)N:fixed(1,8,8,K-1); begin N := mod(R+1,X); end

end
module RS is RingDef (5]
module RI is RingDef (3]

A generic definition is syntactically like the corresponding specific definition except that it is

prefixed by the word generic and it may have a set of generic parameters (enclosed in square
brackets) after the definition name. For generic definitions, type is acceptable as a formal <type names.

The actual parameters supplied in an instantiation of a generic definition may be any defined
identifiers, including those for variables, functions, types, or modules, or any expression. When the
generic definition is instantiated, the text of the actual parameters replaces the identifiers that
represent the formal parameters. The substitution is done on a lexical, rather than a strictly textual,
basis. That is, the identifiers in the generic definition are renamed as necessary to avoaid conflicts
with the identifiers in the actual parameters.
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Both generic definitions and remotely-defined modules or routines may be incorporated in a program

as remole instances. A remote instance may be an instantiation of a generic definition or a reference
to a definition given elsewhere.

A module or routine that is used by the program but whose definition is given elsewhere (e.g., in a
library) is incorporated by writing is assumed(<id>) as the body of a module or routine definition. The
<id> is used by a pragmat to locate the remote definition.

A generic cefinition is instantiated by referring to it as the bedy of a module or routine definition.
The effect of the instantiation is as if the generic definilion were lexically substituted in place of the

reference to it. That is, the body of the module or routine being defined becomes a copy of the
generic definition.

An instantiation of a generic ‘definition may be used as the body of a sgecific module or routine. The

usual restrictions on defining new identifiers apply to the module or routine being defined in terms of a
generic.

Generic type definitions arise from generic mocules. They are instantiated when the module is
instantiated. Thereafter, they may be used in ceclarations or definitions.

If the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correpcnding types and be syntactically suitable for substitution.

If a generic definition is instantiated more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

6.7. Translation Issues

An example is:

prag Optimize(space): Listing(0ff) garp

A program is a <block>. The extent defined by the outer block of the program is the global extent.

The translator may be guicded by <pragmat>s. Pragmats have the same syntax as procecure calls.
The set of pragmat names and the interpretations of the arguments are determined by each translator.
Translators will ignore pragmats whose names they do not recognize.

A program may be broken into separately defined segments. This decomposition must take place in
the global extent. The units of separate cefinition are moduies and routines. The cdefinition

module Q is assumed(])

in a segment has the effect of msking the semantics of the segment the same as if the (separately
cefined) text of Q had been substituted for "is assumed(l)”. The identifier | refers to a file, library, or

other facility for storing separately defined segments. The relation between the identifier [ and that
storage facility may be established by a pragmat.

It is a matter of optimization whether the separate definition is included as text or separately
translated and linked in. In order to perform independent translation of a separately defined component,
it is necessary to embed the mocule or rcutine being transiated in an envirocnment that supplies
definitions for all the names it inherits or imports. This environment must form a complete program.
It is assumed that the translation system provides commands for selecting which components of such a
transiation to save and for determining where and in what form they are to be saved.
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I. Standard Definitions

L1. sy stem-Dependent Characteristics

The transiator for each system is assumed to provide a module in the global extent that cefines
appropriate system constants. Such constants are assumed at various points in the language definition;
these and certain others are summarized here in the form of a skeleton module.

module Sys;

begin

exports . ! exports all definitions below
type Int = fixed(. . .) * ! appropriate to the machine

Note Int.Min and [nt.Max give range

appropriate to the machine

type Real = float(. . .) )
Attributes give range, precision, scale

constants that descibe properties of the

const . 1
! object machine
proc . ! procedurss for accessing facilities of the
! operating and file systems
excsplions . ! System-defined exceptions such as Assertion, BadAssign....
end

L.2. Properties of Types

All types have assignment operators and routines for convers.ion to appropriate other types. In
particular, the scalar types have routines for converting to and from character strings. Al nonscalar
types have constructors. The sections below skelch some important properties of the built-in types.

.2.1. Fixed

Literals: digit strings
Attributes: Min, Max, Precision, Scale
Infix operations: Arithmetic and relational
Special routines: rounding, truncation
L.2.2. Float
Literals: digit strings with decimal point
Attributes: Min, Max, Radix, Precison, MinExp, MaxExp
Infix operaticns: Arithmetic and relational
Special routines: rounding, truncation

1.2.3. Enumerations

All enumerations are ordered. The literals are assumed to appear in the declaration in increasing
order.

Literals: As given in definition
Attributes: Min, Max
Infix operations: Relational

Special routines: suce, pred



Tartan Reference Manual -20-

1.2.4. Boolean

Literals: true, faise
Attributes: none
Infix operations: logical
Special routines: none

1.2.5. Characters

Literals: Quoted characters
Attributes: Min, Max
Infix operations: none

Special routines: as for enumerations

1.2.6. Latches

A latch is a simple spinlock for mutual exclusion If the lalch is open, it is available for siezure; if it
is closed, a Lock command will wait on it

Literals:
Attributes:

Infix operations:
Special routines:

1.2.7. Arrays

Literals:
Attributes:

Infix operations:
Special operations:

1.2.8. Sets

open, closed

ncne

none

Lock, IfLock, Unlock

none

Range, EltType

none

subscript, subarray, catenaticn, upper bound, lower bound

"Sets" are boolean vectors on which some additional operations are defined.

Literals:
Attributes:

Infix operations:
Special operations:

1.2.8. Dynamic Types

Literals:
Attributes:

Infix operations:
Special operations:

Special routines:

1.2.10. Records

Literals:
Attributes:

Infix operations:
Special operations:
Special routines:

empty

EltType, MaxSize
logical

subscript

nil

The named variable does not itself have attributes, but the dynamic
variable that it references may.

none

.all denctes whole value of dynamic object, as distinguished from

the reference. A dynamic constructor allocates a new dynamic object.
none

none

indivicually defined with record type
none

field selection, canstructors

none



Tartan Reference Manual

I.2.11. Variants

Literals:
Attributes:
Infix operations:

Special operations:

Special routines:

I.2.12. Strings

Literals:
Attributes:
Infix operations:

Special operations:

1.2.13. Activations

* Literals:
Attributes:
Infix operations:
Special operations:
Special routines:

.

none
individually defined with variant type

none

variant must be designated to reference contents
none

Quoted strings

Length

none

subscript, substring, catenation

mint

none

none

create

To change state: Activate(A), Suspend(A), UnlockAndSuspend(A,L),
UnlockAndActivate(A,L), LockAndSuspend(A,L), LockAndActivate(A,L),
Terminate(A)

To query state: IsMint(A), IsAct(A), IsSusp(A), IsTerm(A)

To obtain actname: NameOf(A), Me()

To sent exceplion: Notify(A)

Other: Priority(A), SetPriority(A), Time(A)

where A is an aclivation or actname and L is a latch

Assignment causes the BadAssign exception if either the value or the variable to which it is being
assigned is in a state other than mint.

1.2.14. Actnames

Literals:
Attributes:

Infix operations:
Special cperations:
Special routines:

[.2.15. Files

mint
none
none
none
Same as for activations

A minimal input-cutput facility will be provided

1.3. Alphabets

The following context-free substitutions reduce the alphabet used in this report to the standard
64-character ASCII subset. Note that some identifiers are pre-empted as a resuit.

For the publication character:
lower case a.z

Substitute the ASCII string:
upper case A.Z
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II. Collected Syntax

<const> uw <digit>*+ { | <digit>* }® | true | false | nil | closed | open | mint | emply
| <constructor> | <id> | <qual id> ' <const> | <type> ' <const> | <expr>
<constructor> = ( <expr>* )| ( { <option> =) <expr> LY YT <char>® ®

<var id> im <qual id> | <var id> ( <actuals> ) | <var id> . <id> | <var id> ( <range> ) | Rep’ <id>
<range> uwm <expr> , . <expr> | <type>
<option> u= { <const> | <range> } *
<qual ig> um { <ad> ')* <id>
<id> = <letter> <letter or _ or digit>*
<expr> uw <unoo>® <var id> | <unop>® <const> | <unop>* <func call>
| <unop>® ( <expr> ) | ( <expr> ). <id> | <expr> <binop> <expr>
<unop> um ==
<binop> e x| fle]=TCl¢I>[2]al#{Alcand|v]|cor|t
<func cail> uw <qual id> ( <actuals> )
<actuais> = <expr>"
<stmt> uw <proc call> | <id> : <stmt> | <emply> | <block>

| <var id> = <exor>

| if <expr> then <stmt>* { elif <expr> then <stmt>* 1* { olse <s|mt>;' 1®fi
| case <expr> { on <oplion> =) <stmt>.* }’ esac

| while <expr> do <stmt>* od | for <id> in <r:nge> do <stmt>,* od

| goto <id>

| signal <qual id> | resignal | assart <expr>

| <stmi> { { on <id>* > <stmt>* }* }

| create <var id> ( <actuals> )

<proc call> z= <qual id> ( <actuals> )
<block> u= <coce body>
<code body> uw begin { <def-deci>; |* <stmt>* end

<type> u= fixed( <actuals> ) | float( <actuals> ) | boolean | latch | char | file( <actuals> )
| enum( <id>* ]| enum( { * <char>* ) ]| <expr> .. <expr>
| set( <actuals> ) | string( <actuals> )
| array ( <range>* ) of <type> | record [ <declaration> + ]
| variant <decfaration> [ { on <oplion> =) <type> }*]
| dynamic <type> | aclivation of <qual id> | actname
| <type name> { ( <actuais> ) }*
<type name> = fixed | flost | boolean | lakh | char | file | sat | siring
| enum( <id>* ]| enum( { * <char>"]*]
| array [ <type name> * ] of <type name> | record [ { <id>* : <type name> }+ ]
| variant [ <type name> { on <option> <) <type name> }* ]
| dynamic <type name> | activation [ <qual id> ] | actname
| <qual id> { [ <qual id>* ] J*
<def-decl> u= <declaration> | <mod def> | <routine def> | <type def> | <generic def> | <empty>
| imporis <qual id> *+ | exports <qual id>* | plion <id> + | disabl <id>+
| prag <proc call>, + % garp
<declaration> := <binding> { <ud>" { : <type> J* { = <expr> }* } * | <binding> { <id> * : <type name> } +
<mod def> := module <id> <mod text>
<mod text> uw= 3 <code body> | <remote inst>

<routine def> :u= proe <id> <proc text> | func <id> <func text> | process <id> <proc text>
| fune ® { <unap> | <binop> } " <func text>

<func text> uw ( <formals> ) <id> : <type> ; <block> | <remote inst>
<proc text> ;= ( <formals> ); <block> | <remote inst>
<type def> 1w type <type name> [ ( <formals> ) }® s <type>

<generic def> == generic module <id> [ <formals> ] <mod text> | generic fune <id> [ <formais> ] <func text>

| generic proc <id> [ <formals> ] <proc text> | generic process <id> [ <formals> ] <proc text>
<remote inst> u= is <qual id> [ <actuals> ] | is assumad ( <id> )
<formals> i= { <binding> <id>* : <type name> LE

<binding> 1w <empty> | var | const | manifest | resuit
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1. Notes on Important Issues

The Tartan reference manual is the defining document for the Tartan language. However, some of
the facilities designed in response to the Ironman requirement deserve more unified and expository
explanations than can be included in a reference manual. This chapter discusses the Tartan solutions
to several important problems posed by the Ironman requirement

The Tartan language draws heavily on the Pascal tradition. Both the reference manual and these
notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the Ironman
requirements [1] and the Tartan reference manual [2]

1.1. Vocabulary

A Tartan program is made up of definitions, declarations, and (executable) statements. A definition
binds an identifier to a module, routine (function, procedure, or process), lype, or exception: it is
Processed during translation. A declaration binds an identifier to an object (i.e., a variable or value); it
is processed at run time, usually to allocate storage. Executable statements are elaborated at run time
to effect computations -- manipulation of values.

Identifiers can be bound to modules, routines, types, objects, statements, and exceptions. Individual
icentifiers are qualified with the names of the modules in which they are defined in order to avoid
conflicts with names declared in other modules.

The computation described by a program is carried out by elaborating the program. We use the
word "elaboration”, in preference to "execution”, to connote actions taken during transiation as well as
those taken during execution. Elaboration may be thought of as an idealized direct execution of the
textual version of the program. The effect of elaborating each construct in the language is given in the

reference manual.

Although the language prohibits making a declaration that gives new meaning to an identifier in a
given scope, duplicate identifiers might arise in three situations. These situations, and the way Tartan

deals with them, are:

- The same identifier is exported from two modules. The ambiguity is prevented by name
qualification:  All identifiers exported from a module are prefixed with the name of the
module that exported them; the prefix is separated from the identifier by an apostrophe.
Thus if identifier x is exported to the same scope by both modules M and N, we write

M’ x ! for the x exported from M
N* x | for the x exported from N

The qualification may be omitted if no ambiguity arises.

= An identifier is used as an overloaded rculine or type name. That is, the same routine name
is given several definitions with different numbers or types of parameters. Operator
overloading is permitted so that similar operations on distinct types, particularly infix
operations, can be given the same names. The identifiers for the routines or types are
disambiguated by examining the parameter types and choosing the routine whose formal
parameter types are matched by the types of the actuals. A similar situation exists with
identifiers for families of mrelated types. In order to discuss these situations, we introduce the

notion of signature:

= The signature of a routine is the routine name together with its formal parameter types.
The type of the value returned by a function is not included in its signature.

- The signature of a type is its simple type name together with its generic characteristics.
Generic characteristics are discussed in Section 1.5.1.

- A literal or constructor might potentially be of two or more different types. The ambiguity is
resolved by qualifying the literal or constructor with the intended type, including its
attributes.
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1.2. Scope and Extent

Scope determines the interpretation of identifiers, so all the text in a given lexical scope shares the
same vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with the
same interpretation in muitipie lexical scopes. '

The extent of a variable is its lifetime -- the time curing which it affects or is affected by the
elaboration of the program. The interaction of contral and lexical structure determires extent. Binding
is the association of identifiers with program entities (objects, modules, routines, types, statements, and
exceptions). The bindings in effect at any time resuit from the interaction of control and lexical scope.

1.2.1. Scope

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical
scopes. There are no restrictions on the ways these scopes may be nested. Both constructs may use
identifiers defined in other scopes; both may define identifiers that can be used in other scopes.
Scope rules govern the legal bindings of identifiers in a lexical scope to program entities; they also
control the importing and exporting of identifiers to other scopes. Blocks and modules differ only in
their scope rules and in their effects on the extent of variables. Tartan has two scope rules:

- An open scope inherils (imports automatically) all the identifiers that are defined in its
enclosing scope. It may not export any identifiers to its enclosing scope. Blocks are open
scopes except when used as routine bodies.

~ A closed scope inherits all identifiers that are defined in its enclosing scope except those for
labels and objects.! It may explicilly import identifiers for objects (variables and constants),
provided they have global extent. A closed scope that is a module may export identifiers that
name variables, definitions, or exceptlions; the exported identifiers have the status of any
other identifiers defined in the enclosing scope. All modules are closed sccpes, as are blocks
when they are used as routine bodies.

Identifiers that are exported from an inner scope or imported from an outer scope have the status of
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted. The
convenience of being able to do so does not offset the danger of confusion. This does not, however,
prohibit overioading of routines names; the differences in signatures suffice to prevent confusion. In
addition, the same identifier might be imported with different meanings from two different modules;
such identifiers are qualified with the names of the modules in which they were defined. Thus they
are not duplicate definitions. Similarly, literals and constructors are qualified with their types to
prevent ambiguity. In either case, the module or type qualifier may be omitted if no ambiguity arises.

1.2.2. Extent

Extent rules govern the lifetimes of objects. Extent is controlled by blocks, independent of whether
they correspond to open or closed scopes. Nothing except blocks controls extent. The static data of a
block is allocated when the declarations of the block are elaborated (in lexical orcder) at block entry.
It is deallocated when the block is exited or terminated. Note that modules do not define extents, so
the extent of data defined in a module coincides with the extent of its surrounding block.

Values of dynamic types point to dynamically allocated variables. The type of object that may be
pointed at is part of a dynamic type. The extent of dynamically allocated variables is coincident with
the blocks in which the associated dynamic types are declared. Since type names are not accessibie
outside the blocks in which they are defined, no references c¢an outlive the block with which the
extent is associated.

lLiterals and identifiers for varisbles that are declared manifest are inherited.



Tartan: Notes and Examples

1.3. Modules and Routines

Modules and routines are closed scopes. Modules serve as an encapsulation mechanism, protecting
the privacy of definitions and declarations without restricting their extent. Routines are used for
program structuring and abstraction of operators; they define operations that may be invoked during
elaboration of a program

1.3.1. Modules

A module is a closed scope that allows local definitions to be shared without making them public.
It also serves to bundle up related definitions for administrative (program arganization) purposes. It
may export identifiers for definitions and objects to the scope in which it i_s defined. A module has no
parameters.

A module is purely a scope-defining device. Its elaboration takes place during the elaboration of
declarations for the block in which the module is defined. This elaboration consists of elaborating the
Cefinitions and declarations of the module in lexical order, then elaborating the statements of the
mocule.

A module or routine inherits icentifiers for definitions (modules, routines, types, and exceptions),
literals, and manifest objects from its enclosing scope. It may explicilly import identifiers of objects
from that scope, provided the objects have gicbal extent. A module, but not a routine, may export
identifiers other than labels to its enclosing scope.

1.3.2. Routines

A routine is a closed scope whose body is a block. Thus its body controls extent for local
declarations, but does not inherit identifiers for variables or non-manifest constants. The <formals> list

declares the identifiers for parameters.

A routine may be a function (func), which returns a value and has no visible side effects; it may be
a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a
process, which is a potentially-parallel procedure. Special type-specific routines for many types are
listed in the Tartan Reference Manual.

The symbols for the unary and binary operators are used as routine names in order to provide
overioaded definitions for those operations.

If a <binding> in a routine header is omilted, it is assumed to be const. The result binding may be
used only in <formals> lists of procedures. Functions are permitted to specify var parameters in orcer
to avoid the copy associated with const! However, as noted below, visible side effects ocn such
parameters are prohibited. No duplication of identifiers within the <formals> list is permitted. Further,
formal parameter names may not conflict with declarations or imports in the routine body.

If a routine name is overloaded, the definition whose signature matches the call is selected.

During elaboration of a function, assignment to a variable that is not local to the function body (or to
the body of any routine it invokes, directly or indirectly) is permitted only if the function is never
invoked in a scope where such a change is made to a variable or component that is directly
accessible by ‘the caller. Such variables may be imported by the function from a medule within which
the function is defined. They -may also be fields of var parameters if the type of the parameter is
defined in the same module as the function and the field name is not exported. An example of the
latter case appears in section 2.4.

This is a compromise solution to the side-effect problem. Many routines are cuite reasonably coded
as value-returning: Get of section 2.4, monitoring routines, random number generators, and Pop for
stacks. However, the current state of the art does not affer a sharp rule from distinguishing safe from
unsafe side effects.

lIn the presence of parallelism, it may not be safe to optimize away the copy of a const parameter
even if the rautine does not alter it.
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Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on
type, binding and aliasing.

- The type of an actual parameter is acceptable if its <type name> exactly matches the <type
name> of the corresponding formal parameter. Type attributes (instantiation parameters of a
type) play no role in type checking.

- The binding of the actual parameter is acceptable if it matches the <binding> of the
corresponding formal parameter according to the following rules:

If the formal parameter is then the actual parameter may be
var <var id>
const <expr>
manifest any manifest <expr>
result <var id>

- Finally, the set of actual parameters must satisfy the following nonaliasing restriction: A
variable may not be used in more than one var or result position of a single procedure or
process call. For the purpose of testing this restriction, imported variables are considered to
be var parameters.

1.4. Generic Definitions

A facility for making generic definitions is provided in order to allow the programmer to write a
single' textual definition that serves as an abbreviation for many closely-related specific definitions.
Modules and routines may be defined generically.

A generic definition is instantiated by referring to it as the body of a module or routine definition.
The effect of the instantiation is as if the generic definition were lexically substituted in place of the
reference to it. That is, the body of the module or routine being defined becomes a copy of the
generic definition.

1.4.1. Writing and Using Generic Definitions

A generic definition is syntactically like the corresponding specific definition except that it is
prefixed by the word generic and it may have a set of generic parameters (enclosed in square
brackets) after the name of the construct being defined. The parameters may be any defined
identifiers, including those for variables, routines, types, or modules, or any expression. When the
generic definition is instantiated, the text of the actual parameters replaces the identifiers that
represent the formal parameters. The substitution is done on a lexical, rather that a strictly textual,
basis. That is, the icentifiers in the generic definition are renamed as necessary to avoid conflicts
with the identifiers in the actual parameters.

For example, the collection of functions

fune F2(X:Int)ysInt; begin y := 2 % X end
fune F3(X:Int)ly:int; begin y := 3 X end
func F4(X:Int)y:Int; begin y := 4 2 X end

and so an

can be defined by the generic definition

generic func F (Mul t:Int) .(X:lnt)g:lnt: begin y := Mult % X end
and the specific instantiations '

func F2 is F (2]
func F3 is F(3]
func Fé4 is F (4]

and so on

An instantiation of a generic definition may be used as the body of a specitic module or routine. The
usual restrictions on defining new identifiers apply to the mocule or routine being defined in terms of a
generic.

Generic type definitions arise from generic mocules. They are instantiated when the module is
instantiated. Thereafier, they may te used in deciarations or definitions.
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If the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correponding types and be syntactically suitable for substitution.

If a generic definition is instantisted more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

1.4.2. Separate Definitions

Tartan supports separate definitions, and potentially separate compilation, in' the same way as 'it
supports generic definitions. A program may be broken into separately de_h’n.ed segments.  This
decomposition must take place in the global extent The units of separate definition are modules and

routines. The definition

module 0 is assumed(])

in a segment has the effect of making the semantics of the segment the same as if tl'}e (s.eparately
defined) text of Q had been substituted for “is assumed(l)”. The identifier I refers to a f'lle, library, or
other facility for storing separately defined segments. The relation between the identifier I and that

storage facility may be established by a pragmat.
Suppose we want to develop and maintain a program with the following structure:

begin
module COM; begin export X; . . . end:
module M1: begin import X,Y: export Z; . . . end;
module M2;

begin import X,Z;

export W:

module M3; begin . . . end;

end;
var Y8 . 6 wl
! Main program using W, X, Y, Z
end;

If the definitions of COM, M1, and M2 are stored in a library, the following program will have the
same effect: :

begin

prag Require(ComOef,LIB.COM. TXT); Require(MiDef,LIB.M1.REL);
Require (M20ef,LIB.M2.REL): garp:

module COM is assumed (COMDef);

moduie Ml is assumed (M10ef);

module M2 is assumed (MZ20ef);

var Y& & o af

! Main program using W, X, Y, Z

end:

We assume here that the second argument of the Require pragmat is interpreted by the system as a
pointer into a library. From the standpaint of the language, it is a matter of optimization whether the
separate definilions are included as text or separately translated and linked in.

In order to perform independent transiations of a separately cefined mocule, it is necessary to
embed it in an environment that provides the definitions it depends on. This environment must form a
complete program. The translation system is assumed to provide commands for selecting which
components of such a translation to save and for determining where and in what form they are saved.
In the examples here, we will simulate that facility with a pragmat located outside the program. In the
example above, module COM does not depend on any external definitions. In order to compile it
separately, we write simply:

prag Save (Com,LiB.COM.TXT); garp:
begin

module COM; begin export X; . . . end;
end

Module M1 depends on the X exported from COM and the Y declared in the main program. To
transiate M1 separately, we must therefore write:
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prag Save(M1,LIB.M1.REL); garp;

begin

prag Require(ComDef,LIB.COM.TXT); garp;
module COM is assumed (COMDef);
module M1; begin import X,Y; export Z;
var Y: o v a8

end

« « o« ond;

If module M2 were transiated monolithically, its translation environment would look much the same.

Suppose, however, that the definitions of M2 and M3 are to be separated. They can be transiated
independently with the following two programs:

prag Save (M2,LIB.M2.8EL); garp;
begin
prag Require(ComDef,LIB.COM.TXT); Require(MlDef,LIB.M1.REL);
Require (N30ef,LIB.NM3.REL); garp:
module COM is assumed (COMDef);
dule M1 is d (Ml0ef);
module M2;
begin import X,Z:
export U:
module 13 is assumed (M30ef);
end;
end

prag Save(M3,LIB.M3.REL): garp:
begin

prag Require (ComDef,LIB.CON.TXT); Require(Ml0ef,LIB.M1.REL); garp
module COM is assumed (COMDef);

module M1 is assumed (M1Def);
module M2;

begin import X,Z;

export W;

! Only the declarations of M2 that are required by M3 appear
module M3; begin . . . end;
end;

end

1.5. Types

The notion of type is introduced into languages to govern the ways operations are applied to
objects. Types delermine certain properties of data (values), including what operations on the values
are legal and precisely what their effects are. Every object has a fixed type. This type is
determinable during translation The <type name> is determined by the signature of the type as
described in section 1.5.2 Tartan provides certain built~in types; these include both simple and
composite types. The user may define new types on the basis of these primitives. Both user-defined
and built-in types are used to ensure that the actual parameters passed to a routine match the
corresponding formal parameters. The types of the formal parameters are also used to construct the
signature of a routine in order to resolve overloading ambiguities.

In Tartan, every value has exactly one lype. This type is determined

- by the declaration of a variable or definition of a function

- by the lexical form and context of cccurrence of a literal

Types appear in four contexts:

in declarations, to give the type and attributes of an object

in type definitions, to give the base representation of a newly-defined type

in formal parameter lists, to restrict the objects that may be passed as parameters

in function definitions, to give the type of the result
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1.5.1. Characteristics and Attributes

Some of the properties of a type are the same for all values and objects of the type. These are
called generic characleristics and are discussed below. Other properties of a type, called attributes,
may differ from one value or object of the type to another. For example, in Tartan the type of the
values used to index the elements of an array (the type of the index set) is a generic characteristic,
whereas the exact bounds of the array (which values are in the index set) are attributes.

The set of attribute names associated with a type and the types of the corresponding "attribute
values are given in the definilion of the type. For example, objects of type fixed have attributes Max,
Min, Precision, and Scale. ’

Note that the attributes values of an object are not part of its type. It is therefore possible to
write routines that operate on objects with different attributes. For example, it is straightforward to
write routines that operate on arrays of arbitrary size.

It is often convenient ta define families of related types with similar properties, and in which the
differences can be captured through differences in generic properties. A type definition parameterized
in this way can be cast as a generic type definition. Members of the family with distinct
characteristics are distinct types.

Generic types are introduced through generic module definitions. For example,

generic module Blocker (T:typel;

begin

type Block (T] (Order:[nt) = array(l..Order) of T;
proc Block[t(var B:Block(T]1); begin . . . end
end

defines a set of types Block(..] and a set of corresponding procedures. The definitions

module [ntBlock is Blocker (Int):
module Real8lock is Blocker (Reall;
module MyBlock is Blocker (MyTypel:

introduce, respectively, the types

Block (Int] (Order:[nt)
Block [Reall (Order:nt)
Block [(MyType] (Order: [nt)

each of which has an Order attribute. Note also that the procedure Blockit is overloaded to operate
on all these types, and that it is indifferent to the Order attribute of its argument.

1.5.2. Type Names

In Tartan, a <type name> may be either a simple identifier or an identifier inflected with additional
type names. The <type name> so formed captures the signature of the type. For example, the <type
name>s in the example above are

Block (Int)

Block (Real)
Block [MyTypel

Although the definitions of these three types are closely related (they arise from instantiations of the
same generic module), the types are entirely distinct

The <type name>s for the primitive scalar and simple nonscalar types are the keywords used to
declare them: fixed, floal, baolean, latch, char, sel, string, actname, file.

The <type name> for an array declared “array{a.b) of D” is "array[1,0]", where 1 is the <type
name> of a and b. See section 1.5.3 for the derivation

The <type name> for an enumeration declared enum{L1,L2,.Ln] is enum(L1,L2,.Ln]
The <type name> for an activation declared activalion of P is activation(P]
The <type name> for a dynamic type declared dynamic T is dynamic T.

The <type name> for a record type is based on the sequence of field names and <lype name>s in
its declaration  For a record declared “record(F1:T1, F2:T2, .., Fr:Tn]" the <type name> is
“record(F1:TN1, F2TN2, .., Fn:TNn]", where the Fi are lists of field names, the Ti are types, and the
TNi are type names. Bindings in the declaration do not appear in the type name. Thus, in the code
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fragment

proc P(var x:record{a,b:Real)); begin . . . end:
var y:record(a,h:Reall;
var z:record(c,d:Reall;

variables y and z have different <type name>s and only y is acceptable as a parameter to P.

The <type name> for a variant is "variani(TT,T1-5V1,T2-5V2,.,Tn=->Vn]", where TT is the <type
name> of the tag, Ti is the ith value of the tag type, and Vi is the <type name> that corresponds to
the ith value of the tag type. As a result, two variant <lype>s are the same if they specify the same
<type>s for all values of the tag. Thus for

type Color = enum [red, green, blue, yelloul;
variant T:Color (on red -> x:Int on blue -> y:Marx(5) on others -> z:array(l,.5) of Int]

the <type name> is "variant[Color, red->Int, green->array{Int,Int], blue->Mark, yellow->array(Int,Int]".

The <type name> for a defined type is the type name given in the type definition, as illustrated
above for Block[...]

1.5.3. Array Types

The built-in array type is in fact a generic family. Arrays have uniform properties in that every
array is a structure for storing a linear homogeneous fixed-length sequence of values indexed by a

given ordered set of values. However, arrays wilh different element types or different types of
indices are distinct types. :

This particular generic family of types is so common that Tartan, like most languages, provides
special syntax for it. There is a set of types pre-defined as "array[IxType,EltType](r)" where IxType
is the index type, EitType is the element type, and r is a (sub)range of [xType. The syntax "array(r)
of EitType" is provided as an abbreviation for each such type. Thus "array(1.10) of floal” means
“array(int,float]}(1..10)". Its type name, "array[int,float]", is written "array(int] of float™. Thus if we
have declared

var V: array (1..18) of Float
var B: array (red..green) of booclean

the generic type of both B and V is array, but their <type name>s are different. The <type name> of
B is array(int,float], whereas the <type name> of V is array[color,boolean].

The type “array(A,B) of T™ is an abbreviation for "array(A) of array(B) of T". Similarly, the array
accessor “V(i,j)" is an abbreviation for "V(iXj)".

1.5.4. Declarations

The attributes of a variable become fixed at the lime of its allocation. For static variables, this
occurs during elaboration of the declaration. Variables of dynamic types do not themselves have

attributes. The dynamically allocated objects they refer to do, however, have attributes; these are
supplied whenever a constructor is executed

The declaration of a static variable must provide both a <type name> and values for the attributes
associated with that type. For example, the declaration "var V: array (m.n) of Int", which is an
abbreviation for "var V: array(IntInt](m..n)", computes the current values of m and n to obtain the

range of the index set, then statically allocates a suitabie black of storage. However, the program
fragment

type Arr(n:Int) = dynamic array (1..n) of Int;
var Y: Arr;

V := Arr (51 ();

allocates the variable V with type Arr, no attributes, and all values undefined. The declaration
allocates a reference to V and sels it to nil. The constructor dynamically creates a new object of
type array(Int) of Int with subscript range attritute "1.5" and associates this object with variable V.
A subsequent assignment to V might use a constructor with a different bound.

1.5.5. Type Checking
The type checking rule for matching actual and formal parameters is based on the types (but not

the attributes) of the parameters. The aclual parameter is acceptable iff the <type name> from its
declaration exactly matches the <type name> of the formal parameter.
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The attributes of the values returned by a funclion invocation are determined immediately' before
calling the function. They must therefore be specified in terms of input values of the function. For
example, if Str is a type with attribute Length, the definition

func Concat(S,I: Str)R:Str; begin . . . end;

would not be legal, since the attributes of the functional result are not specified.
however, would both be legal (but would have different meanings):

The following,

fune Concat(S,T: Str)R:Str(27); begin . . . end;

fune Concat(S,T: Str)R:Str(S.Length+T.Length); begin . . . ends
This simplifies the implementation, but it preciudes the definition of functions that return values whose
attributes can only be determined during the evaluation of the function. This should not usually be a
stringent constraint; in the worst case a dynamic type may be used to return the value.

1.5.6. Defining Types

A user may introduce a new type into his program with a type definition. The type definition itself
merely introduces the <type name> and defines the representation of the type. Operations are
introcuced by writing routines whose formal parameters are of the newly-defined type. Scope
boundaries, particularly mocule boundaries, play no role in the definition of the type. There is, as a
consequence, no notion of the complele set of operations on a type.

A type definition may be parameterized with attributes. The bindings in the formal parameter list
must be const or manifest. If a <binding> is omitted, it will be assumed to be const. The names of the
formal parameters of the type are available throughout the elaboration of the program as constants,
called attributes. They are accessed by treating the <var ident> as a record and the type attribute as
a const field. Attributes for primitive types are given as part of the type definitions.

1.5.7. Operations on New Types

Operations on new types are introduced by routine definitions. These may be either routines called
with normal invocation syntax or definitions for infix functions. [n order to make it possible to write
basic operations on the new type, Tartan provides a means of applying operations of the underlying
representation to objects of the new lype. Within the scope in which the type is defined, the
qualifier Rep may be used to indicate that the object named by the identifier it qualifies is to be
treated as if it had the underlying type. It is not exportable. This allows operations an the new type
to be written using operations on its representation. When no ambiguity arises, the Rep qualification
may be omitted. For example, we may write '

type Mark = Int;

fune "+" (a,b: Mark)c:Mark; begin Rep'c := Rep'a + Rep'b end:
Rep qualification is intended to be used within a module in order to write primitive operations and to
extend operators to the new type. It is obviously passible to abuse the facility.

An assignment operator is automatically supplied for user-defined types. Althcugh it may be
invoked with any variable and value of the lype, it signals the BadAssign exception if the attributes of
its left and right operands are not identical or if component-by-companent assignment would fail. Sizes
of nonscalars are thus guaranteed to be cempatible. Clearly, assignment may be well-defined in cases
where this rule disallows it. Such assignment operators could be provided if user-defined assignment
were compatible with the requirements.

When a module is used to encapsulate lhe definition of a type and its operations, the type name
and some of the operations must be exported from the module. Types, named routines, field
accessors for records, and variables are exported by inciuding their names in the exports list of the
mocule. The right to apply infix operators, constructors, subscripts, “.all®, or the create command are
exported by including the special names T’infix, T'constr, T'subscr, T"all, and T'create, respectively, in
the exports list. Literals of enumerated types are exported automatically if the types are exported.

1.6. Parallel Processes

Parallel processes are contralled with data of two types -- activations of processes and actnames,
or names of activations. An aclivation variable must be an instantiation of a given process; it may
contalr? at‘ most one activation of that process during its lifetime. An actname variable is a pointer to
an activation. A single actname may be associated with different instantiations of different processes
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from time to time.

Processes are similar to procedures. The syntactic distinction between procedures and processes is

imposed because we believe the potenlial for parallel execution should be indicated explicitly in the
program.

Note that activations and actnames control only the parallel control flow of the program. No

synchronization is supplied with the processes; this must be coded explicitly with the primitive latches
or with other, nonprimitive synchronization.

1.6.1. Activations

Activations of processes are used to control parailel or pseudo-parallel execution of instances of
the named process. If P is a process and x is a variable of type activation of P, then x can contain an
independently-executing instantiation of P, called an aclivation of P. An activation of P may be in one
of several states: '

- Mint: A mint activation has not yet been started up as a process. The only operations that
can be performed on it are create, NameOf (i.e, the function that returns the activation’s
name), and the state-interrogation predicates. A newly-declared activation or actname is
initizlized to the literal mint.

- Suspended: A suspended activation can have no effect on any objects; in essence, it is not
executing and will not execute until it is activated (see telow).

- Active: An active activation is one in which it is feasible for elaboration to take place. It
may affect objects, and its clock may advance.

- Dead: A dead activation admits of no further elaboration. It cannot be revived and it can play
no further role in the program. An activation tecomes dead when it exits normally, when it
fails to hancle an exception raised during its elaboration, or when it is named by a Terminate
command.

The extent of an activation varisble is determined by the black in which it is declared. When such
3 variable is declared, an activation of the named process is instantiated, set to state mint, and
asscciated with the declared process name. The immediately enclosing block cannot be exited until all
activations declared within it are dead or stiil mint. An activation is associated with exactly one
process, but a single process may be instantiated multiple times for cifferent activations.

If x has been declared as an activation of P and is in mint state, the statement "create x(..)"
creates a new activation of P in suspended state. The formals of P are beund to the actuals supplied
in the create in the same way as actuals are bound for a procedure call. If a process takes a var
parameter, the corresponding actual parameter must have extent at least as great as the activation’s
extent. For purposes of this rule, an activation passed as a var parameter to a routine is treated as if
its scope were that of the process definition. As a result, translators need no dynamic extent checking.

Except for ‘create, all operations on activations are syntactically routine invocations. These routines

conrol the processes and hence the parallelism by changing and interrogating the state of individual
activations. They are listed in the Tartan Reference Manual.

1.6.2. Fork and Join

The extent rules require each activalion to complete (exit or terminate) or still be mint before the
block in which it is declared can exil This provides an implicit join operation. A fork can be
obtained with a series of creates and aclivates. For example,

begin

process P (const x:Int); begin . . . end;

var V: array(1l..18) of activation of P;

for i in 1..18 do create V(i) (i); activate(P(i]) od
end

declares ten activations of a process, uses create to start them up with different values of the input
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variable (using the loop index as the input value as well as to index the array of activations), moves
each activation into active state, and waits at the end of the block for the activations to terminate.
After starting the activations of P, the main program may continue with other computation, monitor the
progress of the activations, or simply wait for the activations to terminate.

1.6.3. Activation Names

An actname may name any activation. An actname variable is not permanently associated with any
particular activation, and there is no requirement about the state of the activation named by an
actname when the extent of that actname variable is exited or terminated. This permits routines to
operate on activations without knowing what processes they are activations of. For example, it makes
it possible for routines that are generally useful for managing activations to be defined in a large
scope without requiring all process definitions and activation variables to include that scope. A single
activation may be named by more than one actname. There is no dangling reference problem: Even
though the reference (actname) }nay outlive the activation, the activation will be dead (terminated or
mint) after its block is exited (and thus no unexpected computational resuits can be induced).l Since
the create command cannot be applied to an aciname, the process cannot be restarted.

Activation variables may not be the objects of assignments and may not appear in resuit parameter
positions. However, each activation has a name, of type actname. This name may be obtained by
invoking the function NameOf on an activation All operations on activations except create extend to
actnames. Thus, Suspend(NameQf(x)) has the same effect as Suspend(x) The special operation Me()
returns the actname of the current process. In addition, actname variables may appear in assignments.
(Thus users may write programs that operate on anonymous activations, for example to do
special-purpose scheduling.) The extent of an actname variable may dominate the extent of the
activation it names. [f that situation arises, after the extent of the activation is exited, the actname will
refer to a terminated process, and no damage can be done.

The Notify operation on aclivations or actnames signals the Terminate exception in the
currently-executing statement of the activation named by the command. Within the activation in which
it is raised, Terminate is treated like any other exception This is the only mechanism provided by
Tartan that enables one activation to interrupt another.

1.7. Unresolved Issues

We did not obtain solutions to all the Ironman requirements in the lwo-month period allotted to this
design. In this section we sketch the way we would address the unresolved issues.

1.7.1. Machine-Dependent Code

Machine-dependent code presents two issues: definition of operations and definition of data. Tartan
will permit separately-defined machine-dependent routines to be incorporated in the same way as
other separate definitions. This is cansistent with the Steelman requirement. We have not yet
addressed the problem of machine-dependent declarations (data layout).

1.7.2. Simulation

We believe Tartan supports a programmed solution to the simulation requirement. For example, the
facilities of Simula 60 can be provided for Tartan programs:

- Tartan activations can serve the same function as Simula activities.
- A coroutine call discipline may be programmed using the routines Activate and Suspend.

= A scheduler that manages simulated time can be programmed, again using operations on
activations.

1The activation record itself may be allocated in the heap; it does not become eligible for garbage
collectien until all references have been broken. Thus no actname can become an uncantrelied pointer.
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1.7.3. Definition of Integers

In the reference manual we chose fixed as a primitive and defined Int as a special case by
choosing attributes appropriately. We believe it is possible to lreat int as primitive and define Fixed
as nonprimitive by associating range/precision bookkeeping with the operations.

1.7.4. Low-Level Input and Output

We included file as a primitive data type but did not specily its properties. Given the ability to
write machine-dependent code to access the devices and the ability to use processes to maintain state

(and hence to avoid, for example, re-opening a file for each operation), we believe a wide variety of
low-level [/O can be implemented effectively.

1.7.5. Higher-Level Synchronization

Numerous synchronization disciplines have been proposed or are in active use. None of them
clearly dominates the others; none is appropriate in all cases. We have elected to provide a very
primitive synchronization tool, a latch. Conceptually, a latch is a spinlock; failure to sieze such a lock
does-not necessarily release the processor. By choosing a primitive mechanism, we hope to avoid
pre-empting the implementation of higher-level synchronization techniques. We believe alternative

mechanisms can be implemented effectively in Tartan. Indeed, we believe that this is the correct
approach.
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‘2. Programming Examples

Several sample Tartan programs are presented here. Some show the use of various features of the
language; others provide programmed (nonprimitive) solutions to certain [ronman requirements.

2.1. Simple Static Data Type

A circular buffer is implemented in a vector. The definition is generic in the type of the elements;
the length of the buffer is an attribute of the type. This implementation keeps a pointer to the
current head of the buffer (Head) and a pointer to the element one past the current end of the buffer
(Tail). All arithmetic on these pointers is done modulo the size of the buffer. .

generic module CircularBuffers(T:typel;

begin

exports CircBuf (T], ! type, attribute Size
Clear, Append, Remove, Full, Empty, ! routines :
BufOvfl: ! axception

type CircBuf (T] (Size:Int) = record(Bf:array(B..Size-1) of T, Head,Tail: [nt];

excaption BufOvfl;
proc Clear (result C: CircBuf(T]): begin C.Head:=3; C.Tail:=8 end:

proc Append(var C: CircBuf(T], const Yaii1T);
begin
if Full(C) then signal BufOvfl;
C.Bf(C.Tail) :a VYal; -
C.Tail := mod(C.Tail+l, C.Size);
end;

proc Remove (var C:Circ3uf(T]), resuit Yal: T);
begin
assert = Empty(C);
Val := C.Bf(C.Head);
C.Head := mad(C.Head+l, C.Size);
end;

func Full (C:CircBuf [T))F:boolean; begin F :s» (C.Head = mod(C.Tall+l, C.Size)) end;
func Empty(C:CircBuf (T))E:boolean; begin E := (C.Head = C.Tail) end:

end ! module CircularBuffers

2.2. Simple Dynamic Data Type

We define a list-processing module. Each list cell contains a value of a specific type: the definition
of the module is generic in this type.

generic module ListDef (T:typel;

begin
exports List(T], Data, Next, | type and field names
Clear, Insert, Delete, Last; | routines

type List(T] = dynamic record (Data:T, Next:List(T1];
proc Clear (result L:List(T]); begin L := nil end;

proc Insert(ver Eit:List(T], Val:T);
begin
it EIt = nil
then Eit := Liat(T]* (Val,nil)
Moln Elt.Next :=» List(T]'(Yal,Elt.Next)
end;

proc Delete(var Elt:List(T)); begin assert EIt = t;il; Elt := Elt.Next end:
func Last(L:List(T])p:List(T);

begin

p zw Lg

dng = nil then while p.Next = nil do p i= p.Next od fi;
ena;

end ! module ListDef
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2.3. Selecting Representations

Although Tartan treats types with different representations as different types, it is possible to use
the variant and case facilities to define generic types that provide simiilar types with different

representations. The representation is fixed during translation, when the generic definition is
instantiated.

This example defines two alternative representations of queues. It has two generic parameters.
The first is the type of the elements being queued, and it is used as in the previous examples. The
second is a manifest constant, which is used to select which representation of queues is to be used.
Since the variant is fixed during translation, there should be no loss of execution efficiency.

The two representations of queues are defined in terms of the circular buffers of section 21 and
the lists of section 22

generic module QueueDef (T:type, F:enum(Fix,Flexl];

begin

exports Queue (T], ! type, attribute Size
Clear, Enqg, Ceq, Empty, Full, ! routines
Q0vfl: ! exception

module Lst is ListDef (T];
module C3f is CircularBuffers(T];

type Queue (7] (Size:int) =
variant manifest Fx: enumi{Fix,Flex] := F
[ on Fix => Circ3uf(T) (Size) on Flex ->» List(T] ]

exception QOvfl; ! can only be raised on Queue (Fix]

proc Clear {resuit Q: Queue(T]):
begin
case F on Fix => Clear (Q(Fix)) on Flex -> Clear (Q(Flex)) esac
end;

proc Enqg{var Q: Queue(T], const Yal: T);
begin
case F
on Fix -> Append(Q(Fix), Yal) { on BufOvfl -> signal QOv¢! }
on Flex -> Insert(Last(Q(Flex)), Yal) .
esac
end;

proc Deq{var Q: Queue(T], resuit Yal: T);
begin
case F
on Fix =-> Remove(Q(Fix), Yal)
on Flex -> begin Yal := Q(Fiex).Data; Delets(Q(Fiex}) end
esac ’
end;

func Empty (Q:Queue (T] )E: boolean;
begin
case F
on Fix =-> E := Empty(Q(Fix))
on Flex => E := (Q(Flex) = nil)
asac;

fune Full (Q:Queue (T])E:boolean;
begin

case F on Fix -> E := Full (Q(Fix).FixRep) on Flex -> E 1= false esac
end; .

end ! module QueueDef
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.2.4. Safe Data

Tartan does not provide indivisible operators for fetching and storing values. If parallel processes
are operating, the programmer needs to take precautions to ensure the indivisibilily of. these
operations. This program illustrates a solution that will work well with types for which fetching and

storing the whole value makes sense.

begin
module Complex is assumed{ComplexLib); ! Complex exports type Comp
generic module SafeQata(T:typel;

begin

exports Safa(T], Get, Put: | type name, fetch and store routines

type Safe(T)] = record (Lk:latch, Data:T];
fune Get(var S:Safe(T]1)R:T: begin Lock (S.Lk); R := S.Data: Unlock(S.Lk) end;

proc Put(var S:Safe(T], var R:T); begin Lock(S.Lk); S.0ata 1= R; Uniock(S.Lk) end:

end; ! module SafeQata
module SafeComplex is SafeData(Compl;

var x,y,z: Safe(Compl;
Put(x, Comp'(l.,8.)):
Put(y, Comp®(8.,1.));
Put(z, Getix)+Cet(y)):

end:

Function Get takes a Safe[T] (here, a Safe[Comp]) as a var parameter. Since the Lk field is naot
exported from module SafeData, Get may use the procedures Lock and Unlock on that latch in order to

protect the fetch.

Procedure Put specifies var parameters in both positions. Even though it does not alter R, a const
specification would cause a copy.

The generic SafeData module is instantiated specifically for numbers of type Comp (the type
exported by module Complex). '

In the main program, the Comp constructor is used twice to generate values to store in the
variables. The newly-constructed values in the calls on Put are accessible only in this program, so
the constructor itself dces not need to be indivisible. In the third assignment (call on Put), the
addition is the addition for type Comp exported by module Complex.
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3. Optional Additions to the Language

In the course of the Tartan design, we encountered a number of features that seemed attractive but
‘could not be admitted because they violated either the Ironman requirement itself or the rule of
minimality that we adopted for the design experiment. We list some of these here, indicating what
they might add to the language and what they might cost

Abbreviations for compound names. The import rule as stated can lead to the need for a substantial
amount of qualification because all exported names, especially of types and routines, are potentially
available pervasively. A renaming facility would reduce the need for explicit qualification. The
renaming facility might involve renaming on import, or it might be a general with-clause. It would add
convenience and probably improve the readability of the language. However, it would introduce a new
construct in the language and introduce a new way to create aliases.

Less~than-global storage pools. As the language is defined, all dynamically allocated variables share
the same heap. It would be possible to add the ability to declare a local sub-heap (zone) on the
stack and zallocate designated dynamic variables from it instead. There might be several zones active
at once, with certain groups of variables sharing different ones. Alternatively, zones might be
associated with blocks and all dynamic types defined in a block would share storage from a common
zone. The cost is an additional mechanism and more complex scope rules. The benefit would be more
control over dynamic variables and possibly more efficient storage recovery.

Resumable and parametlerized exceptions An interrupt-style exception that has the semantics of a
procegure call (resuming where it was raised) would be a useful thing to add. It would provide better
control over many exception situations. Almost all the necessary mechanism must already be there to
deal with the Notify command (i.e,, the Terminate exception). In addition, the ability to pass parameters
would be helpful, although it would complicate the syntax.

Richer control constructs. A loop exit and explicit function return could reduce the number of gotos
and awkward conditional statements in programs. A richer collection of loop structures (downward

counting, repeat with exitif, and so on) would add convenience. However, each such construct adds to
the size of the language.

Assertions in declarations. As presently formulated, asserticns are statements. [t could be useful to
permit them in declarations in order to check values of attributes and to guard initialization
expressions. [t would, however, require additional complexity in the syntax.

User-definable assignmenl. As noted in section 1.5.7, a default definition of assignment cannot
anticipate all reasonable type definitions and all situations in which assignment makes sense. Only the
programmer has the knowledge to do so. Tartan already permits infix operators to be overloaded for
new types; there would be liltle additional cost for allowing ™=" to be overloaded as well.
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[1] Cepartment of Defense Requiremen('s for High Order Computer Programming Languages,
Revised "Ironman”, July 1977. Appeared in SIGPlan Notices, 12, 12, December 1377 (pp.
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[2] Mary Shaw, Paul Hilfinger, Wm. A. Wulf, "TARTAN Language Design for the I[ronman
Requirement: Reference Manual”, Carnegie-Mellon University Technical Report, June 1978.
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SET DOF SAMPLE PROBLEMS FOR PHASE I1 OF [THE DESIGN CONTRACTS OF THE
D00 HoL COMHONALITY EFFORT.

INTRODUCTION $

THIS SET OF SAMPLE PROBLEMS HAS BEEN "SELECTED FROM A LARGER SET OF PROPOSALS
MAINLY ON THE BASIS OF THE FOLLOWING CONSIDERATIONS:

- THE RESULTING PROGRAMS SHOULD BE LARGE ENOUGH TO ALLOW TO JUOGE THE
'APPEARANCE' AND THE 'READABILITY' OF PROGRAMS
- THEY SHOULD ALSO BE OF SUFFICIENT COMPLEXITY TO TEST INTERACTIONS

BETWEEN LANGUAGE FEATURES
- AND,LAST BUT NOT LEAST, THEY SHOULD HAVE SOME RELATIONS TO ACTUAL

APPLICATIONS.

AS TO THE AREAS TO BE INVESTIGATED, THE MAIN EMPHASIS WAS LAID UPON
NOVEL LANGUAGE FEATURES,LIKE E.G. PARALLELISM,EXCEPTION HANDLING,AND NON-

STANDARD 1/0.

LIST OF SAMPLE PROBLEMS :

TS ST CSCSSCSSCSS=SSSSSSESRESE

POLLED ASYNCHRONOUS INTERRUPT
PRIORITY INTERRUPT SYSTEM ’

A SMALL FILE HANDLING PACKAGE
DYNAMIC PICTURES

A DATABASE PROTECTION MODULE

A PROCESS CONTROL EXAMPLE
ADAPTIVE ROUTING ALGORITHM FOR A
NODE WITHIN A DATA SWUITCHING NETWORK
8 GENERAL PURPOSE REALTIME SCHEOULER
S DISTRIBUTED PARALLEL OUTPUT

18 UNPACKING AND CONYERSION OF DATA

NOUTESWN =

STRUCTURING OF EXANPLES‘

THE DESCRIPTION OF AN EXAMPLE CONTAINS :

1 A STATEMENT ON THE PURPOSE OF THE EXAMPLE

2 A DESCRIPTION OF THE PROBLEM TO BE SOLVED

3 ASSUMPTIONS ABOUT THE UNDERLYING CONFIGURATION
"4 SOME GUIDELINES FOR THE SOLUTION



EX 1

-

POLLED ASYNCHRONOUS INTERRUPT -
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PURPOSE:

AN EXERCISE TO PROGRAM A DEVICE AND INTERRUPT HANDLER RELYING
FPRIMARILY UPON POLLING TECHNIQUES.
PROBLEM: |

—————— ——

1 A CHANNEL HANDLER WILL EXPECT INPUT BY THE FUNCTION PROCEDURE CALL
*read (DEVICE-NUMBER)’
AND RETURN A CHARACTER FROM THAT DEVICES® INPUT-STREAM.

2 THEN SHOULD BE A MINIMUM DELAY FROM THE TIME A CHARACTER IS INTRODUCED
INTO THE CIRCULAR BUFFER AND THE TIME IT MAY BE ACCESSIBLE BY A ’read’.
(THE INPUT WILL BE DISPLAYED ON THE APPROPRIATE CRT BY THE readING PROCESS.
APPARENT SIMULTANEITY OF HITTING THE KEY AND APPEARANCE ON THE CRT IS

DESIRED,I.E. THE SYSTEM SHOULD BE REASONABLY EFFICIENT AND THUS PROYIDE
GOOD RESPONSE-TIME.) ’

3 NO INPUT SHALL BE LOST.

ASSUMPTIONS

1 A 16-BT,BYTE ADRESSABLE MACHINE
2 AT LEAST 18 ASYNCHRONOUS INPUT DEVICES (KEYBOARDS)SHARING 1/0 CHANNELS.

3 A HARD-WIRED CIRCULAR BUFFER OF 128 BYTES LOCATED AT BYTE-LOCATION
SB8(8).TWO POINTERS ARE PROVIDED IN CONJUNCTION WITH THE CIRCULAR
BUFFER:

headpointer - A POINTER TO THE MOST RECENT INPUT

tailpointer - A POINTER TO THE TAIL OF-THE CIRCULAR INPUT QUEUE

4 THE 1/0 CHANNEL MILL INITIALIZE BOTH THE HEAD- AND THE TAIL POINTER TO
- THE SAME LOCATION WHEN THE SYSTEM 1S RESET. ;

S A DIFFERENCE IN THE CONTENTS OF THE HEAD- AND THE TAIL-POINTER INDICATES
THAT INPUT HAS OCCURRED. MAINTENANCE OF THE HEAD-POINTER 1S THE

PROVINCE OF THE 1/0 CHANNEL. MAINTENANCE OF THE TAIL-POINTER 1S THE PROVINCE
OF THE CHANNEL HANDLER.

6 NO INTERRUPT SHALL OCCUR WHEN INPUT 1S CLEARED EXCEPT AS NOTED IN 7 BELOW.
THE HEAD-POINTER 1S INCREMENTED AND THE INPUT STORED IN THO BYTES SPECIFIED BY
THE ADDRESS CONTAINED IN THE HEAD-POINTER.



7 AN INTERRUPT WILL OCCUR WHEN THE HEAD POINTER IS POINTING TO THE INPUT-
ENTRY JUST BELOW THE ENTRY INDICATED BY THE TAIL POINTER TO INDICATE THAT

PROCESSING MUST OCCUR TO PREVENT LOSS OF INPUT.

8 THE INTERRUPT LOCATION FOR CHANNEL B IS 448(8) AND IS TWO BYTES IN LENGTH
T0 SPECIFY THE LOCATION OF THE INTERRUPT HANDLING ROUTINE.

3 AN ]NTERRUPT CAUSES AN IMPLICIT call OF THE SPECIFIED ROUTINE. WHEN PRO-
CESSING OF THE INTERRUPT HAS BEEN COMPLETED,A return WILL CAUSE THE INTER-
RUPTED PROCESS TO RESUME.
18 TO SIMPLIFY MATTERS, ASSUME

1) THE CONTEXT OF THE INTERRUPTED PROCESS IS

AUTOMATICALLY SAVED AND RESTORED, THAT
2) ND PRIORITY INTERRUPT LEVELS NEED BE CONSIDERED; AND
3) NO CLEARING OF THE INTERRUPT IS REQUIRED.

3.5 (REMARK)

EACH INPUT CONSISTS OF TWO BYTES:

BYTE B8 CONTAINS THE ascii CHARACTER

BYTE 1 CONTAINS THE DEVICE IDENTIFIER,8-9 TO IDENTIFY THE SENDING

KEYBOARD

GUIDELINES

IT SHOULD BE TRIED TO FORMULATE THE PROGRAM AS HARDWARE-INDEPENDENT AS
POSSIBLE AND CLEARLY SEPARATE THE INTERFACE TO THE HARDWARE-DEPENDENT .
INFORMATION.



EX 2

~

PRIORITY INTERRUPT SYSTEM
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PURPOSE :

AN EXERCISE TO PROGRAM AN INTERRUPT KERNEL SUPPORTING FOUR
LEVELS OF PRIORITY

PROBLEM :

AN TNTERRUPT HANDLING MECHANISM SHALL BE DESCRIBED WITH THE FOLLOWING
FUNCTIONAL CAPABILITIES:

1 HIGHER PRIORITY INTERRUPTS SHOULD BE ABLE TO PREEMPT LOWER PRIORITY '
INTERRUPT PROCESSES.

2 AS MUCH PROCESSING AS POSSIBLE SHOULD BE DONE WITH HIGHER PRICRITY

INTERRUPS ENABLED. (REMARK: IN GENERAL, INTERRUPTS SHOULD ONLY BE DISABLED
FOR THE SHORTEST POSSIBLE TIME)

3 A PROPER MECHANISM FOR THE RESUMPTION OF PROCESSING OF PREEMPTED LOWER
LEVEL INTERRUPT( HANDLER)S MUST BE PROVIDED. '

4 TO SIMPLIFY MATTERS THE BODY OF EACH lNTEﬁRUPT HANDLER MAY BE SIMULATED E.G.
BY A COUNT OF THE INTERRUPTS FOR THAT PRIORITY LEVEL.

ASSUMPTIONS :

1 THERE ARE FOUR INTERRUPT PRIORITY LEVELS: 8,1,2,3.
THE LOWER THE NUMBER, THE HIGHER THE PRIORITY.

2 THERE IS5 AN INTERRUPT VECTOR LOCATED AT 28(8) WITH 4 BYTES FOR EACH
PRIORITY LEVEL: .

28(8):PRIORITY 8,24(8):P1,38(8):P2,34(8):P3

THESE LOCATIONS SPECIFY THE ADORESS OF THE INTERRUPT HANDLER FOR THE CORRE-
SPONDING PRIORITY LEVEL.

OCCURS.
AT COMPLETION OF THE HANDLER’S PROCESSING,A return IS TO BE PERFORMED.

3 THE INTERRUPT ROUTINE IS INVOKED BY AN IMPLICIT CALL WHEN THE INTERRUPT

4 TO SIMPLIFY MATTERS,ASSUME THAT THE INTERRUPTED PROCESSES’ CONTEXT
IS AUTOMATICALLY SAVED AND RESTORED UPON call AND return .HOWEVER, THE

INFORMATION CONCERNING THE ENABLEMENT AND DISABLEMENT OF INTERRUPTS 1S
NOT PART OF THE CONTEXT.



S INTERRUPTS ARE ENABLED AND DISABLED WITH A *SET INTERRUPT INSTRUCTION':

sin <OPERAND>.

THE INTERRUPTS TO BE ENABLED/DfSABLED ARE SPECIFIED BY BITS 8-3 IN THE HORD

ADDRESSED BY THE OPERAND.THE BIT FIELDS ARE:
BIT B(LSB) : PRIORITY 8,BIT 1 : PRIORITY 1 ,ETC.

THE VALUES OF THESE FIELDS ARE:
8 : DISABLE 1 : ENABLE

IN ORDER TO DISABLE ALL INTERRUPTS,PERFORM AN INSTRUCTION
sin DISABLE ALL,WHERE THE CONTENTS OF DA=8

& NO CLEARING OF THE INTERRUPTS IS REQUIRED.

GUIDELINES :

SAME AS FOR EX1. IT SHOULD ALSO BE EASY TO REPLACE THE BOOIES OF THE
INTERRUPT-HANDLERS. (E.G. AT RUNTIME, TO ALLOW FOR FLEXIBLE REACTIONS TD AN

INTERRUPT, ACCORDING TO CIRCUMSTANCES)



EX 3

A SMALL FILE HANDLING PACKAGE

PURPOSE :

AN EXERCISE TO SHOW HOW HIGHER-LEVEL 1/0 FUNCTIONS CAN BE
CONSTRUCTED AND USED.

PROBLEM : %

PROGRAM A FILE SYSTEM ACCORDING TO THE FOLLOWING SPECIFICATIONS:

1 FILES ARE BUILT BY PRODUCERS WHO CAN PERFORM THE FOLLOWING OPERATIONS:
create ( FILENAME,ESTIMATED-SIZE)

write ( FILENAME,DATA-AREA.)
endurite ( FILENAME )

THE DATA,CONTAINED IN °DATA-AREA’ ARE WRITTEN ON THE FILE WITH ’FILENAME'.

'BATA-AREA’ CAN BE ANYTHING FROM A SINGLE VARIABLE TO AN ARRAY OF
STRUCTURES IN MEMORY.

FILES ARE SEQUENTIAL,SO EACH WRITE ADDS A RECORD TO THE END.-
endurite SIGNALS COMPLETION OF WRITING.

.2 FILES ARE READ BY DNE OR MORE CONSUMERS WHO USE THE FOLLOWING OPERATION:
read ( F]LENAHE,RECORD—ND.,DATA—AREA )

HERE,DATA ARE READ FROM A GIVEN RECORD FROM FILE 'FILENAME’.

3 ONCE ALL READING lS.CONPLETE,THE FILE MAY BE DESTROYED BY CALLING:
destroy { FILENAME ) |

EXCEPTIONS SHALL BE RAISED IN AT LEAST THE FOLLOWING CASES: )

A) IF A PRODUCER WANTS TO CREATE A FILE WITH AN.ALREADY EXISTING FILENAME

B) IF A USER WANTS TO WRITE ON A NONEXISTENT FILE

C) IF A CONSUMER WANTS TO READ.FROM A NONEXISTENT FILE OR FROM AN EXISTING
FILE WITH A NONEXISTENT RECORD NUMBER

D) IF A FILE SHALL BE DESTROYED WHILE IT 1S STILL USED BY SOMEBODY ELSE.
ASSUMPTIONS :



ASSUME A DISK AS STORAGE MEDIUM.

GUIDELINES : 7

THE DESIGN SHOULD PREVENT DEADLOCK OF FILE STORAGE,ALLOW DISK OPERATIONS
TO BE SCHEDULED ACCORDING TO ANY SCHEDULE (WHERE THE SCHEDULER GOES, SHOULD
BE INDICATED),AND PREVENT USERS FROM ACCESSING ANYTHING BUT THE ABOVE FIVE

OPERATIONS. :



EX &

DYNAMIC PICTURES.

PURPQSE :

AN EXERCISE TO SHOW HOW A GRAPHIC DISPLAY OF A DYNAMIC SITUATION
CAN BE PROGRAMMED.

PROBLEM : R
ON A DISPLAY SCREEN A RECTANGULAR PATTERN OF E.G.18 HORIZONTAL

AND 18 VERTICAL LINES SHALL BE DRAWN. (ONE MIGHT ALSO IMAGINE THAT THE
BACKGROUND 1S A SIMPLIFIED MAP.)

WITHIN THIS GRID TWO MOVABLE OBJECTS SHALL BE SHOWN. THEY SHALL BE
DISCRIMINATED EITHER BY COLOR OR BY SHAPE.

THE SPEED AND DIRECTION OF EACH OBJECT SHALL BE CONTROLLED BY AN INPUT-
DEVICE,E.G.A JOYSTICK.

THERE SHALL BE A RESET-BUTTON,WHICH ALLOWS TO BRING THE OBJECTS INTO
SOME PREDEFINED POSITION AND A START-BUTTON,WHICH CAUSES THEM TO MOVE.
IF THE OBJECTS COLLIDE,THEY SHALL START' TO BLINK AND,AFTER SOME SECONDS,
RETURN TO THEIR HOMING-POSITION.THIS SHALL BE EQUIVALENT TO A reset .

- ASSUMPTIONS :

THE °*start’ AND THE 'reset’ BUTTON SHALL BE CONNECTED TO THE INTERRUPT-
HANDLING MECHANISM OF THE UNDERLYING SYSTEM IN A WAY THAT DIFFERENT INTERRUPTS
OCCUR WHEN DIFFERENT BUTTONS ARE PRESSED.

THE CONTROLLING INPUT DEVICES SHALL BE PURELY PASSIVE,1.E.THE POSITION OF THE
STICK (left,right, foruard,reverse) AND ITS DEYIATION FROM 'POSITION ZERQO',
CONTROLLING THE SPEED OF THE OBJECTS,HAVE TO BE READ IN EXPLICITELY BY THE
PROGRAM. THE POSITION OF THE INPUT-DEVICE SHALL -BE ACCESSIBLE TO THE PROGRAM
VIA TWO 16-BIT REGISTERS (TWO BYTES),ONE FOR EACH COORDINATE. EACH BYTE

SHALL CONTAIN A SIX-BIT INTEGER NUMBER (RIGHT ADJUSTED)} WHICH REPRESENTS

THE DEFLECTION IN THIS PARTICULAR DIRECTION IN THE MOMENT OF READ-IN.

THERE EXIST ALL KINDS OF 'REASONABLE COMBINATIONS' OF THESE VALUES,

E.G. 15right-B8forward ,56left-18reverse .THE CONSTRUCTION OF THE

HARDWARE SHALL BE SUCH THAT "UNREASONABLE COMBINATIONS'CANNOT OCCUR,LIKE E.G.
18left-28Bright.

GUIDELINES :

THE HARDWARE CHARACTERISTICS OF THE DISPLAY-DEVICE WERE MAINLY LEFT OUT
TO PREVENT THE SOLUTIONS FROM BECOMING TOO LENGTHY.

THE ALGORITHMS SHALL BE INDEPENDENT OF THE ACTUAL CHARACTERISTICS
OF THE DISPLAY DEVICE,E.G.IT SHALL NOT MATTER WHETHER THE DISPLAY DEVICE



HAS A VECTOR GENERATOR OR WHETHER IT IS JUST ABLE TO PLOT RANDOM POINTS,
WHETHER THE OBJECTS CAN BE CREATED BY A PATTERN GENERATOR,
OR WHETHER THEY. HAYE TO BE PUT TOGETHER FROM POINTS AND/OR LINES.

THE NECESSARY HARDWARE DEPENDENCIES SHOULD NEYERTHELESS BE CLEARLY IDENTIFIED
AND AS LELL LOCALIZED AS POSSIBLE.
THE PROGRAM SHALL BE WRITTEN AND STRUCTURED IN A WAY THAT IT WILL WORK
WITH THE MOST PRIMITIVE DISPLAY-HARDWARE,E.G. A RANDOM-POINT DISPLAY,WHICH HAS
A PRECISION OF 18 BITS FOR EACH COORDINATE,BUT THAT THE ROUTINES NECESSARY FOR
SIMULATING MORE COMPLEX DISPLAY CAPABILITIES CAN BE EASILY REMOVED.

TO SIMPLIFY MATTERS,IT CAN BE ASSUMED THAT THE LOWEST LEVEL OF OUTPUT-
ROUTINES NEED NOT BE INCLUDED IN THE'EXAMPLE,1.E.AS FAR AS THE PROBLEM IS
CONCERNED, THE OUTPUT SHALL BE REGARDED AS COMPLETED,AS SOON AS THE COORDINATES
OF POINTS (LINES,0BJECTS,E.T.C.)HAVE BEEN DEPOSITED AS INTEGER NUMBERS IN THE

APPROPRIATE BUFFERS.

IT 1S LEFT TO THE DESIGNER HOW HE CHOSES TO IMPLEMENT THE GRAPHIC REPRESEN-
TATION,E.G. BY FORMATTING PROCEDURES (SIMILAR TO CHARACTER FORMATS)OPERATING

ON BUILT-IN DATA TYPES OR BY SPECIA@DATA STRUCTURES.
IT IS ALSO LEFT TO HIM HOW HE WANTS TO IMPLEMENT THE EMERGENCY REACTION,

EG BY A SOFTWARE-INTERRUPT OR BY EXCEPTIONS.



EX S

A DATABASE PROTECTION MODULE
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PURPOSE :

AN EXERCISE TO DEMONSTRATE HOW COMPLEX SYNCHRONIZATION NECHANISHS CAN
BE CONSTRUCTED ON USER LEVEL.

PROBLEM :
A DBMS SHALL CONTAIN A HODULE WHICH CONTROLS ACCESS TO GIVEN DATA AREAS.
THE USER ( OR A RUNNING PROCESS ) SHALL BE ABLE TO INDICATE WHETHER HE
REQUIRES EXCLUSIVE ACCESS TO A CERTAIN PART OF A DATA BASE ('DATA-SET') OR
WHETHER HE IS WILLING TO SHARE THIS RESOURCE WITH OTHER USERS (E.G.FOR
READING ).
THE RESPECTIVE OPERATIONS SHALL LOOK LIKE THE FOLLOWING:

exclusive (DATA-SET-NAME,PREEMPTION-PARAMETER) ;

shared (DATA-SET-NAME,PREEMPTION-PARAMETER) ;

BY THE FOLLOWING OPERATION THE USER SHALL BE ABLE TO INDICATE THAT HE NO
LONGER WANTS TO USE THE DATA-SET:

free (DATA-SET-NAME);

IT SHALL BE POSSIBLE TO SPECiFY,EITHER BY AN EXECUTABLE STATEMENT AT ANY TIME
OR BY A KIND OF DECLARATION AT SCOPE ENTRY OR AT COMPILE-TIME:

A) UWHETHER AN EXCLUSIVE RESERYATION HAS PRIORITY OVER A SHARED RESERYATION

B) HOW MANY USERS MAY SHARE A RESOURCE
(THIS NUMBER MAY E.G.BE LIMITED BY THE LENGTH OF SOME WAITING QUEUES)

C) WHICH USERS MAY EXECUTE WHICH KIND OF ACCESS
D) WHETHER PREEMPTION IS POSSIBLE AND,IF NOT,WHETHER
AN EXCEPTION SHALL BE RAISED IN CASE OF AN ATTEMPT TO USE THE PREEMPTION
PARAMETER. ’
E) WHETHER DIFFERENT USERS HAVE DIFFERENT PRIORITIES,AND, IF SO,WHICH ONES
F) WHETHER THE DEMANDING PROCESS SHALL JUST WAIT FOR THE AVAILABILITY

OF THE DESIRED RESOURCE OR WHETHER IN THIS CASE AN EXCEPTION SHALL BE
" RAISED TO ALLOW FOR EVASIVE ACTION.



NOTE THAT "USER' MAY IN THIS EXAMPLE ALSO ALWAYS MEAN :'RUNNING PROCESS'.
THE MODULE SHALt BE CODED IN THE COMPLETE FORM IT UOULD REQUIRE TO PUT IT
INTO A LIBRARY.

PROPER PROCEDURES FOR CLEANUPS SHALL BE PROVIDED IN CASE OF PREEMPTION.

ASSUMPTIONS :

NO SPECIFIC ASSUMPTIONS AS FAR AS THE HAROWARE IS CONCERNED.

GUIDELINES : '

£
IT IS THE IMPLEMENTOR'S OPTION WETHER HE PREFERS TO PROVIDE DSENZERE GENERAL
MOBULE WITH ALL THESE CAPABILITIES OR WETHER HE WANTS TO USECT[UNA&ITIES
FACILITIES TO CREATE MODULES WITH A PROPER SUBSET OF THE FUN

DEPENDENT OF THE ACTUAL REQUIREMENTS AT THE POINT OF INSTANTIATION.

!



EX &

A PROCESS CONTROL EXAMPLE
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PURPOSE :

AN EXERCISE TO TEST INTERACTIONS BETWEEN PARALLEL PROCESSING AND EXCEPTION
HANDLING.

\

PROBLEN :

ASSUME FOUR PROCESSES:

process a WHICH READS IN DATA FROM THE ENVIRONMENT AND STORES THEM
IN A BUFFER AREA

process b WHICH PROCESSES THE DATA IT FINDS IN THE BUFFER AREA ACCORDING TO
SOME ALGORITHM AND STORES THEM IN A 'RESULT AREA’.

process c¢ WHICH PRODUCES OUTPUT AS A CONSEQUENCE OF THESE DATA
(EITHER IN HUMAN-ORIENTED FORM OR AS CONTROL-OUTPUT FOR THE PROCESS
TO BE -CONTROLLED) ;

process d MONITORS AND CONTROLS THESE THREE (AND POSSIBLY OTHER) PROCESSES
AND INTERACTS WITH THE OPERATOR VIA A KEYBOARD CONSOLE.

IT SHALL BE FURTHER ASSUMED THAT process a AND process b INTERACT IN THE
FOLLOWING SPECIFIC WAY:

THE BUFFER 1S ORGANIZED AS A 'DOUBLE-BUFFER',I.E.,AFTER ONE OF ITS THO AREAS
HAS BEEN FILLED BY process a,process b 1S NOTIFIED AND STARTS TO READ OUT OF
THE BUFFER. process a CONTINUES BY DEPOSITING DATA IN THE SECOND BUFFER AREA.
IF THIS 1S FULL,process a TRIES TO DEPOSIT DATA IN THE FIRST AREA AGAIN.
process b, IN TURN,NOTIFIES process a AFTER HAVING READ ONE DATA AREA.

IT 1S ILLEGAL TO READ A BUFFER AREA WHICH HAS NOT PREV]IOUSLY BEEN FILLED
AND TO WRITE INTO A BUFFER AREA WHICH HAS NOT BEEN COMPLETELY READ {EXCEPT
IN THE INITIALIZATION PHASE ).

THE PROGRAM SHALL BE STRUCTURED IN A WAY fHAT 1T 1S POSSIBLE TO REPLACE

process a BY APPROPRIATE HARDWARE WITHOUT HAVING TO CHANGE THE PROGRAM PARTS
FOR PROCESSES b,c, AND d . 3

IT SHALL ALSO BE POSSIBLE TO TERMINATE process a AND b AT ANY TIME

WITHOUT LOSING DATA,].E.BEFORE TERMINATION A CLEANUP OPERATION SHALL BE INVOKED
WHICH CAUSES PROCESSING OF ANY REMAINING DATA IN EITHER OF THE TWO BUFFER
AREAS. »

ASSUMPTIONS



NO PARTICULAR ASSUMPTIONS AS FAR AS HARDWARE 1S CONCERNED.
THE BUFFERS AND THE *RESULT AREA' CAN BE ORGANIZED AS ARRAYS.

GUIDELINES :

TO SIMPLIFY MATTERS,IT CAN BE ASSUﬁED THAT ACTUAL INPUT-OUTPUT ,I.E.THE
COMMUNICATION WITH THE HARDWARE,AS WELL AS THE PROCESSING OF THE DATA IN

process b IS DONE BY GIVEN LIBRARY ROUTINES.
THE ALGORITHM IN process d MAY ALSO BE DESCRIBED IN A HIGHLY SUMMARIZED

FORM,BECAUSE THIS IS NOT WHAT THE EXAMPLE IS TO TEST.



EX 7

ADAPTIVE ROUTING ALGORITHM FOR A NODE WITHIN A DATA SWITCHING NETUORK
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PURPOSE :

TEST FOR LANGUAGE SUITABILITY FOR MULTICOMPUTER AND COMMUNICATIONS
APPLICATIONS. e

A
\

PROBLEM :

Develop the program for a multiprocessor within one node of a
data switching network to maintain the tables of

1) distances,

2) minimum delay time, and

3) routing for the following adaptive routing algorithm:

Each node in a network maintains a table of distances and a table
of minimum delay times betueen itself and all other nodes. The
distance metric is the minimum number of hops required to reach
each other node. Both tables are maintained through updates in
the form of table exchanges which occur only betueen neighbor
nodes (nodes of distance, one). Each node maintains a routing

table uhich directs routing through that neighbor node which
achieves the minimum delay time.

In parallel with, and at the same periodic rate as this computing.
process, separate computing processes at each node are computing
the minimum delay times to neighbors; and reading into computer
memory the wupdated distance table of each neighbor, and the
updated minimum delay time table of each neighbor. Initially
each node knows only the distance to each neighbor, which is one,
and the minimum delay time to each neighbor. Other distances and
minimum delay times are initially considered infinite. Each node
iteratively builds up its oun distance and minimum delay time
tables from the distance and minimum delay time tables exchanged
Wwith 1its neighbors, and wupdates tables containing such
information about itself. Other computing processes transmit
this information betuween such neighbors. Hence, the routing
table at each node is established and periodically updated
adaptively from the minimum delay times.

When a link 1is broken or established, a separate computing
process at each of the two former or new neighbors, corrects the
distance and minimum delay time tables.

The reason a distance table must be mined is that if the
network is disconnected the algorithm causes the distance betueen
disconnected nodes to increase without limit. Thus whenever the



becomes greater than the number of

distance between tuo nodes .
delay time is

nodes in the network, this distance and minimum
considered infinite, and the node is considered unreachable.

In the example program, consider that the number of nodes in ;he
netuork, the neighbors of the programmed node, and the periodic

update interval are constants known at compile time.

ASSUMPTIONS :

NONE AS FAR AS THE HARDWARE IS CONCERNED.

"GUIDELINES

THE ACTUAL INTERCHANGE BETWEEN THE NODES CAN BE ASSUMED TO BE PERFORMED
BY GIVEN LI1BRARY ROUTINES "



EX 8

-

GENERAL PURPOSE REAL-TIME SCHEDULER
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PURPOSE :

AN EXERCISE TO TEST THE POSSIBILITIES FOR RELATING COMPUTATIONAL
PROCESSES TO REAL TIME.

PROBLEN :

A LIBRARY MODULE SHALL BE WRITTEN WHICH ALLOWS TO SCHEDULE COMPUTATIONAL
PROCESSES IN ACTUAL REAL TIME. THE NUMBER OF THESE PROCESSES SHALL BE
VARYING,DETERMINABLE AT LINK-TIME. '
THE SCHEDULER SHALL RECEIVE THE 'TICKS' OF THE REAL-TIME CLOCK OF THE SYSTEM
(E.G.BY REACTING TO THE RESPECTIVE INTERRUPT)AND TRANSFORM THEM INTO ACTUAL
REAL TIME,E.G.BY APPLYING THE PROPER COMPILE-TIME CONSTANTS.

TO SIMPLIFY MATTERS, THE TIME SPAN WHICH CAN BE HANDLED BY THE SCHEDULER,MAY
BE RESTRICTED TO 24 HOURS,I.E.ALL TIMES WILL BE COMPUTED MODULO 24 HOURS.

THIS "REAL TIME' SHALL BE ACCESSIBLE TO THE PROGRAM BY THE COMMAND

time (OPERAND)

WHICH SHALL DEPOSIT THE TIME (AT THE POINT IN TIME THE OPERATION 1S EXECUTED)
IN THE LOCATION INDICATED BY ’'operand’ AS AN ascii CHARACTER STRING WITH
THE FOLLOWING CONVENTIONS:

FIRST TWO CHARACTERS: HOURS

SECOND TWO CHARS : MINUTES

THIRD TWO CHARACTERS: SECONDS

BUT THE MAIN PURPOSE OF THE SCHEDULER SHALL BE THE INITIATION OF THE
EXECUTION OF COMPUTATIONAL PROCESSES ACCORDING TO PREDEFINED CONDITIONS
IN REAL TIME. THIS SHALL BE POSSIBLE EITHER ONCE OR REPEATEDLY.

PROCESSES SHALL BE CONNECTED TO THE SCHEDULER BY OPERATIONS OF THE FORM:

execute PROCESSNAME, TIME )
execute TIME /+:MEANING THE PROCESS WHICH PERFORMS THIS OPERATION»:/
execute PROCESSNAME,START-TIME,REPETITION-INTERVAL

INTENTIONALLY NO EXACT REPRESENTATION FOR THESE OPERATIONS 1S GIVEN IN

THE EXAMPLE (ESPECIALLY IT SHALL NOT BE IMPLIED THAT THEY ARE PROCEDURE
CALLS). THE REPRESENTATION SHALL BE PROPOSED BY THE LANGUAGE DESIGNER

IN ORDER TO : .

1) FIT INTO THE TEXT OF A USER PROGRAM AS SIMPLY AND NATURALLY AS POSSIBLE
AND . :

2) BE EFFICIENTLY IMPLEMENTABLE IN THE LANGUAGE PROPOSED.



IF TWO PROCESSES ARE DUE FOR EXECUTION AT THE SAME POINT IN TIME, THEY SHALL
BE ACTIVATED IN PRIORITY ORDER.

NOTE, THAT IN ORDER TO ACHIEVE THIS,A LIBRARY ROUTINE i1AY HAVE TO BE USED,
WHICH SORTS THE CONTROL BLOCKS OF THE SCHEDULED PROCESSES ACCORDING TO THEIR
PRIORITY. BECAUSE SUCH A SORTING ROUTINE 1S OF GENERAL INTEREST,IT SHOULD
ALSO BE USEABLE FOR OTHER DATA-TYPES. IT SHOULD BE DEMONSTRATED,HOW THE
PARAMETER PASSING MECHANISM OF SUCH A ROUTINE IS FIT FOR THIS PURPOSE WITHOUT
CAUSING TOO MUCH RUNTIME OVERHEAD. :

FOR THE PURPOSE OF THE EXAMPLE THE SORTING ALGORITHM PROPER MAY BE SIMPLE

AND INEFFICIENT,BECAUSE 1T 1S NOT RELEVANT FOR THE DEMONSTRATION.

IT MUST ALSO BE POSSIBLE TO DISCONNECT PROCESSES FROM THE SCHEDULER AT ANY
POINT IN TIME,EITHER BY ACTION FROM THEMSELVES OR FROM OTHER PROCESSES.

ASSUMPTIONS :

ASSUME A SYSTEM CLOCK WHICH DELIVERS 'TICKS® OF A FREQUENCY WHICH IS SUFFICIENT
TO DO THE NECESSARY COMPUTATIONS WITH THE NECESSARY PRECISION.

THE WAY,HOW PROCESSES CAN BE MADE KNOWN TO THE SCHEDULER,DEPENDS ON THE
IMPLEMENTATION MODEL,WHICH UNDERLIES THE LANGUAGE PROPOSAL.



AN EXERCISE TO DEMONSTRATE THE ABILITY OF PROCESSING PARALLEL EVENTS

WHICH NEED NOT PROGRESS AT THE SAME RATE.
PROBLEMN :

THIS PROGRAM HAS ENCOUNTERED A MULTIPLE ADDRESSEE MESSAGE TO BE OUTPUT
OVER A NUMBER OF ASYNCHRONOUS LINKS.

EACH LINK IS CONTROLLED BY AN INDIVIDUAL PROCESS WHICH PERFORMS ALL LINK
RELATED PROCESSING. EACH PROCESS CAN ACCEPT ONE PACKET OF THE MESSAGE AT A

TIME AND WILL NOTIFY THE PROGRAM WHEN THE LAST PACKET FURNISHED TO IT HAS BEEN
ACKNOWLEDGED BY THE DISTANT STATION.

WHEN ALL TRANSMISSIONS ARE COMPLETE,THE PROGRAM SHALL PURGE THE MESSAGE.
ASSUMPTIONS :

1 THE MESSAGE HAS FIVE ADDRESSEES,BUT THESE CAN BE DIFFERENT FOR EACH
MESSAGE.

2 THE MESSAGE 1S FIVE PACKETS LONG.
3 EACH PACKET 1S 88 BYTES LONG.
4 THE BUFFERS CONTAINING THE MESSAGE ARE CONTIGUOUSLY LOCATED.

5 AT INITIALIZATION THE PROGRAM SHALL BE FURNISHED THE ADDRESS OF THE
FIRST BUFFER, THE NUMBER OF BUFFERS,AND THE IDENTITY OF THE FIVE LINKS
OVER WHICH THE MESSAGE IS TO BE SENT (EACH LINK IS CONTROLLED BY AN
INDIVIDBUAL PROCESS,NAMED LB..LS ).

THE LINK IDENTIFICATION SHALL BE IN THE FORM (Ln,Ln,Ln...)WHERE N HAS
LEGAL VALUES BETWEEN 8 AND 8.

!

6 AN 8 BIT MACHINE (ONE OF TODAY'S TYPICAL MICROPROCESSORS )
7 THE PROGRAM WILL BE CAPABLE OF PROCESSING UP TO TEN ADDRESSEES.

8 THERE 1S NO QUEUING DELAY,1.E. THE LINK-PROCESSES ARE DEDICATED AND CAN
REACT IMMEDIATELY.

remark : ONE CAN ASSUME THAT THE INDIVIDUAL LINK PROCESSES ARE RESIDENT IN
DEDICATED MICROPROCESSORS AND THAT THE COORDINATION IS DONE IN ANOTHER
PROCESSOR TO WHICH THEY ARE CONNECTED BY A BUS.

GUIDELINES :








