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Vorwort 

Die Entwicklung einer neuen höheren Programmiersprache für integrierte 

Rechnersysteme (embedded computer systems) im US-Verteidigungsministerium 

findet große Aufmerksamkeit in der internationalen "computing community". 

Diese Aufmerksamkeit wird hervorgerufen durch verschiedene Aspekte des 

Sprachentwicklungsprogramms: 

1. Die Sprachentwicklung ist von großem wissenschaftlichen Interesse, 

da international anerkannte Fachleute daran mitarbeiten. 

2. Die Organisation und Zeitplanung des Sprachentwicklungsprojektes ist 

aufsehenerregend, da bisher alle Termine eingehalten wurden. Dies ist 

erstaunlich, da die Terminvorgaben nach allgemeinen Erfahrungen bei 

derartigen Projekten sehr knapp bemessen sind. 

3. Gelingt es tatsächlich, die entstehende Sprache verbindlich für alle 

Projekte des US-Verteidigungsministeriums vorzuschreiben, so hat dies 

auf Grund der politischen Lage zur Folge, daß die Sprache primär im 

Verteidigungsbereich und sekundär im industriellen Bereich auch in 

Deutschland wirtschaftlich bedeutsam werden könnte. Um die mögliche 

wirtschaftliche Bedeutung dieser Sprachentwicklung für die Bundesre­

publik abzuschätzen und einen intensiven Informationsfluß zwischen bei­

den Seiten herzustellen, wurde Herr Elzer, Firma Dornier-System GmbH, 

Friedrichshafen, im Rahmen des PDV-Projekts im Auftrag des BMFT für 

ca. 1 Jahr nach USA delegiert. Herr Elzer ist dort Mitarbei ter in der 

Gruppe, die das Sprachentwurfsprojekt koordiniert. 

Als weitere .Publikation über die Ziele und den Verlauf des Spra chprojekts ist 

ein Artikel von W.A. Whitaker, dem Leiter dieser Sprachgruppe , z u nennen /1/. 

Es soll nicht unerwähnt bleiben, daß an der Vorgehenswe ise beim Sprachentwurf 

und an der Qualität der bisher vorliegenden Sprachentwürfe heftige Kritik ge­

übt wurde /2/, /3/. Eine Abgrenzung der Anwendungsgebiete für die neu entwicke 

Sprache des US-Verteidigungsministeriums und fü r PEARL wird in /4/ gegeben. 
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KURZFASSUNG 

Dieser Bericht gibt eine gedrängte Darstellung von Geschichte, Zielen und Organisa­

tionsstruktur des Projektes zur Schaffung einer gemeinsamen höheren Pro­

grammiersprache für integrierte Rechnersysteme des US-Verteidigungsministeriums. Es 

wird der Stand der Arbeiten an Sprache und Softwareumgebung im September 1978 

beschrieben, sowie eine Reihe von begleitenden Aktivitäten geschildert und ein Ver­

gleich mit PEARL versucht. 

ABSTRACT 

This report gives a condensed presentation of history, aims and organisational structure 

of the US-DoD project for a Common High Order Language for embedded computer 

systems. lt describes the state of the work on language and software-environment in 

September 1978, as well as some supporting activities. A comparison with PEARL is 

attempted. 
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0. EINLEITUNG 

Im Jahre 1975 wurde vom US-Verteidigungsministerium ein Projekt begonnen mit dem 

Ziel, für den Verteidigungsbereich eine einheitliche höhere Programmiersprache für 

integrierte Rechnersysteme(1) zu schaffen. Dabei wurde von Anfang an angestrebt, 

auch die für einen rationellen Einsatz dieser Sprache notwendigen Softwarehilfsmittel, 

wie Computer, Laufzeitpakete, Betriebssystemergänzungen, Testhilfen, etc. in der 

Sprache selbst erstellen zu können, um maximale Portabilität zu erzielen. Parallel zur 

eigentlichen Sprachentwicklung wird deshalb auch die notwendige Softwareumgebung 

mit definiert. Außerdem sind Organisationen zur Pflege der Sprache, Überwachung 

ihrer Implementierungen und Unterstützung ihrer Anwendungen geplant. Ein Projekt­

ziel ist es, bis 1980 die endgültige Sprachspezifikation, sowie mindestens einen Pro-
duktionscompiler zur Verfügung zu haben. 1 

Im vorliegenden Bericht wird versucht, einen knappen Gesamtüberblick über die 

Geschichte des Projektes, seine Ziele und seine Organisationsstruktur zu geben, sowie 

andere relevant erscheinende Aktivitäten, die nicht immer organisatorisch mit dem 

Sprachentwicklungsprojekt verknüpft sein müssen, zu identifizieren. Wenn auch vor 

Veröffentlichung der endgültigen Sprachvorschläge im Frühjahr 1979 keine exakten 

Aussagen über Charakter und Funktion von Elementen der Sprache gemacht werden 

können, so wird doch versucht, die bereits an Hand der veröffentlichten technischen 

Anforderungen erkennbaren Unterschiede zu und Ähnlichkeiten mit PEARL zu 

charakterisieren. 

Für den Leser, der an eingehender 1 nformation interessiert ist, sind die wesentlichsten 

Originaldarstellungen als Anhänge beigefügt. 

(1) dies ist der Versuch einer Übersetzung des amerikanischen Fachbegriffs 

"embedded computer system", der nicht vollständig dem deutschen Begriff des 

"Realzeitsystems" entspricht. 
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1. DAS EIGENTLICHE SPRACHENTWICKLUNGSPROJEKT 

1.1 Vorgeschichte und organisatorische Grundlagen 

1 n diesem Abschnitt soll nur ein zusammenfassender Überblick gegeben werden, da 

eine sehr eingehende Gesamtdarstellung der Geschichte des Projektes, seiner Ziele und 

seiner Organisationsstruktur bereits im April 1978 in der Zeitschrift 'Computer' der 

1 EEE erschienen ist. Dieser Aufsatz ist als Anhang 1 beigefügt. 

Bereits in den Jahren 1973 und 1974 wurden Studien durchgeführt [1,2] um Daten 

über Höhe und Verteilung der Softwarekosten im US-Verteidigungsbereich zu erhalten. 

Zwei Ergebnisse waren besonders wesentlich: 

Die Kosten für integrierte Rechnersysteme stellten mit 56 % den Hauptanteil der 

jährlichen Ausgaben von 3 Mrd. Dollar für Software im US-Verteidigungsbereich 

dar. 

Bei einer Berechnung über die gesamte Lebensdauer eines Systems übertrafen die 

Kosten für die Wartung die für die Entwicklung und Herstellung bei weitem. 

Weiterhin stellte sich heraus, daß im gesamten Verteidigungsbereich über 200 Rechner­

modelle und über 450 verschiedene Programmiersprachen (einschließlich Assembler) 

verwendet wurden. Aus dieser Zersplitterung ergab sich weiter, daß die für eine ratio­

nelle Softwareentwicklung und -wartung notwendigen Hilfsmittel nur in den se ltensten 

: Fällen und dann auch meist nur in rudimentärer Form vorhanden waren. Eine 

Schlüsselrolle spielte auch hier das Fehlen einer einheitlichen Programmiersprache. 

Aus diesen Gründen wurde im Januar 1975 auf 1 nitiative des " Director of Defense, 

Research and Engineering"(2) ein gemeinsames Programm der Teilstreitkräfte formu­

liert. Außerdem wurden keine weiteren Mittel für Entwicklung und Einsatz neuer 

Programmiersprachen in wesentlichen Projekten des Verteidigungsbereiches mehr be­

reitgestellt, bis das Problem einer zufriedenstellenden gemeinsamen Nutzung software­

bezogener Hilfsmittel gelöst wäre. 

(2 l heute: Undersecretary of Defense, Research and Engineering" 
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Ungefähr zur selben Zeit wurden andere Programme gestartet, z.B. zur Untersuchung 

der Möglichkeit einer einheitlichen Rechnerfamilie für den Verteidigungsbereich (MCF: 

"rnilitary computer family"). 

Globale Richtlinien für die Behandlung der Probleme rationelleren Rechnereinsatzes 

gab die Anweisung 5000.29 [3]. Eine Zusammenstellung verschiedener Artikel über die 

erkannten Probleme und Vorschläge zu ihrer Behebung erschien im Oktoberheft 1975 

des "Defense Management Journal" [ 4 ]. 

Um die Arbeiten an der Sprachentwicklung zu koordinieren, wurde im Januar 1975 die 

"High Order Language Working Group ( ::::: HOLWG)" gegründet. Stimmberechtigte 

Mitglieder sind Vertreter der US-Armee, Marine, Marineinfanterie und Luftwaffe, sowie 

des Amtes für Nachrichtenwesen, des Nationalen Sicherheitsbüros und der DARPA(3). 

Der Vorsitzende der HOLWG, z.Zt. Lt. Col. W.A. Whitaker, wird vom USDRE ernannt. 

Dr. D. Fisher vorn "Institute for Defense Analyses (IDA)" ist der technische Berater 

dieses Ausschusses. Die HOLWG ist gegenüber dem USDRE verantwortlich und außer­

dem tätig als einer der Unterausschüsse des "Management Steering Committee for 

Embedded Computer Resources (MSC-ECR )". 

Ihre Aufgabe ist es, "Möglichkeiten zur Einführung der minimalen Anzahl gemeinsamer 

höherer Programmiersprachen zu untersuchen, die bei Entwicklung, Beschaffung und 

Betrieb von Rechnern in militärischen Systemen verwendet werden sollen". 1 nsbeson­

dere sollen die technischen Anforderungen an derartige Sprachen definiert, die Eignung 

von existierenden Sprachen untersucht, eine erfolgsversprechende Vorgehensweise fest­

gelegt, und die notwendigen Maßnahmen überwacht werden. 

Der mögliche Nutzen des Sprachentwicklungsprojektes wurde in mehreren Wirtschaft­

lichkeitsanalysen untersucht, die zu positiven Ergebnissen führten. Anhang 2 enthält 

die Zusammenfassungen von zweien dieser Analysen. 

<3 ) "Defense advanced research projects agency", eine zentrale Forschungsförderungs­

stelle des US-Verteidigungsm inister iums. 
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1.2 Entwicklung der technischen Anforderungen 

Im Gegensatz zum Vorgehen bei verschiedenen anderen Sprachentwicklungsprojekten 

betätigt sich die HOLWG nicht als Sprachentwicklungsausschuß im üblichen Sinne, 

sondern fördert die Entwicklung durch unabhängige Auftragnehmer auf Wettbewerbs­

basis. 

Als Arbeitsgrundlage wurden die technischen Anforderungen an eine höhere Sprache 

zur Programmierung von integrierten Rechnersystemen zusammengestellt. Dieses Do­

kument diente dann später als Grundlage für eine Ausschreibung, lieferte einen allge­

mein anerkannten Bewertungsmaßstab und verhinderte, daß völlig unvergleichbare 

Sprachentwürfe entstanden. 

Die gegenwärtigen technischen Anforderungen, die in dem als Anhang 3 beigefügten 

"Steelman"-Papier zusammengestellt sind, sind das Ergebnis eines evolutionären 

Prozesses, der von 1975 bis 1978 dauerte. 

Am 1 DA wurde eine Serie von Vorschlägen ausgearbeitet, wobei jeweils die Kommen­

tare zum vorhergehenden Vorschlag eingearbeitet wurden, die seitens potentieller 

Benutzer, Auftragnehmern des Militärbereichs und anderer interessierter Organisa­

tionen eingingen. Auf diese Weise konnten die einschlägigen Erfahrungen eines großen 

Teiles der Fachwelt genutzt werden. 1 n gewissen Zeitabständen wurden einzelne Ver­

sionen durch militärische Dienststellen offiziell genehmigt und als die fo lgenden Doku­

mente veröffentlicht: 

STRAWMAN 

WOODENMAN 

TINMAN 

IRONMAN 

revised 1 RONMAN 

STEELMAN 

April 1975 

August 1975 

Januar 1976 

Januar 1977 

Juli 1977 

Juni 1978 

Als ein Beitrag zur Diskussion um TINMAN wurde im Herbst 1976 ein Seminar mit 

anerkannten Wissenschaftlern auf den Gebieten Sprachentwurf und Compilerbau an 

der Cornell-Universität in lthaca, N.Y., veranstaltet. Die Ergebnisse dieses Seminars 

sind in Buchform erhältlich (5]. 
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Insgesamt gingen während der Entwicklung der technischen Anforderungen über 

2000 Seiten an Kommentaren von 184 Institutionen und Einzelpersonen ein. 

Die Entwicklung der technischen Anforderungen erbrachte aber noch ein weiteres 

wesentliches Ergebnis: Es wurde festgestellt, daß in allen Bereichen des Verteidigungs­

sektors die gleichen Anforderungen an eine höhere Programmiersprache für integrierte 

Systeme galten. Dieses Ergebnis war als nicht selbstverständlich vorauszusetzen ge­

wesen. 
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1.3 Untersuchung von Kandidatensprachen 

Da nicht von vornherein feststand, daß eine neue Sprache entwickelt werden mußte, 

wurden im laufe des Jahres 1976 23 existierende Programmiersprachen daraufhin 

untersucht, wie weit sie den aufgestellten technischen Anforderungen genügten. Diese 

Vergleiche wurden nach von der HOLWG aufgestellten Richtlinien von insgesamt 16 

Auftragnehmern durchgeführt. 

Folgende Sprachen wurden betrachtet: 

ALGOL 60 

ALGOL 68 

CMS-2 

COBOL 

CORAL 66 

CS-4 

EL-1 

EUCLID 

FORTRAN 

HAL/S 

J3B 

J 73 

LIS 

LTR 

MORAL 

PASCAL 

PDL 2 

PEARL 

PL/I 

RTL/2 

SIMULA 67 

SPL/1 

TACPOL 

Jede Sprache wurde von mindestens zwei Bewertu ngsgruppen begutachtet, die Er­

gebnisse von einem Ausschuss aufbereitet und der HOLWG vorgelegt. Das gesamte 

während der Auswertung entstandene Mater ial ist auf Mikrofilm erhältlich [6]. 
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Wesentliche Ergebnisse waren: 

Keine der Kandidatensprachen erfüllte die technischen Anforderungen in ausrei­

chendem Maß, um als "die" endgültige einheitliche Programmiersprache akzeptiert 

werden zu können. 

Aus der Tatsache, daß mehrere der Kandidatensprachen bereits eine Anzahl der 

aufgestellten Anforderungen erfüllten, ergab sich, daß das Problem im Rahmen des 

Standes der Technik lösbar war, d.h. ein geeigneter Sprachentwurf erschien mach­

bar. 

Eine vollständige Neuentwicklung erschien deshalb nicht als notwendig, weil alle 

diejenigen Sprachen, die die technischen Anforderungen zu einem großen Teil erfüll­

ten, abgeleitet waren von ALGOL 68, PASCAL oder PL/1. Diese drei Sprachen 

wurden deshalb als Basissprachen für die Entwicklung der gemeinsamen Program­

miersprache vorgeschlagen. 
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1.4 Die Interim List 

In der Zwischenzeit wurde auch ein Vorhaben verwirklicht, von dem man sich . eine 

wesentliche Verbesserung der Situation. schon vor der Durchsetzung einer gemeinsamen 

Programmiersprache versprach. Es wurde eine Liste von einigen wenigen 

Programmiersprachen zusammengestellt, deren Verwendung für neu zu beginnende 

Projekte integrierter Rechnersysteme vorgeschrieben werden konnte. 

Kriterien für die Auswahl dieser Sprachen waren vor allem, daß sie 

ihre Eignung durch praktischen Einsatz bei mindestens einem der Armeeteile 

bewiesen haben 

und 

durch ein geeignetes Definitionsdokument festgelegt sein 

mußten. Aufnahme in die aufzustellende Liste setzte außerdem die Verpflichtung zur 

weiteren Betreuung der Sprache seitens der sie nominierenden Organ isation voraus. 

Diese Voraussetzungen waren bei folgenden, im VS-Verteipigungsbereich bereits seit 

einiger Zeit verwendeten Sprachen erfüllt: 

CMS-2 

SPL-1 

TACPOL 

J 3 JOVIAL 

J 73 JOVIAL 

ANSI COBOL 

ANSI FORTRAN 

Diese Sprachen wurden in einer Anweisung 5000.31 [7 ] als verbindlich für den Einsatz 

bei neu zu beginnenen Projekten erklärt, "falls nicht nachgew iesen werden kann, daß 

die Verwendung einer anderen Sprache über die Lebensdauer des Systems gesehen 

kostenwirksamer ist" (cit. 5000.31 ). 
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1.5 Der bisherige Verlauf der Sprachentwicklung 

Nach der Formulierung eines Projektplanes wurde dann im April 1977 die 

Sprachentwicklung international ausgeschrieben. Von den 18 eingegangenen 

Angeboten wurden folgende vier ausgewählt: 

Cl 1-Honeywell-Bull (Paris, Minneapolis) 

lntermetrics (Nähe Boston) 

Softech (Nähe Boston) 

Stanford Research International (Nähe San Francisco). 

Alle vier erfolgreichen Anbieter schlugen eine Sprachentwicklung auf der Basis von 

PASCAL vor. Die Arbeiten begannen im August 1977 und die Ergebnisse der ersten 

Phase, die vorläufigen Sprachentwürfe, wurden termingerecht im Februar 1978 

ausgel iefert. 

Diese Sprachentwürfe wurden dann einem Bewertungsverfahren unterzogen, an dem 

über 70 Teams und Einzelpersonen aus aller Welt teilnahmen. Um die Urheberschaft 

der einzelnen Sprachen geheimhalten zu können, wurden die Sprachen durch einen 

Farbcode (grün, rot, blau, gelb) identifiziert. Die Ergebnisse dieser Einzelbewertungen 

wu rden durch eine Expertengruppe ausgewertet und mit Empfehlungen der HOLWG 

zur Entscheidung vorgelegt. Es wurde beschlossen, die Sprachentwürfe "grün" 

(Cl 1-Honeywell-Bull) und "rot'' (1 ntermetrics) weiterentwickeln zu lassen. 

Eine Kurzdarstellung des Auswerteverfahrens mit statistischen Daten findet sich in [8]. 

Eine Zusammenfassung des Projektverlaufes bis zur Vergabe der Entwicklungsaufträge 

gibt ein Vortrag von Lt. Col. W.A. Whitaker, dessen Manuskript als Anhang 4 beigefügt 

ist. Ein Gesamtbericht über die Auswertung ist auf Mikrofilm erhältlich [9]. Er enthält 

folgendes Material: 

Anleitung zur Durchführung der Analyse"revised 1 RONMAN, alle vier Sprachvorschläge 

der Phase 1, alle Einzelana lysen, die nach Sachgebieten umgeordneten Analysen, und 

das "STEELMAN"-Dokument. 

Anschließend an d iese Auswertungsphase begann im April 1978 die zweite Phase der 

Sprachentwicklung, d ie Feindefinition, die mit der Vorlage der vorläufigen 

vollständigen Sprachbeschreibung im März 1979 beendet sein soll. 
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1.6 Weitere Planungen 

Während der zweiten Phase der Sprachentwicklung werden durch Vertreter der 

HOLWG in vierteljährlichen Abständen Fortschrittskontrollen bei den Auftragnehmern 

durchgeführt, deren Ergebnisse allerdings aus wettbewerbsrechtlichen Gründen 

vertraulich behandelt werden müssen. Bei der zweiten derartigen Veranstaltung im 

November 1978 werden auch Vertreter ausgewählter Bewertungsteams hinzugezogen 

werden. 

Im April 1979 soll dann die Entscheidung für eine der beiden in der zweiten Phase 

entwickelten Sprachen fallen. Daran wird sich bis Dezember 1979 eine Phase 

eingehender Tests anschließen, während der auch noch evtl. notwendige 

Verfeinerungen vorgenommen werden sollen. Auch an dieser Phase sollen ausgewählte 

internationale Teams beteiligt werden. Zur Unterstützung dieser Arbeiten sollen im 

April 1979 auch Testübersetzer für die in der zweiten Phase entwickelten Sprachen auf 

dem Arpanetz verfügbar sein. 

Gleichzeitig soll mit der Erstellung der ersten Produktionscompiler begonnen werden, 

und es wird erwartet, daß bis Mitte 1980 zumindest einer zur Verfügung stehen wird. 

Im Oktober 1978 wird mit der Vorbereitung von Kursmaterial begonnen werden, um 

den Beginn von Ausbildungskursen im Frühjahr 1979 zu ermöglichen. Auch die 

organisatorischen Vorbereitungen für eine Betreuungsstelle werden schon im 

Herbst 1978 anlaufen, damit diese Stelle im Frühjahr 1980 ihre Arbeit aufnehmen 
kann. 



-14-

DORNIER 
Dornier System GmbH 

2. BEGLEITENDE AKTIVITÄTEN 

2.1 Die Softwareumgebung 

Das Sprachentwicklungsprojekt sollte von vornherein nicht als isolierte Aktivität 

gesehen werden, sondern eingebettet in allgemeine Bemühungen, die 

Softwareproduktion auf dem US-Verteidigungssektor insgesamt zu konsolidieren und 

damit schließlich zu rationalisieren und zu verbilligen. Es war deshalb von Anfang an 

beabsichtigt, die Anwendung der Sprache durch entsprechende Softwarewerkzeuge zu 

unterstützen. Außerdem sollten Organisationen geschaffen werden, die sowohl 

Kontrolle über die Sprache selbst ausüben, als auch eine Qualitätsprüfung der erstellten 

Compiler vornehmen und Anwenderberatung vornehmen könnten. Entsprechende 

Maßnahmen sind deshalb bereits in den technischen Anforderungen an die Sprache 

angedeutet (vergl. Kap. 13 des "STE E LMAN"-Dokuments). 

Es ist nun beabsichtigt, eine Reihe von Dokumenten zu entwickeln, die ähnlich wie die 

STRAWMAN-STEELMAN-Serie eine Reihe immer weiter konsolidierter 

Anforderungen an Organisationen und Softwareumgebung beschreiben sollen. 

Als Vorbereitung dazu begannen bereits 1977 Arbeiten an der Definition der 

Anforderungen an Betreuungsorganisationen und Softwareumgebung. Zwei 

Unterauftragnehmer fertigten unter der technischen Aufsicht eines Vertreters der 

US-Marine Vorstudien an, die im Januar, bzw. April 1978 ausgeliefert wurden. Diese 

Studien dienten als Basis für die Erstellung eines Dokumentes, das, ähnlich wie 

'STRAWMAN' für die Sprache, die Diskussion über die Eigenschaften der 

Softwareumgebung auf breiter Basis eröffnen soll. 

Nachdem aber auf diesem Gebiet an mehreren Stellen Neuland betreten werden mußte 

und sollte, erschien es nützlich und notwendig, gleich zu Beginn im Rahmen eines 

Workshop die Meinung von Fachleuten zu den Themen Softwarewerkzeuge und 

Sprachbetreuung einzuho len. Dieses wurde im Juni 1978 in lrvine, Universität von 

Kalifornien, abgehalten. Die Ergebnisse sollen noch im laufe des Jahres 1978 

veröffentlicht werden. 

Im folgenden soll eine sehr kurze und deshalb vielleicht etwas schlagwortartige 

Zusammenfassung der als besonders wichtig erkannten Problemgebiete gegeben 

werden. 
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Die größten Schwierigkeiten treten bei Entwurf und Wartung von Software auf 

Die Wartung und laufende Anpassung verschlingt einen noch höheren Anteil der 

Lebensdauerkosten eines Systems als bisher schon angenommen, nämlich bis zu 95 %. 

Die im Verteidigungsbereich (speziell bei Wartungsstellen) und bei 

forschungsorientierten Institutionen jeweils angewandte Softwaretechnologie klafft 

um Jahre, wenn nicht um eine Generation auseinander. Dagegen unterscheiden sich 

die zu lösenden Probleme kaum in ihrer Komplexität. 

Man verspricht sich sehr viel von Rechnerunterstützung bei Problemanalyse, 

Programmerstellung, und Test. Allerdings erfordern die bisher erprobten Methoden 

erhebliche Rechnerkapazität. 

Programmverifikation auf formaler Basis hat noch nicht den technischen Stand 

erreicht, der ihren praktischen Einsatz auf breiter Basis ermöglichen würde. 

Verifikation und Test von Compilern werden von den bisher damit befaßten 

Dienststellen nach ganz verschiedenen Methoden durchgeführt, die äußerst stark von 

den jeweiligen pol itischen Gegebenheiten abhängen. Keine Methode hat bisher alle 

Anforderungen erfüllen können. 

Eine Benutzerorganisation ist notwendig. 

Der Hauptnutzen des Workshop für die laufende Arbeit bestand jedoch in den 

zahlreichen Detailbemerkungen zu den einzelnen Kapiteln des ursprünglichen Pap ieres 

zur Softwareumgebung. Dieses wurde daraufhin nach längeren Diskussionen vollständig 
überarbeitet und neu gegliedert. 

Erste Bemerkungen, die seitens der HOLWG und über das· ARPA-Netz (siehe 2.6) 

eingingen, wurden eingearbeitet und das resultierende Dokument, "Pebbleman", im 

Juli 1978 zur Diskussion und Kritik versandt. Es ist als Anhang 5 beigefügt. 

Zur Zeit werden Möglichkeiten zur Verwirklichung der da rin skizzierten Konzepte und 

die organisatorischen Voraussetzungen für die Einrichtung der erwähnten 

Betreuungsorganisationen geprüft. 

Es ist beabsichtigt, zur Jahreswende 1978/79 eine zweite Version dieses Dokumentes 

zu erstellen. Erste Modellimplementat ionen notwendiger Softwarewerkzeuge sind ab 
Mitte 1979 geplant. 
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2.2 'TARTAN' - ein Sprachmodell 

Da einer der wesentlichsten Kritikpunkte bei der Auswertung der Sprachentwürfe aus 

Stufe 1 ihre Komplexität und ihr Umfang gewesen waren, wurde im Auftrag der 

DARPA am "Department of Computer Science" der Carnegie-Mellon Universität in 

Pittsburgh eine Studie durchgeführt, mit dem Ziel, zu prüfen, mit welchem Minimalauf­

wand sich die Forderungen von "revised" 1 RONMAN erfüllen ließen. 

Das Ergebnis dieser Studie war das im Juni 1978 veröffentlichte Sprachmodell 

'TARTAN'. Das "reference manual", das 22 Seiten (!) umfaßt und ein Heft mit Be-
.. ·-

merkungen und Beispielen sind als Anhänge 6 und 7 beigefügt. 

Oie Verfasser dieses Sprachentwurfs konnten auf die Sprachvorschläge aus Phase 1, 

sowie auf eigene Erfahrungen mitder Entwicklung von ALPHARD [10,11] und BLISS 

aufbauen. Das Hauptgewicht beim Entwurf wurde auf das Typkonzept, generierende 

Definitionen und das Modulkonzept gelegt. 

Die Ergebnisse der Studie wurden den beiden Auftragnehmern der Phase 11 zur Verfü­

gung gestellt. 
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2.3 Testprobleme 

Im Juni 1978 wurde den Auftragnehmern der Phase 11 ein Satz Beispielprogramme 

zugestellt, an Hand derer die Flexibilität und Problemgerechtheit der entstehenden 

Programmiersprache demonstriert werden sollen. Die Beispiele sind hauptsächlich dem 

Bereich der Systemprogrammierung entnommen. Es ist nicht beabsichtigt, die entste­

henden Programme irgendwelchen statistischen Auswerteverfahren zu unterwerfen. Die 

vollständigen Testprobleme sind in Anhang 8 enthalten. 

Folgende Beispiele wurden ausgewählt: 

1 Erkennung asynchroner Unterbrechungen durch Abfrage 

2 Unterbrechungsbehandlung unter Prioritäten 

3 Ein kleines Dateibehandlungspaket 

4 Darstellung bewegter Bilder 

5 Ein Schutzmodul für eine Datenbasis 

6 Ein Beispiel aus der Prozessteuerung 

7 Adaptiver Wegeschaltalgorhythmus für einen Datenübertragungsknoten 

8 Allgemeiner Zeitsteuerungsmodul 

9 Parallele Ausgabe im verteilten System 

10 Entpacken und Konvertieren von Eingabedaten. 
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2.4 Untersuchungen zur Ein-/Ausgabe 

Unter der fachlichen Aufsicht eines Mitarbeiters des "Electronics Command" (Fort 

Monmouth) der US-Armee wurden im Rahmen einer Doktorarbeit Möglichkeiten zur 

Klassifizierung maschinenunabhängiger Primitivfunktionen der Ein-/Ausgabe unter· 

sucht [12). Grundlage waren einschlägige Arbeiten von Wirth (MODULA) und Hoare, 

sowie die Sprachentwürfe aus Phase 1. 

Es wird versucht, verschiedene Ein-/Ausgabevorgänge nach ihrer inneren Funktion zu 

klassifizieren, etwa "Status-" oder "Unterbrechungsgesteuert" mit den jeweiligen Un· 
·-· ·- . 

terklassen. Die für die einzelnen Klassen relevanten Operationen und Steuerparameter 

werden identifiziert, und dazugehörige Betriebssystemtechniken und -bausteine unter­

sucht. Außerdem werden Methoden zur Abbildung von Datenstrukturen auf Maschi· 

nendarstellung betrachtet. 

Die Arbeit kann wohl am besten als der Versuch charakterisiert werden, die lmplemen· 

tation von E/A-Funktionen so durchzustrukturieren, daß höhere Funktionen (wie z.B. 

die in PEARL) in maschinenunabhängiger Weise auf die in der fertigen DoD-Sprache 

vorgesehenen Primitivfunktionen abgebildet werden können. 
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2.5 1 mplementationsvorbereitu ngen 

Nachdem bereits einige Dienststellen innerhalb des Verteidigungsbereiches an einer 

Verwendung der zukünftigen gemeinsamen Sprache interessiert sind, werden Vorunter­

suchungen betrieben, durch die festgestellt werden soll, an welchen Stellen möglicher­

weise 1 mplementationsschwierigkeiten zu erwarten und welche Technologien im Ein­

zelfall am erfolgversprechendsten sind. 

So wird z.B. die Verwendbarkeit von "secure UNIX" als unterliegendem Betriebs­

system geprüft. Verschiedene Zwischensprachtypen werden auf ihre Eignung hin unter­

sucht, als Grundlage für einen standardisierten, portablen Compiler zu dienen. Hierbei 

spielen besonders Effizienz- und Optimierungsaspekte eine Rolle. Unter diesem Ge­

sichtspunkt müssen auch die Forschungen an der Carnegie-Mellon Universität gesehen 

werden, die sich z.B. mit Messungen der statischen Codeeffizienz von Compilern und 

mit der Entwicklung eines generierbaren, maschinenunabhängigen, portablen Compilers 

befassen. Um verbessertes statistisches Material zu dem Verfahren über Effizienz-„ 
messungen zu gewinnen, soll es in nächster Zeit auf existierende Compiler im Verteidi-

gungsbereich angewandt werden. Außerdem wurde eine spezielle Untersuchung über 

Fragen der Softwarewartung begonnen. 
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2.6 Das ARPA - Netz 

Dieser mehrfach erwähnte Begriff steht für ein Rechnernetzwerk von beträchtlichen 

Ausmaßen, das in den Jahren 1969 bis 1972 unter Förderung der ARPA aufgebaut und 

seitdem für eine Vielzahl von Forschungs- und Entwicklungsvorhaben benutzt wurde. 

Es umfaßt über 125 Rechner, an mehr als 67 über die ganzen USA verteilten Stellen, 

die untereinander durch kommerzielle Telefonleitungen verbunden sind. Über Wahllei­

tungen und Datensammelstationen kann praktisch eine unbegrenzte Anzahl von schrei­

benden Terminals angeschlossen werden. Die durchschnittliche Belastung während der 

normalen Arbeitszeit schwankt zwischen 500 und 700 Benutzern. Über Satellitenver­

bindungen sind Außenstationen in Europa und Hawaii angeschlossen. 

Auf diesem Rechnernetz steht eine breite Palette von Softwarewerkzeugen vom Simu­

lator für CPU s über Compiler für praktisch alle wesentlichen Programmiersprachen bis 

in zum Nachrichtenübermittlungssystem, das mit einem Datenbankmechanismus ge­

koppelt ist, zur Verfügung. Da über das ARPA-Netz viele der an der Sprachentwicklung 

beteiligten Stellen miteinander verbunden sind, hat es sich als eine große Hilfe bei der 

Vorbereitung von Dokumenten und Sitzungen oder bei der Durchführung von Auswer­

t ungen erwiesen. 

Wenn die Arbeit am Terminal für einen Techniker zunächst auch sehr gewöhnungs­

bedürft ig ist und die Aneignung einiger neuer Arbeitsgewohnheiten nötig macht, so 

erhöht sich doch die Effizienz von Teamarbeit durch die Verwendung eines solchen 

speichernden Kommunikationsmittels außerordentlich. 
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3. DIE SPRACHENTWICKLUNG DES US-DEPT. OF. DEF. 

IM VERGLEICH MIT PEARL 

3.1 · Zielsetzung 

In diesem Abschnitt soll der Versuch eines Vergleiches zwischen PEARL und der 

zukünftigen gemeinsamen Programmiersprache des US-Verteidigungsbereiches gemacht 

werden. Dies liegt nahe, da beide Sprachen sich in ihrem Hauptanwendungsgebiet, der 

Programmierung von Realzeitsystemen, überlappen. Leider sind jedoch zur Zeit einem 

solchen Vergleich bezüglich seines Grades an Detailliertheit aus mehreren Gründen enge 

Grenzen gesetzt: 

Die Sprachentwürfe der Phase 1 sind zu großen Teilen als überholt zu betrachten, da 

während der Bewertungsphase Änderungsvorschläge und zum Teil berechtigte Kritik 

in so großem Umfang eingingen, daß die Sprachen vermutlich erhebliche Verände­

rungen erfahren werden, wenn auch nur ein kleiner Teil der Vorschläge berücksich­

tigt wird. 

Die technischen Anforderungen erfuhren beim Übergang von "revised IRONMAN" 

zum "STEELMAN"-Dokument erhebliche Änderungen. Manche davon, wie z.B. die. 

das Tasking-Modell betreffenden, waren sogar grundsätzlicher Art. 

Über den derzeitigen Zustand der Sprachentwürfe wird aus Wettbewerbsgründen 

selbstverständlich Stillschweigen bewahrt. 

Unter all diesen Einschränkungen kann aber doch versucht werden, ein ige generelle 

Unterschiede zu identifizieren. 

Zunächst sind Entstehungsgeschichte und Zielsetzung der beiden Sprachen völlig unter­

schiedlich. PEAR L wurde auf Initiative von Anwendern in enger Zusammenarbeit 

zwischen Herstellern, Softwarehäusern und Anwendern entwickelt. Ein Ziel dabei war, 

die Kommunikationslücke zwischen dem Spezialisten mit dem Wissen um den Prozeß 

und dem Datenverarbeitungsspezialisten dadurch zu schließen, daß dem Prozeßent­

wickler, sei es nun der Ingenieur, der Physiker oder der Chemiker, ein Mittel in die 
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Hand gegeben wird, das ihm erlaubt, einen großen Teil der anfallenden Programmier­

aufgaben selbst zu erledigen. Dazu war ein Instrumentarium nötig, da es gestattete, 

weitestgehend von speziellen Eigenschaften des Rechnersystems einschließlich der 1 n­

terfacehardware zu abstrahieren. Dafür wurde an manchen Stellen eine gewisse Inflexi­

bilität in Kauf genommen. Außerdem war es notwendig, dem "gelegentlich Program­

mierer" einen gewissen Komfort zu bieten, der natürlich manchmal mit entsprechen­

dem Implementationsaufwand erkauft werden muß. 

Die Sprachentwicklung des US-Dept. of Def. war dagegen von vornherein für den rein 

professionellen Programmierer gedacht. Sie soll speziell auch für die Erstellung von 

großen militärischen Realzeitsystemen eingesetzt werden können, bei denen Fragen der 

Programmzuverlässigkeit und der Verteilbarkeit des Arbeitsaufwandes eine große Rolle 

spielen. Außerdem war es wegen der großen Verschiedenartigkeit der Anwendungen 

nötig, besonders ausgefeilte Anpassungsmöglichkeiten an Charakteristika des Rechners 

und der lnterfacehardware zu fordern. Auch spielen Effizienzfragen bei militärischen 

Anwendungen mit ihren manchmal drastischen physikalischen Einschränkungen eine 

größere Rolle als beim industriellen oder gar labormäßigen Rechnereinsatz. 
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3.2 Technische Gesichtspunkte 

Es ist außerdem möglich, aus den im 'STEELMAN'-Dokument zusammengestellten 

Anforderungen einige technische Unterschiede zu PEAR L abzuleiten, die die zukünf­

tige Programmiersprache für den Bereich des US-Dod mit sehr großer Wahr­

scheinlichkeit aufweisen wird : 

Zunächst wird sie 'kleiner' sein als Full-PEAR L, da eines der Hauptprinzipien beim 

Entwurf ist, möglichst keinen Mechanismus in die Sprache einzubauen, der durch 

andere, bereits enthaltene Mechanismen dargestellt werden kann. Natürlich setzen 

Handlichkeit und Anwendbarkeit der Sprache der strengen Durchsetzung dieses 

Prinzips gewisse Grenzen. 

Aus diesem Prinzip ergibt sich aber, daß die Sprache wohl kaum höhere Ein-/ Ausgabe­

anweisungen wie in PEAR L, ja selbst kaum solche wie in herkömmlichen Programmier­

sprachen enthalten wird. Vielmehr sollen benutzerorientierte Ein-/Ausgabefunktionen 

mit Hilfe der vorzusehenden Expansionsmechanismen aus einigen wenigen primitiven 

Operationen aufgebaut und dem Benutzer in (z.T. standardisierten) Anwenderbiblio­

theken zur Verfügung gestellt werden. Für den Benutzer soll dann aber ihr Aufruf nicht 

von dem in die Sprache eingebauter Funktionen unterscheidbar sein. Die allgemeine 

Form häufig gebrachter Ein-/ Ausgabefunktionen soll aber schon in der Sprachbeschrei­

bung festgelegt werden. 

Auf leistungsfähige Mechanismen zur Definition von Typen, Operatoren, Modu len und 

Abstraktionen wird deshalb bei der Entwicklung der Sprache größtes Augenmerk ver­

wandt werden müssen. Man darf wohl sagen, daß der Erfolg der Sprache in der Praxis 

mit der Qualität, Handlichkeit und Benutzerfreundlichkeit dieser Mechan ismen stehen 

oder fallen wird. 

Was die angebotenen Datentypen und darauf anwendbaren Operationen, das Prozedur­

konzept und die Kontrollstrukturen angeht, so werden Unterschiede zu PEARL nur im 

Detail feststellbar und hauptsächlich durch das strenger eingehaltene Typkonzept be­

dingt sein. 
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Die im "STEELMAN" formulierten Anforderungen an die Konstruktionen zur Steue­

rung paralleler Prozesse würden von PEAR L voll erfüllt werden, jedoch bleibt abzu­

warten, wie diese Anforderungen von den Entwerfern ausgelegt werden, bevor irgend­

ein Vergleich gezogen werden kann. Bei den Synchronisationsmechanismen ist -

entsprechend dem Stand der wissenschaftlichen Diskussion auf diesem Gebiet - alles 

offen. 

Die Mechanismen zur Behandlung von Fehlern und Ausnahmereaktionen werden in der 

"DoD-Sprache" voraussichtlich dem neuesten Stand der Technik entsprechen. Ein wei­

teres relativ neues Sprachmittel werden die "assertions" sein, die es gestatten, selbst­

kontrollierende Algorithmen zu schreiben. Ihre Semantik ist jedoch in PEAR L durch 

entsprechende Verwendung des "SIGNAL"-Mechanismus nachbildbar. 

Sprachmittel zur Beschreibung der statischen Systemkonfiguration außerhalb des ei­

gentlichen Rechners, wie sie der Systemteil in PEAR L zur Verfügung stellt, wird es 

nicht geben. Dafür wird es möglich sein, logische Datenstrukturen auf physikalische 

Speicherelemente im Rechner abzubilden. Ein Teil der Aufgaben des Systemteils, wie 

z.B. Bereitstellung von Steuerinformation für Betriebssystemgeneratoren oder Opti­

mierungsparametern für Compiler, wird durch andere Sprachelemente übernommen. So 

ist z.B. an bedingte Übersetzung gedacht. Ein Grundprinzip, nämlich Trennung von 

maschinenabhängiger und maschinenunabhängiger Information, soll jedoch, ähnlich 

wie in PEARL, gelten. 
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A s lnng CI S th ere 11• ere 110 111ac/11'11 es. pro1:rammi11g was 110 probfom at 
all: '"" "" 11 '<' /111d a fe11• ll'cah comp11ters. programmi11J! b1?ca111e a mild 
pmhl<'m . am/ 1w 1<" that we haue gil(Cllltic COlllJJll/ers, progra111mi11K has be· 
cum e an equally KigC1 n /ic JJrublem. !11 this sense the electro11ic illdustry 
has 1wt soluc" { a si11gl1? p robll!m. it has 011/y created them-il has created 
t lw prob/em of 11 si11 g i t s prod11 cts. . 

E. W. Dijkstra 
Turing Awurd Lccture 

As has often been noted. the past 25 years of 
digital computing have been characterized by 
striking increases in compuLing spced, memory 
capacity, and hardware reliabilitv, with simultaneous 
decrcases in power consumption and hardware 
cost. What is perhaps not so widely recognized is 
that thcse trcnds have lcd to inflated expcctations 
for automating not only thosc tasks that had been 
previou sly performed manually, but also for auto­
mating somc tasks that hadn 't even been attemptcd 
beforc. !\1uch of the burden of these incrcased 
cxpectations has fallen on software. 

Within the Dcpartment of Defense, systcms 
requircmcnts for softwarc have bccn expanded, as 
cxemplified hy automation of control functions in 
systcms such as Tacfire, thc Safeguard ballistic 
missilc defcnse system, the Airbornc Warnin" and 
Control Systc11:· thc Trident ballistic missil~ sys 
tem, and the Mmutcman systcm . 
. Costs. Studies conductecl in 1973 ancl 197,1 pro­

v1de some quantita t ive data on the sizc and makeup 
of thc software prohlem. "' Althou~h liL Lle infor­
mation is availahle, thesc studics 1 ~ivc somc 
conscrva tive estimates that provide reli r. · ,le lowcr 

bounds on the cost of software in the DoD. For 
example, in · 1973 digital computer software costs 
were estimated at ~3 billion to $3.5 billion annuall'I 
and were growing in dollars and in proportion t~ 
other computcr costs. An additional $2 to $3 billion 
were spent in ehe same year for the support and 
operation of comput.er systems. These s tudies also 
showed that the greatcst software problerns in th„ 
DoD, as measured by their cost, are associated 
with so-callcd embedded computer systems (Fig­
ure 1), and that the majority of costs are incurred 
in software maintenance rather than development.. 

The rising cost of compuler resources has rcsulted 
in increased a tt ention b:.· the highest levels of man· 
agement, and a number of tcchnical and manageri:J 
procedures have becn undertaken. ' Initial guidance 
was provided by DoD Directive 5000.29, Manage· 
ment of Computer Re~~ources in Major Defcnse 
Systems.• 

At one time DoD was a major innova tor and cor.­
sumer of thc most sophisticatcd compu ter hnrdware, 
but now it represents only a small fraction of the 
föta l market. In software, tha t unique position still 
remains: a significant fract ion of the total software 
industry is devotecl to DoD-related programs-nnd 
this is truc in even !arger proportion for the more 
advanced and demnnd ing systems. Thus. as it once 
had for hardware technology, DoD now has the 
opportunity and responsibility to ensure that its 
influencc on software ted111ology is beneficial. 

Common lnn!!Ull!!C cffort. One of thc major tasks 
undertuken by DoD to alleviate software problems 

24 001 :-i-91 <;~11 ~ •o:u: . „ou 2 . 1 son .1s , •. 1978 ll-: L·: ~; COMPUrEi=l 





has heen thc common progrnmming languagc cffort. 
This effort is based on the idca that many of the 
support costs for software increase with the number 
of languages, und that languages must be suited to 
their applications. Furthermore, with a common 
progrumming language, a software development 
and maintenance environment could be built, pro­
viding centralized support und common libraries, 
that could be shared by severul projects working 
in the same application area. Ideally, support soft­
ware, including trnnslators, could be developed in 
the source language so that any existing tools 
could be made available on a new machine at the 
cost of developing a new code generator for a 
standard compiler. 

Embeclded comput.cr systems. Because the major­
ity of software costs in the DoD are associated 
with embedded computer systems, the common 
language effort is concerned primarily with embed­
ded computer software. The term "emhedded com­
puter system" was first used in 1974' to denote 
one that is logically incorporated in a !arger 
system-e.g., an electromechanical device, a tactical 
system, a ship. an aircraft, or a communicaLions 
systern-whose prirnary function is not computation. 
1 ncluded 

0

in the concept of embeddecl computer 
systems is the support softwarrt necessary to design, 
develop, and maintain them. Computers used 
primarily for data processing. scientific, or research 
applications are not normally included in the 
emhedderl computcr systems category. 

Embcdded computer software often exhibits 
characteristics that are strikingly different from 
those of other computer applications. The programs 
are frequently !arge (50,000 to 100,000 lines of 
code) und long-lived (10 to 15 years). Personncl 
turnover is rapid, Lypically two years . Outputs are 
not just data, but also control signals. Change is 
continuous because of evolving system require­
ments-annual revisions are often of the same 
magnitude as the original development. 

. Mission rclntionships. Software requirements vary 
from system to system depending upon the mission. 
The relative importance of execution efficiency, mem­
ory utilization, program modifiability, rellability, and 
program production time vary widely among appli­
cations and among components of a single system. 
l\fony embedded computer applications require soft­
ware that will continue to opcrate in the presence of 
faults, whether the faults are in the computer hard­
ware, input data, operator procedures, or the soft­
ware. 

At least 200 models of computers are used in em­
bedded computer systems at DoD. In many appli­
cations, the computers must be installed in configu­
rations that are incompatible with general-purpose 
installations. For example, the applications may re­
quire monitoring of sensors, control of equiprnent, 
display, or operator input processing. They must in-" 
terface special periphernl equipment like radar, real­
time clocks, and analog devices. Software must some-
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times be able to respond at periodic (real time) inter­
vals, to service interrupts with.in limited times. and 
to predict computation times. The tim_e intervals 
vary from mlcroseconds in device interface handling, 
through milliseconds in sensor m1mitoring, and 
seconds in control applications, to days in report 
generation. 

Special-purpose executive programs must be de­
velope<l for many applications that ca11not afford the 
overhead (and do not require the generality) of gen­
eral-purpose operating system:>. Systems program-. 
mlng capability is also needed to develop and main­
tain support software, including translators, software 
development tools, and testing aids, as weil as 
their host operating systems. 

In many applications, including con:man<l and con­
trol, training, and softwarc developmcnt, it is neces­
sary to access, manipulate, and <lisplay !arge quanti­
ties of data. Much of this data is .symholic or textual 
rather than numcric, and must be organizcd in an 
orderly and accessible fashlon. Memory space rather 
than execution time is often the critica\ resource. 
On thc o~her hand, a substantiul numeric processing 
capahility may still be essential, especially in simula­
tion. sensor processing, and equipment control. 

Sofüvnre problem·s. Difficulties with embedded 
computer software are not atypical. Software prob­
lems that require or are susceptible to technical 
solution arise primarily from the nonsuitability of 
existing lani,,ruages for embedded computer applica­
tion:::, from inadequate tools for softwarc develop­
mcnt :md maint.enancc, and from insufficient con­
cern :"11r maintenance during software development. 
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Ot.hcrs, listcd below, suggest management solutions 
in conjunction with technology. 

Software dcvelopmcnt and maintenance are con· 
strnined by thc nvailability of dollars, development 
time, machinc resources, competent personnel, and 
useful programming tools. As with any activity in 
which expectations exceed the available capability, 
something must give. In this case, th!) symptoms 
appear in the form of software that is nonrespon· 
sive to user needs, unreliable, excessively expensive, 
untimely, inflexible, difficult to maintain, and not 
reusable. 

Much has been said about the problems of soft· 
ware reliability. DoD software has all the common 
symploms-occasional system crashes, inability to 
deal with user errors and ill-formcd data, and errors 
which occur so frequcntly in a complex program 
from an upparently minor change. Software relia· 
bility, howcver, is purticularly important in the 
military environment where errors can have severe 
consequences. 

One little-recognized problem is that few useful 
software tools are available to the embedded soft· 
ware de\'eloper and maintainer. One reason is that 
resource limitations on hardware have Ied to an 
over-reliance on assembly language programming. 
There has been little incentive for individual projects 
to expend the effort and resources necessary to 
provide facilities that would be generally useful, 
especially whe:1 there are few, if any, other projccts 
using the same programming language. This may 
also account for the lack of off-the-shelf software. 

Finally, there is little cost accountability . This 
situation has been created by the lack of visibility 
of software to management, inaccessibility of soft­
ware costs, and failure to give software the same 
scrutiny as hardware. 

At least 450 general-purpose programming languag· 
es and lincompatible) dialects are used in DoD embcd­
dcd computer applications-and none is widely used. 
With few exceptions the only common (i.e„ widely­
used) languages are Cobol (in data processing ap· 
plications) and Fortran (in scientific and engineer· 
ing applications). The remaining languages are 
used almost exclusively in embedded computer 
applications. 

Programming languages 

The present diversity of programming languages 
used in embedded computer systems did not cause 
mos t of the problems-nor would a common pro­
gramming language cause them to disappear. Never· 
theless, the existing language situation unquestion­
ably aggravates them and inhibits some potential 
solutions. 

The programming language is the central element 
in the design, development, and maintenance of soft­
ware. lt is the one software component that pervades 
all software component ac tivity. lt providcs the 
building blocks from which software is com Lructed. 

Together with its implementation (as a compiler), 
it acts as the finol arbitrator for the behavior of np· 
plication software arid associates an interpretation 
with each program. The programming language is a 
major con~ern when developing software toob and 
aids, when commu.nic11ting techniques and algorithm3, 
when writing manuals, and when training personnel. 

Ill effects. The lart~e number of prograrnming lan· 
guages and the !ack of any widcly-used lan1,."llage 
have had many iil-effects: 

Excessiue cost. There is enormous duplication of 
costs for the c!esign, implementation. testing, mai.n· 
tenance, and training t,hat ·must be repeated for thc 
translators, so.ftware tools·. application software, and 
support packnges for euch languagc. 

Slow commanication. Transfer of new software 
technology to pract ical u·se is severely rctarded. 
The diversity of lanL;uagcs creates artificial bound­
aries that complicate communication, reduce under· 
standing, and lead to mutual mistrust among users. 

Scattered research. There is little research on the 
problems of software for embedded comput.er systems. 
Lack of program1ning language commonality makes 
it nearly impossible to gathcr quantitative dala about 
problems that arc unique to these appl icat.ions . 

Unnecessary r.ies to uendors. 'vVhen a language 
is unique to a single project, so must be Lhe supporl 
so(tware. In consequence, the softwure mainlcnance 
is tied to the original vendor. This tcndcncy is 
strengthened in the common situalion in which the 
translator and support tvols for the languuge are 
written in still anotl ,er language that rcmJins the 

. property of the vendor. 

Diversion from important tasks. The dcvelopment 
of a new programm:ng language for each project 
diverts energy from t".he real taste Of nccessity. pro­
jects are concerned with thcir own applirntion; their 
primary goal must be to develop the application 
software. Project pe;·sonnel may have neithcr the 
inclination, time, funds, nor expertise to develop more 
powerful or more gennrally useh1l softwarc tools that 
are needcd to support their languagc. 

Diffused expenditures. The ]arge numbcr of Jan· 
guages diffuses the available funds so that only 
the most primitive software aids can be afforded.· 
Potentially useful software tools are limited to users 
of the associatcd language and, thus, provide little 
leverage. . 

Rish in 11sing existin{f larzguages. When the 
existing languages are poorly supported (as they 
must be when t.here is no widely used language) 
and a new compiler mu~c be developed for each 
new system (as is typical in embcdded computcr 
applications), the adoption of an existing language 
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by a new project is often more risky and lcss cost 
effective (at least during development) than it is to 
clevclop a new language spccialit:ed to the applica­
Lion. 

History 

The common language effort has had a short but 
lively history. lt bcgan in 197-1 when groups in each 
of the military departments independently proposed 
the adoption of a common programming language 
for developing major defense systems. Those efforts 
included the Army "Implementation Language for 
fieal -Time Systems" study, the Navy CS-4 effort, 
and the "High Order Language Standardization 
for the Air Force" study. In January 1975 a joint 
Service program was formulated on the advice of 
the Director of Defense Research and Engineering.* 
He also instructed that no further funds be 
expended for the implementation of new program­
ming languages in major defense systems until the 
problcrn of software commonality (i.e., of insufficient 
sharing of software resourc<.>s) had been resolvcd. 0 

Working group. To coordinate the activities of 
the common language effort, a high order language 
working group was subsequcntly formed with 
official members from the Army, Navy, Air Force, 
l\farine Corps, Defense Communications Agency, 
l\ational Sccurity Agency, and Defense Advanced 
nesea rch Projccts Agency. NASA and other offices 
within DoD have also participated. A representa­
tive of the British Ministry of Defence has been 
working full time in the United States since January 
1977. The author acts as technical advisor. The 
high-order language working group is chaired by a 
represen ta tive of the Unclersecretary of Defense, 
ne~earch and Engineering. 

The working group is chartered to "investigate 
the eslablishment of a minimal number of common 
high-order cornputer programrning languages to be 
used in the development, acquisition, and support 
of computer resources embedded within Defense 
Systems."' In particular, it is to define the technical 
requirements for a common language, compare 
them with existing languages, recommend adoption 
or implementation of the necessary languages, and 
to monitor and assist any such actions. Thus, the 
working group coordinates all the activities of the 
common language effort but does not participate 
rlirectly in the design or implementation of program­
ming languages or their associated software. 

The major concerns of the common language 
effort are to reduce the number of programming 
languages and to provide a useful, well supported 
environment for those that remain. The working 
group realized ·early that it · would be irnpractical 
to convert existing programs to a common language; 

•Nnw thc lJnclcrsl'c r<•lnry of Defcn•c. llcscurch nncl F:nginccrini;, 
USflll l::. 
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hence the cornmon language effort applies only to 
new systcms. 

Interim !ist. A first step in reducing the numher 
of programming languages was to a<lnpt an interim 
!ist of approved languages. The military depart­
ments each nominated a limited number of lan­
guages. These nominations resulted in the issuance 
of DoD Instruction 5000.31." This instruction 
specifies that only approved high-order languages 
(Table 1) will be uscd to develop new defonse sys­
tem software, unless another language can be 
shown to be more cost effective ovcr the system 
Iife cycle. 

Table 1. Interim list _of approved prog1ammlng languages. 

CMS·2 
SPL-1 
Tacpol 
J3 Jovial 
J73 Jovial 
ANSI Cobol 
ANSI Fortran 

Gcnernting the rcquiremcnts. ln Lhe spring of 
1975, the working group began the process of deter­
mining the characteristics of a general-purpose 
programming language suitable for ernbedded com­
puter applications. The characteristics were to be 
given in the form of requirements \vhich would act 
as constraints on the acccptahility of a language, 
but would not dictate specific language features. 
The requirements are not a languuge specification; 
instead, they attempt to rigorously define the 
needed characteristics in a form that can be 
critically reviewed. 

STRA WMAN. Although thcre are several widely 
acceptcd general goals and criteria (such as effi­
ciency, reliability, reaclibility, si:nplicity, and imple­
mentability), they do not lend themsclves to quan­
tifiable assessment. At the opposite extreme are 
specific language features, advocated by sorne, 
which if adopted as requirements would impose 
streng constraints on the form but not necessarily 
increase the effectiveness of Lhe language. The 
arguments for or against any spcc1fic language 
feature are often applicable to a dass of features 
sharing certain properties, and they often depend 
on other characteristics of thc language. The 
requircmcnts attempt to isolate the needed prop­
erties from the features that implcment them. 
Initially, rigorous dcfinition at the level of requirc­
ments proved <lifficult, so a S'l'llAWMAN of prelirn­
inary requirements was establishcd. S'l'HAWMAN 

was widely circulated within the military depart­
ments and to a lesser extent in the academic com­
munity and inclustry. 

wonnENMAN. The reviews of S1'RAWMAN re­
sulted in inputs which were formcd into 11 fni rlv 
complet e, but still tentative, set of requi rements 
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called WOODl::Nl\lAN.9 This document cont1.1ined 
descriptions of the general (i�e .. nonquanti{hblel 
characteristics which were desired; it also coni:.:,ined 
manv other clesirable characteristics whose fcasi­
bility. practicality, and mutual compatibility had 
not been test.ed. WOODENl\lAN, too, was widely 
distributed. not onlv within the military depart­
ments but also to other government agencies, the 
compuler science research community, and industry. 
Addit.ionally, a number of technical experts outside 
the United Stntes were solicited for comments, the 
European community being especially responsive. 

TINMAN. Based on the various inputs and the 
official responses from each of the military depart­
ments. a TINMAN'"·" set of requirements was 
derived. TlNi\lAN removed former requirements for 
which there was no sound rationale, restricted 
unnecessarily general requirements, and modified 
others to be practical within existing technology. 
Each requirement in TINMAN had its own justifi­
cation. TINMAN requirements were officially ap· 
proved by the assistant secretary for research and 
development of each of the military departments 
in J anuary 1976. 

The document was circulated widely for comment, 
and in October of that year a workshop" was held 
at Comell University to cliscuss the technical issues 
that had been raised by the requirements and to 
further investigate their feasibility. 

IRONMAN. A new version of the requirements, 
called IRONMAN," was issued in January 1977. 
IRON�tAN requirements were substantially the 
same as those of TtN:.tAN, but moclified for feasibility 
and clarity and presented in an entirely different 
formal. TINMAN was discursive and organized 
around general areas of discussion. IHONM,\N, on 
the other hand, is very brief and is organizcd like 
a language d,-scription or manual. lt is essentially 
a specification wit.h which to initiate the design of 
a language. However, it is still sufficiently general 
to conslrain the structure of a language without 
dictating the details of its design. A more rccent 
revision, the Revised ll!ONMAN," was issued in 
July 1977 ancl is av�\ilable for comment. 

At each itcration, r.ommenLs were gathered and co­
ordinaLed bv 1.he :,ervices and Lheir working group 
representativr;s, 1 hen analyzed and reformulated as 
requirement.s hy the Institute for Defense Analyses. 
In all, 74 con:mallds and offices within DoD, 66 in­
dividuals outside of DoD. and 43 companies and or­
ganizations (llot ,;ounting the workshop at Cornell 
or the languar;e eva!ualion efforts) have contributed 
over 2000 pagf)S or commentary on the rcquircments. 
Not all of tlw suf{gesLions have been adopted, and 
many have lmm modified before acceptance, but 
each has been considercd in sufficient detail to dc­
termine why it should ·or should not be followed. 

Beginning with WOODENMAN, each iteration has 
reduced the number and generality of the capa­
bilities requested. As the needs of the application 
have become better undcrstood, as the applicaLion 

needs have been examined wiLh respcct to known 
language features, and as morc cmphasis has bcen 
placed on the general requirements for reliabili_ty,
mainlainability, and efficicncy, many of Lhe requ1re· 
ments havc become bolh more precise and less 
restrictive. 

Similnrity of rcquircments. Onc surpising result 
of the requirements effort has been the similarity 
of the requirements among the different application 
areas. Early in this program, it appeared that dif· 
ferent user communitics might have fundamentally 
different requirements with insufficient overlap to 
justify a common language or might have critical 
requirements that were incompatible. Such com· 
munities include avionics, guidance, command and 
control, communications, and training simulators. 
However, it has been impossible to single out differ­
ent sets of requirements for particular communities. 
Almost all the potential users had the same 
requirements, although priorities dirfcre<l. Often 
the priorities varied among segments of a task. All 
users needed input-output, real-time facilities. strong 
data typing. etc. 

Upon reflection, the technical rationale for this 
outcome was clear. The surprise was historical and 
was based on the observation that in the past the 
different commwuties have favored different language 
npproaches. Further investigation showe<l that the 
origin of this clisparity was primarily administrative 
rather than technical. This did not, however, estab· 
lish that a single language could rneet all the statcd 
requirements, only that, if a language meeting all 
requirements were found, it woulci satisfy lhe per­
ceived needs. 

Langunge evohrntion. During 1976, 23 pro�ram· 
ming languages (Table 2) were evaluated against 
the developing rcquircments. These cvaluation� 
were performed by 16 companics and crganiza• 
tions. 

Most of the languagcs received at least two 
evaluations. In several cases the designers of a 
language were included among its evaluators. The 
report" consolidating the evaluations i11cludcs the 
following findings: 

•. No languagc saLisfied the requircments so weil 
that it could be adopted as a common language. 

• Sevcral of the languagcs werc sufficicni.ly com·
patible with Lhe technical requiremenls so th:it
they could be modified to produce an acccptable
language. All of Lhe languages in lhis group are
derivatives of Algol-68, Pascal, or PL/I.

• Without exception, the evaluators found all thc
interim approved languagcs to be inappropriate as
a basis for developing a common language.

• lt was the consensus of the evaluators that it
is currently possible to producc a singlc language
that ytould mect essentially all the requirements.

COMPUTER 



Table 2. Examples of languages that were evaluated 
agalnst the technlcal requlrements. 

1. Languages currently being used for embedded computer 
appllcalions in DoD. such as 

CMS·2 
Jovial 
SPL/1 
Tacpol 

2. Languages being used for pr3cess control and similar 
applicatlons in Europe. such as 

Coral 66 
LIS 
LTR 
Pearl 
RTL/2 

3. Research languages known to satisfy speclfic requlrements. 
such as 

Euclid 
Moral 
ECL 

4 Languages widely used outside DoD, such c; s 
Cobol 
Fortran 
Pascal 
PL/ I 

The latter finding means that no technological im­
pediment to a single language was found and that it 
is likely that divergent requirt?mcnts, such as those 
for readable programs, avoidance of unnecessary com­
plexity, implementable compilcrs, semantic and syn· 
tactic consistency, machine ind.ependence, and object 
code efficiency, can be met. 

As might be expectcd. the more modern languages 
tended to satisfy thc requirement.s for reliability 
and main tainability, while languages intended for 
process control and DoD applications satisfied the 
requirements that reflect the special needs of 
embed<led computer applications. 

Design competition. Since no existing . language 
simultaneously sa t isfie<l the nreds of embedded 
computer applications, of rcliablP and maintainable 
sofLwarc, and of machinc indepPndcncc, and since 
it appeared feasible to satisfy all the requircments 
without new technology, th(· seniccs undertook a 
joint enginccring dcsign effort l.o produce a com­
mon l:mguage that would satisfy thc requirements. 
BecaL1se all the lanbruages tliat wrre idcntificd as 
appropriate for mo<lifü:atio:1 are derivatives of 
Algol-68, Pascal, or PL/I. it was deci<led that the 
common languagc also shonld he a derivative of 
lbuL not nccessarily upward cornpa tible with) one 
or those three. Several cor11pet.'.ng designs were 
pla:mcd. Most of the fifteen proposals received, 
including the four best, wE>rc bascd on Pascal. 
Th c-se four-CI 1-Honeywcll Bull, Intcrmetrics, 
Soffech, and Sill Inlerna tionnl- began parallel 
des ign cfforts in August 1977. 
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We i1 1ww ;;at we design a language . to simplify the expressio11 of an 
unbou11cied number of algorithms created by an important class of prob· 
[ems. T!•e design should be performed only when th~ alg_orithms for this 
clas.< impo.<e, or are likely to impo.~e. after some cultwat1on, cons1derable 
traffic 011 computers as weil as considerable composition time by pro· 
grammers using existing languages. The languag_e, the.~ must ~educe the 
cost of a set of transactions to pay the cost of 1ts des1gn, maintenance, 
and improueme11t. 

Alan J. Perlis 
1966 Turing Award Lccture 

The philosophy of the technical requirements 

The technical requirements for the common 
language reflect six major. goals: (1) that it be suit­
able for software in DoD embedded computer 
applications; (2) that it be appropriatc for the 
design, development, and maintenance of reliable 
software for systems that are !arge, long-lived. and 
continually undergoing change; (3) that it be suit­
able as a common language (i.e., complete, unam­
biguous, and machine-independent standards can 
be established); (4) that it will not impose execution 
costs in applications where it provides unused Qr 
unneeded generality; (5) that it provide a base 
around which a useful software development, main· 
tenance, and support environment can be built; 
and (6) that it be an example of good current 
language design practice. At the highest level, the 
requirements take the form of general design 
criteria (i.e., constraints) that are most strongly 
influenced by the first three goals. 

Application needs. Many facilities must be pro­
vided in a language that is suitable for embedded 
computer applications, but four stand out becausc 
they are not usually provided in general-purpose 
languages for data processing and scientific appli­
cations: 

User input-output i11terface specification. These 
applications use specialized input-output devices 
whose characteristics may not be known at the 
time of language design. 

E x ceptio11 ha11dli11g. lt must be pos~ihlc to writc 
programs that will automatically rccover fro ri1 
errors, whether in the hardware, softwarc, or 
data. 

Real-time control. lt must be possible to access 
real-time clocks, to control cxternal devices in real 
time, and to respond within real-time constraints. 

Parallel process i11g. lt mus t be possiblc to write 
programs that control many dcviccs in parallel, 
that share processors through intcrleaved cxecu­
tion , and whose parts may be executcd concur­
rently on multiprocessors. 
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Necds or l'nvironment. The characteristic'S of 
military software and its environment impose 
several gcmeral design criteria on a suit.able Iang11age: 

Reliability. The combinution of extremely complex 
systems with life-and-death implications may not 
be unique to t.he military, but it certain1y requires 
that language characteristics which promote the 
production of reliable software be weighted very 
highly. 

Modifiability. Perhaps as much as 90 percent of 
soft.ware costs in embcdded computer systems go 
for software maintenance. Language features that 
contribute to the maintainability of reliable and 
efficient programs should have a major impact on 
software costs. 

Efficiency. Physical limitations of military systems 
(e.g., an airplane) may impose limitations on the 
time and space for computations. In consequence, 
the efficiency of object progrnms is a legitimate 
and sometimes critical concern in military applica­
tions. Software that cannot meet these constraints 
may be. in effect, worthless. 

Needs of commonnlity. Moreover, the desire for 
a language that can be widely used throughout 
DoD adds still more design criteria: 

Machine indPpendence. With over 200 computer 
models used in DoD. the language must be suf­
ficiently machine-inclependent that it can be made 
available on a variet.y of object machines. 
Practicality. The language must be surficiently 
easy and. i;1expen�ive to implement that its wide 
use will be er.i:ouraged. 

Complete definitio11. The language must have a 
complete and unambiguous definition to assure 
that softwarf' can be shared and incompatible 
implementations can be avoided. 

Easily accessibfo support software. The avail­
ability of usP.ful and easily accessible support 
software is. cf course, the ultimate technical goal 
of lhe common language effort, but the ability 
t,o builcl such i". support environment can be 
strongly infbenced by the language character­
islics. 

General requiremcn ts. The design criteria were 
then translated into eight formal requirements 
dealing with the y,enerality, reliability, maintain­
ability, efficie:1cy, �implicity, implementability, 
machine-independencc, and formal definability of 
a suitable languagc. These eight, which constitute 
the firsL chapl•Jr <)f the technical requirements." 
are further exl'anc!ed into specific constraints on 
the design in the remaining chaptcrs. 

At.Lcmpl:s to nxpi•nd th•? general requircmcnts to 
a morc dctailcd lcvel whcre quanlifiable mcasures 
could bc applied. raised qucstions about Lhe relative 
priorit.ies of the gHneral requiremcnts and about 

how conflicts in requirements should be resolved. 
Some of the tradeoffs that were considered are 
outlined below. Others are given in references 11 
and 16. Together thcy constitute a design ph.iJosophy 
for a common languagc, a philosophy of not making 
concessions on the gcneral requirements unless 
absolutely necessary, and only after careful con· 
sideration of the implications. 

Safcty vs. efricicncy. Intuition and historical 
observation teil us that there is a tracleoff between 
safety and efficiency in programs. Languages such 
as Euclid have emphasized safety but do not have 
efficient implementations. At the same time there 
are numerous examples in language designs of con­
cessions to efficiency at the expense of safoty (c.g .. 
the "free union" in Pascal). The apparent tradeoff 
may not be inherent. Euclid was a vehicle for 
research and was not intended for use in )arge 
software efforts. The information needcd to guar­
antee safety includes the type and ranges of valucs 
of variables (to limit their use in a program). That 
is, safety requires the same information as is 
needed by an optimzing compiler to determine 
what optimizations can be safely applied. This 
suggests that the same answer (i.e„ languages that 
provide more information in programs) may pro• 
vide partial solutions to the problems of safety. 
maintainability, and efficiency. This idea was 
pursued in the requircmenls dcvclopment phase. 
and thus far no case has bcen found in which the 
efficiency of a correcl program musl be recluced in 
order to guarantec safoty (although thc compiler 
may be more complex). 

Gcneralization vs. spccinliznlion. A general-purpose 
Ianguage can satisfy a variety of needs ancl can be 
applied to mcet many, possibly unfore13een, situations, 
while a special-purpose language with built·in facili­
ties for a particular application is often more effi­
cient and therefore less cxpensi\"e in use. The ques­
tion is how to ach.ieve both in the same programming 
language. The approach taken was lo aim for a sim­
ple- general-purpose language that would have the 
power needed for the intended applications. but would 
not yet be spcciali.zed for any particubr application. 

Such a language should havc a few gcneral­
purposc structures, cach provicling a singlc primiti\"e 
capability that can be combined with thc othcrs to 
form more spccialized structures. Predefined ,1pplica­
tion-oriented library definitions should be available 
in the language. As definitions made within thc !an· 
guage, they can be inclependcntly controlled. need 
not add to the complexity of other applications, and 
need not affect the implcmentation of the language 
itsclf. 

Programming cusc vs. progrnm safcly. The more 
tolerant Lhe programming language. the lcss it 
imposcs on the pr0b'rammcr Lo specify his intcnt and 
assumptions in his programs, and thus Lhc coding 
task is easier. 
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The safety of programs, on the other hand, is 
enhanced by requiring specification of the program­
mer's intent (e.g., specifying the range and types of 
variables), allowing redundant specificntions (e.g„ 
types determinable from either the formal or actual 
parameters), restricting the mixing of data types 
(e.g., prohibiting implicit type conversions), permit­
ti ng restrictcd access to program components 
(E•.g ., specifying the scope of access for variables), 
and denying access to non-essential propertics of 
data. and programs (e.g., encapsulated type defi­
nitions). 

A safe language allows the translator to check for 
program consistency and to verify that the program­
mer has, in fact, conformed to his stated intent and 
his own conventions in each program. 

Considering that coding is a tiny fraction of the 
total software cost and that there are major software 
relia!>ility and maintenance problems in embedded 
computer systems, the tradeoff between program­
ming ease and program safcty has been resolved in 
favor of safety. 

Achieving efficiency. The desire for efficiency in 
software is often in conflict with other important 
goals such as minimal de\'elopment cost, timely 
dclivery, rcliability, and functional utility. Systems 
requirements for efficicncy ultimately take the form 
of space and time constraints imposed by the com­
puter hardware. No additional bcnefit is derived from 
failure to use availablc spar.e or failure to use an idle 
processor. Consequently, efficiency should be viewed 
as a constraint and not as an opt;imization criterion 
whC'n developing programs. 

Without aut.omatcd softwarn to•Jls to identify which 
parts of a program are consuming the comput.ational 
resources, the whole program must be optimizcd. 
Without efficient high·level languages suited to the 
task, the most capable programmcrs must be used 
to hand-ta.ilor the machine ccde. Thc complexity of 
the task coupled with other constraints when devel­
oping a system seldom permits an optimal solution. 
More important. because a mililary system under· 
goes change throughout its lifctime, what may have 
initially been an efficient implementation becomes 
inefficient when changes occur i!1 the assumptions 
and system characteristics again!'t which it was op­
Limizcd. 

To be efficient, a high·order language must contain 
fcatures that are appropriate l:.tl the applications. That 
is, it must have features that permit; the user to ex­
press what is to be accomplicheti by the computa­
tion without dictating the details of how it is tobe 
implemented. The translator can tl,en select the most 
efficient implementation as a fu11ction of the gen­
erality and context of its use. 

Thc language must be built from fcatures that 
have efficient implement.ations on most. machines; 
if the featurcs are too general or tco ::pecialized, thcy 
oflen will not have cfficicnl repr~sentalions. 1 t must 
be possible to combine built-in featvres to produce 
highcr-lcvel mechanisms that are specialized to a 
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part-icular application, task, or program without 
imposing run-time cost for multiple levels of proce­
dure calls. An efficient language will require the pro­
grammer to provide more formal documentation 
and will encourage the use of structured control 

· primitives. Finally, whenever possible, features should 
be chosen to maximize the amount of processing 
that can be clone during translation. 

Current activities and plans 

Three phases are planned for the design and 
'implementation of the common language. The first 
phase or preliminary designs will be completed in 
February 1978. The preliminary designs will be 
incomplete but are supposed to be sufficiently 
detailed to detennine the likelihood of their satisfying 
the major goals for the language. In particular, 
they are to address the most difficult design issues 
and to explain the rationale for each design decision. 

The preliminary designs will be analyzed by a 
variety of teams from the military, industrial, and 
research communities on a voluntary basis between 
February 16 and March 13, 1978 (i.e., 390 ind.ividuals 
from 125 teams). The aim of the analyses" is to 
identify the major weaknesses. errors, and ovcr­
sights in the preliminnry designs and to determine 
their severity. The analyses will be used to identify 
the strengths and weaknesses of the individual 
desit,'11s, to obtain independent appraisals of the pre­
liminary designs with respect to a number of spccific 
design criteria, to help determine which subset of 
the design efforts will be continued into 'the second 
phase, and to provide feedback to the design con­
tractors as they completc their clesigns. It is antici­
pated that the prcliminary designs, the results of 
the individual analyses, and a summary evaluation 
report will be publicly available. 

The candidate language designs will be completed 
in 1979, after which therc will be an analysis and 
review of cach design, leading to selection of one as 
the common language. A complete prototype trans­
lator (possibly in the form of an interprctcr) will 
be available at that time. 

The tcchnical requircments conlinue to be refined 
with minor revisions issued at 6-month lo 1-year 
intervals. The final version of thc requircmenls and 
the final language design will be consistent with one 
anoLher. fnconsistencies discovered during the pre­
liminary design efforts are expected to impose 
changes in the requirements. A revised version. 
STl':F:LMAN, is planned for late spring 1978. 

During the remaindcr of 1978. the primary 
conccrn of Lhe high·orcler languagc working group 
will be with the support and environmcnt for a 
common language. Possible approaches will be identi­
fiecl and plans laid for lanb'llagc standards: translat.or 
ccrtification: a root compilcr; a common lihrnry: 
automaLecl tools for softwnrr. design. clcvcloprnent. 
and maintenance: an<l a common (host) user-intcrfoce. 
A working pnpcr outlining alternatives and initial 
posiLions will be issucd by the working l:,'TOup in the 
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spring of 1 978. Further input will be provided b:,, the 
National Bureau of Standards technical sympc:, ium 
on "Tools for I mproved Comput.ing in thc f,() ' s"  
to be held in J unc 1978, and by a proposed workshop 
to be sponsored by the military departmenls foUow­
ing the NBS symposium. 

Scveral parallel activities are planned for the third 
phase (i.e . .  the year following selcction of the conunon 
language). These include test programming of DoD 
applications; fine tuning of the language design; and 
development of production compilers. the common 
library. support facilities. software developmcnt and 
maintenance tools. t ranslator certification and test 
facilities. and special-purpose application libraries. 

The language will not be made available for 
production use in DoD applications until the testing 
and implementation phase has been completed (i .e . ,  
1980 in the cu iTent schedule). The common lan­
guage, upon nomination by the mili tary services. 
would then be .idded to the !ist of languages that  
are  approved for usc  in DoD systems. No compiler 
will be certi ficd until a standard definition of the 
languagc is adopted at the end of the third phase. 

lf t.he common language effort is successful  
1 1 )  there will be a redudion in the number and a rise 

• in thc level of  �he general-purpose languages used
for new software in DoD embedded computer systems,
(2) there will bt? an effective and useful software
developmcnt and maint.enance environment bui lt
around the langnages that remain, and (3 )  duplicate
efforts to develop and maintain similar software
tools and support systems will be reduced. The wider
the acceptance and use of the language ( inside and
outside DoD), th1= greatcr will be the benefits to DoD.
lt� acceptance and usefulness, in turn, depend on
its appropriateness for potential applications: on the
quality of its design,  implementation, and support;
and on the economic implications of its use as seen
by potential us(!rS .  Consequently, the e ffort has
encouraged and c:ont.inues to encourage active parti­
cipation from industry as weil as from potential
users within DoD. Interested organ izations are
encouraged to contribute to the continuing revision
of the technical requ irements, the development of a
strategy to assure commonality among implementa­
tions of the lang11agc, and the planning and construc­
tion of a suitable em"ironment for the language. D
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Decisions and Designs Incorporated, under contract to DARPA, produced 
an additional economic analysis of the DoD High Order Language strategy. 
This study was based upon the decision analysis techniques produced 
1.mder previous DARPA contracts. The work used pieces of existing 
software and was implemented on the IBM 5100 desk top minicomputer. 
This work was briefed and demonstrated at the Management Steering 
Conunittee meeting of 20 October 1977 . ~bdels were actually rerun at 
the meeting break with parameter variations suggested by the conunittee. 
TI1e program is available for further exercise on request. Three pro­
grams were involved: 

o DECISION provides the decision tree, tracing the various 
alternative scenarios. 

o SPREAD calculates the mixture of language usage as a result 
of those scenarios, growth of progran~, distribution of 
projects by phases, etc. 

o EVAL calculates the actual value of savings due to a 
particular language mix. lt considers the difference 
between languages in a dozen different categories, quanti­
tatively calculates their advantage over a baseline of 
Assembler, and sets up the commonality auvantages as a 
f1.mction of the mix of language usage. The savings quoted 
are entirely software savings but there are also calculations 
of hardware savings implied by various language mixes. 

All savings are compared against the baseline which would result from 
the exclusive use of Assembler; therefore, any model considering even 
the present use of high order languages, will exhibit savings. The 
impact of the common language program is therefore the differenc~ between 
any proposed scenario with a common language, both savings and costs, less 
the savings calculated from present trends. 

Technical savings e:xpected even from the use of existing languages are 
quite significant. They are based upon some detailed consideration of 
the individual languages. Indeed, if significant savings were not 
e:xpected, then the present policy towards high order languages would be 
ill-conceived. The proposed new common high order language is examined 
in detail and e:xpected to give significantly higher technical savings. 
All savings are baselined against a flat software expenditure from now 
on of $3.2B per year and all savings are proportional to this nwnber. 
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Runs were primarily directed towards exanuning the sensitivity of the

introduction date and the rate of introduction. Detailed results are 
givcn in the attache<l figurcs. AJi introduction date of 1980 and total 
acceptance in 1985 may be compared with an introduction in 1�85 and 
total acceptance in 1990 or with an introduction in 1980 and a slower 
acceptance, being complete only in 1990, etc. Both the saving rate per 
year and the integral savings to 1996 are shown. lt must be noted that 
even the total acceptance of a language means that only new programs 
are being initiated and older programs in other languages continue for 
their life cycle; therefore, savings take some time to build up. On 
the other hand, the savings when established are enormous and pay back 
of language development costs can easily occur in much less than a year, 
once use is established. 

An examination of the results based upon the total savings to 1996 gives 
the following trend: 

o For a five-year introduction period, delay of the year
of introduction through the period 1980 to 1987, with a
c�rresponding delay of the complete adoption from 1985
to 1992, gives an average reduction in savings of about
$1.5B per year delayed. This is simply the average
magnitude of savings once full use is established.

o Keeping a constant total acceptance date of 1985, delay
of the introduction from 1980 to 1982 costs about $1B
per year delay.

o Having established an introduction date, slow acceptance
or delay of the total usage date costs about $1B per year
delay.

o All these figures are proportional to the total software
costs envisioned. $1.58 corresponds to about 10% of the
calculated additional savings due to the use of the new
language. Thus a delay of one year in the introduction
could only be justified if it resulted in an offsetting
integrated savings of more than 10%, indicating an improved
maximum savings rate increase of up to 20%.

lt is recommended that the DoD Single Common Higher Order Language be 
introduced as rapidly as possible without penalizing technical quality 
or acceptability much more than 10%. Costs are small in all cases, being 
less than 1% of savings. 



1he High Order Language Working Group has established a third econornic 
.model for a DoD High Order Language commonality. 1his model is an out­
growth of the work done by Decisions and Designs Incorporated and its 
fi·rst version resembles the DDI model in rnany details. lt has also 
received considerable input from discussions with the MITRE modelers. 
1he main tmique feature of the model is the fact that it is available 
on the ARPANET account of HOLWG for continued use and modification by 
the Working Group. It will continue to be maintained and updated during 
life of the program and will be used as a decision aid in the future. 
It is presently rtmning on a PDP-10, is written in FORTRAN for trans­
portabili ty. 

1his model may be conceptually divided into three portions similar to 
the DDI structure but the elements are somewhat different. 

o DECISION is a routine which allows the implicit input of 
events or decisions which can affect either the use of a 
particular language, the costs generated, or its effective­
ness. Such decisions include the introduction of a language 
at a particular date, the rate of its adoption, the existence 
of control for that language, phasing out or restricting new 
starts in a language, permission to recode previous software 
from one language to another when cost effective, etc. 

o PROS processes each one of these decisions and integrates 
an evolving world model up to the input time, including the 
amotmt of effort in each programming language by each 
Service, by size of program and phase of development and 
possibly application area. 1hese are all derived numbers 
based upon input decisions and the resulting new starts. 
Ten languages are followed including all seven DODI 5000.31 
languages plus Assembler, the common language and a lumped 
figure for all minor HOLs. For the baseline, a steady growth 
in the software produced from 1955 to date is postulated. 
1his corresponds to past data. Future growth may continue 
or decrease as indicated by decision. 

o EVAL gives an evaluation of the total value of the particular 
scenario at each time on the basis of benefits calculated from 
some thousand factors based on language phase of development 
and size of program. 1he coefficients were obtained informally 
from the organizations responsible for the individual languages. 
1hey are available for modification and it is expected that both 
the coeffieients and the definition of factors will evolve with 
continued study. 1he gross properties of the languages can be 
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checked against their general acceptance. For instance, a 
particular situation in which we find FORTRAN and JOVIAL to 
have similar utilization might be expected to· correspond to 
similar magnitudes of technical benefit. Further, we can 
expect magnitude of technical benefit to be significant 
(factor of 2) in those cases where historically we see a 
large voltmtary adoption rate. A 10% benefit would not be 
expected to have resulted in much acceptance, a 90% benefit 
should imply almost total adoption to the exclusion of 
Assembly language. All benefits (both positive and negative) 
and costs are reference to Assembly language. 

Costs are calculated for training, compiler generation, 
introduction and maintenance, tools, and control. All costs 
are positive and, except for training, are not generated 
for Assembly language efforts. The benefits of commonality 
as calculated by the code are therefore evidenced in reduction 
in costs. These costs are then compared to technical gains 
to find the total benefi t. Note that the benefi t- resul ting 
from additional hardware commonality and from sharing and 
transportability of applications programs is not calculated 
in the present version but will be added later. These can 
be expected to give quite large savings but are also dependent 
on factors outside the pure software environment and will 
require a more inclusive world model. 

Tue advantages of this model include its wide availability, 
its continued existence, the explicit use of decisions, a 
considerable accotmting detail in the evolution of the world 
model, and the technical detail in the factors appropriate to 
the individual languages. lt is expected that the model will 
continue to evolve and play a significant role in program 
decisions for this and other efforts. 

The benefits calculated and the general results are only 
slightly less percentagewise than that of the DDI model and 
the resulting recommendations would be the same. It is 
improtant to note that all the technology commonality factors 
in the two programs were independently derived. This program, 
wilike the MITRE effort, is not deliberately conservative in 
the factors considered. lt purports to be the current best 
estimate. It is, however, conservative in the omission of 
significant factors which have not yet been included. 
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The ··baseline case for this program normally considers an 
expanding software commitment, perhaps coupled with a decreas­
ing cost of hardware, to increase the total fraction of 
computer resources devoted to software. Because of the 
benefits herein envisioned, the growth of functionality in 
software is calculated to be much more rapid than the growth 
of expenditures. With the inclusion of additional saving 
factors, it may be possible to get the cost of software in 
1977 dollars to flatten out, even if the functionality 
increases by an order of magnitude. 
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PREFACE 

The Department of Defense Common High Order Language. program was 
established in 1975 with the goal of establishing a single high order computer 
programming language appropriate for DoD embedded computer systems. A 
High Order Language Working Group (HOL WG) was established to formulate the 
DoD requirements for high order languages, to evaluate existing languages 
against those requirements, and to implement the minimal set of languages 
reqbired for DoD use. As an administrative initiative toward the eventual goal, 
DoD Directive 5000.29 provides that any new defense systems should be 
programmed in a DoD approved and centrally controlled high order language. 
DoD Instruction 5000.31 gives an interim list of approved languages: COBAL, 
FORTRAN, TACPOL, CMS-2, SPL/l, and JOVIAL J3 and J73. Economic 
analyses that were used to quantif-y the benefits from increased use of high 
order languages, also showed that the rapid introduction of a single modern 
language would increase the benefits considerably. The requirements have 
been widely distributed for comment throughout the military and civil 
communities, producing successively more refined versions from STRAWMAN 
through WOODENMAN, TINMAN, IRONMAN, and the present STEELMAN. 
During the requirement development process, it was determined that the single 
set of requirements generated was both necessary and sufficient for all' major 
OoD applications. Formal evaluation was performed on dozens of existing 
languages concluding that no existing language could be adopted as a single 
common HOL for the DoD but that a single language meeting essentially all the 
requirements was both feasible and desirable. Four contractors were funded 
to produce competing prototype designs. After analysis of these preliminary 
designs the number of design teams was reduced to two. Their designs will be 
completed and a single language will emerge. Further steps in the program will 
include test and evaluation of the language, production of compilers and other 
~ools for software development and maintenance, control of the language, and 
· validation of compilers. Government-funded compilers and software tools, as 
well as the compiler validation facility, will be widely and inexpensively 
available and well maintained. 





THE TECHNICAL REQUIREMENTS 

The technical requirements for a common DoD high order pr~~ramming language 
given here are a synthesis of the requirements submitted by the Military Depa~tments. 
They specify a set of constraints on the design of languages that ar~ appropn~te .tor 
.embedded computer applications (i.e., command and control, communicat1ons, av1omcs, 
shipboard, test equipment, software development and maintenance, .and support 
applications}. We would especially like to thank the phase one analys1s teams, the 
language design teams, and the many other individuals and organizations that have 
commented on the Revised Ironman and have identified weaknesses and trouble spots in 
the technical requirements. A primary goal in this revision has been to reduce the 
complexity of the resulting language. · 

This revision incorporates the following changes. Care has been taken to ensure . 
that the paragraph numbers remain the same as in the Revised lronman. There have been 
several changes in terminology and many changes in wording to improve the 
understandability and preciseness of the requirements. Several requirements have been 
restated to remove constraints that were, unintended but were implied because the 
requirement suggested a particular mechanism rather than giving the underlying 
requirement. The requirements for embedded comments (21), unordered enumeration 
types (3-28), associative operator specifications (7D), dynamic aliasing of array 
components (108), _and multiple representations of data (118) have been deleted because 
they have been found unnecessary or are not adequately justified. The minimal source 
language character set has been reduced to 55 characters to make it compatible with the 
majority of existing input devices (2A). The do together model for parallel processing has 
been found inadequate for embedded cqmputer applications and has been replaced by a 
requirement for parallel processes (section 9). The preliminary designs have 
demonstrated the need for additional requirements for explicit. conversion between types 
(38), subtype constraints (30), renaming (3-58), a language distinction between open and . 
closed scopes (5G), and the ability, but preferably not special mechanisms, to pass data 
between parallel processes (9H), to write nonverifiable assertions (lOF), to wait for several 
signals simultaneously (9J), and to mark shared variables (9C). 

The Steelman is organized with an outline similar to that expected in a language 
defining document. Section 1 gives the general design criteria. These provide the major 
goals that influenced the selection of more specific requirements in later sections and 
provide a basis for language design decisions that are not otherwise addressed in this 
document. Sections 2 through 12 give more specific constraints on the language and its 
translators. The Steelman calls for the inclusion of features to satisfy specific needs in the 
design, implementation, and maintenance Of military Software, specifies both general end 
specific characteristics desired for the language, and calls for the exclusion of certain 
undesirable characteristics. Section 13 gives some of the intentions and expectations for 
development, control, and use of the language. The intended use and environment for the 
lan~uage has strongly influenced the requirements, and should influence the language 
des1gn. 
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A precise and consistent use of terms has been attempted throughout the document. 
Many potentially ambiguous terms have been defined in the text. Care has been taken to 
distinguish between requirements, given as text, and comments, given as bracketed notes. 

\ 

The following terms have been used throughout the text to indicate where and to 
what degree individual constraints apply: 

shall 

should 

shall attempt 

shall require 

shall permit 

must 

may 

will 

translation 

execution 

indicates a requirement placed on the language or translator 

indicates a desired goal but one for which there is no objective test 

indicates a desired goal but one that may not be achievable given the 
current state-of-the-art, or may be in conflict with other more 
important requirements 

indicates a requirement placGd on the user by the language and its 
translators (language is subject) 

indicates a requirement placed on the ianguage to provide an option to 
the user (language is subject) 

indicates a requirement placed on ·the user by the language and its 
translators (user is subject) 

indicates a requirement placed on the language to provide an option tC' 
the user (user is subject) 

indicates a consequence that is expected to follow or indicates an 
intention of the DoD; it does not in any case by itself constrain the 
desi gn of the 1 anguage 

refers to any processing applied to a program by. the host or object 
machine before execution; it includes lexical analysis, syntactic error 
checking, program analyses, optimization, code generation, assembly, 
and loading 

refers to the processing by the object machine to carry out the actions 
prescribed by the program. 
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l. General Design Criteria 

lA. '· Generality. The language shall provide generality only to the extent necessary to 
satisfy the needs of embedded computer applications. Such applications involve real 
time control, seif diagnostics, input-output to nonstandard ·peripheral devices, parallel 
processing, numeric computation, and file·processing. 

18. Reliabil ity. The language should aid the design and development of reliable 
programs. The language shall be designed to avoid error prone features and to 
maximize automatic detection of programming errors. The language shall require some 
redundant, but not duplicative, specifications in programs. Translators shall produce 
explanatory diagnostic and warning messages, but shall not attempt to correct 
programming errors. · 

lC. Maintainability. The language should promote ease of program maintenance. lt 
should emphasize program readability (i.e., clarity, understandability, and modifiability of 
programs). The language should encourage user documentation· of programs. lt shall 
require explicit specification of programmer decisions and shall provide defaults only for 
instances where the default is stated in the language definition, is always meaningful, 
reflects the most frequent usage in programs, and may be explicitly overridden. 

10. Efficiency. The language design should aid the production of efficient object 
programs. Constructs that have unexpectedly expensive implementations should be 
easily recognizable by translators and by users. Features should be chosen to have a 
simple and efficient implementation in many object machines, to avoid execution costs for 
available general ity where it i~ not needed, to maximize the number of safe optimizations 
available to translators, and to ensure that unused and constant portions of programs will 
not add to execution costs. Execution time support packages of the language shall not be 
included in object code unless they are called. 

lE. Simplicity. The language should not contain unnecessary complexity. lt should 
. have a consistent semantic structure that minimizes the number of underlying concepts. 
lt should be as small as possible consistent with the needs of the intended applications. 
lt should have few special cases and should be composed from features that are 
individually simple in their semantics. The language should have uniform syntactic 
conventions and should not provide several notations for the same concept. No 
arbitrary restriction should be imposed on a language feature. 

lF. lmplementability. The language shall be composed from features that are 
understood and can be implemented. The semantics of each feature should be 
sufficiently well specified and understandable that it will be possible to predict its 
interaction with other features. To the extent that it does not interfere with other 
requirements, the language shall facilitate the production of translators that are easy to 

. implement and are efficient during translation. There shall be no language restrictions 
that are not enforceable by translators. 
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IG. Machine lndependence. The design of the language should strive for mach~ne 
independence. lt shall not dictate the characteristics of object machines or operating 
systems except to the extent that such characteristics are implied by the semantics of 
control structures and built-in operations. lt shall attempt to avoid features wh~se 
semantics depend on characteristics of the object machine or of the object machine 
operating system. , Nevertheless, there shall be a facility for defining those po~ti.ons of 
programs that are dependent on the object machine configuration and for cond1t1onally 
compiling programs depending on the actual configuration. · 

lH. Complete Definition. The language shall be completely and unambiguously defined. 
To the extent that a formal definition assists in achieving the above goals (i.e., all of 
section 1), the language shall be formally defined. 
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2. General Syntax 

2A. Character Set. The full set of character graphics that may be used· in· source 
programs shall be given in the language definition. Every source program shall also 
have a representation that uses only the following 55 character subset of the ASCII 
graphics: 

%&' () *+. -. /:; <=>? 
0123456789 
ABCOEFGHIJKLMNOPQRSTUVWXYZ_ 

· Each additional graphic (i.e., one in the full set but not in the 55 character set) may be 
replaced by a sequence of (one or more) characters from the 55 character set without 
altering the semantics of the program. The replacement sequence shall be specified in 
the language definition. 

28. Grammar. The language should have a simple, uniform, .and easily parsed grammar 
and lexical structure. The language shall have free form syntax and should use familiar 
notations where such use does not conflict with other goals. 

2C. Syntactic Extensions. The user shall not be able to modify. the source language 
syntax. In particular the user shall not be able to introduce new precedence rules or to 
defi ne new syntactic forms. 

20. Other Syntactic Issues. Multiple occurrences of a language defined symbol 
appearing in the same context shall not have essentially different meanings. Lexical 
units (i.e., identifiers, reserved words, single and multicharacter symbols, numeric and 
string literals, and comments) may not cross line boundaries of a source program. All key 
word forms that contain d~clarations or statements shall be bracketed (i.e., shall have a 
closing as well as an opening key word). Programs may not contain unmatched brackets 
of any kind. · 

1 . 

2E. Mnemonic Identifiers. Mnemonically significant identifiers shall be allowed. 
There shall be a break character for use within identifiers. . The language and its 
translators shall not permit identifiers or reserved words tobe abbreviated. [Note that 
this does not preclude reserved words that are abbreviations of natural language words.] 

2F. Reserved Words. The only reserved words shall be those that lntroduce special 
syntactic forms (such as control structures and declarations) or that are otherwise used 
as delimiters. Words that may be replaced by identifiers, shall not be reserved (e.g., 
names of functions, types, constants, and variables shall not be reserved). All reserved 
words shall be listed in the language definition. 

I . 

2G. Numeric Literals. There shall be built-in decimal literals. There shall · be no 
implicit truncation or rounding of integer and fixed point literals. 
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.2H. String Literals. There shall be a built-in facility for fixed length string literals. 
String literals shall be interpreted as one-dimensional character arrays. 

21. Comments. The language shall permit comments that are introduced by a special 
(one or two character) symbol and terminated by the next line boundary of the source 
program. 
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3. Types 
\ 

3A. Strong Typing. The language shall be strongly typed. The type of each variable, 
array and record component, expression, function, and parameter shall be determinable 
during translation. 

38. Type Co
0

nversions. The language shall distinguish the concepts of type (specifying 
data elements with common properties, including operations), subtype (i.e., a subset of 
the elements of a type, that is characterized by further constraints), and representations 
(i.e., implementation characteristics). There shall be no implicit conversions between 
types. Explicit conversion operatio.ns shall be automatically defined between types that 
are characterized by the same logical properties. 

3C. Type Definitions. lt shall be possible to define new data types in programs. A 
type may be defined as an enumeration, an array or record type, an indirect type, an 
existing type, or a subtype of an existing type. lt shall be possible to process type 
definitions entirely during translation. An identifier may be associated with each type. 
No restriction shall be imposed on user defined types unless it is imposed on all types . . 

30. Subtype Constraints. The constraints that characterize subtypes shall include 
range, precision, scale, index ranges, and user defined constraints. The value of a 
subtype constraint for a variable may be specified when the variable is declared. The 
language should encourage such specifications. [Note that such specifications can aid 
the clarity, efficiency, maintainability, and provability of programs.] 

·3,}. Numeric Types 

3-lA. Numeric Values. The language shall provide distinct numeric types for exact and 
for approximate computation. Numeric operations and assignment that would cause the 
most significant digits of numeric values tobe truncated (e.g., when overflow occurs) shall 
constitute an exception situation. 

3-18. Numeric Operations. There shall be built-in operations (i.e., functions) for 
conversion between the numeric types. There shall be operations for addition, 
subtraction, multiplication, division, negation, absolute value, and exponentiation to 
integer powers for each numeric type. There shall be built-in equality (i.e., equal and 
unequal) and ordering operations (i.e., less than, greater than, less than or equal, and 
greater than or equal) between elements o~ each numeric type. Numeric values shall be 
equal if and only if they have exactly the same abstract value. 

3-lC. Numeric Variables. The range of each numeric variable must .be speci fi ed in 
programs and shall be determined by the time of its allocation. Such specifications shall 
be interpreted as the minimum range to be implemented and as the maximum range 
needed by the application. Explicit conversion operations shall not be required between 
numeric ranges. 
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Approximate Arithmetic 

3-10. Precision. The precision (of the mantissa) of each expression result and 
variable in approximate computations must be specified in programs, and shall be 
determinable during translation. Precision specifications shall be required for each such 
variable. Such specifications shall be interpreted as the minimum accuracy (not 
significance) to be implemented. Approximate results shall be implicitly rounded to the 
implemented precision. Explicit conversions shaU not be required between precisions. 

3-lE. Approximate Arithmetic Implementation. Approximate arithmetic will be 
implemented using the actual precisions, radix, and exponent range available in the 
object machine. There shall be built-in operations to access the actual precision, radix, 
and exponent range of the implementation. 

Exact Arithmetic 

3-lF. Integer and Fixed Point Numbers. Integer and fixed point numbers shall be 
treated as exact numeric values. There shall be no implicit truncation or rounding in 
integer and fixed point computations. 

3-lG. Fixed Point Scale. The scale or step size (i.e., the minimal representable 
difference between values) of each fixed point variable must be specified in programs 

· and be determinable during translation. Scales shall not be restricted to powers of two. 

3-lH. Integer and Fixed Point Operations. There shall be integer and fixed point 
operations for modulo and integer division and for conversion between values with 
different scales. All built-in and predefined operations for exact arithmetic shall apply 
between arbitrary scales. Additional operations between arbitrary scales shall be 
definable within programs. 

3.2. Enumeration Types 

3-2A. Enumeration Type Definitions. There shall be types that are definable in 
programs by enumeration of their elements. The elements of an enumeration type may 

· be identifiers or character literals. Each variable of an enumeration type may be 
restricted to a contiguous subsequence of the enumeration. 

3-28. Operations on Enumeration Types. Equality, inequality, and the ordering 
operati ons shall be automatically defined between elements of each enumeration type. 
Sufficient addi ti onal operations shall be automatically defined so that the successor, . 
predecessor, the position of any element, and the first and last element of the type may 
be computed. · 

3-2C. Boolean Type. There shall be a predefined type for Boolean values. 

3-20. Character Types. Character sets shall be definable as enumeration types. 
Character types may contain both printable and control characters. The ASCII 
character set shall be predefined. 
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3.3. Composite Types 

3-3A. Composite Type Definitions. lt shall be possible to define types that are 
Cartesian products of other types. Comp~site types shall include arr~ys (i.e., co'!lposite 
data with indexable components of homogeneous types) and records (l.e., compos1te data 
with labeled components of heterogeneous type). 

3-38. Component Specifications. For elements of composite types, the type of each 
component (i.e., field) must be explicitly specified in programs and determinable during 
translation. Components may be of any type (including array and record types). Range, 
precision, and scale specifications shall be required for each component ·Of appropriate 
numeric type. 

3-3C. Operations on Composite Types. A value accessing operation shall . be· 
automatically defined for each component of composite data elements. Assignment shall 
be automatically defined for components that have alterable values. · A constructor 
operation (i.e., an operation that constructs an element of a type from its constituent 
parts) shall be automatically defined for each composite type. An assignable component 
may be used anywhere in a program that a variable of the component's type is permitted. 
There shall be no automatically defined equivalence operations between values of 
elements of a composite type. 

3-30. Array Specifications. Arrays that differ in number of dimensions or in 
component type shall be of different types. The range of subscript values for each 
dimension must be specified in programs and may be determinable at the time of array 
allocation. The range of each subscript value must be restricted fo a contiguous 
sequence of integers or to a contiguous sequence from an enumeration type. 

3-3E. Operations on Subarrays . . There shall be built-in operations for valu.e access, 
assignment, and catenation of contiguous sections of one-dimensional arrays of the same 
comJi>onent type. The results of such access and catenation operations may be used as 
actual input parameter. . 
3-3F. Nonassignable Record Components. lt shall be possible to declare constants and 
(unary) functions that may be thought of as record components and may be referenced 
using the same notation as for accessing record components. Assignment shall not be 
permitted to such components. 

3-3G. Variants. lt shall be possible to define types with alternative record-structures 
(i.e., variants). The structure of each variant shall be determinable during translation. · 

3-3H. Tag Fields. Each variant must have a nonassignable tag field (i.e., a component 
that can be used to discriminate among the variants during execution). lt shall not be 
possible to alter a tag field wit~out replacing the entire variant. 
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3-31. lndirect Types. lt shall be possible to define types whose elements are 
indirectly accessed. Elements of such types may have components of their own type, 
may have substructure that can be altered during execution, and may be distinct while 
having identical component values. Such types shall be distinguishable from other 
composite types in their definitions. An element · of an indirect type shall remain 
allocated as lang as it can e referenced by the program. [Note that indirect types require 
pointers and sometimes heap storage in their implementation.] 

3-3J. Operations on lndirec:t Types. Each execution of the constructor operation for 
an indirect type shall create a distinct element of the type. An operation that 
distinguishes between different elements, an operation that replaces all of the component 
values of an element without altering the element's identity, and an operation that 
produces a new element having the same component values as its argument, shall be 
automatically defined for each indirect type. 

3.4. Sets 

3-4A. Bit Strings (i.e., Set Types). lt shall be possible to define types whose elements 
are one-dimensional Boolean arrays represented in maximally packed form (i.e, whose 
elements are sets). 

3-48. Bit String Operations. Set construction, membership (i.e., subscription), set 
equivalence and nonequivalence, and also complement, intersection, union, and symmetric 
difference (i.e., component-by-component negation, conjunction, inclusive disjunction, 
and exclusive disjunction respectively) operations shall be defined automatically for each 
set type. 

3.5. Encapsulated Definitions 

3- 5A. Encapsulated Definitions. lt shall be possible to encapsulate definitions. An 
encapsulation may contain declarations of anything (including the data elements and 
operations comprising a type) that is definable in programs. The language. shall permit 
multiple explicit instantiations of an encaps~lation . 

3-58. Effect of Encapsulation. An encapsulation may be used to inhibit external access 
to implementation properties of the definition. In particular, it shall be possible to 
prevent external reference to any declaration within the encapsulation including 
automatically defined operations such as type conversions and equality. Definitions that 
are made within an encapsulation and are externally ·accessable may be renamed before 
use outside the encapsulation. 

3-SC. Own Variables. Variables declared within an encapsulation, but not within a 
function, procedure, or process of the encapsulation, shall remain allocated and retain 
their values throughout the scope in which the encapsulation is instantiated. 
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4. Expressions

4A. Form of Expressions. The parsing of correct expressions shall not depend on the
types of their operands or on whether the types of the operands are built into the
language ..

48. Type of Exptessions. lt shall be possible to specify the type of any expression
explicitly. The use of such specifications shall be required only where the type of the
expression cannot be uniquely determined during translation from the context of its use
(as might be the case with a literal).

4C. Side Effects. The language shall attempt to minimize side effects in expressions, 
but shall not prohibit all side effects. A side effect shall not be allowed it it would alter 
the value of a variable that can be accessed at the point of the expression. Side effects 
shall be limited to own variables of encapsulations. The language shall permit side 
effects that are necessary to instrument functions and to do storage management within 
functions. The order of side effects within an expression shall not be guaranteed. 
[Note that the latter implies that any program that depends on the order of side effects is 
erroneous.] 

4D. Allowed Usage. Expressions of a given type shall be allowed wherever both 
constants and variables of the type are allowed. 

4E. Translation Time Expressions. Expressions that can be evaluated during 
translation shall be permitted wherever literals of the type are permitted. Translation 
time expressions that include only literals and the use of translation time facilities (see 
1 lC) shall be evaluated during translation. 

4F. Operator Precedence Levels. The precedence levels (i.e., binding strengths) of all 
(prefix and infix) operators shall be specified in the language definition, shall not be 
alterable by the user, shall be few in number, and shall not depend on the types of the 
operands. 

4G. Effect of Parentheses. lt present, explicit parentheses shall dictate the association 
of operands with operators. The language shall specify where explicit parentheses are 
required and shall attempt to minimize the psychological ambiguity in expressions. 
[Note that this might be accomplished by requiring explicit parentheses to resolve the 
operator-operand association whenever a nonassociative operator appears to the left cf 
an operator of the same precedence at the least-binding precedence level of any 
subexpressi on.] 
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5. Constants, Variables, and Scopes 

SA. Declarations of Constants. lt shall be possible to declare constants of any type. 
Such constants shall include both those whose values are determined during translation 
and those whose value cannot be determined until allocation. Programs may not assign 
to constants. 

58. Declarations of Variables. Each variable must be declared explicitly. Variables 
may be of any type. The type of each variable must be specified as part of its 
declaration and must be determinable during translation. [Note, "variable" throughout 
this document refers not only to simple variables but also to composite variables and to 
components of arrays and records.] 

SC. Scope of Declarations. Everything (including operators) declared in a program 
shall have a scope (i.e., a portion of the program in which it can be referenced). Scopes 
shall be determinable during translation. Scopes may be nested (i.e., lexically 
embedded). A declaration may be made in any scope. Anything other than a variable 
shall be accessable within any nested scope of its definition. 

SO. Restrictions on Values. Procedures, functions, types, labels, exception situati6ns, 
and statements shall not be assignable to variables, be computable as values of 
expressions, or be usable as nongeneric parameters to procedures or functions. 

SE. Initial Values. There shall be no default initial values for variables. 

SF. Operations on Variables. Assignment and an implicit value access operation shall 
be automatically defined for each variable. 

SG. Scope of Variables. The language shall distinguish between open scopes (i.e., 
those that are automatically included in the scope of more globally declared variables) 
and closed scopes (i.e., those in which nonlocal variables must be explicitly imported). 
Bodies of functions, procedures, and processes shall be closed scopes. Bodies of 
classical control structures shall be open scopes. 
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\ 
' 6. Classicsil Control Structures 

·' 

6A. Basic Control Facility. The {built-in) control mechanisms should be of minimal 
number and complexity. Each shall provide a single capa1'ility and shall have a 
distinguishing syntax. Nesting of control structures shall be allowed. There shall be no 
control definition facility. Local scopes shall be allowed within the bodies of control 
statements. Control structures shall have only one entry point and shall exit to a single 
point unless exited via an explicit transfer of control {where permitted, see 6G), or the 
raising of an exception {see lOC}. 

68. Sequential Control. There shall be a control mechanism for sequencing statements. 
The language shall not impose arbitrary restrictions on programming style, such as the 
choice between statement terminators and statement separators, unless the restrjction 
makes programming errors less likely. 

6C. Conditional Control. There shall be conditional control structures that permit 
selection among alternative control paths. The selected path may depend on the value 
of a Boolean expression, on a computed choice among labeled alternatives, or on the true 
condition in a set of conditions. The language shall define the control action for all values 
of the discriminating condition that are not specified by the program. The user may 
supply a single control path to be used when no other path ·is selected. Only the 
selected branch shall be compiled when the discriminating condition is a translation Urne 
expressi on. · 

60. Short Circuit Evaluation. There shall be infix control operations for short circuit 
conjunction and disjunction of the controlling Boolean expression in conditional and 
iterative control structures. 

6E. Iterative Control. There shall be an iterative control structure. The iterative 
control may be exited (without reentry) at an unrestricted number of places. A 
succession of values from an enumeration type or the integers may be associated with 
successive iterations and the value for the current iteration accessed as a constant 
throughout the loop body. 

6G. Explicit Control Transfer. There shall be a mechanism for control transfer (i.e., the 
~o to). lt shall not be possible to transf~r out of closed scopes, into narrower scopes, or 
mto control structures. lt shall be poss1ble to transfer out of classical control structures. 
There shall be no control transfer mechanisms in the form of switches, designational 
expressions, labet variables, labet parameters, or alter statements. 
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7. Functions and Procedures 

7 A. · Function and Procedure Definitions. Functions (which return values to 
expressions) and procedures (which can be called as statements) shall be definable in 
programs. Functions or procedures that differ in the number or types of their 
parameters may be denoted by the same identifier 'or operator (i.e., overloading shall be 
permitted). [Note that redefinition, as opposed to overloading, of an existing function or 
procedure is often error prone.] 

78. Recursion. lt shall be possible to call functions and procedures recursively. 

7C. Scope Rules. A reference to an identifier that is not declared in the most local 
scope shall refer to a program element that is lexically global, rather than to one that is 
global through the dynamic calling structure. 

Functions 

.70. Function Declarations. The type of the result for each function must be specified in 
its declaration and shall be determinable during translation. The results of functions may 
be of any type. lf a result is of a nonindirect array or record type then the number of its 
components must be determinable by the time of function call. 

Parameters 

7F. Formal Parameter Classes. There shall be three classes of formal data 
parameter s: (a) input parameters, which act as constants that are initialized to the value 
of corresponding actual parameters at the time of call, (b) input-output parameters, which 
enable access and assignment to the corresponding actual parameters, either throughout 
execution or only upon call and prior to any exit, and (c) output parameters, whose values 
are transferred to the corresponding actual paramder only at the time of normal exit. In 
the latter two cases the corresponding actual parameter shall be determined at time of 
call and must be a variable or an assignable component of a composite type. 

7G. Parameter Specifications. The type of each formal parameter must be explicitly 
specified in programs and shall be determinable during translation. Parameters may be 
of any type. The language shall not require user specification of subtype constraints for 
formal parameters. If such constraints are permitted they shall be interpreted as 
assertions and not as additional overloading. Corresponding formal and actual 
parameters must be of the same type. 

7H • . Formal Array Parameters. The number of dimensions for formal array parameters 
must be specified in programs and shall be determinable during translation. 
Determination of the subscript range for formal array parameters may be delayecf until 
invocation and may vary from call to call. Subscript ranges shall be accessible within 
function and procedure bodies without being passed as explicit parameters. 
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71. R~strictions to Prevent Aliasing. The language shall attempt to prevent aliasing 
(i.e., multiple access paths to the same variable or record component) that is not intended, 
but shall not prohibit- all aliasing. Aliasing shall not be premitted between output 
parameters nor between an input-output parameter and a nonlocal variable. Unintended 
aliasing shall not be permitted between input-output parameters. A restriction limiting 
actual input-output parameters to variables that are nowhere referenced as nonlocals 
within a function or routine, is not prohibited. All aliasing of components of elements of 
~n indirect type shall be considered intentional. 
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8. Input-Output, Formating and Configuration Control 

BA. Low Level Input-Output. There shall be a few low level input-output opera~ions 
that send and receive control information to and from physical channels and dev1ces. 
The low level operations shall be chosen to insure that all user level input-output 
operations can be defined within the language. 

88 • . User Level Input-Output. The language shall specify (i.e., give calling format and 
general semantics) a recommended set of user level input-output operati9ns. These 
shall include operations to create, delete, open, close, read, write, position, and 
interrogate both sequential and ra.ndom access files and to alter the associatlon between 
logical files and physical devices. · 

8C. Input Restrictions. User level input shall be restricted to data whose record 
representations are known to the translator (i.e., data that is created and written entirely 
within the program or data whose representation is explicitly specified in the program). 

80. Operating System lndependence. The language shall not require the presence of 
an operating system. [Note that on many machines it will be necessary to provide 
run-time procedures to implement some features of the language.] 

SE. Resource Control. There shall be a few low level operations to interrogate and 
control physical resources (e.g., memory or processors) that are managed (e.g., allocated 
or scheduled) by built-in features of the language. 

8F. Formating. There shall be predefined operations to convert between the symbolic 
and internal representation of all type·s that have literal forms in the language (e.g., strings 
of digits to integers, or an enumeration element to its symbolic form). These conversion 
noerations shall have the same semantics as those specified for literals in programs. 
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9. Par~lelProces~ng 
1 

9A. Parallel Processing. lt shall be possible to define parallel processes. Processes 
(i.e., activation instances of such a definition) may be initiated at any point within the 
scope of the definition. Each process (activation) must have a name. lt shall not be 
possible to exit the scope of a process name· unless the process is terminated (or 
uni ni ti ate9). 

98. . Parallel Process Implementation. The parallel processing facility shall be 
designed to minimize execution time and space. Processes shall have consistent 
semantics whether implemented on multicomputers, multiprocessors, or with interleaved 
execution on a single processor. . 

9C. Shared Variables and Mutual Exclusion. lt shall be.possible to mark variables that 
are shared among parallel processes. An unmarked variabl_e that is assigned on on~ 
path and used on another shall cause a warning. lt shall be possible efficien~ly to · 
perform mutual exclusion in programs. The language shall not require any use of mutual 
exclusion. · 

90. Scheduling. The semantics of the built-in scheduling algorithm shall be 
first-in-first-out within priorities. A proce!ls may alter its own priority. If the language 
provides a default priority for new processes it shall be the priority of its initiating 
process. The built-in scheduling algorithm shall not require that simultaneously 
executed processes on different processor,s have the same priority. [Note that this rule 
gives maximum scheduling control to the user without loss of efficiency. Note also that 
priority specification does not impose a specific execution order among parallel paths 
and thus does not provide a means for mutual exclusion.] · 

9E. Real Time. lt shall be possible to· access a real time clock. There shall be 
translation time constants to convert between the implementation units and the program 
units for real time. On any control path, it shall be possible to delay until at least a 
specified time before continuing execution. A process may have an accessible clock 
giving the cumulative processing time (i.e., CPU time) for that process. 

9G. Asynchronous Termination. lt shall be possible to terminate another process. 
The terminated process may designate the sequence of statements it'will execute in 
response to the induced termination. 

9H. Passing Data. lt shall be possible to pass data between processes that do not 
share variables. lt shall be possible to delay such data transfers untit both the sending 
and receiving processes have requested the transfer. · 

91. Signalling. lt shall be possible to set a signal (without waiting), and to wait for a 
signal (without delay, if it is already set). Setting a signal, that is not al ready set, shall 
cause exactly one waiting path to continue. 

9J. Waiting. lt shall be possible to wait for, determine, and act upon th~ first 
completed of several wait operations (including those used for data passing signalling · 
and real time). · · ' ' 
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10. Exception Handling 

lOA. Exception Handling Facility . . There shall be an exception handling mechanism ~or 
responding to unplanned error situations detected in declarations and statements dunng 
execution. The exception situations shall include errors detected by hardware, 
software errors detected during execution, error situations in- built-in operations, and 
user defined exceptions. Exception identifiers shall have a scope. Exceptions should 
add to the execution time of programs only if they are raised. 

108. Error Situations. The errors detectable during execution shall include exceeding 
the specified range of an array subscript, exceeding the specified range of a variable, 
exceeding the ir:nplemented range of a variable, attempting to access an uninitialized 
variable, attempting to access a field of a variant that is not present, requesting a 
resource (such as stack or heap storage) when an insufficient quantity remains, and failing 
to satisfy a program specified assertion. [Note that some are very expensive to det.ect 
unless aided by special hardware, and consequently their detection will often be 
~uppressed (see lOG).] 

lOC. Raising Exceptions. There shall be an operation that raises an exception. 
Raising an exception shall cause transfer of control to the most local enclosing exception 
handler for that exception without completing execution of the current statement or 
declaration, but shall not of itself cause transfer out of a function, procedure, or process. 
Exceptions that are not handled within a function or procedure shall be raised again at 
the point of call in their callers. Exceptions that are not handled within a process shall 
terminate the process. Exceptions that can be raised by built-in operations shall be 
given in th~ language definition. 

100. Exception Handling. There shall be a control structure for discriminating among 
the exceptions that can occur in a specified statement sequence. The user may supply a 
single control path for all exceptions not otherwise mentioned in such a discrimination. lt 
shall be possible to raise the· exception that selected the current handler when exiting 
the handler. 

! OE. Order of Exceptions. The order in which exceptions in different parts of an 
expression are detected shall not be guaranteed by the language or by the translator. 

lOF. Assertions. lt shall be possible to include assertions in programs. If an assertion 
ls false when encountered during execution, it shall raise an exception. lt shall also be 
possible to include assertions, such as the expected frequency for selection of a 
conditional path, that cannot be verified. [Note that assertions can be used to aid 
optimization and maintenance.] 

lOG. Suppressing Exceptions. lt shall be possible during translation to suppress 
lndividually the executi on time detection of exceptions within a given scope. The 
language shall not guarantee the integrity of the values produced when a suppressed 
exception occurs. [Note that suppression cf an exception is not an assertion that the 
corresponding error will not occur.] 
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11. Representation and Other Translation Time Facilities 

l lA. Data Representation. The language shall permit but not require programs to 
specify a single physical representation for the elements of a type. These specifications 
shall be separate from the logical descripti.ons. Physical represe.ntation shall include 
object representation of enumerat.ion elements, order of fields, width of fielc;is, presence 
of "don't care" fields, positions of word boundaries, and object machine addresses. In 
particular, the facility shall be sufficient to specify the physical representation of any 
record whose format is determined by considerations that are entirely external to the 
program, translator, and language. The language and its translators shall not guarantee 
any particular choice for those aspects of physical representation that are unspecified by 
the program. lt shall be possible to specify the association of physical reso!Jrces (e.g., 
interrupts) to program elements (e.g., exceptions or signals). 

l lC. Translation Time Facilities. To aid conditional compilation, it shall be possible to 
interrogate properties that are known during translation including characteristics of the 
object configuration, of function and procedure calling environments, and of actual 
parameters. For example, it shall be possible to determine whether the caller has 
suppressed a given exception, the callers optimization criteria, whether an actual 
parameter is a translation time expression, the type of actual generic parameters, and the 
values of constraints characterizing the subtype of actual parameters. 

110. Object System Configuration. The object system configuration must be explicitly 
specified in each separately translated unit. Such specifications must include the object 
machine model, the operating system if present, peripheral equipment, and the devic~ 
configuration, and may include special hardware options and memory size. The 
translator will use such specifications when generating object code. [Note that 
programs that depend on the specific characteristics of the object machine, may be made 
mcre portable by enclosing those portions in branches of conditionals on the object 
machine configuration.] 

l lE. Interface to Other Languages. There shall be a machine·independent interface to 
other programming languages including assembly languages. Any program element that 
is referenced in both the source language program and foreign code must be identified in 
the interface. The source language of the foreign code must also be identified. · 

l lF. Optimization. Programs may advise translators on the optimization criteria to be 
used in a scope. lt shall be possible in programs to specify whether minimum translation 
costs or minimum execution costs are more important, and whether execution time or 
memory space is to be given preference. All such specifications shall be optional. 
Except for the amount of time and space required during execution, approximate values 
beyond the specified precision, the order in which exceptions are detected, and the 
occurrencß of side effects within an expression, optimization shall not alter the semantics 
of correct programs, (e.g., the serriantics of parameters will be unaffected by the choice 
between open and closed calls). 
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12. Translation and Library Facilities. 

12A. Library. There shall be an easily accessible library of generic definitions and 
separately translated units. All predefined definitions shall be in the library. Library 
entries may include those used as input-output packages, common pools of shared 
declarations, application oriented software packages, encapsulations, and machine 
configuration specifications. The library shall be structured to allow entrie$ to be 
associated with particular applications, projects, and users. 

128. Separately Translated Units. Separately translated units may be assembled into 
operational systems. lt shall be possible for a separately translated unit to reference 
exported definitions of other units. All language imposed restrictions shall be enforced 
across such interfaces. Separate translation shall not change the semantics of a correct 
pro gram. 

· 120. Generic Definitions. Functions, procedures, types, and encc;tpsulations may have 
generic parameters. Generic parameters shall be instantiated during translation and 
s~all be interpreted in the context of the instantiation. An actual generic parameter may 
be any defined identifier (including those for variables, functions, procedures, processes, 
end types) or the value of any expression. 
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13. Support for the Language 

13A. Defining Oocuments. The language shall have . a complete and unambiguous 
aefining document. lt should be possible to predict the possible actions of any 
syntactically correct program from the language def!nition. The language docu~e~tation 
shall include the syntax, semantics, and appropnate examples of each bu1lt-in and 
predefined feature. A recommended set of translation diagnostic and warning messages 
shall be included in the language definition. 

138. Standards. There will be a standard definition of the language. Procedures will 
be established for standards control and for certification that translators meet the 
standard. 

13C. Completeness of Implementations. Translators shall implement the standard 
definition. Every translator shall be able to process any syntactically correct program. 
Every feature that is available to the user shall be defined in the standard, in an 
accessible library, or in the source program. · 

130. Translator Diagnostics. Translators shall be responsible for reporting errors that 
are detectable during translation and for optimizing object code. Translators shall be . 
responsible for the integrity of object code in affected translation units when any 
separately translated unit is modified, and shall ensure that shared definitions have 
compatible representations in all translation units. Translators shall do full syntax and 
type checking, shall check that all language imposed restrictions are met, and should 
provide warnings where constructs will be dangerous or unusually expensive in 
execution and shall attempt to detect exceptions during translation. lf the translator 
determines that a call on a routine will not terminate normally, the exception shall be 
reported as a translation error at the point of call. · 

13E. Translator Characteristics. Translators for the language wifl be written in the 
language and will be able to produce code for a variety of object machines. The machine 
independent parts of translators should be separate from code generators. Although it 
is desirable, translators need not be able to execute on every object machine. The 
internal characteristics of the translator (i.e., the translation method) shall not be 
specified by the language definition or standards. · 

13F. Restrictions on Translators. Translators shall fail to translate otherwise correct 
programs only when the program requires more resources during translation than are 
available on the host machine or when the program calls for resources that are 
unavailable in the specified object system configuration. Neither the language ·nor lts 
translators shall impose arbitrary restrictions on language features. For example, they 
shall not impose restrictions on the number of array dimensions, on the number of 
identifiers, on the length of identifiers, or on the number of nested parentheses levels. 
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13G. Software Tools and Application Packages. The language should be designed to 
work in conjunction with a variety of useful software tools and application support 
packages. These will be developed as early as possible and will include editors, 
interpreters, diagnostic aids, . program analyzers, qocumentation aids, testing aids, 
software maintenance tools, optimizers, and application libraries. There will be a 
consistent user interface for these tools. Where practical software tools and aids will 
be written in the language. Support for the design, implementation, distribution, and 
maintenance of translators, software tools and aids, and application libraries v.iill be 
provided independently of the individual projects that use them. 
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THE U.S. DEPARTMENT OF .DEFENSE COMMON HIGH ORDER LANGUAGE EFFORT 

Wi 11 iam A~ Whitaker, · Lt.Co!., USAF 
Oefense Advanced Research Projects Agency 

1400 Wi lson Blvd., Arlington, Va. 22209, USA 

The United States Oepartment of Oefense (OoDl spends more than three bi 11 ion 
dol lars a year on computer soft~are. This includes the design, development, 
acquisition, management, and operational support and maintenance of · such 
soft~are. Only a smal 1 fraction of this effort is involved ~ith the 
accounting, inventory, payrol 1 ing, and financial management functions ~hich are 
defincd by the Federal Government as Automatie Data Processing, those functions 
that have their exact analogy in the commercial sector and share a common 
technology, both hard~are and soft~are. A much !arger fraction of the OoO's 
Computer investment is in computer resources ~hich are embedded rn, and 
procured as part of, major Meapons systems, communications systems, command and 
control systems, etc. In this environment the DoD finds itself spending an 
even !arger share of its systems resources on softMare. As a ·result, this area 
is receiving increasing attention from the highest levels of management. A 
number of technical and managerial initiatives have been cal led out to both 
reduce the cost and improve the quality of Oefense systems softMare. A 
management plan has been formulated in this area and initial guidance is 
provided by OoD Oirective 5000.29, Management of Computer Resources in Major 
Oefense Systems. 

In the area of soft~are ~e may have, at the present time, more flexibi 1 ity and 
a greater influence on the technology than Mith hard~are. Some years ago, the 
OoD ~as a major innovator and consumer of the most sophisticated possible 
computer hard~are. lt no~ represents only a smal 1 fraction of the total 
commercial market. In soft~are, that unique position sti 11 maintains. A 
eignificant fraction of the total soft~are 1ndustry is devoted to OoO related 
programs and that is true in even !arger proportion for the more advanced and 
demanding systems. Thus, there is both an opportunity and a responsibi 1 ity in 
the soft~are arena ~hich is past for hard~are. 

One epecific initiative ~hich has been called out by OoO Oirective 5000.29 is 
the use of high order languagcs· <HOL) in systems development. The advantages 
are ~el 1 kno~n and in many communities, for instance, the COBOL finan~ial 

management community or the FORTRAN scientific computational community, these 
advantages are so persuasive that there has been essential ly no alternative to 
the use of these common languages for more than · a decade. The obvious 
advantages lnclude ease of Mriting of programs, self~documentation, ease of 



maintenance, ease of modification, transportabi lity of programs, simpl ification 
of training, etc. 

1 t is surprising that a gene~·al consensus has not mandated a common high order 
language for embedded systems long since. There are, ho~ever, a number of 
managerial technical constraints that have acted against this in the past. Fbr 
most Defense-.systems appl ications , very severe timing and memory considerations 
have been prominent in the past, often governed by real time interaction ~ith 
the exterior environment. Because of these constra ints, and restrictions in 
developmental cost and time scale, many systems have opted for assembly 
language programming. Th i s decision is often substantial ly influenced by past 
experience ~ith. poor quality compi lers and the fact that the assembler comes 
~ith the machine, ~hi le the compi ler and its tools usual ly must be developed 
after the project has begun. · The advantages of high order languages, ho~ever, 
are compel 1 ing and many more recent systems developments have turned to HOLs. 
Because of limitations of available high order languages, the programs 
generated most often include very !arge portions done in assembly code and 
1 inked to an HOL structure, negating many of the expected advantages. 

Further, many systems have found it convenient to produce their o~n high order 
language or some perhaps incompatible dialect of an existing one. Since there 
is no general faci lity for control of existing languages, each systems office 
has'had to do the configuration control on their language and compi lers and 
continue to maintain such on their particular dialect through the entire 
maintenance phase of the system, ~h i ch may be very long lived. Th i s has had 
thc effect of practically reducing the contractual flexibility of the 
government and restricting competition in maintenance and further development. 
This lack of commonality negates many advantagcs of high order languages 
including transportabi lity, sharing of tools, the development of very po~erful 
tools of high efficiency and, in fact, not only raises the total cost of 
existing tools, but in some cases essential ly prices them out of the market. 
Many development projects are very poorly supported and forced to 1 ive ~ith a 
technology ~hich is far belo~ the state-of-the-art. 

By the early 1970's each of the mi litary departments had under~ay studies or 
actual language designs ~hich ~ere expected to lead to common languages for 
lar ge por tions of those departments, in January 1975 the Oirector of Ocfense 
Research and Engineering set up a Oefense-~ide program ~ith the goal of a 
s ingle common mi 1 itary computer programming language for embedded systems. The 
in ten t ~a s to have a real time language to supersede those numerous ones in 
cx i s t ence whi le maintaining the standards of FORTRAN and COBOL, the success of 
~h ich standards had provided impetus to this consolidation program. Further, 
to assur e non-pr ol i feration during the duration of this effort al 1 other 
implement a t ions of ne~ high order programming languages for R&D programs · ~ere 
halted. A Hi gh Order Language Working Group lHOLWGl with representatives from 
DoD and the Mili tary Services ~as established as the agent for this effort. 

Br iefly, the logic of this initiative is as . follo~s: 

o The use of a high order language reduces programming costs, increases 
the readabi lity of programs , the ease of their modificatlon, 



faci 1 itates maintenance, etc. and general ly addresses many of the 
Problems of 1 ife cyc!e program costs. 

o A modern powerful high order language performs these tasks better 
and, in addition, may be designed to serve also in the specification 
phase and provide faci lities for automatic tests and program 
verij~cation. A modern tanguage is required if real time, parallel 
processing, and input/output portions of the program are to be 
expressed in high order language rather ·than assembly language 
inserts which destroy most of the readabi 1 ity and transportabi 1 ity 
advant~ges of using an HOL. A modern language may also provide 
better error checking, more reliable programs, and the capabi 1 ity for 
more eff iclent compi lers. 

o Many of the advantages of a high order language can only be real ized 
through computer tools. A total programming environment for the 
language includes not just compi ler.s and debugging aids but text 
editors and interactive programming assistance, automatic t~sting 
faci 1 ities and proofs of correctness, extensive module libraries, and 
even semi-automatic programming frorn specifications. Universal use 
of those tools which are avai lable today wöuld significantly reduce 
the present cost of software. Development of more powerful tools 
holds even greater promise. Unfortunately, the average programmer's 
tool box is rather bare. Because of the difficulty of preparing 
these tools for each new languige and machine and operating system, 
and the time involved, only the very largest projects have been able 
to assemble even a representative set. Whi le in many cases 
development of tools can be shown to be desirable in the long run, 
day to day pressures usual ly prevai 1. There is almest never time to 
do it right. The use of a common high order language across many 
projects, control led at some central faci 1 ity, would al low the 
sharing of resources in order to make avai lable the powerful tools 
which no single project could generate. lt would even make those 
previously generated tools avai lable at the beginning of a project, 
reducing start up time. 

o Reducing the number of languages supported to a minimal number, 
therefore, provides the greatest economic benefit. There are, of 
course, costs associated with supporting any particular project and 
general costs of supporting the language. Fora sufficiently large 
number of users, presumably the basic cost would be proportional ly 
less. Perhaps 200 active projects contributing to a .single support 
faci lity may not b~ proportional ly much cheaper than two faci 1 ities 
each supporting 100 projects, although the absolute saving would be 
significant. 

o There are, however, unique advantages to having a single mi 1 itary 
cornputer language. With a single language, one could reasonably 
expect new cornputers proposed for a project to be suppl ied by the 
manufacturer with a compi ler. This is, in fact, the experience of 
the Britieh with their common language effort. lf there ~er~ five or 



ten common languages, that is not a reasonable expectation. In fact, 
if there ~ere a single common language, its use in DoD and the 
provision of tool! by the OoD ~ould make it a popular candidate for 
use else~here. Suff;cient use could be generated that it ~ould be 
economical ly sound to· produce machines with firmware targeted to this 
high order language, decreasing cost and increasing efficiency. The 
multitude of mi litary languages in the past has not received this 
sorf of acceptance. A single powerful supported high order language 
migh{_even be expected to influence academic curricula, improving the 
training not so much of individual programmers but the understanding 
and capabi llties of the general engineering community for support of 
DoD programs. 

The High Order Language Working Group (HOLWGJ was chartered to formulate the 
requirements for common DoD high order languages, compare those requirements 
~ith existing languages, and recommend that adoption or implementation of the 
necessary common languages. In the very near term , administrative recourse has 
been taken. DoD Oirective 5000.29 specifies that "DoD approved high order 
programming languages wil 1 be used to develop Oefense systems soft~are unless 
it is demonstrated that none of the approved HOLs are cost effective or 
techn ical ly practical over the system life cycle ••• Each DoD approved HOL ~i 11 
be assigned to a designated control agent •.. " Thus, the .use of high order 
languages is established and indeed very strongly mandated, since 1 ife cycle 
costs are usual ly dominated by maintenance where the high order languages have 
consiclerable advantage over assembly language. Approved high order languages 
~i 11 be used, thereby reducing the proliferation and further, these languages 
~ill be controlled by central facilities. DoD lnstruction 5000.31, Interim 
List of DoD Approved High Order Programming Languages, designates those 
languages and assigns control responsibility. COBOL and FORTRAN wi 11 be 
control led by the Off ice of the Assistant Secretary of Oefense (Comptrol ler) 
acting with The National Bureau of Standards and The American National 
Standards Institute. TACPOL shal 1 be control led by the Army. CMS-2 and SPL/l 
shal 1 be control led by the Navy and JOVIAL J3 and J73 by the Air Force. 

Formal ization of these languages is a major step for~ard and recognizes for the 
firs t t ime the corporate comm i tment of the Department of Oefense to provide 
support for languages in the long term. lt stops the proliferation of 
languages in that al 1 ne~ systems are to be programmed in one of these 
languages, but there is no intent that already e~isting programs be redone or 
tha t the projects, already committed to a language, change. There are, 
however, limitations. The languages themselves are selected from the present 
Serv ice inventories and are not, in general, modern po~erful languages. They 
a r e gener al ly deficient in tools andin avai labi lity of comp i lers. Further, we 
have on ly started on the concept of control. lt wi 11 b~ some time before they 
reach t he state of a ~el 1 supported and control led language. This is, 
therefore , an interim very near term solution. A more satisfactory technical 
solution t o the problem is to formulate requirements, evaluate the existing 
languages, sel ect t he best for modification to meet the requirements, and bui ld 
a single common high order language, if that proves technical ly feasible. 

The f irst charge t o the High Order Language Working _proup ~as to establ lsh 



requirements. In terms of reference, this 1.1orking group 1Jas to consider 
general purpose computer programming languages, those 1.1hich · are . used by a 
programmer to talk to a · ~ornputer, that is, of the level of the interim 
standards defined above. This is a lirnited goal and does not include either 
gcneral ized requirements languages or very specific appl ications packages, . 
1.1hich are formulated like languages but have only limited access to the 
capabi lities• of the computer. Such applications packages include simulation 
P~ograms suclt as SIMSCRJPT, or GPSS, automatic test equipment languages such as 
ATLAS, 1Jhich is real ly for communications bet1.1een the test engineer and the 
technician, or special purpose packages for aerodynan1ics or civi 1 engineering, 
or even general ized query languages or job control languages. Some of these 
are under study by other groups. 

The goals of such a high order language are 1.1el 1 agreed upon. 

o One 1.1ishes to have the language faci litate the reduction of the cost 
of soft1.1are. This cost must be reckoned on the total burden of the 
1 ife cycle, including maintenance and certainly not just the cost of 
production or program 1.1riting. 

o Transportabi 1 ity al lo1.1s the reusing of major portions of soft1.1are and 
tools from previous projects and the flexibi 1 ity to ~odify hard1.1are 
conf i gurat i ons . 

. o The maintenance of very long lived soft1.1are in an ever changing 
threat situation requires responsiveness and timely flexibi 1 ity. 

o Rel iabi 1 ity is an extremely severe requirement in many Oefense 
systems and is often reflected in the high cost of extensive testing 
and verification procedures. 

o The readabi 1 ity of programs produced for such long term systems use 
is clearly more important than coding speed. 

o The general acceptability of high order languages is determined, at 
this time, by the efficiency and quality of the compi led code. Whi le 
rapidly fal 1 ing costs of hard1.1are may make this difficult to 
substantiate in general, each project manager 1.1i 11 compare the 
eff iciency of the object code produced against an absolute standard 
of the best possible machine language programming. Yery 1 ittle 
degradation is acceptable. 

Whi le these and simi lar goals are 1.1ell accepted, they do not lend themselves to 
a quantifiable or rational assessment of languages. Alternatively, · one could 
establ ish criteria 1.1hich 1.1ere excessively explicit, determining the form but 
not necessari ly the capabi lity of the language. Rigorous definition of the 
exact level of requirement proved difficult. Therefore, a STRAWMAN of 
preliminary requirements 1.1as established to define this level b~ i 1 lustration. 
The STRAWMAN 1.1as for~arded to the Military Oepartments, other government 
agencies, the academic community and to industry. Additional ly, a number of 

·technical experte outside the U.S. 1.1ere eolicited for . comments, the European 



community being especial ly responsive, 
research has been much mpre active 
decade. 

all the more vital eince language 
there than in the U.S. over the last 

The review of the STRAWMAN resulted in inputs from which were put together a 
fairly compl-ete, but sti II tentative, set of requirements cal led the WDODENMAN. 
This too ��s �idely distribut�d for comment. Based on various inputs and the 
official responses from each of the Military Oepartments, a TINMAN set �as 
derived �hich then represented the desired characteristics tor a high order 
computer programming language for the OoD. 

Early in this program, there was the feeling that different user communities 
might have fundamental ly different requirements with insufficient overlap to 
justify a common language between them. Such communities include avionics, 
�eapons guidance, command and control, communications, training simulators, 
etc. In addition to the embedded computer applications, even the scientific 
and the financial management communities were solicited for requirements for 
completeness sake. The surprising result was that the requirements so 
generated �ere identical. lt was impossible to single out different sets of 
requirements for different communiti�s. All users needed input/output, real 
time capabi lity, streng data typing for compi ler checking, modularity, etc. 
Up?n reflection, the technical rationale for this was clear. The surprise was 
historical, based on the observation that in the past the different communities 
had favored different language approaches. Further investigation showed that 
the origin of this disparity was �rimari ly administrative rather than 
tcchnical, and the result that a single set of requirements would satisfy a 
broad set of users became less of a surprise. This did not, however, establ ish 
that a single language could meet all the stated requirements, only that, if a 
language meeting al I the requirements existed, it would satisfy the users 
needs. 

Very wide distribution of the TINMAN fol lowed and for a year comments were 
received on this document. An international workshop was held at Cornel 1 
University in the fal I of 1976 to i lluminate the current state of the jrt of 
programming language design and implementation. In January, 1977, a new 
version was issucd cal led the IRDNMAN. This is essential ly the same set of 
requirements as the TINMAN, modified slightly for feasibi lity and clarit�. but 
it is presented in an entire1y different format. The TINMAN was discursive and 
organized around general areas of discussion. The iRDNMAN, on the other hand, 
is very brief and organized like a language description or manual. lt is 
essential ly a specification �ith which to initiate the design of a language. 
lt is sti 11 sufficiently general so as not to constrain a particular structure 
of the language but just its capabi lities. The IRONMAN was revised in July, 
1977, mainly to clarify the intent, but also to correct the few errors and 
inconsistencies that had been identified. 

The next phase of the work �as the ·evaluation of existing languages. This �as 
begun in a formal fashion in the summer of 1976, at which time the current 
requirements document was the TINMAN. Oifferences between the TINMAN and the 
JRONMAN are sufficiently minor so as not to affect the conclusions of this 
evaluation. The purposes of the evaluati�� were: to ·examine the existing 



languages and determine if one or a combination could satisfy the requirements:
to determine on the basis of evaluation of existing languages whether the
requirements themselves uere feasible and valid; to determine if it was
possible uithin the state-of-the-art to have a single language satisfying al 1
these requirements; and to �ecommend the procedure for arriving at the desired
minimal set of languages.

The languages included in the evaluation uere those nominated to the Interim
Standard List, languages in uide acceptance elseuhere, and certain modern
languages offering advanced capabi lities. The main eet of languages was
evaluated very formal ly by contracts in uhich each language was evaluated by
more than one contractor and each contractor had several languages to evaluate,
thus giving a cross check on the results. In addition, a number of individuals
submitted detai led evaluations of specific languages uith uhich they had a
unique fami I iarity. Al I these evaluations consisted of a comparison of the
language against each individual point of the TINMAN. They were not mere 
cxistcnce checks but the languages uere also examined fo� feasibi I ity of
moclification should a particular point not bc met and for features beyond the 
TINMAN requirements. 

The fol louing languages received formal evaluations: FORTRAN, COBOL, PL/1, 
HAL/S, TACPOL, CMS-2, CS-4, SPL/1, J38, J73, ALGOL 60, ALGOL 68, CORAL 66, 
PASCAL, SIMULA 67, LIS, LTR, RTL/2, EUCLID, PDL2, PEARL, MORAL, EL-1. Besides 
those languages receiving formal evaluation, a number of other languages were 
examined for specific ·teatures or as examples of modifications of these 
languages and contributed data to the feasibi lity and flexibi I ity of the 
various language approaches. In addition, some, such as APL, uere immediately 
excluded as being inappropriate for Oefense systems programming. 

Such uas the bulk of these studies that a government committee uas put together 
to analyze and compare the evaluations and to make recommendations consistent 
uith them. These conclusions and recommendations uere adopted unanimously ·by 
the High Order Language Working Group as the basis for the next phase of the 
project. The conclusions may be briefly summarized as fol lous: 

o Among al I the languages considered, none uas found that satisfies the
requirements so �el I th�t it could be adopted as the common language.

o Al I evaluators feit that the development of a single language
satisfying the requirements uas a desirable goal.

o The consensus of the evaluators uas that
produce a language uithin the current 
essential ly all the requirements.

o Almost al I the evaluators feit ·that
language to satisfy all the requirements 
carefully chosen base language.

it �ould be possi�le to 
state-of- the-art meeting 

the process of designing a 
should start from some 

o Without exception,
evaluators to be

the follouing languages �ere found by the 
inappropriate to scrve as base languages for a 



·development of the common language: FORTRAN, COBOL, TACPOL, CMS-2,
JOVIAL J73, JOVIAL J3B, SIMULA 67, ALGOL 60, and CORAL 66.

o Proposals ehould be solicited from appropriate language designers for
modification efforts· using any of the languages, PASCAL, PL/1, or
ALGOL 68 as a base la.nguage from LJhich to start. These efforts
should be directed toward the production of a language that satisfies
the • DoD set of language requirements for embedded computer
app 1 �cat i ons.

o At eome appropriate time some choice should be made among these
design · efforts to determine LJhich are most LJorthy of being continued
to completion.

The definition of a base language, uhich evolved during this procedure, LJas one 
�hich �as fami liar to the community so that a number of contractors could use 
it as a starting point and provide an audit trai I for evolution of the desired 
language LJhich could be compared betLJeen contractors by government personnel, 
Many contractors LJould pass near some intermediate existing language, a 
modification of one of the bases in the direction of the requirements. For 
instance, PEARL or HAL/S could be considered modifications in the PL/1 fami ly 
toLJards our desired real time language. This does not mean that those deemed 
inappropriate as a base language are not perfectly adequate for their present 
op�rational use. lndeed, the presence of COBOL and FORTRAN, to LJhich LJe are 
committed to on a lang term basis, belies that implication. Nevertheless, 
these languages LJould not be good starting point� in that they have basic 
inconsistencies LJith the requirements or have been superseded by more 
appropriate starting points. 

At this point LJe had determined, as LJel I as can be done on the basis of paper 
studies LJithout actual construction of a language, that a single language could 
be constructed to meet the requirements, further, that this could be done uith 
elements LJhich are mutual ly consistent and LJithin the demonstrated 
state-of-the-art. The next step in the project LJas, therefore, to provide a 
prel i�inary definition of a language. Alternatively this might be considered 
an elaborate feasibi I ity proof. Such definition LJas to be informal but fairly 
complete and consider the cost and nature of implementations. 

This preliminary definition LJas done using the IRONMAN Revised as a 
specification and �rawing upon the previous LJork done on evaluations. The 
procedure uas multiple competitive contracts, LJith the best products to be 
selected for continuation to full rigorous definition and developmental 
implementation. 

In August 1977, four contracts LJere awarded to produce competitive prototypes 
·of the common high order language. These awards came as a result of a request
for proposal and offers received from fourteen firms, both U.S. and foreign.
The successful contractors LJere Cll-Honeywell Bull, lntermetrics, Softech, and
SRI-International.

�hi Je different approaches LJere offered, al I four LJinning contractors proposed



to etart from the computer language PASCAL as a base. This thereby restricts 
the products in form and makes it some"'hat easier to compare the re,ults. We 
L.Jere prepared to deal "'ith three different base languages, so the outcome uas 
coincidental. lt should .be noted that the requirements against "'hich the 
language is being designed are not the same as those driving PASCAL and the 
result should not be expected to be a superset of Pascal. Hol.Jever, there ui 11 
be some fami ly resemblence and care is being taken not to modify eurviving
Pascal forms L.Jithout substantial reason. 

The products of Phase J , the preliminary designs , "'ere received in February 
1978. Thc considerable interest that this project has generated in the outside 
community made it possible to seek technical input for the evaluation of these 

.designs from the industrial and ac.edemic communities L.Jorld"'ide. Eighty 
volunteer analysis teams "'ere formed and produced extensive technical analysis 
of the designs. The period avai labte L.Jas quite short, but the designs uere 
only prel irninary and the purpose of the analyses "'as to deterrnine uhich should 
be cont i nued to comp I et i on. On the bas i s of _these ana I yses, Cl 1-HoneyL.Je 1 1 
Bul 1, and lntermetrics L.Jere selected to·continue and resume uork in Apri 1 1978.

As a result of both the designs and the analyses, the requirements uere updated 
in June 1976 to a STEELMAN version. Since this may logical ly be the final set 
of requirements, some care "'as taken to clean it up and particularly to remove 
apparent misunderstandings and discrepancies "'hich surfaced as the result of 
the actual design of the four languages. The exceptional ly rigorous revieL.J of 
the languages by the analysis tearns in the context of the requirements �as a 
further exceptional test. lt L.Jas the specific goal of this revision to assure 
that the level of the requiremcnts L.Jas propcrly functional, neither too 
speci fic nor too general. Seme portions of requiremcnts have been deleted or 
modified as a result of these revieL.Js and the parallel processing requircments 
have been general ized. The document remains a set of real istic requirements 
for large-scale systems in the present state-of-the-art. lt does not describe 
an abstract, ideal language but is limited to one dealing in operational 
realities. Restrictions on character set reflect the distribution of input 
devices in al I communities. The GO TO, remains although restricted, in order 
to ensure a6ceptabi I ity in those communities L.Jhere it is sti 11 "'idely us�d. 

The second phase of the design L.Ji II include a language manual and a complete 
description, a formal definition of the language, and a test translator �hich 
ui 11 al lo"' some execution. T�e test iranslator is only an aid Jn development 
and testing of the language and is. not intended to be a production level 
compi !er. A final selection betL.Jeen these t"'o designs �i 11 take place in Apri 1 
1979. 

A selection �; 11 then be made of the single sucdessful contender and that 
language "'i 11 undergo elaborate test and evaluation of the language (as opposed 
to test of compi lers) by reL.Jriting a number of existing �el I defined programs 
or systems to dcmonstrate its applicability and advantages. A number of 
production compi lers ui 11 be contracted for from different sources. A major 
thrust of this effort is to �ake the products non- propriet�ry and uldely 



avai lable. Compilers will be tested against benchmarks and certified and ~hen 
avai lable the language can then be added to the list of approved languages in 
OoDI 5000. 31. 

Most recently ~e 

analyses. These 
resulting fr~m the 
examined various 
demonstrated, and 

have seen the compleation of three different economic . 
~ere targeted to questions of expectation of savings to 

successful compleation of this program. They further 
introduction strategies and rates. Significant savings ~ere 

these were magnified by rapid introduction. 

As the language becomes avai lable, those other vital steps to programming 
environment wi 11 be provided including control, training, and tools. A 
particular technology tobe fostered in this area is that of . the generation of 
efficient compi lers. A number of techniques including root compi lers, 
compi ler-compi lers and compi ler factories wi 11 be developed ~ith the eventual 
goal of making avai lable very inexpensive techniques for producing a cornpi ler 
in this language for a ne~ machine. Certification, testing and comparison of 
compi lers by the control faci lity ~ill promote competition and make the 
government a more kno~ledgeable buyer. Whi le there is no interit to force any 
existing project to reprogram inane~ language, there might be occasions in 
~hich this could be very profitable. Translation aids ~i 11 be developed for 
converting existing language programs into the ne~ language. lt is hoped that 
th4s ne~ language wi 11 be so po~erful ly supported that it ~i 11 be the language 
of choice for future systems. lt should be experimental ly avai lable by 1979 
and avai lable for general use in 1980. 

These aspects of the development environment are being explored using 
procedures simi lar to that for the language requirements. A document has been 
prepared addressing those features of control led support ~hich ~ould be 
required · for the optimal uti lization of the language. These may be 
requirements in a diffeent sense from the rigorous complete se~ of the 
STEELMAN, but the iteration methodology is also appropriate here. An initial 
version, SANOMAN, was superseded July 1978 by the PEBBLEMAN. This is sti 11 
quite prel iminary. Comment is being solicited from the soft~are development 
community, a some~hat different group than the language experts ~ho primari ly 
address the language requirements. A meeting was held at the University of 
Cal ifornia Clrvinel in June 1978 d)scussing al 1 aspects of the requirements. 
In September 1978, a meeting at Egl in AFB, Florida, discussed prin1a.ri ly the 
technology of retargetable compi lers. 

PEBBLEMAN proposes a configuration control board for the language ~hose 
responsibi lity is to maintain the definition and resolve any possible 
questions. A language control facility would provide val idation and 
certification of compi lers that they COflform to the official definition uithin 
the 1 imits of the current abi lity to test. The bulk of the document is 
concerned uith defining those tools ~hich could be provided in common to the 
use of language and outlining the methodology for producing and inter-relating 
those tools. 



There is no intent to imply that al 1 possible language requirements have been 
uncovered. New environments, new machines, new computer science and technology 
~i 11 eventual ly render the best language obsolete. lt is rather eurprising 
that everything required can· be presently met. That may be the result of 
setting our sights on what we ·know. George Washington didn't ask for airplanes 
or atomic bombs or lasers, al 1 he wanted was more muskets, cannon and sabers. 
~uture lan~uage research is vital to the continued growth of capabi l ities. lt 
•s not the i~tent that the existence of this language stifle such research, 
rather that • it provide a target and a user, a data and requirements gathering 
agency that wi 11 be able to survey the state-of-the-art and both direct and 
apply future developments. 

Besides the normal interaction between portions of the Oepartment of Oefense 
and other agencies of the U.S. Government, this effort has had close relations 
with and received a great deal of support and technical input from a number of 
outside organizations with similar aims. T~e appropriate subcommittees of the 
American National Standards Institute and the International Standards 
Organization including their Working Group on Programming Languages for the 
Control of lndustrial Processes have been kept closely informed of this ~ork. 
The International Purdue Workshops on lndustrial Computer Systems have long 
held an interest in this area and in particular an affi liate group, Long Term 
Procedural Language-Europe (LTPL-EJ has as a goal the production of a language 
much 1 ike the one we desire: The goals of this group have recently been 
adopted by the European Economic Community and there has been a very intimate 
relationship between this group and the HOLWG. This is perhaps the most 
closely analogous group, trying to satisfy the requirements of several 
countries in many appl ications areas. 

Perhaps the most successful national common language effort has been that of 
the British Ministry of Defense in specifying language CORAL 66 for al 1 MOO 
real time appl ications. The HOLWG has received much valuable technical and 
managerial insight from the British experience and to enhance this cooperation, 
the British have assigned a senior technical expert to the HOLWG to be resident 
in Washington, providing both technical input and liaison. More recently, both 
the German and French governments have inifiated procedures to standardize on 
existing high order languages, respectively, PEARL and LTR. The Federal 
Republ ic of Germany has also assigned a technical represenative to the HOLWG in 
Washington. The Japanese government, Ministry of Information, Technology . and 
lndustry, is subsidizing a consortium to produce a software production 
environment, central to which is a common programming language. The CCITT has 
proposed a common high order language for international use in communications. 

lt appears that the time is ripe for moving to a common high order language 
both technical ly and administratively, but significant mi lestones do remain. 
The High O~der Language Working Group activefy solicits comments and the 
cooperation the -rthein making this effort a success. 
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PREFACE 

The Oepartment of Oefense Hi�1h Order Language Commonal i ty language program 1-ias 
established in 1975 1,,1ith thc goal of establishing a single high order computer 
programming language appropriate for DoD cmbecldecl con1puter systems. A High 

Order Language Working Group (HOLWG) was establ ished to formulate the DoD 
requirements for High Dreier Languages, to cvaluatc existing languages against 
those requirements, and to implement the minimal set of languagcs requircd for 
OoO use. As an administrative ihitiative toward the eventual goal, OoD 
Oirective 5000.29 provides that new defense systems shoulcl be programmecl in a 
OoO approved and central ly control led high or-cler language. UoD lnstruction
5003. 31 gave an inter im I ist of approved I a119I10::'J�S i nc I ud i ng COOIIL, F[l[HRAM • 
TflCPOL, CMS-2, SPL/1, ancl JOVIAL J3 ancl J73. Eco11u111ic analyse�. 1.Iere u;;�cl to 
quantify the bcncfits of goin�1 to high orclcr langu<1<JCG ancl indicate 

• consiclerably greater benefits associatccl with th,:, r0picl introcluction of a
sing I e, modern I anguage. The requ i rer,1en t s h.Jve l:oe,:,n 1� i cle I y cl i s t 1· i IJu t ccl f 01•
comment throughout the military and civil communitics, producing successivcly
more refined versions from STRAWMAN through WOOUcf�tlt'-N, TINnAN, !FlONnAN, ancl the
present STEELMAN. Ouring the requirement development process, i t �,.:is
clctermined that the single set of requirements generatecl I-i,,s both ntecessary and
sufficicnt for al I major OoO applications. Formal rvaluation was performecl on
clozens o f ex ist i ng l anguagcs conc I ucl i ng th.:i t no ex ist i ng I c1n9u<19e cnu I d be
aclopted as a single comr,1on HOL for the OoO but that a i:,ingle l,Hl(tu,1�I0 ri1 •:f:tin9
e ssential ly al I the requirements t-ias bcith fc�1sible <1ncl c!csir.:iblc. Fcur
contractors were funclecl to llrocluce con11,etitive f)rotot�1r,es lJasecl Ltf)011 PASCAL. A
first-phase evaluation recluced the clesi�1ns to ti-10 1.:hich ,�i 11 be c.:1rriccl to
con1pletion and from 1,.ihich a single languaue 11ill e;,Iei-r;e. Further step:. in tlie
program will be the test ;:incl e.valuation of the larn:iuage, procluction of
compi lcrs and a program clevelopmcnt and tool environ111e11l, ancl control of the
language and valicl.:ition of compilers. Thc lanuu,:iue valiclation facilities a,7cl
government-fundecl compi lers ancl tools wi 11 bc wiclcly and chcaply av.:ii labte to
help promote use of the language.
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Chapter 1 

lntroduction 

1.1 Purpose 

The Oepartment of Oefense IDoDJ is defining a Common Higher Order Languagc 
CHOLJ for embedded systems based upon a language requirements cfocument . The 

LanDuage Requirements Oocument 11as the procluct of the Mi 1 i tarv Oepartments 
coordinated by the OoD HOL Working Group IHOLWGJ. lt incorpora t ed comments and 
Suggestions from the government, acaden1ic in s ti- tut i ons, ancf industry unti 1 
jucfgcd to bc of sufficicnt correctness and throuahnr. ss to be used as the 
requirements document for thc cJcsign of thc DoD ~011101on High Dreier Languagc for 
embecfcfed systems. 

In order for the Common High Order Language tobe successful in achieving the 
desired objectives, the environment in wh i ch it is usecf has tobe concfucive to 
i ts support. The env i ronment inclucles al 1 supporting activi ties anct aic.Js to 
cfcvclop programs for all systcm s applications - sm::i ll, medium and large. These 
aicfs include for instancc: 

1. Organizations ancf methocJs to control thc 1.:~ngua~1c and promote cfevc l opmcnt 
0 f t 00 1 s 

2. Compilers for converting the HOL into the machine language of t he target 
Computer 

3. Tools to aid in the dcsign, test and clcbug of ;.ippl ication progr<ims 

4. Organizations and methods to research the use of the language an cf prepare 
for fol 101.J on 

5. Materialsand techniques for tra i ning users of the language 

6. Mcthods for col lecting, cataloging anti clissem i na ting information about the 
languagc and programs 1.Jritten in the language 

7. Project management aicfs to ach i eve SllCCC-:>sful implcmenta t ion and 
n1a in t enance 

This document , titled PEBOLEMAN, describes the requirements for the environment 
necessary to the success of the Common High Order Language. lt wi 11 go through 
;:i n11n1bP.r o f i t era t i ons, as the 1 ringu <iue rP.qu i rP.ntP.n t ~ hcivP. 1 i nr.nrrnr;:i t i na 
suggest ions from al 1 parts of the softi.Jare con101uni ty. 1 t 1.Ji 11 also sp i n o ff 
more detai led requirements in specific areas such as software too ls or cont r o l 
faci 1 i t ies. 

The themc behind the inclus i on of any ~ opic has heen t o list al 1 methods which 



have come to be recognizcd as necessary for the production of rel iable 
sof t~are. 

This is a preliminary document for generating comments and wide latitude has 
been al lowed in describing requirements. Late~ versions wi 11 strive for 
greater rigor. 

Commcnts and furthcr material are activelu sol icitArl from the reader. They may 
be transmittcd directly to the HOLWG through its chairman: 

Lieutenant Colonel Wi 11 iam A. Whitaker 
DARPA 
1400 Wi lson Boulevard 
Arl ington, Virginia 22209, USA 



1.2 Reference Docurnents 

o Standard Definition Oocument for the Common High Order Language (tobe 
defined}. 

o DoD Requirements for High Order Computer Programming Languagcs, STEELMAN, 
June 1978. 

o DoO Requirement for High Order Cor,1puter Programming l,..anguages, IRONMAN, 
Revised July 1977. 

o DoO Requirement for High Order Computer Programming Languagns, TINMAN, June 
1976. 

o DoD High Order Language Program Management Pl8n, January 14, 1977. 

o The Navy Fortran Validation System, Patrick M. Hoyt, AFIPS Volume 46, 1977. 

o Design and Implementation of Programming Languages, DoD Sponsored Workshop, 
lthaca 1976, Lecture notes in Computer Science Number 54, Springer - Verlag. 

o DoD's Common Programming Language Effort, David A. Fishcr, Computer, March 
1978. 

o Proceedings from Workshop an Environment and Control of OoD Cornmon High Order 
Language, University of California, lrvine, June 1978, (to !Je published). 



1.3 Definition of Requiremcnts Terms 

The fol lowing terms have been used throughout the text to indicate wh~re and to 
what degree individual requirements apply. 

Shal 1 - indicates a requirement on the environment 
. 

Should - indicates a desired goal but one for which there is no objective test 

May - indicates a requirement to provicle an option to the user (user is 
subjectl 

Must - indicates a requiren1ent placed on the user b~i the environment (user is 
sub j ec t l 

Wi 11 - indicates a consequcnce that is expected to fol 101~ or indicates an 
intention of OoD 



Chapter 2 

Language Standard 

2.1 Standard Definition Oocument 

The syntax and semantics of the OoO Common High Order Language Jre to be 
described in a document which shal 1 become the stanciard for dec i ding whether or 
not compi lers conform to the language specification . That document shal 1 be 
referred to as the Standard Definition ·Oocument. The Configurat i on Contra! 
Board shal 1 maintain and interpret this document. 

2.2 Critieria for the Language 

The goal of the OoO Common High Order Language effort is to reduce total cpsts 
of software incurred by DoD. To this end a language is being designcd with the 
fol lm.iing general cri teria : 

1. General ity - The language should be of a general nature appl icable to a 
wicfc range of embedded systcms computer application s . 

2 . Rel iabi 1 ity - The language should promo t e, cncouragc, and cnforce the us e 
of techniques which lead to rel iable software. 

3. Main t a i nab i 1 i ty The 1 anguage shou 1 d emphas i ze reaclalJ i 1 i ty and 
understandabi 1 i ty of programs and lead to less costly maintenance. 

4 . Eff i ciency - The language should al low compi lers which produce eff icient 
objcct programs . 

5. Simpl icity - The language should reduce unneces sary complexity by means of 
uni form syntactic conventions and cons i stent semantic s tructure. 

G. Implementation - The language should faci 1 itate production of compi lers 
that are easy to implement and are effic ient. 

7. Machinc Indcpcndence - The language should ctrive for machine independence 
to make possible the trans- portabi 1 ity of appl icat ion programs . 

8. Formal Definition - There should be a formal defini t ion of the language . 

2 • .3 Expl ici t Pol icy and Controls for Stanclardization 

In order for the HOL to ach ieve e><pected benefits, there shal 1 be no variants 
o f the Language. Organ i za t i ons suppor t i ng the Common Languag e sha 1 1 nion i tor 
and oppose any attempts at non - conformancc to thc publ ishc cl standard. 

Once the Common Language is definecl it wi 11 bc added to the 1 ist of approved 



higher order languages in DoO 5000.31. 

A Mll-STO wi 1 l be prepared and coordinated. 

Rcgistration of the Language as a Federal Information Processing Standard wi l 1 
be useful so that i t may be usccl throughout the Feclcral .Government. 

The supporting organization will monitor activities in use of the Languagc and 
participate to promote further stanclarclization of the Language. Submissions to 
the American National Standards Institute ancl the International Standards 
Organization may be appropriate to expancl the user base and further reciuce the 
l ikel ihood of variants. 

2.4 Approach 

All environmental elements of this clocument support thc above goals for thc 
Common Language. Elements necessary for succcss are describecl in subsequent 
sections as fol lows. 

1. The primary necessity is an organization 
promote development of its supporting software. 
organizational structure. 

to control the Language and 
Chapter 3 describes this 

2. Methods for control 1 ing the Common Languagc ancl its compi lers are rcquircd 
.to permit managecl change when necessary for technical growth. T~ese methods 
are described in Chapter 4. 

3. Chapters 5 through 11 discuss the v;:irious types of tools ~1hich are 
nccessary for the success of the Common Language. 

4. Chapter 12 discusscs rcquircmcnts 
Common Language. The methocls described 
embedded systems. 

for application programs writlcn in the 
1.1ill lc.:;cl to high port.:ibility for 

5. Diverse training will be required for successful implementation of the 
Common Language. Chapter 13 addresses these training requirements. 

' 6. Chaptcr 14 dcscribes methods for col lection and dissemination 
Language materials Ctools, compilers, training aids, etc.) so 
embedded computer software community wi 11 have ready access to al 1 
Common Language information. 

of Common 
tha t the 
rcquircd 



Chapter 3 

Control and Support Organizations 

The fol lowing paragraphs describe the organization of 
groups which have been proposed to effectively control 
DoO Common High Order Language and provide support. 

3.1 Configuration Control Board 

faci litics .and user 
standardization of the 

/\ Con f i gura t i on Con tro 1 Board fCCBJ sha 1 1 be es tab 1 i shed by DoD ancl be 
rcsponsible for custody and maintcnance of thc standard clcfini tion of non 
Common High Order Language. Primarily, tl1e function of the CCB shall be to 
minimize changes to the Language and prevcnt the occurence of variant 
translators. 

The CCB shal 1 be 
Language definition. 
Language def inat ion. 
a prompt response. 

the 
A II 
A II 

final arbiter in any interpretation dispute of the 
official interpretations shall become part of the 
requcsts for changes and interpretations wi 11 receive 

To recluce potential influence of special interest groups. the CCB sh.:il 1 bc 
autonomous of compi ler or appl ications developers. 

Me mhership of the CCO may include representation from major Federal user 
communities within the United States. Expansion ' of the CCO to include 
rcpresentatives from outside the U.S. wi 11 be appropriate as other nations 
makc a major commi tmcnt to thc Lanuuogc. Rcsponsibi 1 i ty for the cc:B mau 
eventual ly be transfered outside the DoD. 

Thc CCB shal 1 be operational as soon as the language is frozen and submi tted 
for standarclization. At that time, formal clefini tion of the OoD HOL shal 1 be 
control led by the CCB. 

3.2 Compiler Validation Faci lity 

A fici 1 i ty shal 1 be establ ished to val idate that compi lers .are complete ancl 
correct implementat ions of thc OoO HOL. The f<1ci 1 i ty shal 1 not per form any 
function other than compi ler validation and shal 1 be independent reporting only 
to the CCB. 

As a minimum, validation shal 1 be conducted by subjecting compi lers to a sct of 
test progra~1s. Development and maintenance of test programs shal 1 be the 
responsibi 1 i ty of the val idat ion faci 1 i ty. Trouble reports from users 1.1i 11 be 
used to refine and update test programs in an effort to develop the mos t 
comprehensive test programs possible. Al 1 test programs shal 1 be docume nted 
and made avai lable to implementors who wish to test compi lers independently 
prior to formal val idation. Formal val idation shol 1 cons is t o f revie~ing 

ccimpi ler documentation and running the tcst programs . Mor e cl.:iborate 
val idation wi 11 be conducted ~hen such methodologi cs can be c st .:i b l ishcd. 



A val idation report shal 1 be prepared and publ ished by the faci 1 ity. 

Va 1 i da t i on L.J i 1 1 
cleveloped and 
at the start of 

be required hy Oefense projects when compi lers are initial ly 
L.Jhen mocli fied. A requirement ~ii 11 be to val idate the compi lers 
any project which plano to uoe thc compi ler. 

The val iclation faci 1 i ty 
from the selection of the 
offices of the validation 

shal 1 be establ ished and operational L.Jithin one year 
Common Languaße. When ~ctivity warrents, additional 
faci 1 i ty may be establ ished. 

3.3 Language Support Facility 

A Language Support Facility (LSFl shall be established. lt L.Jill be the focal 
point for most translator, support tool, ancl 9cncr3I libr;:iry ctevelopn1r.nt · anct 
maintenance activity for the Comnton Language. 

The LSF shal 1 be the primary inlerface for user and irnplementor communi ties. 
IT L.Ji 11 develop and maintain documentation, clevelop and concluct training 
courscs and responcl to al 1 user and ir.iplementor inc11;iries. 

Al 1 compi lers, support tools, 1 ibraries, ancl lanau.19e documentation maintained 
by the LSF shal 1 be readi ly avai lable to any lcgitimate and qual ified lanau~ue 

user or implementor. 

3.4 Application Libraries 

flpplication libraries, in the long ternt, ~Jill beco111e very large and diverse. 
An cffort will be unclertaken to dcmonstrate the utilitu of a centr .3llu 
supportcd application library. Scvcr31 promising r;pcciali;:ccl application cireas 
are signal processing, clisplay processing, ancl co1m.1unication net~1cwks. Tl1e 
ARPANET is a particularly wel 1 known appl ic~tion that may bo providccl as a 
common application package. 

Once developed, appl ication 1 ibraries could be supported and maintainecl by 
their specific support facilities. These facilities 1-1ould be formecl as clesirecl 
for particular appl ications, in sonte cases colocated with the Language Support 
Faci 1 i ty. 

3.5 User Organizations 

User organizations are necessary to serve as a technical forum for common 
interests of those using the common language. 

The Common Language Support Faci lity will fester user organizations by giving 
thc~ rccognition, disocminaling information Gbout their mcetinas and rurposes, 
participating in their meetings, and giving duc conoiclcration to user 
organization proposals. 

The organizations may be grouped by special interest such as the fol lowing: 

1. Use of a particular compi ler 



2. Use cf a particular computer 

3. A particular application area 



Chapter 4 

Configuration Management 

4.1 Objectives and Strategy 

The strategy for managing the Common 
control change, al lowing for evolutional, 
compi ler, development tools, and test 
control led by the responsible agencies. 

Languagc and Environmen! wi 11 be to 
stcppcd gro1Jth of the 1 anguage, 

tools. Appl ication program5 wi 11 he 

4.2 Conf iguration Management of the Common Language 

Authorizations for al 1 changcs to the Common Language shal 1 be under control of 
thc Configuration Control Board (CCBl, Exccpt for errors, tThc CCB shal 1 only 
implement changes which are upward corapatiblc with the current Standard 
Definition Oocument. 

All proposals for changes shall be acceptecl and recorded, but, in g"eneri:ll, 
• changes wi 11 not be undertaken due to the cost impact. Proposed changes wi 11 

be i nves t i ga ted for bei ng par t of a gener i c requ i remen t. The CCß 1.1 i 1 1 be 
supported by the LSF to investigate the impact and necessity for any proposed 
changcs. Changes wi 11 be groupcd and incorporatcci at the ciccision of the CCA. 
Either a time limit or a quantity of changes 5hal 1 be usecl to make a change to 
the language. 

4.3 Configuration Management of Compilers 

4.3.1 General 

A 1 1 camp i 1 er s used blJ the Feder a 1 Governmen t, 1.1he ther 01Jned or not, mu s t be 
control led. Those owned by the Fcderal Govcrnmcnt shal 1 bc contral led by a 
Common Language organization. Those not owneci wi 11 be control lecl through 
val idation procedures which shal 1 be required for al 1 compi lers usecl on fecleral 
projects. In both cases, complete descriptions of the procluct ancl accurate 
confi~uration information shal 1 be maintained. Compilers wi 11 be val iclated 
after each modification. Compilers used outside the Fecieral Government are 
strongly encouraged to take advantage of validation faci 1 ities . 

4.3.2 Compiler Validation Procedures 

The purpose in val idating the compi lers is to ensure conformance to thc 
Language as described in the Standard Definition Oocument. Conformance wi 11 be 
measured against the syntax and semantics of the language. The Common Language 
shal 1 be specified in a manner which promotes val idation and decreases the 
chances for misinterpretation by the developer. 

°The · f i rst method of val iclation shal 1 be to compi le and execute a stanclard 
series o f programs written in the Common Language to test for correct 



translation. The test set of programs 1-1i II val idate single statements and 
sequences. The tests 1-1i 11 be comprehensive for al I statements as 1-1el I as for 
extremities and crucial cases. Tests wll I be made to assure that the I imi ts of

the Language Defination are not exceeded producing de facto extensions. The 
tests 1-Ji 11 also represent examples of embedded systen,s appl ications. A 
valicfation report shall bc publishcd stating the rcsults of the tests and the 
rcsources used. 

The testing shal I be performecf b!:J the Languagc Val id.:ition Factl i ty. · The
Validation Faci I ity shal I be responsible for preparing the set of standard
tests, compiling the validation information, ancf approving the material. The 
Faci I i ty wi 11 ei ther official l!:J val idate the translator or state necessary 
corrcctive actions prior to official valicfation. The implementor shal I be 
rcquired to certify that there are no unauthorized extensions to the language
translator. 

Bodies responsible for maintaining compi lers shoulcf report ne1-J types of faul ts 
or bugs to the Validation Facilitv as the users are notifiecf so that the test 
sui te can be updated. 

Anu publ ished test set must be recognizt:d as being inco111plete. Val iclation may 
bc clcnicd should the compi ler fai I anv acldecf tests. 

As part of the val idation 
speecl, compi lation memory 
usage wi 11 be required. 

e ff or t, 
usagc, 

bcnchmark 
object 

te:sts to 
coclc spe:ccf, 

4.4 Configuration Management for Supporting Software 

cfescribe compi lation 
and objcct coclc mcmory 

Support soft1-Jare that is owned by the LSF wi 11 be control led by establ ishing 
proccdures to identify the configuration and thcn managing approved changes. 
Al I such programs shal I be recorcfcd and catalogccf by thc LSF for promoting 
transferabi I i ty. 

4.5 Configuration Management of Appl ication Programs 

Appl ication programs wi II be control led by the development agencies. The 
clcvclopment agencies 1-1ill he requested to furnish the LSF with a de�cription of 
appropiate ncw programs clcvclopccl. The dcscriptions wi 11 be catalogecl by the 
LSF. The cfescription wi II be in a standarcl Jb:Jtr.:ict form. 

Development agencies may be required to search the catalog prior to devcloping 
new appl ication programs in order to use existing, proven soft1-1are rather than 
developing more. 



Chapter 5 

Properties of Software Tools 

Thc Common Language should be designed to work in conjunction with a variety of
uscful software tools and appl ication support packas1es. These wi 11 be 
developed as early as possiblc and 1-1i 11 includc ecli tors, ii"lterpreters, 
diagnostic aids, program analyzers, documentation aids, testing aids, software
maintenance tools, optimizers, and application I ibraries. There wi 11 bc a 
consistent user interface �or these tools. Where practical software tools and 
aids wi 11 be written in the langua9e. Support for the clesign, implementation, 
distribution, and maintenance of translators, soft1.1are tools and aids, ancl 
appl ication I ibraries wi 11 he provided indepen�anlly of the individual projects 
that use thcm. 

The Common Language is only 
process for automated systems. 
process may be described by the 

one tool in thc wholc dcsign and dcvclopment 
A possible total structure of • the clevclopmcnt 
fol l01�ing steps: 

A Understanding the Problem 8 Oescribing the Problem C Sketching a Solution D 
Rcfining the Solution E ldentifying the Resources F f18king the Solution Work Fl 
Ocvc I opmen t o f Acid i t i ona I Harcll.1are F2 Oe ta i I ed So f ti.1are Design F3 Cod i 11�1 r-4 
Componcnt Test FS IntcgrJtion and SysteM Test F5 Acccptance G Maintaining the 
Resulting System 

Considerations in this document shal I be restrictecl to tools which are rela�ccl 
to the Common Language in a sense that they are either in1111ecliatellJ necess.:wy 
for its use,such as translators, help to in:prove its perforn1ance 
significantly,such as symbolic debuggers,or are uniquel�1 relatec! to tl)e 
technology of the Common Language. 

One of the most important goals is that tools shoulcl bc machine-incfepenclcnt to 
the greatest possible extent ancl that they shoulcl run on the standard mi I i tary 
computers so as to provide maximum useabi I ity. 

There wi 11 be a modular 
nceds of applications and 
tcchnological progrcss. 
ncccssary [ Note that the 
sequence in time]: 

set of tools "1hich can 
"'h i eh can be updated 

To ensure this the 
order of thc f O 1 1 01-1 i na 

be tai lored to the i nd i v i t!ua 1 
anc! extencled according to 

fol lowing 111ec1sures wi 11 be

points c!oes not inipl\J a

- A common framework shal I be establishecl into which the software tools,
lib�aries, and data base fit. This frame1-1ork shall comprise the definition of
a consistent methodology as weil as the iclentification ancl eventual
stonclardization of Interfaces between tools.

-··Thc tools,while modular 1-1ith rcspect to the comnion frame"1ork,
themselves be developed in smal I pieces 1-1hich can bc casi ly composed
tradi tional software development ancl maintenance tasks, which should

shal I in 
to pcrform 
be able to 



run individual ly on rather small machines, and which can be easi ly replaced by
more advanced versions, 

- The methodology shall faci litate iteration between development steps.

- Documcntation shal I be an -integral part of al I dcvelopment steps. The tools
shal I be designed in a way that thc mcthods uscd arc cither self-documenting or
produce supporting documentation automatically, thus cnsuring a proper floM of
information between the design levels.

- Design and implemention of
of software maintenance.
problcms in this arca.

the tool environment should emphasize the problems 
Further research should help to solve the urgent 

Semiautomated tools shal I be uti I ized when ful ly automated tools are 
infeasible or too expensive. 

lt should be possible to apply appropriate analysis and verification methods 
to each development step. 

Test and debug tools both 
tcsting shal I be integratecl into 
incluclc mcthocls for systcmatic 
from earl ier development stages. 

for off-1 ine and 011-I ine (static and dynamic) 
the pro9r am dt'!vc 1 011rnen t s�,s t em. They sha 1 1 
tcsting 1.1hich clcrivc thcir control informc1tion 

The interfaces between tools (and between parts of tools) as wel I as the 
handl ing of the tools should be standardized for mi I itary appl ications. 

A list of essential tools 1.hich n1ay be considerecl to make up a basic 
programmers workbench shall bc providcd 1.ith a clescription of ,.,hat e<'!ch Mi 11 
contribute to ancl expcct from thc data bJse. 

- The procluction of new p�werful tools for the Common Language by lndustry and
the acaden1 i c commun i ty 1., i 1 1 be encouraged. Governr:1en t supp I i ecf too I s 1-ii 1 1 be
chiefly I imi ted to those simple tools in most common use.



Chapter 6 

Design and Preparation Tools 

6.1 General 

The proper analysis of the requirernents for a problern solution. is highly 
dcpcndent on the technology concerned. lt can therefore not be expected that 
therc is one uniform methcd by which the requirements fcr a system can be 
identified, formulaled and· specified. On the other hancl,there should be 
methods and tools which guide, support and, if necessary, force the designer to 
express his rcquircments in a way which is un�mbiguous (at least as far as 
fc.Jsiblc), appropriate for further automatccl proccssing ,11hcr-c practical, .ind 
oriented towards computerizcd systcrns. 

The development of a variety of tools shoulcl be encouraged, including 
textbooks, deve I opment standards, cookbooks, case stud i es, s tanclarcl i zecl 
representations, computer aided design systems, both off-1 ine ancl interactive. 

Thc mcthods and tools avai lable in this area should also faci I i tate inlegratecl 
• clcs i gn o f hardware and so f t1�.:ire and shou I d suppor t s tr uc t ur ed dP-compo s i t i on ·
They should include graphic rnethods anct rcpr�scntations and bc fit for
automation, preferrably in an interactive �1c1q. lt riiight be erwis.;1gecl that thcy
support the more detai led levels cf system ci�sign wi th a highcr cic0ree of
aulomation, uti I izing data bases which contain information on avai lable system
components and their methocl of interconnection. Siniul,:,tion c1ncl testing

tcchniques should be integraled in such a �iau lhat lhe d�sig11 support system
gcncrates input information for simulation pack3(Jf'S and the lesting pr·ocess.

6.2 Editors 

Editor programs to al low • generation and changes to source programs shal I be 
They must al low 
which are edi ted. 

required. These may be either batch or interactive. 
integration with the library system which maintains the fi les 

Editors shal I optional ly output source listings in a wel I structurecl standard 
format. The should allo1-J local formatting st.:ind.:irds and convcntions to bc 
incorporatecl. More elaborate versions may be able to procluce f lowch�1rts of a 

given program or to do some parsing in order to faci litate interactive program 
procluc t i on by ear I y recogn i t i on of cer ta in errors. 

Edi t-ors should optional ly be able to produce compressed versions of· source 
programs , e. g. in ordcr to save f i I e space . 

6.3 Preprocessors 

There may 
trans I at i on 

also be 
phase, 

preprocessors 
are able to 

for 
test 

source -programs,which, prior the 
for compliance to project coding 



standards, to capture data for tracing requirements throughout the project, and 
to symbol ical ly execute the code for analysis. 

Thcy should also be able to optimize programs on source Jevel for input to 
higher level language machines. Thcre m<iy also bc prE'procc5sors to_ .transform 
higher level structured mechanisms or co~Jletc vcry high lcvel appl ication 
oriented languages into the Common Language. 

6.4 Design and Simulation 

Design tools which are related to the language should include appl ication 
librarics which facilitatc the composition of !arge systems from partially 
reuseable modules, interface description aids,stub-gcnerators,tools for proof of 
correctness, etc. 

The input information for simulation packages should be produced automatical ly 
from an analysis of the structure of the programs. Programs to generate 
s i mu 1 a t i on tes t da ta by ana 1 ~1z i ng the code sha 1 1 be requ i red. These progra111s 
wi II help to ensure that the tcst data provides full cover·age (pxecution of all 
in5tructions) with the fc1~c5t possiblc test cJc,cs. 

6.5 Automatie Translation Aids 

Whi le i t wi 11 not be possible to take ful 1 advantage of the Lcinguage 
capab i 1 i t i es when transcr i b i ng from programs des i gnecl and i mp 1 er:1en tecJ in o tller 
languagcs, there are occasions on which it wi 11 be desirable to translate some 
portion5 of an existing program from an old language into lhe new Cornmon 
Languagc. Packages ancl tcchniqucs wi 11 bc dcvelopec! to faci 1 i tate this. In 
most cases complete automation is not rcquirecl, just machinc ;:iicf to a 
programmer. Languages on the OoD lnstruction 5030.31 list are the best 
canclicfates for such aids. 



Chapter 7 

Translation tools 

7.1 General Properties 

Translators shal 1 implement the standard definition. 
able to process any syntactical ly correct program. 
avai lable to the user shal 1 be defined in the 
1 ibrary, or in the source program. 

Every transla..tor shal 1 be 
Evcru fcature that is 

standard, in an accessible 

Translators shal 1 be responsible for reporting errors that are detectable 
during translation and for optimizina object cocle. Translators shal 1 be 
rcsponsible for the integritu of object cocle in affi:ctccl translation units ~1hen 
any scparately translatcd unit is modifiecl, and shal 1 ensure that shared 
clefinitions have compatible reprcsentations in all translation units. 
Tr8nslatorsshfllldo· fuilsynteix t:md type checkinu. sh<ill check th ~1t cili 
l~nguagc imposed rcstrictions are met, ancl shoulcl provide warnings ~1hen:: 

cons truc t s 1,..1 i 1 1 be clangcrous or unusua 1 1 y expcns i ve in execu t i on and sha 1 1 
attempt to detect exceptions during translation. lf the translator clctcrm·1ncs 

·that a call on a routine 1.1ill not terminate normally, the exception 5hall bc 
reported as a translation error at the point of cal 1. 

Translators shal 1 fai 1 to translate othen1ise correct programs ontv 1.1hen t11e 
program requires more resources cluring transl<ition than are avai labte on the 
host machine or ~1hen the program calls for resources that ;:we unavai l :;ib l 8 in 
thc spccificcl objcct systcm configuration. IJcithcr thc l .:m911:'l(J E' n or its 
translators shal 1 impose cirbitrary resti-ictions on language featur·cs. For 
exan1ple, they shall not impose restrictions on the nunobcr of array climcnsions, 
on the number of identifiers, on the length of iclentifiers, or on the numbcr of 
nested parentheses levels. 

7.2 Technology of translators 

Translators for the language 1,..1i 11 be written in the language and wi 11 be able 
to produce code f or a var i e ty o f ob j cc t mach i ncs. Thc mach i ne i nclcpcndC"n t 
parts of translators shoulcl be separate from cocle gcnerators. Al~iough i t i s 
desirable, translators neecl not be able to execute on eve1· v object machine. 
The internal characteristics of the translator (i.e., the translation methocl) 
shal 1 not be specified by the language definition or standards. 

In this arca the best of existing and emerging technolo9y wi 11 be used. 
ComJji lers shal 1 bc portable to the grcatcst possible e><tf'nt,1,..1hi le separ<1te 
code-generators shal 1 al low incxpcnsivc adaptation to various targct machines. 
Host compi lation is preferred because of its greater possibi 1 i ties for 
optimization and its faster throughput. Self-hosted compi lers should be 
developed 1,..1here technical and organizatorial reasons prevent other solutions. 

In t e rpr eters and incremental compi lers shal 1 be provided for environments where 



fast response tin1es during testing are required.ln case of errors the

translators shal I output the maximum possible amount of information compatible

with their respective designs. Whereas it con not necessari ly be cxpcctccl that
al I translators have the same stanclarclizecl error messa�1cs, attempts shal I bc
macle to stanclardize format ancl contents of such messages i f they occur;

Input for compi lers shall be prepared by editors and program structuring tools
in such a way that the card-image is no langer a restriction for the formatting
of source programs. 

Translators shal I optional ly provide outputs 1Jhich contain the information 
necessary to interface with runtime test ancl clebug tools. 

Translators shal I be unforgiving in identifying al I syntax and semantic errors. 

Compilers shal I generate efficient code. 

Tr anslators shall bc valiclatccl as crror frec as f.ir as practical given the 
state of technology. 

Each translator shal I have optimization features which may be used to optimi ze 
memory useage or execution speed. 

Translators shal I be wri tten in a modular fashion ,�hich al lo�Js inclusion of 
approved language changes. 

lt is not intencled generally to prescribc thc t�jpc of intermC?diate language(s} 
usecl cluring the compi lation process. However a machine independent root 
compi ler wi 11 be macle avai lable for common use. 

A compi ler generator or cocle generator-generator program n1ay be developed to 
spccd production or adaptation of translators for al I larget computers. 

7.3 Interfaces 

7.3.1 Handling of Translators 

A hancll i ng package shal I be provided with each translator which permits the 
control of the execution of the various steps or phases of a translator, to 
select the input source,output target,terrninate translation ,"repeat step-s,etc. 

Th is package has to operate either in an interactive mode 
controlled by an appropriate job-control language UCLJ.It is 
the control instructions and/or the functional capabi I i ties of 
package are stanclardi zecl for OoD appl ications. 

or in batch, 
desirablc that 

the hancl I i ng 

l t shal I be possible to limit acess to language features,which are part icularly
unsafe or error prone.

7.3.2 Input to Translators 



7.3.2.1 Source statements ( tobe compi led l 

The compi ler must accept the standard input format as del ivered by the editor. 

7.3.2.2 Compiler control and option parameters 

A translator shal 1 accept target machine ~haracteristics,such as: 

Machine model,memory size,special hardware 
optional instruction sets avai lable, I ibraries 
support }. 

opt i ons, per i phcra 1· cqu i pmci:t, 
avai labte (including runt1me 

The translator may accept this data either from the program input source, 
direct query, or from a separate source. 

Inputs to control the options of the tranalatora chal 1 includc: 

from 

Listing controls,debugging controls (such as 1-1hether or not to output code for 
subscript-checking,assertion-checking,etc.l,optimization opt i ons. The 
translator shal 1 accept this information from the input source,from the machine 
Sßecification or from a separate source. 

7.3.3 Output of Translators 

7.3.3.1 Code and Control information 

The object code output of the compi ler shal 1 be format ted in accorclance ~ii th 
the conventions for the standard link-loaders. 

Adi tional ly thcre shal 1 bc information pauscd from thc compi ler to the run-time 
support routines for various purposeu such as cumbolic dcbugging, formattccl 
dufups,error-checking,etc. 

7.3.3.2 Listings 

The compi ler package ,through the combination of a set of appropiate modules , 
shal 1 be capable of optional ly producing at least the fol lowing 1 istings : 

Source as input to the compi lcr and beforc any conditional compi lation 
statements are processed. 

Source,but including, in the same format,any input statements retrieved from a 
source 1 ibrary by the compi ler. 

Sourcc aftcr all library retrievals and conditional compilation statements have 
been processed. [Note: al 1 these 1 isting formats shal 1 permi t the user to see 
s tatemen t identification or linc number(for crror displaysl,thc occurcncc of 
e~r ors, and the block level.J 

Paralle l 1 isting of source and object code (when appropiatel with the same 



options as the source-only 1 istings. 

A symbol attribute listing 

A cross reference 1 isting 

A program structure map,which shall show the structure of the program wi th 
regards to blocks where data,procedure,function or path are declarecl. In 
addition, the map shal 1 show any fetchs of definitions or input sburce from a 
1 i brciry. 

A compi ler resource usage listing which shows the amount of cornputer resources 
used ( Examples are amount of computer time uscd,perccntagc and sizc of 
symbo 1 tab 1 e used ) 

A program resource usage estimate,showing e.g.the minimum ~xecution time of 
procedures and processes,maximum buffer space,etc. 

7.3.3.3 Error messages 

Compilers shal 1 be requircd to usc a standard diJgnostic and warning messauc 
forma t 1.Jherever app 1 i cab 1 e. A 11 error mcssagcs sha 1 1 bc un~mlJ i guous. Tl"rc 
implen1entor shall attempt to provide the follm1ing with each error: a plain 
1 anguage ( as opposed to code number) cJescr i p t i on, the o f fencl i ng S\jmbo 1 or 
entity, and identification of the source context. 

In casc the error mcssages are mixed 1.Jith the source and/or object 1 istings, 
thcre shal 1 also be an error summary listing giving a total count for each 
error and the 1 ine numbers on 1.Jhich that crror occurrcd. 



Chapter 8 

Link/Load Tools 

8.1 General Requirements 

Link/Load tools shall be developed which are adapted to the special 
requirements of multiprocess systems. They should be able to link 
program-pieces which have becn scpcratcly compi lcd .These pieces ma~ have been 
written in the Common Languagc or in othcr programming languages. Assembled 
code may be 1 inked,too,but extensive checks shal 1 be proviclcd to try to 
minimize the inherent risks of this technique. 

The 1 ink/load tools shal 1 also check the type conventions as provided by the 
Common Language as wel 1 as other bui lt-in protection mechanisms.They shal 1 
occcpt namcs of indefinite lcngth. 

Link/load faci 1 ities wi 11 bc rcquired making it possible to dynamical lij 1 ink 
new modules to existing systems. Some may to support maintenance by thc 
inclusion of patching into the general link/load hanism. 

8.2 Interfaces 

The 1 ink/load tools shal 1 have a standard input-interface wt1ich accepts the 
standard output of the rcspcctivc compilcr passcs. In orcier tobe able to 1 ink 
code which has been prod~ccd by a different compi lation process, i t may be 
necessary either to provide additional information to thc 1 ink load tools or to 
apply an interface adaptation tool to the foreign code. 

Additional control information may be necessary to completely control the 
1 ink/load process which can either be provided by the translator's handl ing 
package or be contained in the output of the translation. 

Besides program modules proper the link/load tools shal 1 be able to accept as 
input mathematical packages,executive modules,1/0-routines,and the contents of 
pre-compi led appl ication 1 ibraries. 

As output the 1 ink/load tools shal 1 provicie error-messages,e.g. 
non-matching inputs,and,optional ly,memory maps which describe 
structure of the program after the 1 ink/load process. 

concerning 
the final 



Chapter 9 

Auntime Tools 

9.1 General 

The necessary mathematical, J/O, and executive support routinc~ shal 1 be 
provided in the form of runtime support packages , wherever practical. These 
packages shal 1 be written in a modular fashion,such that the support package 
which i s actual ly required for a particular program can be generated at 
1 ink/load time in order to reduce runti~e overhead. 

The runtime packages shall include routines which are necessary to interface 
the progr ams wi th runtime test and debug tools. 

The runtime support routines may prodace a s ummary of computer resources used 
in the execution of the pr ogram.An example is t he amount of computer time and 
stor age used. 

9.2 Virtual Language Machinc 

A package shal 1 be prov ided together wi th the translator which contains al 1 
necessary support routines for language elements which are nei ther directly 
compi led nor avai lable on the respective target (virtuall machine.This package 
wi 11 either prov ide an adaptation to the existing operating system and runtime 
pack a ges or wi 11 extend the capab i lities of the bare machine i n que stion to 
match the requirements of the language. 

9.3 Extended Virtual Machine 

Where practical,packages shal 1 be provided,either with the compi ler or from a 
separate source,which extend the capabi 1 ities of the language machine to ward s 
more powerful constructs,but are not appl ication de1lendenl in a strict sens e . 

Such packages wi 11 include: 

Formatted-I/O 
Graphic-1/0 
Frequently used 
Matrix calculation 

non-standard-I/O 

Resource management routines,etc. 

9.4 Auntime Test and Oebug Tools 

These runtime 
debug tools in 
an interactive 

support packages sha ll be in tegrated with the run time test and 
such a way that the latter can r efer to source code and work in 
way wherever pr actica l . 



The runtirne displays for errors shal 1 include the subprograrn,def.ini tion 
rnodule,or path,the procedure and the statement number on which the error 
occurred.The implementor shall attempt to displau the offending sumbol if 
any. The display shal 1 also include a trace back of al 1 currently executing or 
pending procedures,functions,paths, etc. A dump of al 1 active varia~les may be 
at the option of the user. 

The outputs of run-time debugging shal 1 contain information simi lar to the 
error d i sp 1 ay. 

The tcst and dcbug toois shal 1 include the fol lowing: 

9.4.1 Branch and Timing Counters 

Methods of recording which branches of a program have been exercised shal 1 be 
developed for testing. Frequency of execution anci amount of CPU time required 
shal 1 be given by the counter program. This program may be used to deterrnine 
if al .1 instructions in a program have been executed. 

9.4.2 Trace and Breakpoint 

Methods of recording the sequence of execution 
shal 1 be developed for testing. The capabi 1 ity 
instructions shal 1 also be provided in order 
cond i t i ons. 

9.4.3 lntcractive Symbolic Debugger 

of instruc- tions or programs 
of stopping at prescribed 

to examine or change the test 

Th i s too 1 sha 1 1 
on the status 
queues, indicate 

al low inspection of 
of processes at 

resources used by a 

the contents of variables, give information 
the user's request, show the 'contents of 
given process,etc. 

Modifications to such entities should only be possible uncier the most stringent 
safcty precautions. 

9.4.4 Symbol ic Dump 

Methods 
program 
program 

of relating the results of tests (memory dumpsl back to the source 
shal 1 be provideci. The intent is to al low the programmer to debug his 

in the common language rather than on assembly or machine code level. 



Chapter 10 

Maintenance 

10.1 General 

As maintenance has become the main ~ost-factor in the 1 ifecycle of an automated 
S\Jstcm, al 1 possible efforts shal 1 be made to rech1ce this factor. Efforts to 
cJcsign the development tools in a 1Jay that maintcn<1ncc is faci 1 i tatcd shal 1 be 
unclertaken. Äclcli tional ly, the human factors of the 1Jork process i tsel f as wcl 1 

as the properties of the environment, in 1-1hich maintenance ·takes placc, shal 1 
be investigated in orcler to derive improvecl methocls, proceclures ancl tools for 
maintenance. 

10.2 Maintenance Orientecl Precautions 

Documentation shal 1 be proviclcd in a 1-1ay,prcfcrr.:ibly automcitical ly, that i t 
helps to facilitate maintenance in case it should be ncccss.:iry. This sh.:ill 
hole! for the clesign clocumentation as 1Jell as for all 1 istin9s ancf supporting 
information which are createcl during the prograMming process proper. 

The 1 ibrary system used for maintaining pro9ra1t1s shal 1 be capable of. recorcling 
al 1 changes to programs. Prompting mav be u::ecl to encouraae the programmer to 
iclcnti fy information for unclerstanding what was changed and why. 

The translators shal 1 pass as much symbol ic information from sourcc 
the object level as is practical in order to facilitate reference 
original information during maintenance. 

10.3 Maintenance tools 

lcvcl to 
to the 

Inverse assemblers ancl compi lcrs as mcthocls of clcriving source code from object 
cocle shal 1 be investigatecl to assist in m<iintaining cocfc for 1.1hich soiJrce is 
not avai lable. 

lncremental compi lers,though typical ly test tools shal 1 be investigated as to 
their potential of the hanclling of maintenance oriented changes. 

A mcthod of symbol ical lv patching programs should be investigated,because i t 
ma\J help to increase the understanding of a change ancl to clecrease the chance 
of error in making the change. 



Chapter 11 

Management Tools 

11.1 Genera 1 

Methods, standards and tools shal 1 be developed which wi 11 make it possible to 
determine whether the resulting systems and proqrams are sufficiently buq-free 
and whether they meet the specified rec~irements . as to functional ~apabi 1 iti~s 
as 1.-1el 1 as to time and space constraints. J t is also clesiral)le that this 
process be formalizecl and that the necessary control informat i on be clerivecl 
from earl ier development stages. 

Man3gcmcnt should also havc thc possibi lity to rc s trict tha use of potential ly 
dangereous language featurcs to certain pcrsons or cases where they are safe to 
use. 

11.2 Libraries 

Appl ication 1 ibraries, both on source-code and on link-load level shal 1 be 
maintained in order to spead up program d~velopmcnl and minimi ze du!ll ication of 
effort. A library syste~1 shall be clcvelopecl to f.:icilitate retrieval of program 
moclules. lt is clcsirablc that such a ~:i,ist·~m is intcgr.:it ccl into the rl e sion 
tools. The libraries shall also be cap ~1blc of r:iaintaining pr·ogr.:im 
speci fications, program change historics and test cases. 

11.3 Interface monitor 

Programs to test interface specifications between modules wi thin a software 
systcm shal 1 be developcd to assist in el iminating a major source of bugs. 



Chapter 12 

Appl ication Software 

One of the goals in the use of the Common Languagc is to incrcase portabi 1 i ty 
of programs written in the Common Language. For those appl ication programs 
written in the Common Language, portability wi 11 be promoted by the fcil lowing 
methods. 

1. Information concerning appl ication programs wi 11 

Language Support Agency and cataloged by type of program. 
format wi 11 be employed . 

be rnaintained by the 
A standard abstract 

2. Major types of embedded systems wi II be ident i fied and basic tasks within 
these types wi 11 be identified for catalog purposes. 

Sorne types of embedded systems are: 

a. Cornrnand and Control 

b. Communications 

c. Avionics 

d. Shipboard 

e. Test Equipment 

f. Trainers and Simulators 

g. Miss i le Guidance 

h. Space Systems 

i. Radar 

j. Gun Control 

k. Data Management 

3. Organizations concerned with the Common Language wi 11 encourage spec i a l 
interest groups within user organiz~tions to · address the ma jor type s o f 
ernbcdded systems as wel 1 as common funct i on~ across al 1 emb edded systems. 

Chapter 13 

Training Support 

Initial training wi 1 1 be required for programmer s using the language, for 



dcvclopcrs of 
courscs for 
t r a i n i ng 1,..1 i 1 1 
background of 

compi lers ancl support tools, and for management . Preparation of 
each of the various ·1cvels 1.1i 11 bc rcquired. Different modes of 
also be required due to diverse loca- tions, schcdulcs, and 
those requiring training . 

13.1 Types of Training Required 

13.1.1 Programmers Using . the Common Language 

Ouring the language introcluction phase, tra in i ng wi 11 bc provid~d for all 
programmers 1.1ho wi 11 1.1rite programs in thc Cornmon Language . Training 1.1i 11 

consider ne1.1 as 1.1el 1 as experienced programmers and wi 11 consist of bcginning, 
intermediate and advanced levels. 

Training 1.1i 11 be required f~r language use as wel 1 as tool use. Language 
aspccts 1.1hich help accompl ish project objectives such as rel iabi 1 i ty, eff icient 
mcmory usage, eff icicnt ccntral processor usage, maintainabi 1 i ty, and standard 
styles should be taught. 

Training aids 1.1i 11 inclucle manuals for programmers fami 1 iar 1~ith other HOL's. 
F or ins tance, documenta t i an and cour ses ma iJ be r equ i recl f or pr ogr ammcr s 
presently using Jovial, CMS-2, FORTRAN, etc. These must inclucle not only the 
d i fferences in the constructs of the langua ~1es. but also improvecl metlK•clologies 
maclc possible by thc use of the Common Language . 

13.1.2 Compiler Ocvclopcrs 

Training 1.1i 11 be provicled in the syntax ancl semantic s of thc langua gc for 
personnel developing ~ompi lers . Experiences 1.1i 11 bc sharecl 1.1hencver possible. 

13.1.3 Management of Projects Using the Common Language 

The management of projects using the language 1.1i 11 require overview training 
for the language and its environ- ment . Training in techn i ques which promote 
success in project development should also be pr~parccl. 

13.2 Training Modes 

Methods of training shal 1 include the fol lowing. 

1. Classroom Jnstruction 

2. Video Tape Courses 

3. Computer Automated lnstruction 

4. Self-lnstruction Manuals 

Material for al 1 o f these methods shal 1 inclucle liberal use of prograrnming 
examples 1.1ith vari ous levels of complcxity and shal 1 depict the required steps 
in arriving at a so lut ion. 



Mater i a 1 s 1-1 i 1 1 
other languages, 
encouraged. 

be provicled 
especial ly 

in Engl i sh. 
in the NATO 

The cxtcnsion of thcse matcrials to 
communi ty 1~i 11 be fosterccl ancl 



Chapter 14 

Information Col lection, Dissemination, and Promotion 

I t shal I be the responsibi I i ty of the Language Support Faci I i ty (LSFJ to 
col lect and disseminate al I information concerning the Common Language. 

The LSF 1.1 i 1 1 ma i nta in i nformat i on about the Language as �,e 1 1· as programs 

written in the lanauage which support the language. This infor- mation wi 11 be 
catalogcd in a hierarchical document which contains sections on a l I types of 
documents 1.1hich pertain to thc Common Languagc. Thc catalog wi 11 contain a 
briet description of each itcm of documen- tation in thc form of a stanciard 
abstract. Each description wi 11 include title, purpose, author, revision 
level, size, and key 1-Jords. The catalog will also include a 
Key-Word-ln-Context (KWICJ listing for search purposes. 

The LSF shal I maintain statistical information about the use of the Common 
Languagc. Statistics shal I include the number of projects using the Language, 
�umber of compi lers, ancl number of computcrs for both hast ancl targRt. Reports 
from the field must inclucle Information about thc clc,toil usc of th"' l�inguage> 

• and compilers. The information should include error stuclies, clifficult to UGC
constructs, and amount of machine cocle usecl. These statistics shal I bc 
publ ished periodical ly as part of a Common Language report. This report shall 
include the present status and plans for the langu.':Jtle, 

Al I of this information wi 11 be made avai lahle to the Common Language cornrnunity 
to cnsure that a l I users and potential users arc working with accurate, curre.nt 
information. 

A periodic bul letin may be distributed in publ ished form and possibly computer 
accessible (i.e. on the ARPANETl. ' The bulletin 1�ould 5=ontain information 
about the language and the environment. 
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Abstrac:!: Tartan is an experiment in language cesign. The ,oal was !o delermine whether 
a ·simple" languagc c::uld meet sucstanlially all of the [ronman reqiirement lar a c:,mmon 
high-order programming language. 

We uncertook this experiment :::eczuse we believed that all the designs done in the lirst 
phase ot the DC0 effort were too !arge and too complex. We saw that complexity as a 
serious failure cf the designs: exce5s complexily in a progrsmming language can interf_ere with 
its use, even to the exlent lhal any benelicial properiies are of little c:cnse�t'1Ce. We wanted 
to find out whether the rec;uirements ir,herently lead to such c:omplexity er whether a 
substantially simpler lar,guage wculd suffi� 

Three grcund rules drove the experimenl. First, no more than lwo months -- April 1 to 
May 31 -- would be devoled tc the projed Sec:ond, lhe language would meet all th-e 
lronman requiremenls exc:ept for a few poir,ts at which it would anlicipate Sleelman 
rec;uiremenls. F'urther, the language would conlain no extra features unless lhey resulted in c1 
simpler language. Third, simplicily would be the overriding objective. 

The resulling language, Tartan, is based on all available inlormation, including the designs 
already produced. The language definilion is presenled here: a companion report provices an 
overview ol tr.e language, a number ol examples, ar.d more exposilory explanations ol some ol 
the language lealure5. 

We believe thal Tartan is a subslantial improvemenl over tne earlier cesi�ns, partic:ularly in 
its simplicity. There is, of ccurse, no objective measure of simplic:ty, bul the syntax, the si.:e 
of the delinilion, and the number of conc:epls rec;uired are all smaller in Tartan. 

Moreover, Tar!an subslantially meels 3fl cf the (ronman reG1,JiremenL (The exceplions lie in a 
few plac:s where we anlic:ipated Steelman req.iiremenls and where delails are still missing 
from lhis report.) Thus, we believe that a simple language can meet the Ironman requiremenL 
Tartan is an existence proof of thaL 

We must emphasize aiain that this eifert is an experiment, not an altempl to compete with 
DO□ cor.lraclors. Tartan is, however, an open challenge to the Phase [I conlractors: Tne 
langua,e can be al least this simple! Can you do better? 

This work was supported by the Cefense Advanced F�esearch ?rojects Agenc:y under contract 
F44620-73-C-0074 (monitored by the Air Forca Clfice ol Sc:entific: Researc!"l). 
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1. Basic Concepts and Philosophy 

A pro,ram is a piece of text that describes a sequence of actions intended to effect a computation. 
The process of "executing a program" to obtain this effect is called elaboration of the text.1 

Programming languages are used for communicatinf programs, both between people and between 
people and machines. Although the program !ext is static, the concepts being communicated are 
dynamic. This dynamic nature of a computation can make it difficult to communicate the ideas 
underlying a program, and especially to comnx.micate these ideas between people. To expedite the 
communication, we impose struclure on the way languages are used. Although this stn.scb.Jre restricts 
what can be written, it results in regular patterns for expressing decisions. The human reader benefits 
from this by developing expectations about how these ideas will be expressed. 

Programming languages encourage the imposilion of structure by providing notations for the 
-structures . whose use their designers wish to promote. Ouring the process of language design, our 
beliefs about programming melhodology and the state of language processing technology lead us to 
formulate concepts and structural rules. We lhen select syntactic forms and stn.scturing features to 
emphasize these concepts. We expect that this will simplify the task of describing programs with the 
attributes we view as "good structure" and !hat programmers will, as a result, be encouraged to 
organize their programs this way. · 

We distinguish three dominant slructures in Tartan programs: (1) the lexical structure, which 
organ1zes the static program !ext, (2) the control struclure, which organizes the dynamic execution, and 
(3) lhe data slruclure, which organizes the information on which computalions are perlormed 

- Lexical slruclure is a property of the program texl Programs are divided hierarchically into 
sections, called lexical scopes, thal share information about data. Scope determiries the 
interpretation of identifiers, so all the lexl in a given lexical scope shares the same 
vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with 
the same interpretatlon in several lexical scopes. 

The c:ontrol structure of the program determines the order in which ils statements are 
exeOJled 

- The structure imposed on data involves the concepts of type, values, and variables. 
Ultimately, compulalions are performed on values: we take that notion to be primitive: values 
exist, and each has exactly one type, which determines the legal operations on the value. 
Values are stored in variables, which are objecls produced by efaborating type definitions. 
Variables, too, have types: these types delermine the sets of values !hat may legally be 
stored in the variables. 

These fundamental slruclures interact in a rumber of ways. Two major interactions appear as the 
concepts of extent and bindin,. The control and lexical structures interact to determine extent. The 
extent of a variable is its lifetime -- the time Wring which it affects or is affected by lhe efaboration 
of the program. Bindinc rules are invoked by both lexical and control structures: they associate 
identifiers with program enlities (objects, modules, routines, types, labels, and exceptions). 

In Tartan, programs are composed of definitions, declaralions, end executable statemenls. A 
definition binds an identifier to a module, rcutine (procedure, function, or process), type, or exception: 
it is processed during translation. A declaralion binds an identifier to an object (i.e., a variable or 
vafue): il is processed at n.m time, usually to allocate storage. Exec1.1table statements are elaborated at 
run time to effect actual computations -- manipulation of values. 

Lexical structure is imposed on Tartan programs by blocks and modules, whicti delimi t lexical 
scopes. These scopes may be nested arbilrarily. Both constructs may use identifiers defined in other 

· scopes: both may define identifiers !hat can be used in other scopes. Blocks and modules di ffer only 

1 We use the word "elaboration·, in preference to ·execution", to connote aclions taken during 
translation as well as during execution. Elaboration may be thought of as an idealized, direct execution 
of the textual version of the program. 
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in their scope rules and in their effeds on the extent of variables. Tartan has two scope rules: 

An open scope inheri\s (imports automatically) all the identifiers that are defined in its 
enclosing scope. lt may not expert any identifiers. Blocks are opef) scopes excepl when 
used as routine bodies. 

- A closed scope inherits all identifiers !hat are defined in its enclosing scope except those for 
labels and nonmanifest objects. l lt may explicitly import identifiers for objects, provided they 
have global extent. All modules are closed scopes, as are blocks when they are used as 
routine bodies. A closed scope that is a module may expert identifiers !hat name variables, 
modules, routines, types, or exceptions. 

-2-

ldentifiers that are exported from an inner scope or imported from an outer scope have the status of 
identifiers delined in the scope. Redefinition ol identifiers within a scope is not permitted; however, 
this does not prohibit overloading of routine names. In addition, the same idenlifier may be imported 
with different meanings from two different scopes. Such identifiers are qualified with the names of . lhe 
l'nodules in which lhey were defined; thus they are not duplicate definitions. Similarly, literals and 
constructors are qualified with their types to prevent ambiguity. In either case, lhe module or type 
qualifier may be omitted if no ambiguity arises. 

In Tartan, extent is controlled exdusively by blocks. Only instantiated objeds (variables, constants) 
have extenl Variables are inslanlialed by the elaboralion of declarations (for named variables) and by 
explicit construction of variables having dynamic types (dynamically created variables). Named 
variables have extent coincident with the surrounding block. Oynamically created variables have extent 
coincident with the block containing the definitions of their dynamic lypes. Formal paramelers of 
routines are considered lo have extent coincident with the rouline body. 

Tartan provides a facility for making 'eneric definitions of routines and modules. This allows the 
programmer to write a single textual definition !hat serves as an abbreviation for many closely-related 
specific definitions. The definitions may accepl parameters; the parameters are ccmplelely processed 
during translation. The effect of using a generic definilion is that ol lexically substituting the delinition 
in the program at the point of use. 

The syntactic definition of Tartan uses conv.entional BNF with the following addilions and 
c onventi ons: 

- Key words (reserved words) and symbols are denoted with boldface. · 

- Metasymbols are denoled by lower·case letters enclosed in angular brackels, e.g„ ''<stml>". 

- The symbols { and } (not in boldface) are meta-brackets and are used to group ccnstructs in 
the meta-notation. 

- Three superscr ipl characters, possibly in combination wilh a subscript character, are used to 
denote the repetition of a construct (or a group of constructs enclosed in {}): 

••• denotes "zero or more repetitions ot• 
·+" denotes •one or more repetitions of" 
••• denoles "precisely zero or one instance of". 

Since it is often convenienl to denote lists of things !hat are separated by some single 
punc:tuation mark, we denote this by placing the punctualion mark direclly below the 
repetition character. 

The semantics of the language are described in English. In the interest of a compact and regular 
syntax, we have allowed synlactic constructs that are disallowed on semantic grounds. This is 
consistent with standard practice with respect to, for example, undeclared idenlitiers. 

lLiterals and identifiers for variables lhat are declared manifest are manifest objects: hence 
they are inherited. 
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2. Basic Structures 

2.1. Primitive Expressions 

<consl> ••• <digit>„ { . <digit>• }• 1 tru• 1 f•lse 1 nit 1 closed 1 open 1 mint 1 empty 
1 <conslructor> 1 <id> 1 «1ual id> ' <consl> 1 <type> ' <const> 1 <expr> 

<constructor> ::• ( <expr>,• ) 1 ( { <option> ·> <expr> J,•) 1 • <char>• • 

Some examples are: 

123.456 
Color'green 
true 
Person' ("Sarw" .21.malel 
"e fg" 
(1. . 2->0 . 1, 3 •• 4->0.5, olhers->1.0J 

-3-

Primitive expressions form the basis for the recursive defintion ol expressions. They are the 
elements relerred to as constants, titerals, and constructors in programming languages and as 
'generators in algebras. 

Constants and lilerals denote values. The type ol a constant is determined by its declaration The 
types ol literals are determined as follows: 

- 'A sequence ol digits containing no decimal point is of type lnl Type lnt is defined · in terms 
cf type fixed for each machine as described in Appendix l. l. 

- A sequence of digits containing a decimal point is of type Real. Type Real is delined in 
terms of type float lor each machine as described in Appendix l. l. 

- lt a sequence of digits, with or without a decimal point, is qualified by a fixed or float type 
or by a defined type !hat is ultimately defined in lerms of fixed or float, the type · of the 
literal is determined by the qualifier. 

- True and falsc denote boolean values. Nil denotes the null value for any dynamic type. Open 
and closed denote values for latches. Empty denotes the empty sel Mini denoles an 
activation ol any process in mint stale. 

A character string containing one character is a literal of type char. Any olher character 
string is a constructor of type strinc. 

Literals and maniiest expressions are evaluated dt.;ring lranslaticn with the same algor-ithms and 
accuracy as are used during executicn. 

Jf an <id> is to be a <const>, it must have been declared consl or be a member of an enumerated 
type. lf an <expr> is tc be a <Consl>, it must be a manifest expression. 

The type cf a ccnstructcr may be indica!ed by a prefixed qualifier. lf the qualilier is omilted, the 
cons!ructor is assumed tc give the value of an array indexed wilh integers beginning at 1. 
Constructors are provided for composi!e and dynamic types. 

Jf the constructor has a record type, the <expr>s in paren!heses give lhe lield values in lhe 
order of their declaraticn. 

- Jf the constructor has an array type, the paren!hesized list gives the element values. lt the 
constructor is a simple expression !ist, it gives the values in order from lowest index to 
highesl lf the ccnstructor uses the form with options, the expressions in the <option>s 
indicate the array pcsition to which each value corresponds. The special constant others may 
appear as the last <Option>: il will match any constant that is not included in any cther 
<Option>. The constructor form with options is legal only for arrays and for types ultimately 
delined in terms ol arrays: the expressions in the <option>s must be manifest 

lf the conslrudor has a variant type, the first expression in the parenlhesized lisl is lhe tag 
and the remainder cf the list is a constructor for the corresponding vari anl 
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- lf the constructor has dynamic type, the resul! is a pointer to a new variable having the 
attributes supplied in the type qualifier and lhe value given by the parenthesized list. 

A construdor containing no <expr> provides an uninitialized instance of the indicated type. 

2.2. ldentitiers 

<var id> ::- <qual id> 1 <var id> ( <•cluals> l 1 <var id> . <id> 1 <var id> ( <range> ) 1 Rep' <id> 

<expr> . . <expr> 1 <type> .-:=range> ::• 

<option> ..• { <const> 1 <range> 1: 
<qual id> ::- { <id> ·1· <id> 

<id> ..• <letter> <letter or _ or digit>• 

Some examples are: 

Ani mal 'Cat 
V!3l 
V 11 •• Nl 
Sam.Age 
ldent_ui tl"l_mark 

ldentifiers have no inherent meaning5. They are associated with objects, rcutines, modules, types, 
staternents, and exceptions. Declara!ions and definitions eslablish the meanings of identifiers within 
particular scopes. 

ldentifiers may be 5imple, or they may be qualified with module or type names in order to resolve 
ambiguity among names expor!ed from several modules. 

ldentifiers that name objects are <var id>5. They may be simple identifiers, they may be qualified 
to indicate where they were defined, or they may name elements or substruc!ures of composite 
structures. 

Simple <Var id>s (i.e„ <qua! id>s used as <var id>s) are iden!ifiers declared in variable 
declarations or by the <formals> in a routine header. 

- The form <var id>{<actuals>}, where <var id> denotes an array, denotes the element of that 
array indexed by the <aclual>s. The types of the actuals musl match the index types for the 
array. 1 

- The form <var id>{<acluals>), where <var id> denotes a variable of a variant type and the 
<actual>s consist of a single <expr>, indicales lhat the tag field of . the <Var id> must be 
<expr> and denotes the value of lhat oplion of lhe variant type. On the left side of an 
assignment, this form has the effect of setting lhe lag field: the expression on the right side 
of the assignment must be of compatible type. 

- The form <var id>(<range>) denoles a subarray. The <Var id> must denote an array and the 
limits of the <range> must match the declared type of the array's index sei and be a 
subrange of the declared range. The subarray consists of the indicated elerr.ents of the <var 
id>, in the same order as they appear in the <Var id>. II the index type of the array is fixed 
or defined in terms of fixed, the subarray is indexed by integers beginning with 1: otherwise 
it is indexed from the minimum value of the index sei of lhe array. 

- If <Var id> denotes a record object, the form <var id>.<id> denotes the field named <id> in 
that record ob ject II <var id> denotes an object of dynamic type, then <var id>.<id> denotes 
the field named <id> in lhe record object pointed to by lhe value of <var id>; <var id> must 
not have the value ni l. This form is also used to access the value of a variant tag or the 
attributes associ aled w ith the type of a value or variable. In addition, if T is a variable of 
dynamic type, T.all is the complete value (all components) of the object associaled with T. 

lNole that the index types include range restrictions. 
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- The form Rep'<id> is used in lhe same scope as the definition of lhe <id>'s type to indicate 
that the <id> is to be regarding as having the underlying type. This permils operations on 
the underlying type to be used for defining operations on the new type. 

ldentifiers that refer to definilions (e.g., of routines, types, or modules) are <qual id>s. 

-5-

When an ldentifier is exporled from a mociJle, in the scope to which it is exported it is referred to 
by a <qual id> or <var id> constructed by pretixing the idenlifier wilh lhe name of lhe module from 
which it is exported. The qualifier is separated from the identifier wilh an apostrophe. Qualifiers may 
be omitted if no ambiguily results. 

A <type> used as a range must be fixed, an enumeraled type, or a delined type that is ultimately 
delined in terms ol lixed or an enumeralion. 

2.3. Lexical Considerations 

Spaces may be inserted freely belween lexemes wilhoul allering the meaning of the program. An 
end-oHine is equivalent to a space and inay not be part ol a lexeme. Al least one space must 
appear between any two adjacent lexemes composed ol letlers, diiits, underbar, and decimal points. In 
identifiers, all characters are significant, bul alphabetic case is not 

Comments are introduced by lhe character ·i- and terminated by the next following end-of-line. 
They have no elfect on the elaboration of the program. · 

Although the language as presented in this report takes advantage of characters that are not in the 
64-character ASCII subset, simple substitution to map programs inlo that alphabet are defined in 
Appendix 1. 
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3 . Expressions 

<expr > 

<unop> 

<binop> 

<func call> 

<actuals> 

::• <unop>• <var id> 1 <unop>• <const> 1 <unop>• <func call> 
1 <unop>• ( <exor> ) 1 ( <expr> ) . <id> 1 <expr> <binop> <expr> „. -1 -

::• "' 1 / 1 • 1 • 1 < 1 i 1 > 1 ~ 1 • 1 I 1 /\ 1 und 1 v 1 car 1 f 
::• <qual id> ( qctuals> ) 

::• <exor> * 
1 

Some examples are: 

X 

X + V 
sinhcl 
- !.>c '"rlJ + ;:,·, ... ) 
!Roo t. P tr J • oll 

Expressions describe computations !hat yield values. The elaboration of an expression produces an 
object containing the value of the expression. The type of the objec:l is determined by the following 
rules: 

- The type of an <expr> !hat is a <var id>, <consb, <func call>, or selection of a field from a 
computed composite value is determined by the appropriate declaration (or rule for literals). 

- The type of a parenthesized expression is the type of the expression inside the parentheses. 

- The type of a binary infix expression or a unary expression is delermined by the definition 
of the appropriate binary or unary operator definilion. These operators represent 
invocations of func!ions !hat may be overloaded. The appropriale operator delinition must 
therefore be determined on the basis of the types of the operands. 

The usual operations are associated wilh the operators +, -, •, /, i, -, "• v , c:and, c:or, <, ::;, ~. >, =, 
and .,:.. The progr ammer may overload these funclion narr.es, bul lhe added delinilions must be unary 
or binary to conform to the established syntax. Precedence rules for the unary and binary operators 
ar e given by the following table, in which operators on a singie line have the same prec:edence and 
operators higher in the table bind more tightly than operators lower in the table. Unary. operators 
have the highest precedence. 

i 
• I 
+ -
< 5 ~ > • ;i 
1\ cand 
v c:or 

Within prececlence levels, associativity is left-to-right. 

For all oper ators except c:and and cor, elaboration ol an expression proceeds as if lhe expression 
were written in functi onal form (see seclion 3.1). For cand and cor, the lelt operand is elaborated first 
and the right operand is elaborated only if necessary. 

A manifest expression is a lileral, a value of an enumeration type, an identifier declared with 
manifest binding, a generic parameter, a manifest type attribute, a constnxtor involving only manifest 
expressions, or any expression involving only these expressions and language-defined operations. The 
value of a manifest expression is known during translation. 
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3.1. Invocations 

Some examples are: 

F !SJ 
Sequence ' 1 nser t (5. SJ 
p () 

-7-

An invocation causes the elaboration of a proced.rre or function body with the elemenls of the 
<formals> li st of the roul ine bound to the elemenls of the <acluals> lisl provided by the invocation. lf 
a routine name is overloaded, the definition whose formal parameler types malch lhe types of lhe 
actual parameters is selected. Procedure and function invocalions (<proc call> and <func call>) differ in 
that procedure invocations are statemenls, whereas function invocalions are expressions having values. 
An invocalion consists of the following steps: 

- Elaborate each of the <acluals> in an unspecified order, yielding a sequence of object.s. 

- For each result formal, create a variable having lhe same type and attributes as !he 
corresponding aclual. Bind lhe result formals to lhese variables. 

- For each const or manifest formal, create an object of lhe specified type with lhe same 
attributes as the corresponding actual. Copy lhe value of the actual inlo lhe new objecl 1 

- Bind each var formal to the corresponding actual, which musl be a variable (i.e., a <var id>). 
Thus var formals are passed by reference. 

- With the bindings eslablished, elaborate the body of lhe rouline. 

- For each result formal, copy the final value of the variable bound to lhal formal back into 
lhe corresponding actual, which must be a variable (i.e., a <var id>). Note !hat this aclual is 
determined before the elaboration of the routine (i.e., for the actual A(i), it is lhe initial and 
not the final value of i that delermines the variable that receives the resull). · 

The result of a funclion is treated as a result parameter instanlialed al the call site with extent as 
described above and passed as an implicit parameter lo the function. Ouring lhe elaboralion of lhe 
function, its value is developed in this resull parameler. 

During elaboration of a function, assignmenl to a variable lhal is not local lo the funclion body (or to 
the body of a routine it invokes, directly or indirectly) is permitted only if the function is never 
invoked in a scope where such a change is made to a variable or component that · is directly 
accessible by the caller. 

Actuat parameters are matched wilh formal parameters positionally. They musl satisfy restrictions on 
type, binding and aliasing. 

- The type of an actual parameter is acceplable if its <lype name> exactly ~atches the <type 
name> cf the corresponding formal parameter. Type atlribules (instantiation parameters of a 
type) play no role in type checking. Chapler 5 &ives rules for de!ermining <type name>s. 

- The binding of lhe actual parameler is acceptable if it malches the <binding> of the 
corresponding formal parameler according lo the following rules: 

If the formal parameler is lhen lhe actual parameler may be 
var <var id> deelared var 
const <expr> 
manifest any manifest <expr> 
result <Var id> 

- Finally, lhe sei of actual paramelers must sa!isfy lhe following nonaliasing restriction: A 
variable may not be used in more lhan one var or result positi on cf a single procedure or 

lNote that for dynamic lypes, this is a pointer copy. 
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process call. For the purpose ol testing this reslriction, imported variables are considered to 
be actual parameters bound as specified in the import lisl 

3.2. Dynamic Allocation 

-8-

Each use ol the constructor ' for a dynamic type creates a dislinct element ol the type. Each such 
element remains allocated as lang as there is an access palh to il 

Attributes of the dynamic type are provided when lhe constructor is used. Thus it is possible to 
associale objects wilh different attributes with the same dynamic variable at different times. 
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4. Statements 

<slmt> 

<proc call> 

<block> 

::• <proc call> 1 <id> : <slmt> 1 <empty> 1 <block> 
1 <var id> „ <excr> 
1 if <expr> !hen <slml>.• r elif <expr> !hen <slmt>t 1• ( eise <slml>;• 1• fi 
1 case <excr> { on <oplion> -> <slml>.• )+ euc 
1 whil• <expr> do <slmf>; • od 1 for <id> in <range> do <slml>;* od 
1 ::oto <id> • 
1 sicnal <qual id> 1 resir:nal 1 usert <expr> 
1 <stmt> r ( on <id> + -> <slmt>.* 1· 1 
1 crHle <var id> ( <actuals> ) ' 

::• <qual id> ( <ac!uals> ) 

::• <code body> 

<code body> ::• becin ( <def-decl> ; I* <stml>;* end 

-9-

Statements designate actions to be performed. Their elaboration results in chan~es in lhe execution 
state of the program The <emply> statement has no elfecl Labels are used by coto statements in 
altering the flow of control in a program. A labet is accessible only wilhin lhe <stmt> it labels and 
within a compound statement (sequence of <slmbs separated by semicolons) of which it is a <stmb. 

4. l. 81 oc.ks 

Seme examples are: 

ber:in var ><: boole•n; >< ; • tru• end 
b•cin >< : • y; y : • :;:: : end 

Blocks control extent. A <block> is elaboraled when conlrol flows into it, either because the <block> 
is lhe body of a rcutine that has been invoked or because the elaboration of anolher <slml> has 
transferred conlrol to it. First, all declarations and the lexts of all module definilions are elaboraled, in 
1exical order. Nexl, the <stmbs are elaborated as described elsewhere in lhis chapler. Finally, the 
<block> is exi led or terminated. lt il is exited, conlrol waits for all activations declared in this <block> 
to become dead or mini, then the exlent defined by the <block> is closed and all nondynamic variables 
instantialed in the <block> are c!eallocaled lt the <block> is lerminaled, all activations declared in lhe 
<block> are forcibly lerminaled, and lhen the <block> is exiled The choica between· exiting and 
lerminating the block depends· on how control arrived at lhe end cf the block. ff lhe block came to 
an end because a handter completed or an enclosing process was lerminated, the block is terminated. 
Otherwise, it is exiled. 

A <block> is not permilted lo export identifiers. Except when used as a routine body, it is an open 
scope and has no need to import any. 

4.2. Sequenced Statements 

Same examples are: 

„ : • 1: y : • 2: % : - 3 
SumSq :• 0: for 1in1..10 do SumSq :• SuniSq • V(IJ1'2 od 

Sequenced stalemenls are elaborated in lhe order &iven, excepl when that order is interrupted by a 
cota or an exception. 

4.3. Assicnment Statement 

Some examples are: 

VCSJ.Sum :• 0 
)( : • 13 + "'' ,., y 

The assignment slatement -V :• E• is a procedl.!re call on an appropriate assignmenl operator, 
defined 
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proc: ": •" (var LHS: T, cond RHS: il 

for arbitrary type T. The value of the second parameter is assigned to the objecl named by the first 
parameter. The parameters are of the same type, and the normal type-checl<.ing rules apply. 

Assignment operators are defined for all primitive types. Assignment operators are defined far 
arrays, recards, variants, and programmer-defined types if and only if they have no components that 
are declared const or are nonassignable by virtue of this rule. An assignment operator that capies the 
whole value is aulomatically supplie{j for each user-defined type. For dynamic lypes this is a pointer 
copy. Although assignment may be invoked with any variable and value of the type, it rec;uires that 
the attributes of its lefl and right operands be identical, and signals the BadAssign exception if they 
are nol The BadAssign exception is älso signalled if an assignment involving mismatched array, slring, 
.or set sizes or an activation not in mint state is altempted 

4 • .q, Conditional Statements 

Some examples are: 

if A < 3 then >< : • y li 
jf >< " 0 cand y/>< > 0 \hen Z : • ut (y/x) eise U : • l. 8; q : • 'J/X fi 
cas• Ti nt 

on fuchsia -> Hue :•cool: Oescription :• "Purplish-red" 
on puce -> Hue :• „arm: Oescription :• "Srouni,h-purple" 
esa:c 

In the statement "il 8 lhen Sl eise 52 fi", 8 must have type boolean. First, B is elaboraled. lf the 
resulting value is true, S 1 is elaborated; otherwise 52 is elaborated. In the. absence of an eise clause, 
S2 is taken to be the empty statement, which has no effecl 

The expression 

if 81 then 51 eiif 62 then 52 , . • alif Sn lhen Sn eise 5,-, fi 

is equivalent to 

if 81 then 51 eise 
if 82 then 52 eise 

if Bn then Sn eise 5,-, fi 

li 
fi 

In the statement 

cas• E0 
on Ell •••• ,Elk -> 51 
on E2l, ••• ,E21 -> 52 

on Enl .••. ,Enm ->Sn 
on olhen -> s,·, 
8SIC 

The E's must all be expressions of the same type, and all except EO must be manifest. The type oi 
the E's must be fixcd, an enumerated type, or a defined type that is ultimately defined in · terms of 
fixed or an enumeration. Any of tr.e E's except EO may be a <range>; such an Eij is treated as the 
sec;uence of values in the range. First, EO is elaborated The Eij are elaborated and the results are 
compared to EO (in unspecified order). II EO is equal to some Eij, the corresponding Si is elaborated. 
1f all comparisons yield false, 5• is elaborated. Exactly one Si is elaborated for each correct 
elc.boration of the case statemenl. lf the special constant others does not <1ppear as the last <Option> 
and no match is found, an exception (CaseFailed) is signalled 
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4.5. Loop Statements 

Some examples are: 

while >< < 2.5 do >< :• F!y.xl; 'J :• G!y,xl od 
for 1 in 1 • • 10 do V ( i J : • 1 od 
for hue in color do Ti nt(huel :• hue od 

-11-

The loop while E do S od repeatedly elaborates if E then S fi until E becomes false. lf E is 
initially false, lhe loop has no effect (other than the possible hidden effects or exceptions caused by 
the elaboration of E.) · 

The for statement for i in R do S ad repeats the s!eps 

- Sind i (as a constant) lo a value in the range R. 

- Elaborate S. 

once for each element cf the range R, in orde~. [f R has no elemen!s, the loop has no effect. ·The 
scope of the loop conslant is restricted to lhe loop. . 

4.6. Unconditional Control Transfer 

An example is: 

coto L 

The effect of a goto statement is to force conlrol to the beginning of the statement with lhe given 
labe!. Since the scope rules prevent inheritance of labels across closed scope boundaries and 
.importation of labels, a goto can not be used to transfer out of a routine or module. 

4. 7. Exceptions 

Some examples are: 

1ignal TooB i g 
auerl . )( < a 
r-ead(f i le,xl ( on EOF -> coto Exit} 
>< :• ><+l { on Over-flo„ -> x :• 0 J 

Exceptions are processed by handler clauses associated with individual statements. Each handler 
clause associates processing code with given exceptions. The special identifier others may· appear as 
the last <id> list of a handler clause; it matches any exception that is not named In some other 
exceplion <id> list of the same clause. 

When an exceplion is signalled, conlrol is transferred to the nearest dynamically enclosing handler 
clause that handles the exceplion, ei!her explicilly or through an o!hers clause; the elaboration ot the 
handler replaces the elaboration of the remainder of the stalemenl Jf lhis handler is not in the 
currently-executing block, all intervening blocks will be lerminated lt a handler i·s not found w i thin 
the currently-executing routine, that rouline is lerminaled and the exception is resignalled at the point 
of call of the routine. lf a handler is not found wilhin the currenlly-executing process, that process is 
terminated and lhe exception is resignalled at lhe end of the block in which the process activ ation 
was declared alter waiting for control to reach that poinl and for all other activations declared in that 
block to terminale. lt no handler is found in the scope of the exceptlon name, a default handler will 
be supplied to terminale !hat block.. 

Exi ting a handler causes lermination of the <slmb with which it is associated (f the handler 
resignals the same exception or raises a new one, the normal rules for exception processing apply. 

The resi gnal ccmmand may be used in any handler body to resend the signal that caused that 
handler to be invoked. 
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The assert statement raises the assertion exception if the <expr> is false. lt is exactly equivalent 
to the statement "if ~ <expr> lhcn signat assertion fi". 

There is one exception lo the rule thal an exception must be handled by the block in which it is 
signalled or by a caller ol lhat block: the Notify operation on activations or aclnames. The effect of a 
l'Jotily is as if the Terminate exception were signalled in the currently-execuling statement of the 
activation named by the Notify command. 

4.8. Parallel Proccss Control 

Some examples are: 

crule PCS) 
activateCPll 
if 1sB1 ocl<.ed !Pl l lhen . • • 

1 ne create command instantiates a process, P, as an object ol type activation-of-P. The <var id> 
in a create must name an oöject of type adivation-of-P lhat is in mini state. lf a process takes any 
var parameters, the corresponding actual parameters must have extent at least as great as the 
activation variable. The effect of the create is to instantiate an activation of P, bind the actuals of the 
creale to the form.als of P, and set the activation in suspendcd state. 

Each activation has a unique identifying token value of type actname, and it may be named by one 
or more objects ol type aclname. Except for crcate, all operations that c::introl parallelism are special 
·routines that operate on either actnames or aclivations. These routines control the processes and 
parallelism by changing and interrogating the states of individual activations; they are described in 
Appendix 1.2. 

Note that the extent rules require an activalion to be dead or mint before the block in which it is 
dedared can be exited. This provides an implicit join operation. A fork can be obtained with a 
series of creales and activatc~. 
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5. Types 

<type> ::• fixed( <acluals> ) 1 float( <actuals> ) 1 boolean ! latch 1 ch1r 1 lile( <ac:!uals> ) 
1 •num{ <id> + J 1 •num{ { • <char" • J + ] 1 <expr> .. <expr" 
1 sei( <actua'ls> ) 1 slrinc( <actuals> ) ' 
1 1rny ( <range" + ) of <type" 1 racord ( <declaration> •] 
1 variant <declara'tion> ( { on <option> •> <type> J•J ' 
1 dynamic <type" .I 1ctiv1lion of <qual id> 1 1ctn1me 
1 <type name> { ( qctuals> ) !• 

<type name> ::• fixed 1 f101t 1 boolun 1 l1lch 1 ch1r 1 fil• 1 s•t 1 strinc 
1 enum( <id> + J 1 enum( 1 • <char> • l + J · 
1 arny ( <type name" + j of <type na,;,e> 1 r•cord ( { <id> + : <type name> l, + ] 
1 variant ( <type name'„ { on <option> ·> <type name> J• i 
1 dynamic <type name> 1 1ctiv1tion ( <qual id> J l 1tln1me 
1 <qual id> { [ <qual id>,+ J j• 
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In Tartan, a <type name> may be either a simple identitier or an identifier intlected with additional 
type names. The <type name> so formed captures all the information needed for type checking. 

- The <type name>s for the primitive scalar and simple nonscalar lypes are lhe keywords used 
to declare lhcm: fixed, float, boolean, lalch, char, sei, slrinc, attname, flle. 

- The <type name> for an array declared "array(a.b) of o• is "array[l,Of, where l is the <type 
name> of a and b. 

- The <type name> tor an enumeralion decfared enum[Ll,L2~ .. Ln] is enum(Ll,L4..,Ln]. 

- The <type name> for an activation declared aclivation of P is ac!ivalion(Pi 

- The <type name> for a dynamic type declared dynamic T is dynamic T. 

- The <type name> for a record type is based on lhe sequence of field names and <type 
name>s in its declaration. For a record declared "record(Fl:Tl, F2:T2, ..• , Fn:Tn)" the <type 
name> is "record[Fl:TNl, F2:TN2, ... , Fn:TNnr, where lhe Fi are lisls of field names, the Ti 
are lypes, and the TNi are type names. Bindings in the declaration do not appear in the 
type name. 

The <type name> for a ·variant is "variant[TT,Tl->Vl,T2->V2,..., Tn->Vnr, where TI is the 
<type name> of the tag, Ti is the jth vafue of the tag type, and Vi is the <type name> that 
corresponds to the ilh vafue of the tag type. As a result, two variant <type>s are the same if 
they specify the same <type>s for all vafues of the tag. 

- The <type name> for a defined type is the name &iven in the type detinition. 

5.1. Scalar Types 

Some examples are: 

Real 
1. .10 
enum(fuchs i a, ochr-e, puce. saffr-on] 

Built-in scalar types include fixed, float, boolean, latch, and character. Integer and real must be 
construcled as special cases of fixed and float. Ordered scalar erumerated types are defined by 
providing an ordered list of values. 

Types fixed and float require <actuals> lists to provide range, scale, and precision when they are 
used in declarations. These are attributes and do not affect the type. Although bindings for attributes 
may in general be const or manifest, the specifications of lixed and float require manifest attributes. 

T o define a type, the <expr>s in an explicit range rrusl be const or manifest. 

5.2. Composite Slruclures 

Seme examples are: 
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array!l •. 101 of Color 
array(Colorl of Real 
strin~ !101 
record[Name:str i ngl3S), Age:lntl 
variant b: boolHn (on lrue -> [ n t on falsa -> charl 

Nonscalar data structures may be built up in three ways: with arrays (homogeneous indexed linear 
structure), with rec:ords (nonhomogeneous structures with named fields), and with varianls (structures 
whose substruc.ture may vary wilh time). In addition, the nonscalar types sei, strinc, and file are 

defined 

Legal bindings for fields of records and variants are var, c:onsl, and manifesl II a <binding> is 

empty, it is taken to be var. 

A variant type must have exactly one tag field The special constant olhers may appear as the last 
<Option> of a <variant type>: it matches any conslant lhat does not appear in any other <Option>. 

The syntax for arrays provides an abbreviation . for a sei of types pre-defined as 
"array[lxType,EltType](rt where IxType is the inde>< type, El!Type is lhe element type, and r is a 
(sub)range of JxType. Thus "array( l.. 10) of float• means ·array(int,tloal)(l..lOt. lts type name, 
"array[int,floatr, is written •array[int] of floaf. As for any type, when an <array type> is used as a 
formal parameter, the attributes are not supplied The type ·array(A,8) of r- is an abbreviation for 
"array(A) of array(B) of r·. Similarly, the array accessor '"V(i,jr is an abbreviation for "V(i)(j)". 

5.3. Dynamie Types 

Some examples are: 

dyn1mic Rea 1 
dynamic record CData: lnt, Ne><t: ListElt, consl lnde><: lnt ~· Kl 

Values of a dynamic type are pointers lo variables whose structure ccrresponds lo lhe type 
definition. They are initialized to nil. The e><tent of these variables covers the entire scope of the 
type definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable 
di stinct from all others. The constructor supplies !he attributes for this variable: !hey are not supplied 
in the declaration of the named variable ol lhe dynamic type. ihus a named variable of dynamic type 
may at different times point to. several different variables having different attributes. 

5.4. Process Control Types 

Some examples are: 

acl ivalion of P 
aclnam• 

Parallel processes are controlled with data of two types -- activations of processes and actnames, 
or names of aclivations. Activations are instantiations of a given process; an activation may contain at 
most one process activation during its lifetime and then only of lhe process given in its <type>. An 
actname value is a pointer to an activation. Aclname variables may contain pointe(s to activations of 
any processes; an actname variable may refer to different instanliations of different processes from 
time to time. 

An activat i on is used to control parallel or pseudo-parallel execution of a process. At any time it 
may be in one of four states: min~ active, su~pended, and dead. The extent of an activation variable 
coincides with its scope. The immediately enclosing block cannot be exited unlil all activations declared 
within it are dcad or minl An activation is associated with exactly one process, which must be named 
by the <qual id>. 

An actname may refer to any instantiated process. A newly-declared ac!name or aetivation variable 
is initialized to minl 

5.5. Defined Types 

Some examples are: 

Tin! 
Sequence Cintl 158! 

Pr ogrammers may define new types. See seclion 6.5 on Type Definitions. 
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6. Defin~tions and Declarations 

<del - decl> :: • 

<declaration> ::• 
<mod del> ::-

<mod tex t> ::• 

<rou ti ne del> ::-

<func text> ::-

<proc text> ::-

<type def> ::-

<generic def> ::• 

<remote inst> ··-
<form als> ::• 

<binding> ::• 

6.1. Decl arati ons 

<dcclaration> 1 <mod del> 1 <routine def> ! <tyoe def> 1 <iteneric def> ! <emotv> 
1 imports <quai id> + 1 exports <qual id>, + 1 exc•plion <id>, + 1 diubl• <id>, + 
1 pra: <proc call>; + ;• :arp 

<binding> ( <id>: ( : <type> 1• ( :• <expr> 1• J,• 1 <binding> ( <id>,+: <type name> J,+ 
module <id> <mod text> 

; <code body> 1 <remote inst> 

proc <id> <proc text> 1 func <id> <func text> 1 prOCHI <id> <proc text> 
1 func " ( <unop> 1 <binop> 1 " <func texl> 

( <formals> ) <id> : <type> ; <block> 1 <remote insl> 

( <lormals> ); <block> 1 <remote insl> 

type <ty pe name> ( ( <lormals> ) j• • <type> 

:•neric module <id> [ <formals> l <mod !ext> 1 :•n•ric lunc <id> r <formals> l <lunc texl> 
1 :•neric proc <id> r <formals> l <proc lext> 1 c•neric procass <id> [ <formals> l <proc texl> 

is <qual id> r <acluals> 11 i1 usumed ( <id> ) 

( <binding> <id>,+ : <type name> 1,* 
<empty> 1 v•r 1 consl 1 m•nilell 1 nsull 

Some examples are: 

var x: Rea 1 
consl y: • true 
var Huel. Hue2 . Hue3: Color 
var · Tint :• enum[saffron. puce, fuchsia , ochrel 
var V: array(S • • 71 of lnt 
v•r . Ml:Mark(5). M2:Mark(7) 
manifest PI: Real :• 3.14 
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The syntax for decfarations allows three kinds ol abbreviations. lt the initialization expression 
appears, the type of the variable is evident from lhe <expr> and lhe · :<type>• may be omitted. In 
addition, lists of <id>s with the same types or bindings may be condensed These abbreviations are 
illustrated by the following five declarations, all of which have the same effect: 

var x,y :• 0 
var ><,y: [nt :• 0 
Vlr X : • ß, y : • ß 
v ar ><: 1 n t : • 0. y: 1 n t : • 0 
var x:lnt :• 0; var y:lnt :• 0 

Elaboration of a dedaration causes instantiation of an objecl which is the variable. Each variable 
has a type and a value. The type is delermined when it is instantiated, but lhe value may be changed 
by further elaboration ot the program. A variable may be restricted to be const (vallie fixed at block 
entry) or manifest (value fixed c!uring translation). 

Elaboration of a declaration proceeds as follows: 

- Evaluate lhe <expr>, if present. lt must be present in manifest er conct declarations. lt must 
be manifest in manifest declaralions. 

- If lhe <binding> is manifest, bind the value of lhe <expr> to the identifier(s). 

- lt the <binding> is const or var, elaborate any <actual>s in the <type> and instantiate a new 
variable with the indicated type and attributes for each idenlifier. lf there was an <expr>, 
assign its value lo each of the new variables. 

When lhe type is dynamic, the declaration supplies lhe <type name> only (no attributes). In this case, 
only lhe pointer is allocated at block enlry; the attributes are supplied when the dynamic type is 
actuaily (dynamically) allocaled 
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5.2. Modules 

An example is: 

module Count er Oe f; 
be:in 
exports Counter. Reset. lncr, Value; 
type Coun t er • lnt: 
proc Rese t ! re~ult C: Count erl : begin C : • 0 end: 
proc l ncr { v•r C: Ccun t er): be;in C : • C • l end; 
tune Value (consl C:Coun t erlx:Coun t er: begin" :• C end 
end 
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The elaboration of a module takes place during lhe elaboration of declarations for !he block in 
which the module is defined. This elaboration consists of elaborating the declarations of the module in 
lexical order, then elaborating !he statements of the module. 

A module or routine inherits identifiers for definitions (modules, routines, exceptions, and types) lrom 
its enclosing scope. lt may expiicitly import identifiers ol objects from that scope, provided the 
objects have global extenl A mocule, but not a rcuiine, may expert definition and object identifiers to 
its enclosing scope. Types, named routines, field accessors for records, and variables are exported by 
including their names in the exporls list of the module. The right to apply infix operators, 
constructors, subscripts, ·.all", er the creale command for a type T are exported by including the 
special names rinfix, rcons!r, T'subscr, T'all, and T'crea!e, respectively, in !he exports list. Literals 
of enumerated types are exported automatically if the types are exported. 

5.3. Roulines 

Same examples are: 

proe F {var x : J n t ); b.gin )( : • - >q end 
proc G is Ger:G (5) 
tune lsNi 1 !x:OynTl•d:boole•n: be,in y : • (x • nill end 
tune •• +" (a, b: gorp) c: gcrp: 

begin · 
impods Bias; 
c :• gorp' (a. left+b. left+Bias, a.right+b . r i ght+Biasl 
end 

A routine i s a closed scope whose body is a block. Thus its body controls extent for local 
declarations, but c!oes not inherit idenlifiers for (non-manifest) objects or labels. The <fcrmals> lis t 
decl ar es the identifiers for paramelers. 

A r outi ne may be a func:ion (func), which returns a value and has no visible side effects: it may be 
a p r ocedure (proc), which can modify its psramelers but must be called as a statement; or it may be a 
proces s, which is a potentially-parallel procec!ure. Special type-specific routines are c!escribed in 
A p pendix 1.2. 

Routine names may be overloaded by binding the same identifier to severat definitions with different 
numbers or types of parameters. The functions for which special inlix notation is provided are 
obvious candidate s for overloading. 

)f a <bindi ng> in a routine header is omitted, it is assu"lled to be consl. The result binding may be 
used only in procec!ur es. Mo duplication of ic!enli fiers wi thin the <formals> lisl is permitted, and 
parameter names may not confli ct w ith declarations or imporls in the routine body. 

6.4. Exceptions 

Some examples are: 

excaplion TooBig, TooSmal 1, Lat e, S ingu l ar 
diubl• r 008 i g, T ooSma 1 1 
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The scope of an exception name is the block in which il is declared. A disable declaration in an 
inner block :iuppres:ies detection of the exceptions il names. A handfer clause associates recovery 
code with a statement !hat may generate an exception (see section 4.7). 

The disable dectaration permits exceptions to be individually suppressed wilhin a given scope. 
Should an exceplion occur when its detection is suppressed, lhe ccnsequences are not defined. An 
exception must not be signalled or redecfared in a scope in which il is suppressed. Note that 
suppression of an exception is not an assertion that the condition !hat gives rise to the exception will 
not occur. 

Standard exceptions will be dectared in lhe global extenl 

6.S. Type Definitions 

Seme examples are: 

type Counter - Int 
type Matri><(n:lntl. arny(l..n.l..nl of Rul 

A user may introduce a new type into his program with a type definilion. The type definition itself 
merely introduces the <type name> and defines the representalion of the type. Operations are 
introduced by writing routines whose formal parameters are of the newly-defined type. Scope 
boundaries, particularfy module boundaries, play no rofe in lhe definilion of the type. · There is, as a 
consequence, no notion of the ccmplele set of operations on a type. 

A type definition may be paramelerized. The bindings in the formal parameter !ist must be consl or 
manifest lf a <binding> is omilted, it will be assumed to be const. The names ot the formal parameters 
of !he type are avaifabfe throughout the efaboration ot the program as conslants, called attribules. 
They are accessed by treating the <var idenl> as a record and the type attribute as a field. 
Attributes for primitive types are given as part ol the type definitions. 

Within the scope in which lhe type is defined, lhe qualifier Rep may be used to indicate !hat the 
object named by the identilier Rep qualilies is lo · be lreated as if it had the underlying type. This 
.allows operations on the new type to be written using operations on its representation. When no 
ambiguity arises, the Rep qualiiication may be omilted 

6.6. Generic Definitions 

Seme examples are: 

ieneric proc Re'5et CT: h1oeJ (var ><:Tl; becin >< : • ><'min end 
proc ResetColor is ResetCColorl 
proc Rese tX is Reset [S<1mp 1 el 
module Stack it Hsumed !St ackDe f} 

i•neric module R i ngOe 1 [K: 1 n t] : 
bei:in 
exporb Ring. Ne><t: 
type Ring • lix..:1(1,0.0,K-ll: 
tune Ne„ t CR:R i ngl N: fixed Cl, 0, a,K-11; becin N : • nod !R•l.X'I 1 end 
end 

module RS it R i ngOe 1 [5] 
module RS is R i ngOe f CSJ 

A generic definition is syntaclically like the ccrresponding specific definition excepl that it is 
prelixed by the word gcncric and it may have a sei of 11eneric parameters (enclosed in square 
brackets) afler the definition name. F'or generic definilions, type is acceptable as a formal <type name>. 

. T~~ ac~al p~rameters supplied in an inslantialion of a generic definition may be any delined 
rdenbfrers, rnctuding !hose for variables, functicns, types, or modules, or any expression When the 
generic definition is instantiated, the text of the actual paramelers replaces the identi l iers that 
rep~esent the. formal .para~eter~. The substitution is done on a lexical, rather than a strictly textual, 
b~srs. That rs, the rdent1 frers in the generic definition are renamed as necessary to avoid conflicts 
wrth the identifiers in the actual parameters. 
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Both generic definitions and remotely-dcfined modules or routines may be incorporated in a program 
as remote instances. A remote instance may be an instantiation cf a generic definition or a reference 
to a definilion given elsewhere. 

A module or routine that is used by the program but whose definition is given elsewhere (e.g., in a 
library) is incorporated by writing is assumed(<id>) as the body cf a module er routine definition. The 
<id> is used by a pragmat to locate the remole definition. 

A generic definition is inslanliated by referring to it as the bcdy cf a module er routine definition. 
The effect of the instantiation is as if the generic definition were lexically substituted in place of the 
reference to it. Thal is, the body of the module or routine being defined becomes a copy of the 
generic definition. 

An instantiation of a generic ·definition may be used as the body of a specific module or routine. The 
usual restrictions on defining new identifiers apply to the module or routine being defined in terms of a 
generic. 

Generk type definitions arise from generic moc!ules. They are instantiated when the module is 
instantiated. Thereafter, they may be used in c!eclarations er definitions. 

lt the generic definition has generic parameters, the actual parameters supplied with the 
instantiation must have correponding types and be syntac!ically suitable for substitution. 

lf. a generic definition is instantiated more than once in a scope, ambiguous names may be 
introduced. The usual rules for resolving such ambiguities apply. 

6.7. Translation Issues 

An example is: 

prag Optim ize{gpacel: Listing!Off) :1rp 

A program is a <blocb. The extent defined by the ouler block cf lhe program is the i:lobal extent. 

The translator may be guided by <pragmal>s. Pragmals have the same syntax as proceeure calls. 
The set of pragmat names and the inlerpretations cf the arguments are delermined by each lranslalor. 
Translators will ignore pragmats whose names they do not recognize. 

A program may be broken into separately defined segments. This decomposition must take place in 
the global extenl The units ol separate c!efinition are mociules and routines. The definition 

module Q is ossum•d ( 1 ) 

in a segment has the effec! of making lhe semanlics of lhe segmenl lhe same as if the (separaiely 
cefined) !ext of Q had been substituted for "is assumed(l)". The identifier 1 refers to a file, library, er 
other facilily for storing separately defined segments. The relation between the idenlifier 1 and that 
storage facilily may be established by a pragmal 

lt is a matter of oplimization whelher the separate definition is included as text er separately 
translated and linked in. In order to perfcrm independent lranslation of a separately defined .component, 
it is nccessary to embed the moc!ule er rouline being translated in an environment that supplies 
definitions for all lhe names it inherits or imports. This environment must form a complele program. 
lt is assumed that the translation system provides commands for selec!ing which components ol such a 
transiation to save and for delermining where and in what form they are lo be saved. 
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I. Standard Definitions 

I.1. System-Dependent Characteristics 

The lranslalor for each system is assumed to provide a module in the global extent that defines 
appropriate syslem conslants. Such constants are assumed at various points in the language detinition; 
these and certain others are summarized here in the form of a skeleton module. 

moduJe Sys: 
beg:in 
expods • 

type 1 nt • Jixed(. 

exports all defini tions below 

.) · appropriate to the machine 
Note Int.Min and lnt.Max give range 

type Rea 1 • Jlo•t ! . . . ) appropriate to the machine 

consl 

proc • • • 

•XC•ptions 

•nd 

Attributes give range, precision, scale 

constants that descibe properties of the 
object machine 

procedures for accessing faci 1 itles of the 
operating and ti le systems 

System-defined exceptions such as As!ertion. SadAssign •••• 

1.2. Properties of Types 

All lypes have assignment operators and routines for conversion to appropriate other types. In 
particular, the scalar types have routines for converting to and from character strings. An nonscalar 
types have constructors. The sections below sketch some imporlant properties of lhe buift-in types . 

. I.2.1. Fixed 

Liter als: 
Attributes: 
Infix operations: 
Special routines: 

I.2.2. Float 

Uterals: 
Attributes: 
Infix operaticns: 
Spec:i al routines: 

1.2.3. Enumerations 

digit strings 
Min, Max, Precision, Scale 
Arithmetic and relational 
rounding, truncalion 

digil slrings with decimal point 
Min, Max, Radix, Precison, MinExp, MaxExp 
Arithmelic and relational 
rounding, trvncation 

All enumerations are ordered The literals are assumed to appear in the declaration in inc:reasing 
order. 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

As given in definition 
Min, Max 
Relational 
succ, pred 
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1.2.4. Boolean 

Literals: 
Attributes: 
Infix operations: 
Special routines: 

1.2.5. Charac:ters 

Literals: 
Attributes: 
Infix operations: 
Spec:ial routines: 

1.2.6. Latc:hes 

true, false 
none 
logic:al 
none 

Quoted charac:ters 
Min, Max 
none 
as for erumerations 
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A latc:h is a simple spinloc:k for mutual exclusion. lt the lalch is open, it is available for siezure; if it 
is c:loscd, a Loc:k command will wait on iL 

Literals: open, closed 
Attributes: 
Infix operations: 
Spec:ial routines: 

I.2. 7. Arrays 

Literals: 
Attributes: 
Infix operations: 
Special operations: 

I.2.8. Sets 

none 
none 
Lock, lflock, Unlocx 

none 
Range, EltType 
none 
subscript, subarray, catenation, upper bound, lower bound 

"Sets" are boolean vectors on which some additional operations are defined. 

Li teral s: 
Attributes: 
Infi x operations: 
Special operations: 

1.2.9. Cynamic Types 

Literal s: 
Attributes: 

Infix operations: 
Spec:ial operati ons: 

Speci al routines: 

1.2. 10. Rec:ords 

Literals: 
Attributes: 
Infix operations: 
Spec:ial operations: 
Special routines: 

empty 
EltType, MaxSize 
logic:al 
subscript 

nil 
The named variable does not itself have atlributes, but lhe dynamic 
variable that it references may. 
none 
.all denotes whole value of dynamic object, as distinguished from 
the reference. A dynamic constructor alloc:ates a new dynamic objecL 
none 

none 
individually defined with record type 
none 
field selection, C:)nstructors 
none 
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1.2.11. Varianls 

Literals: 
Attributes: 
Infix operations: 
Special operations: 
Special routines: 

1.2.12. Slrings 

Literals: 
Attributes: 
Infix operalions: 
Special operations: 

1.2.13. Activations 

Literals: 
Attributes: 
Infix operations: 
Special operations: 
Special routines: 

none 
individually defined with variant lype 
none 
variant l'T'l.lst be designated lo reference contents 
none 

Quoted strings 
Length 
none 
subscript, substring, catenalion 

mini 
none 
none 
create 
To change slate: Activate(A), Suspenci(A), UnlockAndSuspend(A,L), 

UnlockAndAclivale(A,L), LockAndSuspend(A,L), LockAndActivate(A,L}, 
Terminate(A) 

To query stale: lsMint(A), lsAcl(A), IsSusp(A), IsTerm(A) 
Tc obtain aclname: NameOf(A), Me() 
To sent exceplion: Notify(A) 
Other: Priorily(A), Se!Priority(A), Time(A) 

where A is an ac!ivalion ·ar aclname and L is a lalch 
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Assignment causes lhe BadAssign exception if eilher the value or the variable to which it is being 
assigned is in a state other than minl 

I.2.14. Actnames 

Literals: 
Attributes: 
Infix operalions: 
Special operalions: 
Special routines: 

1.2.15. Files 

mini 
none 
none 
none 
Same as for aclivations 

A minimal inpul-cutput facilily will be provided. 

1.3. Alphabets 

The following context-free subsli!utions reduce the alphabet used in this report to the standard 
64-character ASCII subsel Note lhat some iden!ifiers are pre-empled as a resull 

For the publicalion character: 
lower case a.z 
s 
~ 

-1' 
1\ 

V 

{ 
} 

Substitute lhe ASCII slrinc: 
upper case A-Z 

<> 
and 
or 
<< 
>> 



Tartan Reference Manual 

II. Collected Syntax 

<consl> ::• <digi t>+ { . <digit>+ l• l true 1 l•lse 1 nil 1 closed 1 open 1 mini 1 emply 

<construclor> 

<var id> 

<range> 

<oplion> 

<qual id> 

<id> 

<expr> 

<unop> 

<binop> 

<tune call> 

<actuals> 

<stmt> 

<proc call> 

<block> 

<code body> 

<type> 

<type name> 

<de f-<:lec l> 

<declara lion> 

<mo d def> 

<mod text> 

<routine def> 

<func !ext> 

<proc !ext> 

<type def> 

<generic def> 

<remote inst> 

<formals> 

<bindln1p 

1 <conslructor> 1 <id> 1 <qual id> ' <const> 1 <type> ' <const> 1 <expr> 

::-

··-
··-
::• 

::• 

::• 

:.-

::• 

::• 

::• 

::• 

::-

;:• 

::• 

::• 

::• 

( <expr>,* ) 1 ( { <option> ·> <expr> 1: ) 1 • <char>• • 

<qual id> 1 <var id> ( <Ktuals> ) 1 <var id> . <id> 1 <var id> ( <range> ) 1 Rep' <id> 

<exor> .. <expr> 1 <type> 

{ <consl> 1 <range> l,+ 

{ <1d> ·r· <id> 

<letler> <tetler or _ or digit>* 

<unoo>• <var id> 1 <unop>• <const> 1 <unop>• <tune call> 
1 <unop> • ( <expr> ) 1 ( <expr> ) . <id> 1 <expr> <binop> <expr> 

· ·I. 
• 1 / 1 • 1 • l < l ! l > l ~ 1 • 1 # 1 " 1 ca,,.f 1 v 1 cor l t 
<qual id> ( <Kluals> ) 

<expr>,* 

<proc: call> 1 <id> : <slml> 1 <empty> l <block> 
l <var id> !" <exor> 
1 if <expr> then <stmt>.• { elif <expr> lhen <stmt>.• }* { eise <stmt>.• ;• fi 
1 cas• <expr> { on <oplion> ·> <stmt>.• 1• HK ' ' 

1 while <expr> do <slmt>.• od 1 tor <id> in <range> do <stmt>.* od 
1 :oto <id> ' . ' 
1 signal <qual id> 1 resi~n.i 1 •ssert <npr> 
l <slmt> 1 { on <id> + ·> <slmt>.• l+ 1 
1 create <var id> ( ~actuals> ) ' 

<qual id> ( <actuals> ) 

« :ode body> 

begin [ <def-<lecl> ; )" <stmt>;" end 

fixed( <actuals> ) l 11o•t( <actuals> ) 1 boolHn l l1lch 1 ch•r 1 file( qctuals> ) 
1 •num( <id>,+ ] 1 enum( { • <char>. \• l 1 <expr> .. «expr» 
l sei( <acluals> ) 1 strinit( qctuals> ) 
1 1rr1y ( <ronge> + ) of <type> 1 record [ <declaratlon> + ) 
1 vari•nt <declaraiion> [ { on <optio'n> ·> <type> 1•1 ' 
1 dynamic <type> 1 1cliv1tion of <quat id> 1 1ctn1me 
l <type name> { ( <actuals> ) l• 

::- fixed 1 1101! 1 booleon 1 l•lch 1 chor 1 file 1 „1 1 strinc 
1 enum{ <id> • ] 1 enum{ ! • <char> " 1 • J 
1 1r ray [ <ty'pe name> • j of <type na-.:.e> 1 record [ ( <id> + : <type name> } + ) 
1 variant [ <type name'> { on <option> •> <type name> }• ]' ' 
1 dyn1mic <type name> 1 1etiv1tion [ <qual id> J 1 actname 
1 <qual id> [ [ <quat id>, + J 1• 

::• <declarat ion> 1 <mod def> 1 <routine def> 1 <ty~e def> ! <generic def> 1 <emply> 
1 imporls <qual id> + 1 nports <quat id>

1
+ 1 excaplion <id>,+ 1 disable <id>,+ 

1 prac <proc call>; + ;• &arp 

" • <bindi„g> { <id>,+ { : <type> 1• { !" <expr> 1• 1,+ 1 <binding> { <id>,+ : <type n1me> J,+ 
••• rnodule <id> <mod lexl> 

::• ; <code body> 1 <remole insl> 

::• proc <id> <proc lext> 1 tune <ld> <tune lext> 1 procH1 <ld> <proc lexl> 
1 tune • { <unop> 1 <binop> l • <func !ext> 

::• ( <formals> l <id> : <type> ; <block> 1 <remote inst> 

::• ( < f o rm al ~> ); <block> 1 <remote inst> 

::- type <type name> { ( <formals> ) )• • <type> 

::- c•neric modute <id> [ <formals> l <mod tut> 1 :•neric func <id> [ <forrnals> ] <func text> 
1 ceneric proc <id> [ <formals> l <proc tex t> 1 &•n•ric proc111 <id> [ <formals> ] <proc te'Xf> 

::• is <qual id> [ <acluals> J I is usumed ( <id> l 
::• ( <bi„ding> <id>,+ : <ty pe narne> J,• 
::• <empty> 1 v•r 1 const 1 m1nifest 1 result 
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1. Notes on Important Issues 

The Tartan reference manual is the defining document for the Tartan language. However, some of 
the facilities designed in response to the (ronman requirement deserve more unified and expository 
explanations !han can be included in a reference manual. This chapter discusses the Tartan solutions 
to several imporlant problems posed by lhe lronman req.Jiremenl . 

The Tartan language draws heavily on the Pascal tradition. Bolh the reference manual and these 
notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the lronman 
requirements [ 1] and the Tartan referenc:e manual [2} 

1.1. Y ocabulary 

A Tartan program is made up of definitions, declarations, and (executable) slalemenls. A definition 
binds an identifier to a module, routine (funclion, procedure, or process), type, or exception: it is 
processed during lranslation. A declaration binds an identifier to an object (l.e., a variable or value): it 
is processed at run time, usually lo allocate storage. Executable statements are elaborated at run time 
to effect computations -- manipulation ot values. 

Identifiers can be bound to modules, routines, lypes, objects, statemenls, and exceptions. Individual 
identifiers are qualified with the names of the modules in which they are defined in order to avoid 
conflicts with names declared in olher modules. 

The compulation described by a program is carried out by elaboratinc lhe program. We use the 
Word "elaboralion", in preference to "execution", lo connole actions taken during lranslation as weil as 
lhose !aken during execution. Elaboration may be lhought of as an idealized dired execution of the 
lextual version of lhe program. The effect of elaborating each construct in lhe language is given in the 
reference manual. 

Although lhe language prohibits making a declaration !hat gives new meaning to an identifier in a 
given scope, duplicale idenlifiers might arise in three situations. These situalions, and lhe way Tartan 
deals with lhem, are: 

- T.he same identifier is exporled from lwo modules. The ambiguity is prevented by name 
qualification: All idenlifiers exported from a module are prefixed with the name of the 
module that exported them; lhe prefix is separated from lhe identifier by an apostrophe. 
Thus if identifier x is exporled to the same scope by both modules M and N, we write 

M'>< 
N•>< 

! for the x exported fro~ M 
1 for the x exported fro• N 

The qualification may be omitted if no ambiguity arises. 

- An identifier is used as an overloaded rcutine or type name. That is, lhe same rout ine name 
is given several definitions with different numbers or types of parameters. Operator 
overloading is permitted so !hat similar operations on dislinet types, particularly infix 
operalions, can be given the same names. The idenlifiers for the routines or types are 
disambigualed by examining the parameter types and choosing the routine whose formal 
parameter types are matched by lhe types of the actuals. A similar situation exists wilh 
ic!entifiers for families of ..elated lypes. In order to discuss lhese situations, we introduce lhe 
notion of sicnature: 

- The signature of a rouline is the routine name logelher with its formal paramete r types. 
The type ot lhe value relurned by a function is not inc:luded In its signature. 

- The signature of a type is its simple type name together with its generic characteristlcs. 
Generic characlerislics are discussed in Section 1.5.1. 

- A literal or constructor might polentially be of two or more different types. The ambiguity is 
resolved by qualifying lhe lileral or construetor with lhe intended type ineluding its 
~~s. . • 



Tartan: Notes and Examples -2-

1. 2. Scope and Extent 

Scope determines the interpretation of identifiers, so all the text in a given lexical scope shares the 
same vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with the 
same interpretation in multiple lexical scopes. · 

The extent of a variable is its lifetime -- the time during which it ;;iffects er is atfected by the 
elaboration of the program. The interac!ion of control and lexical struclure determir.es extent. Binding 
is the association of identifiers with program entities (objects, modules, routines, types, statements, and 
exceptions). The bindings in effect at any time result from the interaction of control and lexical scope. 

1.2.1. Scope 

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical 
scopes. There are no restric!ions on lhe ways these scopes may be nested. Both constructs may use 
identifiers defined in other scopes; both may define identifiers that can be used in other scopes. 
Scope rules govern the legal bindings of identifiers in a lexical scope to program entities; they also 
control the importinC' and exportin{ cf identifiers to other scopes. Blocks and modules differ only in 
their scope rules and in their effec!s on the extent of variables. Tartan has two scope rules: 

- An open scope inherils (imports automatically) all the identifiers that are defined in its 
enclosing scope. lt may not expert any identifiers to its enclosing scope. Blocks are open 
scopes except when used as routine bodies. 

- A closed scope inherits all identifiers that are defined in its enclosing scope except those for 
labels and objects. 1 lt may explicitly import identifiers for objects (variables and constants), 
provided they have global extenl A closed scope !hat is a module may expor1 identifiers that 
name variables, definitions, er exceptions; the exporled identifiers have the status of any 
other identifiers defined in the enclosing scope. All modules are closed scopes, as are blocks 
when they are used as routine bodies. 

l dentifiers !hat are exported from an inner scope er imported from an outer scope have the status of 
identifiers defined in the scope. Redefinition of identifiers within a sccpe is not permitted. The 
convenience of being able to do so does not offset lhe danger of confusion. This does not, however, 
prohibit overloading cf routines names: the differences in signalures suffice to prevent confusion. In 
addition, the same identifier might be imported with different meanings from two different modules; 
such identi fiers are qualified with the names of the modules in which they were defined. Thus they 
are not duplicate definitions. Similarly, literals and constructors are qualified with their types to 
prevent ambigui ty. ln eilher case, the module or type qualifier may be omilted if no ambiguity arises. 

1.2.2. Extent 

Extent rul es govern the lifetimes cf objecls. Extent is controlled by blocks, independent cf whether 
they correspond to cpen or closed scopes. Nolhing except blocks contrcls extent. The static data cf a 
block is allocated when the declarations cf lhe block are elaboraled (in lexical order) at block entry. 
lt is deallocated when the block is exited or terminated. Note that modules do not define extents, so 
the extent of data defined in a module coincides with the extent of its surrounding block. 

Values of dynamic types point to dynamically allocated variables. The type of object that may be 
pointed at is part of a dynamic type. The extent of dynamically allocated variables is coincident with 
the bloe!<s in which the associated dynamic types are declared. Since type names are not accessible 
outside the blocks in which they are defined, no references can outlive the block with wnich the 
extent is assoeiated. 

lLiterals and identifiers tor variables that are declared manifest are inherited 
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1.3. Modules and Routines 

Modules and routines are closed scopes. Modules serve as an encapsulation mechanism, protecting 
the privacy of definitions and declarations without restricting their extent. Routines are used for 
program structuring and abstraction of operators; they define operations lhat may be invoked during 
elaboration of a program. 

1.3.1. Modules 

A module is a closed scope that atlows (ocal definitions lo be shared wilhout making lhem public. 
lt also serves to bundle up related definitions for administrative (program organization) purposes. lt 
may expert identifiers for definilions and objects to the scope in which it is defined A module has no 
parameters. 

A module is purely a scope-defining device. Its elaboralion takes place during the elaboration of 
decfarations for the block in which lhe module is defined. This elaboration consists of efaborating the 
definitions and decfarations of lhe module in lexical order, then elaboraling lhe statements of lhe 
module. 

A module or routine inherits identifiers for definitions (modules, routines, types, and exceptions), 
literals, and manifest objects from its enclosing scope. lt may explicitly Import identifiers of objects 
from that scope, provided the objects have global extent. A module, but not a r.outine, may expori 
identifiers other than labels to its enclosing scope. 

1.3.2. Routines 

A routine is a closed scope whose body is a block. Thus its body controls exlent for local 
decfarations, but does not inherit identifiers for variables er non-manifest constants. The <formals> list 
decfares the identifiers for paramelers. 

A rouline may be a function (func), which relurns a value and has no visibl!! side effects: it may be 
a procedure (proc), which can modify its paramelers but musl be called as a stalement; or il may be a 
process, which is a polentially-parallel proeedure. Special type-specific routines for m~ny types are 
listed in the Tartan Reference Manual. 

The symbols for the unary and binary operators are used as routine names in order to provide 
overloaded delinitions for those operations. 

lf a <binding> in a routine header is omilted, it is assumed lo be const. The result binding may be 
used only in <formals> lists of procedures. Functions are permilted to specify var parameters in order 
to avoid the copy associated with consl l However, as noted below, visible side effects on such 
parameters are prohibited No duplication of idenlifiers within lhe <formals> list is permitted. Further , 
formal parameler names may not conflict with declarations or imports in the routine body. 

lt a routine name is overloaded, the definition whose sienature matches the call is selected 

Ouring elaboration of a function, assignment to a variable that is not local lo the function body {or to 
the body of any routine it invokes, directly er indirectly) is permitted only if lhe function is never 
invoked in a _ scope where such a change is made to a variable or component that is directly 
accessible by the caller. Such variables may be imported by lhe func!ion from a module wi lhin which 
the function is defined. They ·may also be fields of var paramelers if !he type of !he parameter is 
defined in the same module as lhe function and !he field name is not expor!ed. An example of the 
latter case appears in sec!ion 2.4. 

Thi s is a comprornise solution to the side-effect problem. Many routines are c;'wite reasonably coded 
as value-relurning: Gel of section 2.4, monitoring routines, random number generators, and Pop for 
stacks. However, the current state cf lhe art does not offer a sharp rule from dis!inguishing safe from 
unsafe side effects. 

lrn the presence of parallelism, it may not be safe !o optimize away the copy of a const pararneler 
even if the routine does not alter it. 
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Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on 
type, binding and al iasing. 

- The type of an actual parameter is acceptable if its <type name> exactly matches the <type 
name> of the corresponding formal parameter. Type attributes (instanliation paramelers of a 
type) play no role in type checking. 

The binding of the actual parameter is acceptable if it matches the <binding> of the 
corresponding formal parameter according to the following rules: 

If the formal parameter is then the actual parameter may be 
var <var id> 
const <expr> 
manifest any manifest <expr> 
reS\Jll <var id> 

- Finally, the set of actual parameters lll.lst satisfy the following nonaliasing restric!ion: A 
variable may not be used in more than one var or resull position of a single procedure or 
process call. For the purpose of testing this restriction, imported variables are considered to 
be var parameters. 

1.4. Generic Definitions 

A facility for making ceneric definitions is provided in order to allow the programmer to write a 
single textual definition that serves as an abbreviation for many closefy-related specific definitions. 
Modules and routines may be defined generically. 

A generic defini tion is instanliated by referring to it as the body of a module or routine definition. 
The effect of lhe instantiation is as if lhe generic definition were lexically substituted in place of the 
reference to il That is, the body of the module or routine being defined becomes a copy of the 
generic definition. 

1.4.1. Writing and Using Generic Definitions 

A generic definition is syntactically like !he corresponding specific definition except that it is 
prefixed by the word generic and it may have a sei of generic parameters (enclosed in square 
brackets) alter the name of the construct being defined. The paramelers may be any defined 
identi fiers, including !hose for variables, routines, types, or modules, or any expression. When the 
generic defini tion is instantiated, lhe text of !he actual parameters replaces the identifiers that 
represent the formal parameters. The subslitution is done on a lexical, rather that a strictly textual, 
basis. Thal is, the identifiers in lhe generic definilion are renamed as necessary to avoid conflicts 
w ith the identifiers in the actual parameters. 

For example, the collection of functions 

func F2 1X:lntly:lnt; be,in y :• 2 _,,X end 
func F31 X: lnt ly : lnt; be,in y :• 3 t: X end 
func F4 IX : Intly: Int ; be,in y :• 4 .~X end 

and so on 

can be defined by the generic definition 

ceneric tune F lMul t: lntl IX: lntly : l nt; becin y :• Mul t ,~X end 

and the specific instantiations 

func: F2 is F (2] 
func F3 is F (3] 
func F4 is F (4] 

and so on 

An instantiation of a generic definition may be used as the body of a specific module or routine. The 
usual restrictions on delining new identifiers apply lo lhe mod.Jle or routine being defined in lerms of a 
generic. 

Generic type definitions arise from generic modules. They are instantiated when the module is 
instantiated. Thereafter, they may be used in declaralions or delinilions. 
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lf the generic definilion has generic parameters, the actual paramelers supplied with the 
instantiation must have correponding types and be syntactically suitable for substitution. 

If a generic definition is instantialed more than once in a scope, ambiguous names may be 
introduced. The usual rules for resolving such ambiguities apply. 

1. 4. 2. Separate Definitions 

Tartan supports separate delinitions, and potenlially separate compilation, in the same way as it 
supports generic definitions. A program may be broken into separately defined segments. This 
decomposilion must take place in the global extenl The units of separate definition are modules and 
routines. The delinition 

modul• a is 1ssumed (! ) 

in a segment has the effect of making the semantics of the segment the same as if the (separately 
defined) text of Q had been substituted lor is assumed(I)9. The identifier 1 refers to a file, library, or 
other facility for storing separalely delined segments. The relation between the identifier 1 and that 
storage facility may be established by a pragmal 

Suppose we want to devefop and mainlain a program with the following structure: 

bei:in 
module COM: bei:in exporl X: • • • end; 
module Ml: bei:in import X, Y: export Z: , • " end; 
module M2: 

bei:in import X, Z: 
export W: 
module M3: bei:;in • • • end; 

end1 
ver Y: ... : 
! Main program using W, X, Y, Z 
end; 

lf the definitions cf COM, Ml, and M2 are stored in a library, the following program will have the 
same effect: 

b•cin 
prac RequirelComOef,LIB.COM. TXTJ: RequirelMIOef,LIB.Ml.RELJ: 

Require !M20ef,LIB.M2.RELJ; cup: 
module COM is nsumed !COMOe fJ : 
modul• Ml is ISSU,,,.d !MlDe f J ; 
module M2 is .ssumed !M2De f J 1 
var Y: ••• ; 
! Main program using W, X, Y. Z 
end: 

We assume here that the second argument cf the Require pragmat is interpreted by the system as a 
poi11ter inlo a library. From lhe standpoint of the language, it is a matter of optimization whether the 
separate definitions are included as !ext or separately translated and linked In. 

In order to perform independent translations of a separately defined module, it is necessary to 
embed it in an environment that provides the c!elinitions it depends on. This environment must . form a 
complete program. The translation system is assumed to provide commands for seleeting which 
components of sueh a translation lo save and for delermining where and in what form they are saved. 
In the examples here, we will simulate that facility with a pragmat loc:a!ed outside the program. In the 
example above, module COM i:foes not depend on any external detinitions. In order to compile it 
separately, we write simply: 

prag Save!Com,LiB.COM. TXTJ; carp: 
becin 
modul• COM: b•gin export X: • • • end; 
•nd 

Module Ml depe_nds on the X exported from COM and the Y dedared In the main program. To 
translate M 1 separately, we must therefore write: 
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prag Save!Ml.LIB.Ml.REll: ~arp; 
ber;in 
prag Requ i re !ComOe f. LIB . COM . TXTl: &arp; 
module COM is usumed !COMOe f l : 
module Ml: begin import X. V; .xport Z; • , • end; 
var V: ••• : 
end 

Jf module M2 were translated monolithically, its translation environment would look much the same. 
Suppose, however, !hat the definitions of M2 and M3 are to be separated They can be translated 
independently with the following two programs: 

prac Save!M2,LIB.M2.REll; :up; 
b•cin 
prac Require!ComOet.LIB.COM.TXTl: RequirelMlDe f ,LIB. Ml.REll : 

Requ i re !M3De f, LIB. M3. REU; carp: 
module COM is assumed !COMOe f 1 ; 
module Ml is nsumed !MlOefl ; 
module M2: 

ber;in import X,Z: 
exporl IJ: 
module 113 is usumed IM30ef); 

end: 
end 

prac Save !M3, LIB. M3; RELJ: :arp: 
begin 
pr•c Requ i re!ComOef,LIB.COM. TXTl: Require!MlOef,LIB.Ml.REll: :1rp 
module COM is assumed !COMOefl: 
module Ml is assumed !MlOe fJ 1 
module M2: 

end 

ber;in imporl X, Z: 
export IJ; 
! Only the declarations of M2 that are requ i red by M3 appear 
module M3; ber;in • • • end ; 
end; 

1.5. Types 

The notion of type is introduced into languages to govern the ways operations are appl ied to 
objects. Types delermine certain properlies of data (values}, including what operations on the values 
are legal and precisely what lheir effecls are. Every objecl has a fixed type. This type is 
determinable during transla!ion. Tne <type name> is delermined by lhe signalure of the type as 
descr ibed in seclion 1.5.2. Tartan provides certain built-in lypes; these include both simple and 
composite types. The user may define new types on the basis of lhese primitives. Bolh user-de fi ned 
and buil t -in types are used to ensure lhat the aclual parameters passed to a routine malch the 
corresponding formal parameters. The types of the formal parameters are also used to conslruct lhe 
signature of a routine in order to resolve overloading ambiguities. 

In Tartan, every value has exactly one type. This type is determined 

- by the declaration cf a variable or definilion of a function 

- by the lexical form and conlext of cx:currence of a literal 

Types appear in four contexts: 

- in declarations, to give the type and altributes of an object 

- in type definitions, to give the base representation of a newly-defined type 

- in formal parameter lisls, to reslrict the objects !hat may be passed as parameters 

- in function definitions, to give the tyi:;e of the resul t 
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1.5.1. Characteristics and Attributes 

Some ot the properties of a type are the same for all values and objects of the type. These are 
called ~eneric characleristic:o and are discussed below. Other properties of a type, called attributes, 
may differ from one value or object of the type to anolher. For example, in Tartan the type of the 
values used to index the elements of an array (the type of the index sei) is a generic characteristic, 
whereas the exact bounds of the array (which values are in the index set) are altributes. 

The sei of attribute names associated with a type and the lypes of the corresponding · attribute 
values are given in the definition of the type. For example, objects of type fixed have attributes Max, 
Min, Precision, and Scale. 

Note that the attributes values of an object are not part of ils type. lt is therefore possible to 
wri te routines that operate on objects with different attributes. For example, it is straightforward to 
write routines that operate on arrays of arbitrary size. 

lt is often convenient to define families of related lypes with similar properties, and in which the 
differences can be captured through differences in generic properties. A type definition parameterized 
in this way can be cast as a ceneric type definilion. Members of. the family wi th distinct 
characteri stics are distinct types. 

Generic types are introduced through generic module definilions. F or example, 

&•neric rnodul• Blocker(T:typel; 
b•i:in 
typ• Block CTJ !Order: Intl • 1rr1y(l. . Orderl of T; 
proc Blocklt(v.r B:Block[TJ); becin. '. • end 
end 

defines a set of types Block( ... ] and a set of corresponding procedures. The definitions 

module lntBlock is BlockerCJntl: 
mod~• RealBlock ~ Blocker(Reall; 
module MyB 1 eck is B 1 ocker [My Type]; 

introduce, respedively, the types 

Block(Jntl !Order:fnt) 
Block[Reall fOrder:fntl 
Block[MyType] (Order: fntl 

each of which has an Order attribute. Note also that the procedure Blocklt is overloaded to operC1te 
on all these types, and !hat il is indifferent to the Order attribule of its argumenl 

1.5.2. Type Names 

In Tartan, a <type name> may be either a simple identifier or an identilier inflected with additional 
type names. The <type name> so formed captures the signature of the type. F or example, the <type 
name>s in the example above are 

B 1 eck Cl ntl 
8 1 eck CRea 1 J 
8 1 ock CMy Type} 

Although the definitions of these three types are closely related (they arise from instantiations of the 
same generic module), the types are entirely distincl 

The <type name>s for the primitive scafar and simple nonscalar types are the keywords used to 
declare them: fixed, float, boolean, lateh, char, se~ strinc, actname, lile. 

The <type name> for an array declared •array{a .. b) of o· is •array(J,O]", where J is the <type 
name> ot a and b. See section 1.5.3 for the derivation. 

The <type name> for an enumeration declared enum[Ll,L4..Ln] is enum[Ll,L2,. .. ,ln]. 

The <type name> for an activation declared activation of P is aclivation[P]. 

The <type name> for a dynamic type declared dynamic T is dynamic T. 

The <type name> for a record type is based on the sequence of field names and <type name>s in 
its declaration. For a record declared ·record(F l:Tl, F2:T2, ... , Fn:Tn]" the <type ~ame> is 
"re.cord(Fl :TNl, F2TN2, : ··• . Fn:T~n]", where the Fi are lists of field names, the Ti are types, and the 
TNt are type names. Bind1ngs tn the declarati on do not appear in the type name. Thus, in the code 



Tartan: Notes and Examples 

fragment 
proc P (var x: r•cord Ca. b: Reil 1 ll; b•iin . • . end: 
var y:record[a,b:Real): 
var z:r•cord[c.d:Real): 

variables y and z have different <type name>s and only y is acceptable as a parameler to P. 

-8-

The <type name> for a variant is ·variant[TT,Tl->Vl,T2->V2r··•Tn->Vnr, where TT is the <type 
name> of the tag, Ti is the itl"I value of the lag type, and Vi is the <type name> that corresponds to 
the ith value of the lag type. As a result, two variant <type>s are the same if they spedfy the same 
<type>s for all values of the lag. Th.Js for 

type Color - enum [red, green, blue. \jel lo"I: 
variant T:Color (on red-> x:lnt on blue -> y:Marid51 onolhers -> z:1rny(l..Sl of · [ntl 

the <type name> is •variant(Color, red->lnt, green->array[lnt,lnt), blue->Mark, yellow->array(lnt,lnt~". 

The <type name> for a defined type is the type name given in the type delinition, as illustrated 
above for Block(„.). 

1.5.3. Array Types 

The built-in array type is in fact a generic family. Arrays have uniform properties in that every 
array is a structure for storing a linear homogeneous fixed-length sequence of values indexed by a 
given ordered set of values. However, arrays with different element types or different types ol 
indices are distinct types. 

This particular generic family of types is so common that Tartan, like most languages, provides 
special syntax for it. There is a sei of types pre-defined as "array(lxType,EltType](rr where IxType 
is the index type, EltType is the element type, and r is a (sub)range of lxType. The syntax "array(r) 
of EltType" is provided as an abbreviation for each such type. Thus "array(LlO) of float" means 
"array(int,float]( l.. lOt. Its type name, "array(int,tloatr, is written "array[int] of float". Thus if we 
have declared 

var V: array ll .. 101 of Float 
var B: orray (red •. green) of boolean 

the generic type of both 8 and V is array, but their <type name>s are differenl The <type name> of 
8 is array(int,float], whereas lhe <type name> of V is array(color,boolean). 

The type "array(A,8) of T" is an abbreviation for "array(A) of am1y(8) of T•. Similarly, the array 
accessor 'i/(i,j)" is an abbrevialion for -V(iXj)". 

1.5.4. Oedarations 

The attributes of a variable become fixed at lhe time of its allocation. For static variables, this 
occurs _ during elaboration of the declaralion. Variables of dynamic types do not themselves have 
attributes. The dynamically allocated objeds they refer to do, however, have attributes; these are 
supplied whenever a conslructor is execuled 

The declaration of a static variable must provide both a <type name> and values for the attributes 
associated with that type. For example, the declaration "var V: array (m„n) of lnl", which is an 
abbreviation for "var V: array(lnl,lnt](m..n)", computes the current values of m and n to obtain the 
range of the index sei, then statically allocales a suitabie block of storage. However, the program 
fragment 

type Arr !n: lnt) • dyn•mic •rny !1..nl of lnt1 
Y•r V: Arr; 
V : • Arr!Sl 0; 

allocates the variable V with type Arr, no attribules, and all values undelined. The declaration 
allocates a reference to V and sets it to nil. The constructor dynamically creates a new object of 
type array(lnl) of lnl with subscript range altribule "l..5" and associates this object with variable V. 
A subsequent assignment to V might use a constructor with a different bound 

1.5.5. Type Checking 

The type checking rule for matching aclual önd formal parameters is based on the types (but not 
the attributes) ot the parameters. The actual parameter is acceptable iff the <type name> from its 
declaration exactl y matches the <type name> of lhe formal parameler. 
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The attributes of the values returned by a funclion invocalion are determined immediately before 
calling the function. They must therefore be specified in terms of input values of the function. For 
example, if Str is a type with attribute Length, the delinition 

func Concat!S, 1: StrlR~Str-: bei:in ••• end; 

would not be legal, since the attributes of the functional result are not specified. The following, 
however, would both be legal (but would have different meanings): 

func Conca t !S, T: S tr l R: S Ir !27l: bei:in • • • end: 
tune Concat !S, T: StrlR:Str-!S.Length+T.Lengthl: be,in • • • end; 

This simplilies the implementation, but it predudes the definition of functions !hat return values whose 
attributes can only be determined during the evaluation of the function. This should not usually be a 
stringent constraint: in the worst case a dynamic type may be used to return the value. 

1.5.6. Defining Types 

A user may introduce a new type into his program with a type definilion. The type definition itself 
merely introduces the <type name> and defines the representation of lhe type. Operations are 
introduced by writing routines whose formal parameters are ol the newly-defined type. Scope 
boundaries, particularly module boundaries, play no role in !he delinition ot the type. There is, as a 
consequence, no notion ot lhe complele sei of operations on a type. 

A type definilion may be paramelerized with altributes. The bindings in the formal parameter list 
must be const or manifest lf a <binding> is omitted, it will be assumed to be consl The names of the 
formal parameters of the type are available lhroughoul !he elaboration of the program as constants, 
called attributes. They are accessed by treating the <var ident> as a record and !he type attribute as 
a const field. Attributes for primitive types are given as part of the type deiinitions. 

1.5.7. Operations an New Types 

Operations on new types are introduced by routine definilions. These may be either roulines called 
w i th normal invocation syntax or definilions lor infix functions. In order to make it possible to wri te 
basic operations on the new type, Tartan provides a means of applying operations ol the underlying 
representation to objects of the new type. Within the scope in which the type is defined, the 
qualifier Rep may be used to indicate that the object named by the identilier it quali fies is to be 
treated as if it had the underlying type. lt is not exportable. This allows operations on the new type 
to be written using operations on its representation. When no ambiguity arises, the Rep qualification 
may be omitted. F'or example, we may write 

type Mark • !nt: 
tune "+" (a,b: Marklc:Mark; becin Rep'c :• Rep'a + Rep'b end: 

Rep qualification is intended to be used within a module in order to wrile primitive operations and lo 
extend operators to the new type. II is obviously possible to abuse the facility. 

An assignment operator is automatically supplied for user-defined types. Although it may be 
invoked with any variable and value of lhe type, it signals the BadAssign exception if the attributes of 
its left and right operands are not idenlical or if eomponent-by-component assignment would fail. Sizes 
of nonscalars are thus guaranteed to be c:mpalible. Clearly, assignment may be well-defined in cases 
where this rufe disallows it. Such assignment operators could be provided if user-defi ned assignment 
were compatible with the requi°rements. 

When a module is used to encapsulate the definition of a type and its operati ons, the type name 
and some of lhe operations must be exported from the module. Types, named routines, field 
accessors for records, and variables are exported by including their names in the exports list of the 
module. The right to apply infix operators, constnJctors, subscripts, · .all•, or the create command are 
exported by including the special names rinfix, reonstr, r subscr, T"all, and rcreate, respectively, in 
the exports list. Literals of enumerated types are exported automatically if the types are exported 

1.6. Parallel Processes 

Parallel proce~se~ are controlled wi th data of !wo types -- activations of processes and aclnamos, 
or n~mes of achv atron~. ~n activation variable :nust be an inslantia_tion of a given pr ocess: it may 
contarn o:Jt most on~ achvatron of thal process ciuring its lifetime. An actname variable is a pointer to 
an acti vation. A srngle actname may be associated with different instantiations of di fferent processes 
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from time to time. 

Processes are similar to procedures. The syntactic distinction between procedures and processes is 
imposed bccause we believe ~he potential for parallel execution should be indicated explicitly in the 
program. 

Note that aclivati ons and aclnamcs control only the parallel control flow of the program. No 
synchronization is supplied with the processes; lhis must be coded explicitly with lhe primitive laiche!> 
or with other, nonprimitive synchronization. 

1.6.1. Activations 

Activations of processes are used to conlrol parallel or pseudo-parallel execution of instances of 
the named process. lf P is a process and x is a variable of type aclivation of P, then x can contain an 
independently-executing instantiation of P, called an activation of P. An activation of P may be in one 
of several states: 

- Mint: A mint activation has not yet been started up as a process. The only Operations !hat 
can be performed on it are ereatc, NameOf (i.e., the function that returns the aclivation's 
name), and the state-interrogalion predicates. A newly-declared aclivation or actnamc is 
initialized to the literal minl 

- Suspended: A su:;per.ded activation can have no effect on any objects; in essence, it is not 
executing and will not execute until it is activated (see be!ow). 

- Active: An adive activation is one in which it is feasible for elaboration to take place. lt 
may atfect objeds, and its clock may advance. 

- Dead: A dead ac!ivation admits of no further elaboration. lt cannot be revived and it can play 
no further role in the program. An activation becomes dead when it exits normally, when it 
fails to handle an exception raised durin-s its elaooration, or when it is named by a Terminale 
command 

The extent of an activation variable is delermined by the block in which it is declared. When such 
a variable is dec!ared, an activation of lhe named process is instantiated, sei to state mint, and 
associated with lhe declared process name. The immedialely enclosing block cannot be exited until all 
acti vati ons declared within it are dead or stiil mini. An activation is associated with exactly one 
process, but a single process may be instantiated multiple times for different aclivations. 

l t x has been declared as an activation of P and is in mint state, the statement Mcreate x( ... )"' 
creates a new activat ion of P in suspended state. The formals of P are bcund to lhe actuals supplied 
in the cr eate in the same way as actuals are bound for a procedure call . lt a process takes a var 
parameter, the corresponding aclual parameter must have exlent at least as great as lhe activation's 
extent. F or purposes of this rule, an activation passed as a var parameter to a routine is lreated as if 
its scope w ere !hat of the process definition. As a result, translators need no dynamic extent checking. 

Except tor ·create, all operations on activalions are syntactically routine invocations. These routines 
conrol the processes and hence lhe parallelism by changing and interrogating the slate of individual 
activations. They are listed in the Tartan Reference Manual. 

1.6.2. Fork and Join 

The extent rules requi re each aclivation to complete (exit or terminale) or still be mint before the 
block in which it is declared can exi l This provides an implicit join operation. A fork can be 
obtained with a series of creates and aclivates. For exampie, 

be,in 
process P { const ><: ( n t l ; b•i:in • • . end; 
var V: 1rr1y (1 •• 101 of activation of P ; 
for i in 1..10 de crul• 'l[i] li): ictivatelP(i ]} od 

•nd 

declares ten adivation!> of a process, us~s c:rea:e to stört them up with different val4es of the input 
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variable (using the loop index as the input value as well as to index the array of activations), moves 
each activation into ac!ive state, and waits at the end of the block for the activations lo terminale. 
After starting the activations af P, the main program may continue with other computation, monitor the 
progress of the aclivations, or simply wail tor the activations to terminale. 

1.6.3. Activation Names 

An actname may name any activation. An aclname variable is not permanently associated with any 
particular activation, and there is no requirement about the state of the activation named by an 
actname when the extent of !hat actname variable is exiled or terminated This permits routines to 
operate on aclivations wilhout knowine what processes they are activations of. For example, it makes 
it possible for routines !hat are generally useful for manaeine activations to be defined in a large 
scope without requiring all process definitions and aclivation variables to include !hat scope. A single 
activation may be named by more than one aclname. There is no dangling reference problem: Even 
though the reference (ac!name) may outlive the activalion, the activation will be dead (lerminated or 
mini) alter its block is exiled (and thus no unexpecled computalional results can be induced). l Since 
the create command cannol be applied to an actname, the process cannot be restarted 

Activation variables may not be the objecls of assignmenls and may not appear in resull parameter 
positions. Howevcr, each activalion has a namc, of type aclname. This name may be oblained by 
invoking the lunclion NameOf on an aclivation. All operations on activations excepl creale extend to 
actnames. Thus, Suspend(NameOf(x)) has the same effect as Suspend(x) The special operation Me() 
returns the actname ol the current process. In addition, actname variables may appear in assignments. 
(Thus users may write programs thal operate on anonymous activations, for example to do 
special-purpose scheduling.) The exlenl of an actname variable may dominate the extent of the 
activat ion it names. II that situation arises, alter lhe exlent ol lhe activation is exited, the actname will 
refer to a terminated process, and no damage can be done. 

The Notify operation on aclivalions or actnames signals the Terminale exceplion in the 
currently-executing slatement ot the aclivation named by the command. Within the activation in which 
it is raised, Terminale is treated like any other exception. This is the only mechanism provided by 
Tartan that enables one activation to interrupt another. 

1. 7. Unresolved Issues 

We did not obtain solutions to all the lronman rec;uirements in the two-month period aflotted to this 
design. In this seclion we skelch lhe way we would address lhe unresolved issues. 

1. 7 .1. Machine-Oependent Code 

Machine-dependent code presenls two issues: delini tion of operalicins and definilion of data. Tartan 
will permit separalcly-delined machine-dependent roulines to be incorporated in the same way as 
other separate delinitions. This is consistent with the Steelman requiremenl We · have not yet 
addressed the problem of machine-dependent declarations (data layout). 

1. 7.2. Simulation 

We believe Tartan supporls a programmed solution to the simulation requiremenl For example, the 
facilities ol Simula 60 can be provided for Tartan programs: 

- Tartan activations can serve lhe same function as Simula actlvities. 

- A coroutine cafl discipline may be programmed using the routines Activate and Suspend. 

- A scheduler !hat manages simulated time can be prowammed, again using operations on 
activations. 

1 Th:8 activ.ation record ilsell may be allocated in the heap: it does not become eligi ble for garbage 
collect1on unt1I all references have been broken. Thus no aclname can become an uncontrclled pointer. 
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1. 7 .3. Definition of Integers 

In the reference manual we chose fixed as a primitive and defined Int as a special case by 
choosing attributes appropriately. We believe it is possible to lreat int as primitive and define Fixed 
as nonprimitive by associating range/precision bookkeeping with the operations. 

1. 7.4. Lew-Level Input and Output 

We included file as a primitive data type but did not specify its properties. Given lhe ability to 
write machine-dependent code to access the devices and the ability to use processes to maintain state 
(and hence to avoid, for example, re-opening a file for each operation), we believe a wide variety of 
l~w-level 1/0 can be implemented effectively. 

1. 7 .5. High er-Level Synchronization 

Numerous synchronization disciplines have been proposed or are in active use. None of them 
clearly dominates the others; none is appropriate in all cases. We have elected to provide a very 
primitive synchronization tool, a lalch. Conceptually, a lalch is a spinlock; failure to sieze such a lock 
does ·not necessarily release the processor. By choosing a primitive mechanism, we hope to avoid 
pre-empting the implementation of higher-level synchronization techniques. We believe alternative 
mechanisms can be implemented effectively in Tartan. lndeed, we believe thal lhis is the correct 
approach. 
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·2. Programming Examples 

Several sample Tartan programs are presented here. Seme show the use ot various features of the 
language; others provide programmed (nonprimitive) solutions to certain (ronman requirements. 

2.1. Simple Static Data ·Type 

A circular buffer is implemented in a vector. The definition is generic in the type of the elements; 
the length of the buffer is an attribute of the type. This implementation keeps a pointer to the 
current head of the buffer (Head) and a pointer to the element one past the current end of the buffer 
(Tail). All arithmetic on these pointers is done modulo the size of the buffer. 

ceneric module C i „ cu 1 arBu f f er' IT: type] ; 
begin 
exports Ci rcBuf [Tl, 

Clear , Append, Remove, Ful I, Empty, 
BufOvf 1: 

type, attribute Size 
routines 
except i on 

type Ci rcBu+cTl (5 i ze:! nt l • record CB f:array (0„Si ::e-lJ of T, Head, Ta i 1: 1 ntl ; 

exceplion Bu fOv f 1 ; 

proc Clearlr.sull C: Circ:Buf(Tll: b•cin C.He<1d:•0; C.Ti!il:·0 end; 

proc Append (v1r C: Circßuf(Tl, const Val! Tl; 
begin 
if Fu 1 1 !Cl then sicn1I BufOvf 1: 
C.BflC.Taill :•Val; 
C. Tai 1 : • modlC . Tai l+l. C.Sizel: 
end; 

proc Remove{v1r C:C i rcSufCTl , result Val1 Tl; 
begin 
assert - Empt •JICI: 
Val : • C.Bf!C.Headl; 
C.Head :• mod!C.Head+l, C. Sizel: 
end; 

func Fu 11 !C : Ci rcBuf [Tl IF: boolHn; becin F : • !C.Head • mod{C. Tal 1 +l, C. S J zel 1 end; 

func Empty!C:C i rc8uf[TJJE:boole1n; becin E :• !C.Head • C.Talll •nd: 

end ! module CircularBuffers 

2.2. Simple Dynamic Data Type 

We detine a list-processing module. Each list cell contains a value of a specific type; the definition 
of the module is generic in this type. 

c•neric module Li s tOe f 1 T: type! ; 
becin 
exporls List [TJ, Oata, Next, 

Clear, Insert, Oelete. Last ; 
1 type and f i eld na•ee 
1 rout ines 

type List [T] • dyn1mic r•cord COa ta: T, Nex t : List IT1l : 

proc C 1 ear {result L:L ist CTJ 1: becin L : • nil end; 

proc lnsert(v1r Elt:List[TJ, Val:TJ: 
becin 
it E 1 t • nil 

lhen EI t : • Liet CTJ' (Val , nill 
eise E 1 t. Ne>ct : • Li s t !Tl ' (Va 1 , E 1 t. Ne x t 1 

end; 

proc Oe 1 et e ! v.r E 1 t: L i ' t !Tl 1 : be_cin usert E 1 t " nil; E 1 t 1 • E 1 t. Nex t end; 

func Las t CL:L i st CTJ lp:Li s t [TJ: 
begin 
P : • L : 
if P • nil then while p. Nex t - nil do p : • p. Next od fi; 
end; 

end ! Module L istOef 
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2.3. Selecting Representations 

Although Tartan lreats types wilh different representalions as different types, it is possible to use 
the variant and case facilities to define generic lypes that provide simiilar types with different 
representations. The representation is fixed during translation, when the generic definition is 
instantiated. 

This example defines two alternative representations of queues. lt has two generic parameters. 
The first is the type of the elements being queued, and it is used as in the previous examples. The 
second is a manifest constant, which is used to select which represenlation of queues is to be used. 
Since the variant is fixed during lranslation, there should be no loss of execulion efficiency. 

The two representations of queues are defined in terms of the circular buffers of section 2.1 and 
the lists of section 2.2. 

c•n•ric modul• QueueDe f IT: type. F: enum CF i x, F 1 exl l ; 
begin 
nporis Queue [TJ , 

Clear, Enq, Oeq, Empty, Full, 
ODvf 1: 

modul• Lst is ListOefCTl: 
modul• C3f is CircularBuffersCTJ; 

type Queue Ci] !Si;:e:[nt) • 
vuiant manifest Fx: enum{Fi><,Fle><l :• F 

type, attr i bute Si~e 
routines 
exception 

C on Fi>< -> Circ9uf(TJ !Size) on Fle>< -> Li,t[TJ l 

exceplion QOvfl; ! can anly be raised an Queue!Fi><I 

proc C 1 ear (resull 0: Queue CTJ l : 
b•cin 
c:an Fan Fi>< -> r;:learlO(Fi><I) on Flex -> Clear(Q(Flexll Hac 
•nd: 

proc Enq (var 0: 
becin 
cn• F 

Queue CTJ , consl Va 1 : Tl : 

an Fix -> Append(Q(Fixl, Val! 1on8uf0vfl -> 1i1n1! QOvfl) 
an Flex -> [nsert{Last(Q(Flexll, Val) 
HK 

•nd; 

proc Oeq(var 0 : OueueCTl. ruull Val: Tl; 
b•cin 
cn e F 

on F i x -> Remove(Q(Fi><J, Val) 
on F l ex - > becin Val :• Q(Flexl .Data; Oelete(Q(F lex)) end 
euc 

end: 

func Emp t y<O:OueueCTJ IE:boolHn: 
begin 
cn • F 

on Fix -> E :• Empty!Q!F i xll 
on F 1 e x -> E : • (Q !F 1 e>< J • nill 
asac; 

func Ful 1 !Q:OueueCTllE : baolHn; 
begin 
cas• Fon Fi>< - > E : • Full CQ!Fi>cl.Fl>·Rep) on Flex -> E I• lalse Hac 
end; 

end ! module OueueOe f 
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2.4. Safe Data 

Tartan does not provide indivisible operators for fetching and storing values. lt parallel processes 
are operating, the programmer needs to take precaulions lo ensure lhe indivisibility of these 
operations. This program illustrates a solution that will work well with types for which fetching and 
storing the whole value makes sense. 

becin 

modul• Comp 1 ex is usumed !Comp 1 e><L i bl ; Comp 1 ex e><por t s type Co111p 

&•neric module SafeOataCT:typel: 
begin 
exports 5-Jf'!I CTJ, Get, Put; 1 type na••· fetch and store raut ines 

type Safe [TJ • record CLk: latch, Oatat Tl: 

func Get(var S:Safe[TJJR:T: b•cin Lock!S.Lkl; R :• S.Oata; Unlock!S.Lkl end: 

proc Put(var S:Safe[TJ, v.r R:TI; becin Lock!S.Lkl; S.Oata r• R; Unlock!S.Lkl end; 

•nd: ! module SafeOata 

module SafeComplex is SafeOataCComp]: 

v1r x,y,=: Safe(Compl; 
Put!x, Camp' !1.,0.ll: 
Put(y, Comp'(0„l.Jl; 
Put!z, Getl><l+Getlyll; 

end: 

Functlon Ge! lakes a Safe[T) (here, a Safe[Comp] as a var parameter. Since the Lk field is not 
exported from module SafeOata, Ge! may use the procedures Lock and Unlock on that lalch in order to 
protect the fetch. 

Procedure Put specifies var parameters in both positions. Even lhough it does not alter R, a const 
specification would cause a copy. 

The generic SafeOata module is instantlated specifically for numbers of type Comp (the type 
exported by module Complex). 

In the main program, lhe Comp constructor is used lwice to generale values !o store in the 
variables. The newly-conslructed values in the calls on Put are accessible only in this program, so 
the cor.structor it5elt dces not need to be lndivisible. In the lhird assignment (call on Put), the 
addition is the addition fcr type Comp exported by module Complex. 



Tartan: Notes and Examples -16-

3. Optional Additions to the Language 

ln the course of the Tartan design, we encountered a number of features \hat seemed attradive but 
"could not be admitted because they violated either lhe lronman requirement itself or lhe rule of 
minimality \hat we adopted for the design experiment. We list some of these here, indicaling what 
they might add to the language and what they might cosl 

Abbreviations for compound names. The import rule as stated can lead to the need for a substantial 
amount of qualification because all exported names, especially of types and routines, are potentially 
available pervasively. A renaming facility would reduce the need for explicit qualification. The 
renaming facility might involve renaming on import, or it might be a general with-clause. lt would add 
convenience and probably improve the readability of the language. However, it would introduce a new 
construct in the language and introduce a new way to create aliases. 

Less-than-gtobat storage pools. As the language is defined, all dynamically allocated variables share 
the same heap. lt would be possible to add the ability to declare a local sub-heap (zone) on the 
stacl<. and allocate designated dynamic variables from it instead There might be several zones active 
at once, with certain groups of variables sharing different ones. Alternatively, zones might be 
associated with blocks and all dynamic types defined in a block would share storage from a common 
zone. The cost is an additional mechanism and more complex scope rules. The benelit would be more 
control over dynamic variables and possibly more efficient storage recovery. 

Resumable and paramelerized exceptions An interrupt-style exception that has the semanlics of a 
procepure call (resuming where it was raised) would be a useful thing to add. lt would provide better 
control over many exception situations. Almost all the necessary mechanism must already be there to 
deal with the Notify command (i.e., the Terminale exceplion). In addition, the ability to pass paramelers 
would be helpful, although it would complicate lhe synlax. 

Richer control construcls. A loop exit and explicit function relurn could reduce lhe number of golos 
and awkward conditional statements in programs. A richer collection of loop structures (downward 
counting, repeat with exilif, and so on) would add convenience. However, each such construct adds to 
the size of the language. 

Assertions in dedarations. As presently formi.Jlated, assertions are statements. lt could be useful to 
permit them in declarations in order to check values of altributes and to ~ard initialization 
expressions. lt would, however, require additional complexity in the syntax. 

User-definable assignmcnt. As noted in section 1.5.7, a default definition of assignment cannot 
anticipate all reasonable type definitions and all situations in which assignmenl makes sense. Only the 
programmer has the knowledge to do so. Tartan already permits infix operators lo be overloaded for 
new types: there would be liltle additional cost for allowing · :·· to be overtoaded as weil. 
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SET OF SAMPLE PROBLEMS FOR PHASE ll OF lHE DESIGN CONTRACTS OF .THE 
000 HOL COMMONALITY EFFORT. 

INTROOUCTION : 
•~=o•c-=E•CD•s 

THIS SET OF SAMPLE PROBLEMS HAS BEEN,SELECTED FROM A LARGER SET OF PROPOSALS 
MAINLY ON THE BASIS OF THE FOLLDWING CONSJOERATIONS: 

- THE RESULTING PROGRAMS SHOULD BE LARGE ENDUGH TO ALLOW TO JUOGE THE 
'APPEARANCE' AND THE 'READABILITY' OF PROGRAMS 

- THEY SHOULD ALSO BE OF SUFFICIENT COMPLEXITY TO TEST INTERACTIONS 
BETWEEN LANGUAGE FEATURES 

- ANO,LAST BUT NOT LEAST,THEY SHOULD HAVE SOME RELATIONS TO ACTUAL 
APPLICATJONS. 

AS TO THE AREAS TO BE INVESTitATED,THE MAIN EMPHASIS WAS LAIO UPON 
NOVEL LANGUAGE FEATURES,LIKE E.G. PARALLELISM,EXCEPTION HANDLING,AND NON- . 
STANDARD 1/0. 

LIST OF SAMPLE PROBLEMS : 

1 POLlED ASYNCHRONOUS INTERRUPT 
2 PRIORITY INTERRUPT SYSTEM 
3 A SMALL FILE HANDLING PACKAGE 
4 OYNAMIC PJCTURES 
5 A DATABASE PROTECTION MODULE 
6 A PROCESS CONTROL EXAMPLE 
7 ADAPTIVE ROUTING ALGORITHM FOR A 

NODE WITHIN A DATA SWITCHING NETWORK 
8 GENERAL PURPOSE REALTIME SCHEOULER 
9 OISTRIBUTED PARALLEL OUTPUT 
10 UNPACKING AND CONVERSION OF DATA 

STRUCTURING OF EXAMPLES: 
======================== 
THE OESCRIPTION OF AN EXAMPLE CONTAINS : 

1 A STATEMENT ON THE PURPOSE OF THE EXAMPLE 
2 A DESCRIPTION OF THE PROBLEM TO BE SOLVED 
3 ASSUMPTJONS ABOUT THE UNDERLYING CONFIGURATION 

· 4 SOME GUIDELINES FOR THE SOLUTION 



EX 1 

POLlED ASYNCHRONOUS INTERRUPT 

PURPOSE: 

AN EXERCISE TO PROGRAM A DEVICE AND INTERRUPT HANDLER RELYING 
PRIMARILY UPON POLLING TECHNJQUES. 

PROBLEM: 

1 A CHANNEL HANDLER WILL EXPECT INPUT BY THE FUNCTION PROCEDURE CALL 

'read(DEVJCE-NUMBERl' 

ANO RETURN A CHARACTER FROM THAT DEVICES' INPUT-STREAM. 

2 THEN SHOULD BE A MINIMUM DELAY FROM THE TIME A CHARACTER IS JNTROOUCED 
l·NTO THE CIRCULAR BUFFER ANO THE TIME IT MAY BE ACCESSIBLE BY A 'read'. 
(THE INPUT WILL BE DISPLAYED ON THE APPROPRIATE CRT BY THE read!NG PROCESS. 
ÄPPARENT SIMULTANEITY OF HITTING THE KEY AND APPEARANCE ON THE CRT IS 
DESJREO,I.E. THE SYSTEM SHOULD BE REASONABLY EFFJCIENT AND THUS PROVJDE 
GOOO RESPONSE-TIME.) 
3 NO ~NPUT SHALL BE LOST. 

ASSUMPTJONS 

1 A 16-BT,BYTE ADRESSABLE MACHINE 

2 AT LEAST 10 ASYNCHRONOUS INPUT DEVICES (KEYBOARDSlSHARING I/O CHANNEL0. 
1 

3 A HARD-WIRED CIRCULAR BUFFER OF 128 BYTES LOCATED AT BYTE-LOCATION 
500f8l. TWO POINTERS ARE PROVIOEO IN CONJUNCTION WITH THE CIRCULAR 
BUFFER: 
headpoi nter - A POINTER TD THE MOST RECENT INPUT 
tai lpointer - A POINTER TO. THE TAIL DF·THE CIRCULAR INPUT QUEUE 

4 THE I/O CHANNEL WILL INITIALIZE BOTH THE HEAD- AND THE TAIL-POINTER TO 
. THE SAME LOCATION WHEN THE SYSTEM IS RESET. ' 

5 A DIFFERENCE IN THE CONTENTS OF THE HEAD- AND THE TAIL-POINTER INDICATES 
THAT INPUT HAS OCCURREO. MAINTENANCE OF THE HEAD-PDINTER IS THE . . 
PROVINCE OF THE I/O CHANNEL. MAINTENANCE DF THE TAIL-PDINTER IS THE PRDVINCE 
OF THE CHANNEL HANDLER. 

6 NO INTERRUPT SHALL OCCUR WHEN INPUT IS CLEAREO EXCEPT AS NOTED IN 7 BELOW. 
THE HEAD-POINTER IS INCREMENTEO AND THE INPUT STORED IN TWO BYTES SPECIFIED BY 
THE ADDRESS CONTAINED IN THE HEAD-POINTER. 



7 AN INTERRUPT WILL OCCUR WHEN THE HEAO POINTER IS POINTING TO THE INPUT­
ENTRY JUST BELOW THE ENTRY INDICATED BY THE TAIL POINTER TO INDICATE THAT 
PROCESSJNG MUST-OCCUR TO PREYENT LOSS OF INPUT. 

8 THE INTERRUPT LOCATJON FOR CHANNEL 0 IS 440(8) AND IS TWO BYTES IN LENGTH 
TO SPECIFY THE LOCATION OF THE INTERRUPT HANDLING ROUTINE. 

9 AN INTERRUPT CAUSES AN IMPLICIT cal 1 OF THE SPECIFJED ROUTINE. WHEN PRO­
CESSING OF THE INTERRUPT HAS SEEN COMPLETED,A return WILL CAUSE THE INTER­
RUPTEO PROCESS TD RESUME. 

10 TO SIMPLIFY MATTERS,ASSUME 
' 1 

1) THE CONTEXT DF THE INTERRUPTED PROCESS IS 
AUTOMATICALLY SAYED AND RESTORED, THAT 

2) NO PRIORITY INTERRUPT LEVELS NEEO BE CONSIOERED;ANO 
31 NO CLEARING OF THE INTERRUPT IS REQUIREO. 

3.SCREMARK) 
EACH INPUT CONSISTS OF TWO BYTES: 
BYTE 0 CONTAINS THE ascii CHARACTER 
BYTE 1 CONTAINS THE DEVICE IDENTIFIER,0-9 TO lDENTJFY THE SENDING 

KEYBOARD . 

GUIOELINES 

IT SHOULD BE TRIED TO FORMULATE THE PRDGRAM AS HARDWARE-INDEPENDENT AS 
POSSIBLE AND CLEARLY SEPARATE THE INTERFACE TO THE HARDWARE-DEPENDENT . 
INFORMATION. 



EX 2 

PRIORlTY INTERRUPT SYSTEM 

PURPOSE : 

AN EXERC!SE TD PROGRAM AN INTERRUPT KERNEL SUPPORTING FOUR 
LEVELS OF PRIDRITY 

PROBLEM : 

AN INTERRUPT HANDLING MECHANJSM SHALL BE DESCRIBED WITH THE FOLLOWING 
FUNCTIONAL CAPAB!LJT!ES: 

1 HIGHER PRIORlTY INTERRUPTS SHOULD BE ABLE TO PREEMPT LOWER PRIORITY 
INTERRUPT PRDCESSES. 

2 AS MUCH PROCESS!NG AS POSSIBLE SHOULD BE DONE WITH HJGHER PRIORlTY 
INTERRUPS ENABLED . (REMARK: lN GENERAL, INTERRUPTS SHOULD ONLY BE OISABLED 
FOR THE SHORTEST POSSIBLE TJMEl 

3 A PROPER MECHANISM FOR THE RESUMPTION OF PROCESSJNG OF PREEnPTEO LOWER 
LEVEL INTERRUPT( HANOLERIS MUST BE PROVIDEO. 

4 TO SlMPLIFY MATTERS THE BODY OF EACH INTERRUPT HANDLER MAY BE SIMULATED E.G. 
BY A COUNT OF THE INTERRUPTS FOR THAT PRIORITY LEVEL. 

ASSUMPT!ONS : 

·1 THERE ARE FOUR INTERRUPT PRIORITY LEVELS: 0,1,2,3. 
THE LOWER THE NUMBER , THE HIGHER THE PRJDRITY. 

2 THEnE 15 AN INTERRUPT VECTOR LOCATED AT 20(8) WITH 4 BYTES FOR EACH 
PRIORITY LEVEL: 
20(8l:PR JORITY 0,24(8l:Pl,30(8J:P2,34(8l:P3 

THESE LOCATIONS SPECIFY THE ADDRESS OF THE INTERRUPT HANOLER FOR THE CORRE­
SPONDI NG PRJORITY LEVEL. 

3 THE INTERRUPT ROUTINE IS INVOKEO BY AN IMPLICIT CALL WHEN THE INTERRUPT 
OCCURS. 
AT COMPLETI ON OF THE HANDLER'S PROCESSING,A return IS TO BE PERFORMED. 

4 . TO SIMPLIFY MATTERS,ASSUME THAT THE INTERRUPTED PROCESSES' CONTEXT 
IS AUTOMATICALLY SA VEO AND RESTDRED UPON cal 1 AND return .HOWEVER,THE 
INFORMATION CONCERNING THE ENABLEMENT AND OISABLEMENT OF INTERRUPTS IS 
NOT PART OF THE CONTEXT. 



5 INTERRUPTS ARE ENABLED AND DISABLED WiiH A 'SET INTERRUPT INSTRUCTION': 

sin ~OPERAND>. 

THE INTERRUPTS TD BE ENABLED/DISABLED ARE SPECIFIED BY BITS 0-3 IN THE WORD 
ADDRESSED BY THE OPERAND.THE BIT FJELDS ARE: 
BIT 01LSBJ : PRIDRITY 0,BIT 1 : PRIDRITY 1 ,ETC. 

THE VALUES OF THESE FJELDS ARE: 
0 : DISABLE 1 : ENABLE 

' 
IN ORDER TO OISABLE ALL INTERRUPTS,PERFORM AN JNSTRUCTION 
sin DISABLE ALL,WHERE THE CONTENTS OF DA=0 

6 NO CLEARING OF THE INTERRUPTS JS REQUIRED. 

GUIDELINES : 

SAME AS FOR EXl. IT SHDULD ALSO BE EASY TO REPLACE THE BODIES OF THE 
INTERRUPT-HANOLERS. IE.G. AT RUNTIME, TO ALLOW FOR FLEXIBLE REACTIONS TO AN 
INTERRUPT,ACCORDING TO CIRCUMSTANCESJ 



EX 3 

A SMALL FILE HANDLING PACKAGE 

PURPOSE : 

AN EXERCISE TO SHOW HOW HlGHER-LEYEL 1/0 FUNCTIONS CAN BE 
CONSTRUCTED AND USED. 

PROBLEM : " 
PROGRAM A FILE SYSTEM ACCORDING TO THE FOLLOWING SPECIFICATIONS: 

1 FILES ARE BU I LT BY PRODUCERS WHO CAN PERFORM THE FOLLOW 1 NG OPERA T 1 DNS: . 

create l FILENAME,ESTIMATEO-SIZEl 
~rite ( FJLENAME,DATA-AREA.l 
end~rite l FILENAME l 

THE OATA,CONTAINED IN 'DATA-AREA' ARE WRITTEN ON THE FILE WITH 'FILENAME'. 
'DA T A-AREA' CAN BE ANYTH 1 NG FRDM A S 1 NGLE VAR 1 ABLE TO AN ARRAY OF 

STRUCTURES IN MEMORY. 

FILES ARE SEQUENT l AL, SO EACH UR 1 TE AODS A RE CORD TO THE END. · 
end~rite · SIGNALS COMPLETION OF WRITING. 

2 FILES ARE READ B Y DNE OR MORE CONSUMERS UHO USE THE FOLLOW ING OPERA T 1 ON: 

read ( FILENAME,RECORO-NO.,OATA-AREA) 

HERE,OATA ARE READ FROM A.GIVEN RECORD FROM FILE 'FILENAME'. 

3 ONCE ALL REAOING IS COMPLETE,THE FILE MAY BE DESTROYED BY CALLING: 

. destroy < FILENAME J 

EXCEPTIDNS SHALL BE RAJSED IN AT LEAST THE FDLLOUING CASES: 

A) IF A PRODUCER WANTS TO CREATE A FILE WITH AN ALREAOY EXISTING FILENAME 

8) IF A USER WANTS TO WRITE ON A NDNEXISTENT FILE . 

Cl IF A CONSUMER WANTS TO REAO .FROM A NONEXISTENT FILE DR FROM AN EXISTING 
FILE WITH A NONEXISTENT RECORD NUMBER 

Dl IF A FILE SHALL BE DESTROYED WHILE IT IS STILL USED BY. SOMEBDDY ELSE. 

ASSUMPTIONS : 



ASSUME A DISK AS STORAGE MEDIUM. 

GUIDELINES : 

THE DESIGN SHOULD PREYENT DEADLOCK OF FILE STORAGE,ALLOW DISK OPERATIONS 
TOBE SCHEDULED ACCORDING TD ANY SCHEOULE (WHERE THE SCHEDULER GOES,SHOULO 
BE INDJCATEDl,AND PREYENT USERS FROM ACCESSING ANYTHING BUT THE ABOVE FIVE 
OPERATIONS. 



EX 4 

OYNAMIC PICTURES . 

PURPOSE : 

AN EXERCISE TO SHOW HOW A GRAPHIC DISPLAY OF A DYNAMIC SITUATION 
CAN BE PRDGRAMMED. 

PROBLEM : 
. 
' 

ON A DISPLAY SCREEN A RECTANGULAR PATTERN OF E.G.10 HORIZONTAL 
AND 10 VERTICAL LINES SHALL BE DRAWN. !ONE MIGHT ALSO IMAGINE THAT THE 
BACKGROUND ISA SIMPLIFIED MAP.l 

WITHIN THIS GRID TWO MOVABLE OBJECTS SHALL BE SHOWN. THEY SHALL BE 
OISCRIMINATED EITHER BY COLOR DR BY SHAPE. 
THE SPEED AND DIRECTION OF EACH OBJECT SHALL BE CONTROLLEO BY AN INPUT­
DEVICE,E.G.A JOYSTICK. 
THERE SHALL BE A RESET-BUTTON, WH! CH ALLOWS TO BRl"NG THE OBJ!::CTS 1 NTO 
SOME PREDEFINED POSITION AND A START-BUTTON,WHICH CAUSES THEM TO MOVE. 
I F THE OBJECTS COLLI DE, THEY SHALL START' TO BLINK ANO, AFTER SOME SECONDS, 
RETURN TO THEIR HOMING-POSITION . THIS SHALL BE EQUIVALENT TO A reset • 

· ASSUMPT I DNS : 

THE 'start' AND THE 'reset' BUTTON SHALL BE CONNECTED TO THE INTERRUPT­
HANDLING MECHANISM OF . THE UNDERLYING SYSTEM IN A WAY THAT DIFFERENT INTERRUPTS 
OCCUR WHEN DIFFERENT BUTTONS ARE PRESSED. 

THE CONTROLLING INPUT DEVICES SHALL BE PURELY PASSJVE,I.E.THE POSITION OF THE 
STICK Cleft,right,forward,reversel AND ITS DEVIATION FROM 'POSITION ZERO', · 
CONTROLLING THE SPEED OF THE OBJECTS,HAVE TOBE READ IN EXPLICITELY BY THE 
PROGRAM. THE POSITION DF THE INPUT-DEVICE SHALL ·BE ACCESSIBLE TO .THE PROGRAM 
VIA TWO 16-BIT REGISTERS CTWO BYTESl,ONE FOR EACH COORDINATE. EACH BYTE 
SHALL CONTAIN A SIX-BIT INTEGER NUMBER CRIGHT AOJUSTEOJ WHICH REPRESENTS 
THE DEFLECTION IN THIS PARTICULAR DIRECTION IN THE MOMENT OF READ-IN. 
THERE EXIST ALL KINOS OF 'REASONABLE COMBINATIONS' OF THESE VALUES, 
E.G. 15right-60for~ard ,561eft-10reverse .THE CONSTRUCTION OF THE 
HARDWARE SHALL BE SUCH THAT •·uNREASONABLE COMB 1 NA Tl DNS' CANNOT OCCUR, LI KE E. G. 
101 eft-20r i ght. 

GU IOELI NES : 

THE HARDWARE CHARACTERISTJCS OF THE DISPLAY-DEVICE WERE MAINLY LEFT OUT 
TO PREVENT THE SOLUTIONS FROM BECOMING TOD LENGTHY. 

THE ALGORITHMS SHALL BE INDEPENDENT OF THE ACTUAL CHARACTERISTICS 
OF THE ·DISPLAY OEVICE,E.G.IT SHALL NOT MATTER WHETHER THE DISPLAY DEVICE 



HAS A VECTOR GENERATOR DR WHETHER IT IS JUST ABLE TO PLOT RANOOM POINTS, 
WHETHER THE OBJECTS CAN BE CREATEO BY A PATTERN GENERATOR, 
OR WHETHER THE~ HAYE TO BE PUT TOGETHER FROM POINTS ANO/OR LINES. 
THE NECESSARY HARDWARE OEPENDENCJES SHOULO NEYERTHELESS BE CLEARLY IDENTIFIEO 
AND AS WELL LOCALIZEO AS POSSIBLE. . .· 
THE PROGRAM ·sHALL BE WRJTTEN ANO STRUCTURED IN A WAY THAT IT WILL WDRK. 
WITH THE MOST PRIMITIVE DISPLAY-HAROWARE.E.G. A RANOOM-POINT DISPLAY,WHICH HAS 
A PRECJSJON OF 10 BITS FOR EACH COOROINATE.BUT THAT THE RDUTINES NECESSARY FOR 
SJMULATJNG MORE COMPLEX DISPLAY CAPABJLITIES CAN BE EASILY REMOYED. 

TO SIMPLIFY MATTERS.IT CAN BE ASSUMED THAT THE LOWEST LEVEL OF OUTPUT­
ROUTINES NEED NOT BE INCLUDEO IN THE'EXAMPLE,I.E.AS FAR AS THE PROBLEM fS 
CONCERNED. THE OUTPUT SHALL BE REGARDED AS COMPLETED.AS SOON AS THE COORDINATES 
OF POINTS (LINES.OBJECTS,E.T.C.JHAYE SEEN DEPOSITED AS INTEGER NUMBERS IN THE 
APPROPRJATE BUFFERS . . 

IT IS LEFT TO THE DESIGNER HOW HE CHOSES TO IMPLEMENT THE GRAPHIC REPRESEN­
TATION,E.G. BY FORMATTJNG PROCEDURES(SIMILAR TD CHARACTER FORMATSJDPERATING 
ON BUILT-IN DATA TYPES OR BY SPECii\-DATA STRUCTURES. 
IT IS ALSO LEFT TO HIM HOW HE WANTS TO IMPLEMENT THE EMERGENCY REACTION, 
EG.SV A SOFTWARE-INTERRUPT DR BY EXCEPTJONS. 



EX 5 

A DATABASE PROTECTION MODULE 

PURPOSE : 

AN EXERCISE TO DEMONSTRATE HOW COMPLEX SYNCHRONIZATION MECHANISMS CAN 
BE CONSTRUCTED ON USER LEVEL. 

PROBLEM : 

A OBMS SHALL CONTAIN A MODULE WHICH CONTROLS ACCESS TO GIVEN DATA AREAS. 

THE USER C DR A RUNNING PROCESS } SHALL BE ABLE TO INDICATE WHETHER HE 
REOUIRES EXCLUSIVE ACCESS TO A CERTAJN PART OF A DATA BASE ('DATA-SET'} DR 
WHETHER HE lS WILLING TO SHARE THIS RESOURCE WITH OTHER USERS CE.G.FOR 
READING ) . 

THE RESPECTJVE OPERATIONS SHALL LOOK LIKE THE FOLLOWING: 

exclus ive (OATA-SET-NAME,PREEMPTJON-PARAMETERl; 

shared CDATA-SET-NAME,PREEMPTION-PARAMETERl; 

BY THE FOLLOWJNG OPERATION THE USER SHALL BE ABLE TO INDICATE THAT HE NO 
LONGER WANTS TO USE THE DATA-SET: 

free CDATA-SET-NAMEl ; 

IT SHALL BE POSSIBLE TO SPECIFY,EITHER BY AN EXECUTABLE· STATEMENT AT ANY TIME 
DR BY A KIND OF DECLARATION AT SCOPE ENTRY DR AT COMPILE-TIME: 

A> WHETHER AN EXCLUSJVE RESERVATION HAS PRIORITY OVER A SHARED RESERVATION 

8} HOW MANY USERS MAY SHARE A RESOURCE 
CTHIS NUMBER MAY E.G.BE LIMITED BY THE LENGTH OF SOME WAITING QUEUESl 

Cl WHICH USERS MAY EXECUTE WHICH KIND OF ACCESS 

0} WHETHER PREEMPTION IS POSSIBLE ANO,IF NOT,WHETHER 
AN EXCEPT ION SHALL BE RAISED IN CASE DF AN ATTEMPT TO USE THE PREEMPTION 
PARAMETER . 

El WHETHER DIFFERENT USERS HAVE DIFFERENT PRIORITJES,ANO,IF SO,WHICH ONES 

F) WHETHER THE DEMANOI NG PROCESS SHALL JUST WAIT FOR THE AVAILABILITY 
OF THE DESIRED RESOURCE DR WHETHER IN THIS CASE AN EXCEPTION SHALL BE 
AAISED TO ALLOW FOR EVASIVE ACTION. 



NOTE THAT 'USER' MAY IN THIS EXAMPLE ALSO ALWAYS MEAN :'RUNNING PROCESS'. 

THE MODULE SHALt BE CODED IN THE COMPLETE FORM IT WOULD REQUIRE TO PUT IT 
INTO A LIBRARY. 

PROPER PROCEDURES FOR CLEANUPS SHALL BE PROVIOED IN CASE OF PREEMPTlON. 

ASSUMPT!ONS : 
-------------
NO SPECIFJC ASSUMPTIONS AS FAR AS THE HARDWARE IS CONCERNEO. 

GUIDELINES : 
------------
IT IS THE IMPLEMENTOR'S OPTION WETHER HE PREFERS.TO PROVIOE ONE VERY GENERAL 
MODULE W!TH ALL THESE CAPAB!LIT!ES OR .WETHER HE WANTS TO USE GENERiC 
FACILITIES TO CREATE MODULES WITH A PROPER SUBSET OF THE FUNCTIONALITIES 
DEPENDENT OF THE ACTUAL REQU!REMENTS AT THE POINT OF INSTANTIATION. 



EX 6 

A PROCESS CONTROL EXAMPLE 

PURPOSE : 

AN EXERCISE TO TEST lNTERACTIONS BETWEEN PARALLEL PROCESSING AND EXCEPTION 
HANDLING. 

PROBLEM : 

ASSUME FOUR PROCESSES: 

process a WHICH READS IN DATA FROM THE ENVIRONMENT AND STORES THEM 
IN A BUFFER. AREA 

process b WHJCH PROCESSES THE DATA IT FINDS IN THE BUFFER AREA ACCORDING TO 
SOME ALGORJTHM AND STORES THEM IN A 'RESULT AREA'. 

process c WHJCH PRODUCES OUTPUT AS A CONSEOUENCE OF THESE DATA 
lEITHER IN HUMAN-ORIENTEO FORM DR AS CONTROL-OUTPUT FOR THE PROCESS 
TO BE ·CDNTROLLEDl 

process d MONITORS AND CONTROLS THESE THREE {AND POSSIBLY OTHERl PROCESSES 
AND INTERACTS WITH THE OPERATOR VIA A KEYBOARD CONSOLE. 

IT SHALL BE FURTHER ASSUMED THAT process a AND process b JNTERACT IN THE 
FOLLOWJNG SPECIFIC WAY: . 

THE BUFFER IS ORGANIZED AS A 'DOUBLE-BUFFER',l.E.,AFTER ONE OF ITS TWO AREAS 
HAS BEEN FILLED BY process a,process b IS NOTIFJED AND STARTS TO READ OUT OF 
THE BUFFER. process a CONTJNUES BY DEPOSJTING DATA IN THE SECDNO BUFFER AREA . 
IF TH IS IS FULL,process a TRIES TO DEPOSIT DATA IN THE FIRST AREA AGAIN. 
pr oce ss b,IN TURN,NOTJFIES proc~ss a AFTER HAVJNG READ ONE DATA AREA. 

IT 15 ILLEGAL TO READ A BUFFER AREA WHJCH HAS NOT PREVIOUSLY SEEN FILLED 
AND TO WRITE INTO A BUFFER AREA WHICH HAS NOT SEEN COMPLETELY REAO lEXCEPT 
IN THE IN ITIAL IZATION PHASE l. 

THE PROGRAM SHALL BE STRUCTUREO IN A WAY THAT IT IS POSSIBLE TO REPLACE 
pr ocess a BY APPROPRJATE HARDWARE WJTHOUT HAVING TO CHANGE THE PROGRAM PARTS 
FOR PROCESSES b, c, ANO d • 

·IT SHALL ALSO BE POSS IBLE TO TERMINATE process a AND b AT ANY TIME 
WITHOUT LOSING OATA, I . E.BEFORE TERMINATION A CLEANUP OPERATION SHALL BE INVOKED 
WHICH CAUSES PROCESSING OF ANY REMAINING DATA IN EITHER OF THE TWO BUFFER 
AREAS. 

ASSUMPTIONS : 



-------------
NO PARTICULAR ASSUMPTIONS AS FAR AS HARDWARE IS CONCERNED. 

THE BUFFERS AND THE 'RESULT AREA' CAN BE ORGANIZED AS ARRAYS. 

GUIDELINES ; 
------------
TO SIMPLIFY MATTERS,IT CAN BE ASSUMEO THAT ACTUAL INPUT-OUTPUT ,I.E. THE 
COMMUNICATION WITH THE HARDWARE.AS WELL AS THE PROCESSING OF THE DATA IN 
process b IS OONE BY GIVEN LIBRARY ROUTINES. 
THE ALGDRITHM IN process d MAY ALSO BE OESCRIBED IN A HJGHLY SUMMARIZED 
FORM,BECAUSE THJS JS NOT WHAT THE EXAMPLE JS TO TEST. 

1 • 



EX 7 

ADAPTIVE ROUTING ALGORITHM FOR A NODE WITHIN A DATA SWITCHJNG NETWORK 

PURPOSE : 

TEST FOR LANGUAGE SUITABILITY FOR MULTJCOMPUTER AND COMMUNICATlONS 
APPLICATIONS. 

i 
\ 

PROBLEM : 

Develop the program for a multiprocessor within one node of a 
data switching network to maintain the tables of 
ll distances, 
21 minimum delay time, and 
31 routing for the following adaptive routing ~lgorithm: 

Each node in a network maintains a table of distances and a table 
of m1n1mum delay t imes between itself and il 1 other nodes. The 
d i stance metric is the minimum number of hops required to reach 
each other node. Both tables are maintained through updates in 
the form of table exchanges which occur only between neighbor 
nodes (nodes of distance, onel. Each node maintains a routing 
table which directs routing through that neighbor node which 
achieves the minimum delay time. 

In parallel with , and at the same periodic rate as this computing. 
process, separate comput1ng processes at each node are computing 
the mi nimum delay times to neighbors; and reading into computer 
memory the updated distance table of each neighbor, and the 
updated minimum delay time table of each neighbor. Initial ly 
each node knows only the distance to each neighbor, which is one, 
and the minimum delay time to each neighbor. Dther distances and 
m)nimum delay times are initial ly considered infinite. Each node 
i teratively bui lds up its own distance and m1n1mum delay time 
table~ from the distance and minimum delay time tables exchanged 
with its neighbors, and updates tables containing such 
informati on about itself. Other computing processes transmit 
this information between such neighbors. Hence, the routing 
table at each node is established and periodical ly updated 
adaptively from the minimum delay times. 

When a 1 ink is broken or established, a separate computing 
process at each of the two former or new neighbors, corrects the 
distance and minimum delay time tables. 

The reason a distance table must be mined is that if the 
network is disconnected the algorithm causes the distance between 
disconnected nodes to increase without limit. Thus whenever the 



distance between two nodes becomes greater than the number of 
nodes in the network, this distance and minimum delay time is 
considered inff~ite, and the node is considered unreachable. 

In the example program, consider that the number of nodes In the 
net~ork, the neighbors of the programmed node, and the periodic 
Update interval are constants known at compi le time. 

ASSUMPTlONS : 
-------------
NONE AS FAR AS THE HARDWARE IS CDNCERNED. 

_GUIDELINES: 
------------
THE ACTUAL INTERCHANGE BETWEEN THE NOOES CAN BE ASSUMED TO BE PERFORMED 
BY GIYEN llBRARY ROUTINES 



EX 8 

GENERAL PURPOSE REAL-TIME SCHEOULER 

PURPOSE : 

AN EXERCISE TO TEST THE POSSIBILITIES FOR RELATING COMPUTATIONAL 
PROCESSES TO REAL TIME. 

PROBLEM : 

A LIBRARY MODULE SHALL BE WRITTEN WHICH ALLOWS TO SCHEDULE COMPUTATIONAL 
PROCESSES IN ACTUAL REAL TIME. THE NUMBER OF THESE PROCESSES SHALL BE 
VARYING,DETERMINABLE AT LINK-TIME. 
THE SCHEDULER SHALL RECEIVE THE 'TICKS' OF THE REAL-TIME CLOCK OF THE SYSTEM 
CE.G.BY REACTING TO THE RESPECTIVE INTERRUPTlANO TRANSFORM THEM INTO ACTUAL 
REAL TIME,E.G.BY APPLYING THE PROPER COMPILE-TIME CONSTANTS. 

TO S!MPLIFY MATTERS,THE TIME SPAN WHICH CAN BE HANDlED BY THE SCHEDULER,MAY 
BE RESTRICTED TO 24 HO.URS, I .t.ALL TIMES WILL BE COMPUTED MODULO 24 HOURS. 

THIS 'REAL TIME' SHALL BE ACCESSIBLE TO THE PROGRAM BY THE COMMANO 

time lOPERANDl 

WHICH SHALL DEPOSIT THE TIME lAT THE POINT IN TIME THE OPERATION IS EXECUTEOl 
IN THE LOCATION INDICATED BY 'operand' AS AN ascii CHARACTER STRING W!TH 
THE FOLLDWING CONVENTIONS: 

FIRST TWO CHARACTERS: HOURS 
SECOND TWO CHARS : MINUTES 
THIRO TWO CHARACTERS: SECONDS 

BUT THE MAIN PURPOSE OF THE SCHEOULER SHALL BE THE INITIATION OF THE 
EXECUT 1 ON OF COMPUT AT 1 ONAL PROCESSES ACCORD 1 NG TO PREDEF 1 NEO CONDI Tl ONS 
IN REAL TIME. THIS SHALL BE POSSIBLE EITHER ONCE DR REPEATEOLY. 

PROCESSES SHALL BE CONNECTED TO THE SCHEDULER BY OPERATIONS OF THE FORM: 

execute PRDCESSNAME,TIME 
execu t e T 1 ME / i·:MEAN 1 NG THE PROCESS WH 1 CH PERFORMS TH 1 S OPERA T 1 ONi·:/ 
execute PROCESSNAME,START-TIME,REPETITION-INTERVAL 

INTENTI ONALLY NO EXACT REPRESENTATION FOR THESE OPERATIONS IS GIVEN IN 
THE EXAMPLE !ESPECIALLY IT SHALL NOT BE IMPLIED THAT THEY ARE PROCEDURE 
CALLS) . THE REPRESENTATION SHALL BE PROPOSED BY .THE LANGUAGE DESIGNER 
JN ORDER TD : 
1) FIT INTO THE TEXT OF A USER PROGRAM AS SIMPLY AND NATURALLY AS POSSJBLE 
ANO 
2) BE EFF l Cl ENTL Y l MPLEf1ENTABLE 1 N THE LANGUAGE PRDPOSEO. 



IF TWO PROCESSES ARE OUE FDR EXECUTJON AT THE SAME POINT IN TIME,THEY SHALL 
BE ACTIVATED IN PRIORITY ORDER. . ~ 

NOTE,THAT IN ORDER TO ACHIEVE THIS,A LIBRARY ROUTINE MAY HAVE TOBE USED . . 
WHICH SORTS .rHE CONTROL BLOCKS OF THE SCHEDULED PROCESSES ACCORDJNG TO THEIR 
PRIORITY. BECAUSE SUCH A SORTING ROUTINE JS OF GENERAL JNTEREST,IT SHOULD 
ALSO BE USEABLE FOR OTHER DATA-TYPES. IT SHOULD BE DEMONSTRATEO,HOW THE 
PARAMETER PASSING MECHANISM OF SUCH A ROUTINE IS FIT FOR THIS PURPDSE WITHOUT 
CAUSING TOD MUCH RUNTIME OVERHEAD. , 
FOR THE PURPOSE OF THE EXAMPLE THE SORTJNG ALGORITHM PROPER MAY BE SIMPLE 
ANO INEFFJCJENT,BECAUSE IT IS NOT RE~EVANT FOR THE DEMONSTRATION. 

IT MUST ALSO BE POSSJBLE TO DISCONNECT PROCESSES FROM THE SCHEDULER AT ANY 
POINT IN TIME.EITHER BY ACTION FROM THEMSELVES OR ' FROM OTHER PROCESSES. 

ASSUMPTIONS : 

ASSUME A SYSTEM CLOCK WHICH DELIVERS 'TICKS' OF A FREOUENCY WHJCH IS SUFFJCJENT 
TO 00 THE NECESSARY COMPUTATJONS WJTH THE NECESSARY PRECISION. 
THE WAY,HOW PROCESSES CAN BE MADE KNOWN TO THE SCHEDULER,DEPENOS ON THE 
I~PLEMENTATION MODEL,WHICH UNDERLIES THE LANGUAGE PROPOSAL. 



EX 9 

DISTRIBUTEO PARALLEL OUTPUT 
~===c==c=cc================== 

PURPOSE : 

· AN EXERCISE TO OEMONSTRATE THE ABILITY OF PROCESSING PARALLEL EVENTS 
WHICH NEEO NOT PROGRESS AT THE SAME RATE. 

' 
PROBLEM : 

THIS PROGRAM HAS ENCOUNTERED A MULTIPLE ADDRESSEE MESSAGE TO BE OUTPUT 
OVER A NUMBER OF ASYNCHRONOUS LINKS. 
EACH LINK IS CONTROLLED BY AN INDIVIDUAL PROCESS WHICH PERFORMS ALL LINK 
RELATED PROCESSING. EACH PROCESS CAN ACCEPT ONE PACKET OF THE MESSAGE AT A 
TIME AND WILL NOTIFY THE PROGRAM WHEN THE LAST PACKET FURNISHED TO IT HAS SEEN 
ACKNOWLEDGED BY THE DISTANT STATION. 
WHEN ALL TRANSMISSIONS ARE COMPLETE,THE PROGRAM SHALL PURGE THE MESSAGE. 

ASSUMPTIONS : 

1 THE MESSAGE HAS FIVE ADDRESSEES,BUT THESE CAN BE DIFFERENT FOR EACH 
MESSAGE. 

2 THE MESSAGE IS FIVE PACKETS LONG. 

3 EACH PACKET 15 80 BYTES LDNG. 

4 THE BUFFERS CONT Al N l NG THE MESSAGE ARE CONT 1 GUOUSL Y LOCA TED. 

5 AT INITIALIZATION THE PROGRAM SHALL BE FURNISHED THE ADDRESS OF THE 
FIRST BUFFER,THE NUMBER OF BUFFERS,AND THE IDENTITY OF THE FIVE LINKS 
OVER WHICH THE MESSAGE IS TO BE SENT CEACH LINK IS CDNTROLLED BY AN 
INDIVIDUAL PROCESS,NAMEO L0 .. L9 ). 
THE LINK IDENTIFICATJON SHALL BE IN THE FORM (Ln,ln,Ln ... lWHERE N HAS 
LEGAL VALUES BETWEEN 0 AND 9. 

6 AN 8 BIT MACHINE <ONE OF TODAY'S TYPICAL MICROPROCESSORS } 

7 THE PROGRAM WILL BE CAPABLE OF PROCESSING UP TO TEN ADDRESSEES. 

8 THERE IS ND QUEUING DELAY,l.E. THE .LINK-PROCESSES ARE DEDICATED AND CAN 
REACT IMMEOIATELY. 

remark : ONE CAN ASSUME THAT THE INDIVIDUAL LINK PROCESSES ARE RESIDENT IN 
OEOJCATEO MICROPROCESSORS AND THAT THE COORDINATION IS OONE IN ANDTHER 
PROCESSOR TO WHICH THEY ARE CONNECTED BY A BUS. 

GU l DELI NES : 



NONE. 




