
XPath-Aware Chunking of XML-Documents

Abstract

Dissemination systems are used to route information received from many publishers
individually to multiple subscribers. The core of a dissemination system consists of
an efficient filtering engine deciding what part of an incoming message goes to
which recipient. Within this paper we are proposing a chunking framework of XML
documents to speed up the filtering process for a set of registered subscriptions based
on XPath expressions. The problem which will be leveraged by the proposed chunk-
ing scheme is based on the observation that the execution time of XPath expressions
increases with the size of the underlying XML document. The proposed chunking
strategy is based on the idea of sharing XPath prefixes among the query set addition-
ally extended by individually selected nodes to be able to handle XPath-filter expres-
sions. Extensive tests showed substantial performance gains.

1 Motivation

XML has gained the status of a de-facto standard for wrapping (semi-) structured data and
exchanging it via the Internet. Even web surfing, i.e. requesting an HTML page from a web
server, implies the point-to-point transfer of an XML document as the payload of an HTTP
response, if the XML document follows the standardized XHTML schema definition. Re-
versing the communication pattern of this simple request/response yields the publish/sub-
scribe pattern to build large scale information dissemination systems ([BeCr92],
[FoDu92], [AAB+98], [FJL+01], [BaWi01]). In this scenario, data producers (publishers)
on the one hand are exposing data to an information broker. On the other hand, users in-
terested in receiving notifications regarding information about specific topics from poten-
tially anonymous data producers are placing a subscription at the broker. As soon as a data
fragment enters the brokering component, all registered subscriptions are evaluated
against the incoming data. In the end, only those subscribers with a matching subscription
are notified by routing the interesting part of the original message to the corresponding
subscriber. Obviously the matching component, comparing registered subscriptions to an
incoming data fragment reflects the core of an efficient publish/subscribe system. Based
on XML documents as messages being exchanging between publishers and subscribers
and XPath expressions as a mean to specify subscriptions, we propose a chunking frame-
work to speed up the filtering process and cut down the time needed for matching subscrip-
tions against incoming information.

Wolfgang Lehner
(EMail: wolfgang@lehner.net)

Dresden University of Technology
(Database Technology Group)
Dürerstr. 26, D-01062 Dresden

Florian Irmert
(florian@irmert.de)

University of Erlangen-Nuremberg
(Database Systems)

Martensstr. 3, D-91058 Erlangen

Building an Efficient Information Dissemination Framework

The database oriented approach to set up an information dissemination system based on
the publish/subscribe communication pattern may exploit the ECA model of a database
triggering mechanism ([AgCL91], [HCH+99]): on inserting new (and very well struc-
tured) information into a database (the event), deliver the information (the action) if the
subscription is satisfied (the condition). Unfortunately, the triggering model is primarily
designed to perform complex actions (like checking integrity constraints) for a low quan-
tity of triggers. Registering thousands of triggers (one for each subscription) to implement
a large scale dissemination system does not sound feasible. Many extensions on a relation-
al and/or semi-structured data model level, for example the concept of a ›Continual Query‹
in OpenCQ ([LiPT99])/NiagaraCQ ([CDTW00]) were made to reduce the pain of triggers.
An alternative solution might be to see subscriptions as materialized views inside a data-
base so that subscription evaluation is be reduced to the incremental maintenance of the
corresponding subscription views. Exploiting the techniques of materialized views pro-
vides a transparent refresh of individual subscriber data and may additionally yield in in-
ternal optimizations like multiple query optimization ([LPCZ01]).

The other extreme of evaluating subscriptions is based on checking regular expressions on
completely unstructured or semi-structured data (ASCII text, emails,...). Besides many
systems in the information retrieval area, SIFT (Stanford Information Filtering Tool;
[YaGa95]) was one of the first prominent filtering system published in the database com-
munity. SIFT was accompanied by Yeast ([KrRo95]), Siena ([RoWo97]), Gryphon
([ASS+99]), or the DBIS toolkit ([AAB+98]) focussing on different perspectives like rout-
ing messages in a distributed brokering environment or defining transformations of mes-
sages, etc.

The arrival of XML promised to close the gap between database oriented dissemination
systems referring to well-structured information and pure filtering tools operating on any
kind of data in evaluating regular expressions. Examples for XML-based dissemination
systems can be found in [PFJ+01] (WebFilter), [AlFr00] (XFilter), and many more. Our
filtering approach may be implemented on top of an XML-based dissemination system, if
the following architectural requirements according to the publish/subscribe paradigm are
satisfied (see figure 1):

• publisher side
Before a publisher may expose information as XML documents to the information
broker, the publisher has to register by submitting a schema definition. All follow-
ing documents have to conform to this schema which is held at the broker.

• subscriber side
After inquiring about the registered XML schemas, a subscriber may submit a sub-
scription consisting of a complex XPath expression. XPath expressions of all sub-
scribers are also stored locally at the broker. An incoming data stream is matched
with the XPath expressions and a notification consisting of the interesting part of
the original XML message is sent to the subscriber.

The main idea of the approach discussed in this paper consists in using the schema infor-
mation of the publishers to optimize the registered XPath expressions and produce a
chunking scheme for incoming XML documents so that the filtering process at runtime
may operate on multiple chunks instead of one single XML file. In a first step, the follow-
ing section discusses existing filtering mechanism of XPath expressions, followed by the
optimization steps performed during the prepare phase in section 3. Section 4 finally dis-
cusses the proposed chunking strategy. Section 5 provides the descriptions of results
gained from performing extensive tests based on our ›eXtract‹ system implementation.

2 Related Work

XPath expressions ([BBC+01]) reflect a core building block in querying XML documents,
either standalone or within an XQuery expression ([CFR+01]). An XPath expressions con-
sists of two main features. A location step directly reflects a predicate within the hierarchi-
cal structure of an XML document where textual information is recursively wrapped by
tags optionally holding additional attributes. Starting with a context node (either the root
node of an XML document or any other well-specified node), an XPath expression identi-
fies a set of subtrees of the original XML document. Each location step corresponds to a
navigation step based on an axis within the document and the application of a predicate.
Figure 2 illustrates the semantics of different location steps for a given context node and
an hierarchical XML document tree.

The most prominent types of location steps are a ›single downward-step‹ (/ or /child::) and
›any number of downward-steps‹ (// or /descendant-or-self::node()/). For example /a/b re-
trieves all subtrees starting with a -tag at the second level in the document directly un-
der an <a>-tag. In the opposite, the expression /a//b results in all -rooted subtrees some-
where in a part of the document starting with an <a> tag. Analogously to file systems, two
dots (..) navigate to the next higher level.

Publishers
Broker Subscribers

(1) REGISTER

(2) PUBLISH

(1) INQUIRE

(2) SUBSCRIBE

(3) NOTIFY

Parsing Filtering Delivering

XML-Schema docs.

XPath exprs.

XML documents

Fig. 1: Subscription Framework

The application of predicates at a certain step may consist of a simple tag name (like in the
example above), of a wildcard (*), and a filter specification within []-parentheses. For ex-
ample, /a/*/b returns a list of subtrees starting with found at the third level originally
rooted by an <a> tag. A filter expression may exhibit again multiple location steps and the
reference of an attribute. For example the expression /a[b/c]/d returns all 2nd-level <d>-tag
rooted subtrees if the corresponding parent <a>-tag holds a <c> tag as a grandchild with
 as the direct descendant. Attributes are referenced by prefixing the attribute name with
@. The above filter expression may be extended to hold an attribute z with value ’XML’,
yielding /a[b/c]/d[@z=’XML’].

The XPath framework allows to address fragments of an XML document in a very com-
plex manner and is either used isolated or as a core component in the XQuery language to
specify more complex operations like joins and aggregates. To efficiently evaluate XPath
expressions, multiple implementations and optimization are proposed in the literature. The
classical way to evaluate XPath expressions is to create a main memory document object
model (DOM; [WHA+00]) for a specific XML document and traverse the internal object
structure (like Jaxen; http://www.jaxen.org). However many optimizations exist to speed
up the XPath evaluation process.

On the one side, either special index structures like DataGuide ([GoWi97]), the approach
of [LiMo01] or the APEX index ([ChMS02]) are proposed or existing multidimensional
indexing technology like R-trees is used to support the efficient evaluation of XPath ex-
pressions ([Grus02]). On the other hand, filtering techniques are brought into discussion
to index the queries, i.e. path expressions, instead of data ([MiSu99], [LaPa02]). The ap-
proach of [AlFr00] for example relies on the concept of a finite state machine so that pro-
cessing a location step means switching a single transition in the machine. Each state con-

1

2

1

2

3

1

1

1 2 3

1

2

3 4

5 6

12 1 2

ancester axis parent axis self axis child axis

descendant axis preceeding axis following axis ancester-or-self axis

Fig. 2: XPath Location Steps

http://www.jaxen.org

sists of a quadruple holding information regarding the current state of processing a single
query. Query indexing considers / and // expressions including wild cards and the applica-
tion of filters in the context of nested path expressions. Extending this idea, the approach
of [CFGR02] performs substring decomposition on a syntactical level and defines com-
mon subpath expressions as clusters to reduce the number of states. Multiple clustered
XPath expressions are additionally indexed using a specialized index structure.

The main idea of our contribution to speed up XPath filter expressions is to provide a pre-
processing framework in addition to existing XPath filtering techniques by applying the
following optimization steps:

• clean and transform registered XPath expressions during a prepare phase using the
registered XML document schema.

• analyze XPath expressions and generate a chunking scheme for the incoming XML
documents so that individual XPath expressions are evaluated on much smaller
XML document fragments.

• exploit parallelism when executing XPath queries on XML data fragments without
loosing any filtering capability.

The following section outlines the necessary transformations of the registered XPath ex-
pressions during prepare and runtime, while section 4 discusses the proposed chunking
scheme.

3 The Basics: XPath Transformation

Once a subscriber registers an XPath expression at the information broker, the expression
is added to the subscription database (Figure 1). In a single XPath filtering engine scenario,
an incoming document is matched against the XPath expressions and the result is written
into an XML result set document (Figure 3a). In the proposed way of applying XPath fil-
ters based on chunks, all XPath expressions are partitioned into smaller XPath sets using
a stream-oriented interface; each set is then evaluated on a smaller XML document frag-
ment which is sufficient to answer the allotted XPath expressions (Figure 3b).

Without any assumption of the underlying XPath evaluation method, it should be clear that
applying less queries on a smaller XML document should speed up the overall filtering
process. Even a sequential execution benefits from the preprocessing step done during the
prepare phase. It is worth mentioning here that the prepare phase transforming XPath ex-
pressions and defining the chunking scheme for the XML documents does not influence
the time needed to apply XPath filter expressions in a specific document. The time-critical
filtering phase encompasses the creation of chunks and the evaluation of the registered
XPath expressions. Moreover it should be noted that the chunking scheme may be incre-
mentally adapted after a new subscription is added to the subscription base. The revised
chunking scheme then applies to the next incoming XML document.

Cleaning and Transforming XPath Expressions

The preparing step of a set of XPath expressions applies transformation rules to convert all
expressions into a standardized form, which is then subject of computing the chunking
scheme. The overall goal is to generate XPath expressions with simple /-location steps and
filters to provide a smooth foundation for the prefix-oriented chunking scheme.

In a first phase, all parent statements are eliminated by converting them to filter expres-
sions. For example /a/b/../c identifies the <c>-nodes which comes after an <a>-node, if the
<c>-node exhibits a -node as his sibling. This may be equivalently written as /a[b]/c
which may be read as: ’If an <a>-node has a -node as a direct child, then give me the
<c>-node children from the <a>-node.’

While the cleaning step is a pure syntactical transforma-
tion, the following step of resolving wildcards and //-
expressions heavily relies on the existence of a schema
definition. Therefore consider the sample DTD* given
in figure 4 together with the following two expressions
/a/b/*/c and /a/b/*/d. Without any further transformation
the expressions would lead to the same prefix /a/b
yielding no chunking criterion. However, referring to
the XML schema, the resolution of the wildcards results
in /a/b/l/c, a/b/m/c and a/b/k/d with potentially three dif-
ferent prefixes. Therefore, the overall goal in trans-
forming XPath queries is to gain expressions with long
prefixes so that the chunking scheme has many alterna-
tives when deciding for a chunking point.

* We usually rely on XML-schema but prefer the DTD version due to better read-
ability and more compact presentation.

XML document

Fig. 3: Single Engine versus Chunked XPath Filtering

XPath
evaluation

XPath exprs.

XML result set

a) single engine XPath filtering

b) XPath filtering on chunks

XPath
evaluation

XML

XPath exprs.

XPath
evaluation

XPath
evaluation

XPath
evaluation

result set

XPath partitioning

XML document
chunking

<!ELEMENT a (b+) >

<!ELEMENT b (l*,m*,k*)>

<!ELEMENT l (c*)>

<!ELEMENT m (c*,a*)>

<!ELEMENT k (d*)>

<!ELEMENT d EMPTY>

<!ELEMENT c EMPTY>

Fig. 4: Sample DTD

Considering the prefix problem in more detail, it is more important to resolve //-expres-
sions, because expressions like //a or //b do not exhibit (at first sight) a common prefix. A
answer to this problem is to find the first appearance of the nodes after an //-location step
in each branch. For example, if – according to a given XML schema definition – a <d>-
node appears within the document only in the constellation of /a/b/k/d, then we may trans-
form //d into /a/b/k//d. Unfortunately, an XML document may exhibit an infinite depth if
the corresponding schema exhibits a recursion. For example, the expression //c may be un-
rolled to /a/b/m/c or /a/b/m/a/b/m/c and so on. In this case, the transformation step expands
the corresponding XPath expression until a recursion appears in the XML schema.

The last check performed during the cleaning and transforming step by matching each
XPath expression against the corresponding XML schema is to eliminate expressions ob-
viously evaluating to an empty result set.

In summary, consider the three sample expressions //c, /a/b/*/d and /a/d with regard to the
sample DTD from figure 4. After transformation, the XPath set comprises the expressions
/a/b/l//c and /a/b/m//c (resolving the //-expression) and /a/b/k/d (substituting wild cards). It
is worth mentioning that the third sample expression (/a/d) is removed from the XPath set
because the comparison with the corresponding schema does not provide any positive
match. Furthermore, it should be noted that the resolution of a wildcard usually results in
multiple possible XPath expressions.

4 The Chunking-Scheme

The overall goal to speed up the XPath filtering process by applying filter expressions on
multiple smaller fragments of the original XML document requires an adequate partition-
ing scheme of the XPath expressions additionally implying a chunking scheme of the
XML document. This partitioning mechanism depends on the number of chunks to be gen-
erated for the filtering process and the set of XPath expressions complying to the following
rules:

• even distribution
Each set of XPath expressions operating on the same chunk should have the same
cardinality, i.e. all filtering expressions are supposed to be evenly distributed
among the XML fragments.

• small potpourri set
Since there may exist XPath expressions for which an assignment to a single chunk
is not possible due to prefix incompatibility between chunk and XPath expression,
we additionally keep a ›potpourri set‹ of XPath expressions. This set should be as
small as possible, because usually less reduction is possible for the underlying
XML document. For example if /a/b and /a/c determines the content of two separate
chunks, an XPath expression /a/d would be assigned to the potpourri set. However,

since we explicitly consider filters in the chunking scheme (section 4), the expres-
sion /a/b[d]/e would be assigned to the chunk defined by /a/b, which in turn would
be extended by the single nodes (not subtrees) addressed with /a/d.

Determine the Chunking Point based on XPath Query Trees

The algorithm to produce a chunking scheme for XML documents operates on a query
tree, where each element of an XPath query is represented by a single node. The weight of
a query tree node is initially set to 1 and increased with each additional XPath expression
represented within the tree. For the sake of illustration, figure 5 shows the corresponding
query tree after representing filter expressions /a/b/c, /a/b/d, and /a/b/c.

The naive approach to generate a chunking scheme would be to sort the nodes by their
weight and take the TOP(n)-weighting nodes (with n as the number of chunks) as chunking
criteria. In the example above, this would result in /a and /a/b. Unfortunately, since /a rep-
resents the root node, the first chunk would be the document itself. Moreover, /a/b also rep-
resents (more or less) the whole document, so that the second chunk would not result in
any size reduction compared to the original XML document. Obviously the optimal solu-
tion for this scenario however would be chunks defined by /a/b/c and /a/b/d.

The revised chunking strategy is illustrated algorithmically in figure 6. To prevent the root
node from being selected as a chunking prefix, it is removed from the set of possible
chunking candidate nodes in a very first step. The second step consists in finding the node
with the highest weight (uheavy) and the largest depth. This is done top-down by walking
down a branch if a child has the same maximum weight so that we may get long prefixes
finally resulting in small XML document fragments. This heaviest node is selected as a
chunking candidate and added to the result list. To prevent the algorithm from picking the
same prefix (or part of the prefix) in subsequent runs, we subtract the weight of the candi-
date node from all nodes (including the node itself) up to the root as long as the overall
weight does not yield a negative value.

Referring to the sample query tree of figure 5, node /a/b would be selected as candidate
node and added to the result list. The resulting scenario after reducing the weight of all
nodes starting at /a/b up to the root (in this case /a) is depicted in figure 7a.

The next iteration in producing XML document chunks picks /a/b/c as a candidate node,
because /a/b is no longer a valid choice and /a/b/c is the node with the highest weight. The
aligning process of the weights within the query tree yields a reduction of node /a/b by the
weight of /a/b/c (figure 7b). However, /a is not aligned, because its weight was already re-

/a/b/c/a/b/d/a/b/c

Fig. 5: Populating the Query Tree and Assigning Weigths

2

2

11

a

b

dc

3

3

12

a

b

dc

1

1

1

a

b

c

Algorithm: GenerateChunkingScheme
Input: D // query tree node(name,weight)

C // number of chunks to generate
Output: S // nodes in the prefix tree representing chunks

BEGIN
V=∅ // visited nodes
S=∅ // result set of prefix tree nodes
DO

N = traverse(D) - {Root(B)} // all nodes of the query tree without the root
uheavy = 0

// search for next heaviest node not yet in the result
FOREACH u ∈ (N-S)

IF (weight(u) > weight(uheavy))
uheavy := u

END IF
END FOREACH

// while a child has the same weight, take the child
FOREACH c ∈ (children(uheavy))

IF (weight(c) == weight(u) AND c ∉ S)
uheavy := c

EN DIF
END FOREACH

// subtract weight from parents
FOREACH p ∈ (parent(uheavy))

weight(p) = weight(p) – weight(uheavy)
IF (weight(p) < 0)

weight(p) = 0
END IF

END FOREACH
IF (uheavy ∉ V)

V = V ∪ {uheavy}
ENDIF

// remove lighter nodes from the result set
FOREACH e ∈ (S)

IF (weight(e) < weight(uheavy))
S = S-{e}

ENDIF
END FOREACH
S = S ∪ {uheavy}

// do this while there are chunks to be generated
WHILE (|S| < C OR |S| = |N|)

// return the result set
RETURN (S)

END

Fig. 6: Algorithm to Generate the Chunking Scheme

duced by the candidate selection process of /a/b. This operation however produces a sur-
prise. The former selected candidate node /a/b now holds a smaller weight than the current
candidate node /a/b/c so that the first node does no longer deserve the role of a candidate
and is removed from the result list.

The following run of the main DO-WHILE loop produces /a/b/d as the node with the highest
weight and the highest depth (compared to /a/b!). Following the same procedure as above,
the weight of /a/b and /a are reduced to 0.

Although candidates are potentially removed from the resulting set, the chunking algo-
rithm terminates for any given input, because – in the worst case – all leaf nodes are se-
lected and the weight of the inner nodes are reduced to zero. From a complexity perspec-
tive, we obtain O(n*N) with N as the number of nodes in the query tree and n as the number
of chunks to create. In the optimal case no candidate node has to be removed from the re-
sult list. In the opposite, during the worst case, every node is inserted and removed again
on a specific path from the root to a certain leaf node of the query tree. Thus the overall
complexity increases to O(h*n*N) with h as the height of the query tree. It may be noted
here that the generation of the chunking scheme is performed during the prepare phase and
does not count to the time needed to apply a set of XPath filters to an XML document.

Considering XPath Expression with Filters

Considering only simple XPath prefixes as a chunking criterion does not allow the assign-
ment of XPath queries to the corresponding chunks if the queries hold additional filter ex-
pressions, so that the chunking scheme would be too strict, i.e. information necessary for
evaluating the predicates would be not longer available. Therefore the proposed chunking
approach additionally considers filters in adding a set of XPath expressions to identify sin-
gle XML document nodes to the chunk. For example, if the XPath query is /a/b[c]/d/e and
the chunking scheme results in an XML document fragment for /a/b/d, then we add the
branch leading to /a/b/c without the remaining subtree, i.e. only the <c>-tagged entry, to
the XML fragment.

Figure 8 illustrates the example. The left side shows the XML document fragment holding
the part of the original (much larger) document for the chunking prefix /a/b/d. To be able
to evaluate the considered XPath query /a/b[c]/d/e during runtime, the chunking scheme is
expanded to hold the <c>-tagged node without the subtrees originally rooted by <c>. The

Fig. 7: Sample Query Trees during Developing the Chunking Scheme

a) picking /a/b as b) picking /a/b/c as chunking candidate
droping /a/b from result listchunking candidate

0

0

12

a

b

dc

0

0

10

a

b

dc

0

0

00

a

b

dc

capability of resolving filter expressions referring to information from a part of the XML
document above the splitting point defined by the chunking criterion requires to retain the
structure of the XML document up to the root. This implies that the chunking process for
a specific XML document during the filtering phase has a memory requirement to store k
XML tag names with k as the maximum of the longest path from the root to any leaf node
without any recursion on that path and the depth of the XML document up the first occur-
rence of a recursion.

Summary of the Process Creating a Chunking Scheme

The transformation steps discussed in the preceding section are a necessary prerequisite to
come up with a reasonable chunking scheme shrinking the XML document to a fragment
needed to answer a certain set of XPath queries. The chunking scheme is computed based
on a weighted query tree with nodes reflecting a single location step. The chunking criteria
are iteratively picked so that queries are equally distributed with regard to the generated
XML fragments. Locally optimal solutions are discarded and replaced by better solutions
during the algorithm. Additionally the chunking scheme considers single nodes of the
XML document needed to evaluate XPath queries with filters. This leads to the definition
of an XML chunk.

Definition: XML document chunk
An XML document chunk C is a tuple (P, F) with P denoting a simple XPath expression
identifying the subtrees of an XML document as the base for the XML chunk. The com-
ponent F is a set of simple XPath expressions identifying single nodes of the original XML
document for evaluating filter expressions.

With the notion of an XML document chunk, we are now able to define a filtering scheme
for matching incoming XML documents against a set of registered XPath queries Q split
into n+1 subsets Q1,..., Qn, Qn+1 so that the Q = .

Definition: XPath filtering scheme of degree n
An XPath filtering scheme of degree n consists of a set of n+1 tuples with a combination
of XML document chunks Ci and a set of XPath query expressions Qi (1≤ i ≤ n+1), i.e.
{(C1,Q1), ..., (Cn,Qn), (Cn+1,Qn+1)} so that all XPath expression of Qi show the same prefix
Pi of the corresponding XML document chunk Ci and all filter expressions Fi occurring in

<c>

Fig. 8: XML Document Chunks with Nodes Needed to Evaluate Filters in XPath Expressions

<a>

<d> <d> <d> <d>

<e><e>

<a>

<d> <d> <d> <d>

<e><e>

<c><c><c>

adding XML nodes
(without subtrees) for
filter evaluation

Qii 1=

n 1+∪

Qi can be checked by referring to the nodes specified by the XPath expressions of Fi for
1≤ i ≤ n. The potpourri set of XPath query expressions Qn+1 can be evaluated referring to
chunk Cn+1. This potpourri chunk Cn+1 is either empty (if Qn+1 is empty) or corresponds
to the original XML document.

5 Performance Evaluations

This section illustrates the core issues of the implementation of the proposed chunking
framework together with performance figures comparing runtimes of evaluating multiple
XPath queries based on XML document fragments with the original file.

Architecture of the Implementation and Technical Setup

The complete filtering process of XPath expressions is implemented in the context of the
›eXtract‹ project. The eXtract system architecture consists of a collection of different tools
written in Java to convert XML documents and/or XPath expressions. Figure 9 gives an
overview of the filtering process using eXtract tools.

During the prepare phase, a given set of XPath expressions is cleaned and converted into
a standardized format using TRANSTOOL followed by building the query tree and deter-
mining the chunking criteria based on the algorithm given in the preceding section
(PREPTOOL). The result of the prep tool is the complete filtering scheme with multiple
chunk definitions and the associated XPath expressions.

During filtering time, an incoming XML document is given to the stream-oriented
CHUNKTOOL which performs a prefiltering step keeping only the parts of the original
XML document needed to fulfill the current filtering scheme. Finally, the generated XML
fragments are used by the FILTERTOOL to evaluate the XPath queries producing the final
result of (in many cases very) small XML documents to be delivered to the subscribers.

The following performance test were carried out using our eXtract implementation, writ-
ten in Java 1.3.1_03 using the SUN XML Pack Spring 0.2 dev bundle package (http://ja-
va.sun.com) and additionally the Universal Java XPath Engine JAXEN 1.0beta8 (http://
www.jaxen.org) to evaluate XPath expressions. The tools were running on a WinXP ma-
chine with an 800MHz Athlon processor and 384MByte memory.

5.1 Scenario 1: University Organization

The schema of the XML scenario we used to demonstrate the benefit of reducing the size
of XML documents before feeding it into the filtering engine is given in appendix A1. The
sample XML file counts 130.000 XML tags resulting in 4.85MByte size on disk. As can
be seen in the DTD, the scenario holds five different blocks of information (arbitrarily
mixed within the XML file).

http://ja-va.sun.com
http://

All performance evaluations were carried out using 100, 500, and 2000 registered XPath
queries. The query set was synthetically generated so that 30% of the queries exhibit a //-
expression and 30% of the queries exhibit an additional filter expression. Figure 10 shows
the distribution of the queries referring to one of the five main partitions of the XML doc-
ument for each scenario separately. Additionally, figure 10 shows the prefixes not selected
as real chunks. For example, if we have a chunking degree of 4 (figure 10a), then all stu-
dents go into the potpourri for the 100 query scenario, the secretaries for the 500 query sce-
nario, and finally professors are making up the potpourri when considering the 2000 query
scenario. If the number of real chunks is reduced to 3, then two types of employees are as-
signed to the potpourri chunk (figure 10b).

Fig. 9: Base architecture of the eXtract filtering engine implementation

XPath
exprs.

XPath
exprs.

chunk definitions

PREPTOOL

CHUNKTOOL

TRANSTOOL

clean and
transform
XPath exprs

generate
chunking
scheme

generate chunks
according to
chunking schemes

prepare phase

filtering phase

XML
document

apply filtering
expressions and
generate output

FILTERTOOL
XML fragments

apply filtering
expressions and
generate output

...

FILTERTOOL

and associated
sets of XPath expr.

resulting XML
documents
delivered to
the subscribers

Fig. 10: Query distribution for 100, 500, and 2000 XPath expressions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100
queries

500
queries

2000
queries

secretary
student
assistant
professor
lecturer

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100
queries

500
queries

2000
queries

secretary
student
assistant
professor
lecturer

a) potpourri chunk for 4 real chunks

prefixes identifying the potpurri chunk

b) potpourri chunk for 3 real chunks

qu
er

y
di

st
rib

ut
io

n

Interpretation of the Performance Measurements

The first diagram of figure 11 shows the different runtimes needed to apply XPath query
expressions and to generate the XML output for the subscribers. Although, producing the
XML output streams does not influence the results relatively to each other, we omit the
result generation when considering the following scenarios to focus on the time needed for
the filtering step. Each of the following three scenarios is executed on a filtering scheme
with five, four, and finally three real chunks. While the chunking scheme with five real
chunks produces an empty potpourri query set, the case with four and three chunks gener-
ates a potpourri query set which has to be evaluated with regard to the original XML doc-
ument.

The first component of the diagram of figure 11 denotes the time needed to perform the
chunking of the original document according to the given filtering scheme. The numbers
for chunk 1 up to chunk 5 together with potpourri denote the time needed to perform the
filtering of the associated XPath expressions. The sum component is used to compare the
overall filtering time for each chunking scheme with the time needed to perform the filter-
ing based on the original XML document without any modification and optimization.

While the filtering process for 100 queries (figure 11b) based on the original XML docu-
ment requires less time compared to the sequential execution of the chunked version, the
chunking scheme outperforms the original scenario, if we consider a naive parallel envi-
ronment. Since parallel execution (in theory) would be bound to the longest running filter-
ing step plus the time needed for the initial chunking of the XML document, the filtering
process for the 5-chunk scenario would be finished after 10325ms+13059ms for the
chunking compared to 30624ms for the sequential filtering method, thus gaining 24% per-
formance speedup ((2) in figure 11b). For the case with 3 chunks, the required potpourri
chunk slows down the execution. However, due to a smaller chunking time, the speedup
reaches again 25% ((1) in figure 11b).

As can be seen in the figure 11c and 11d, the higher the number of XPath expressions to
evaluate the higher the speedup gained by the chunking mechanism. For 500 and 2000
queries the sequential execution is already faster than the method based on the complete
XML document, so that prefiltering sounds attractive. More detailed, the 2000 query sce-
nario reaches a performance gain of 41% for the scenario with 3 chunks and a potpourri
chunk (160981ms + 7491ms compared to 289365ms; (1) in figure 11d). The gain rises to
71% when applying the almost optimal filtering scheme with 5 chunks resulting in an emp-
ty potpourri chunk ((2) in figure 11d). In this case, chunk 4 needs 74126ms, resulting in a
benefit of 71% when considering an initial chunking period of 12829ms and 298980ms
needed to perform 2000 XPath queries based on the original XML document.

5.2 Scenario 2: EJB Deployment Descriptor

A second scenario demonstrating the feasibility of the proposed chunking approach is
based on an EJB deployment description of a large database application project. The DTD
is given in appendix A2. The cardinalities of the resulting chunks with the selected XPath
prefixes and the query distribution are given in table of appendix A3.

Figure 12a illustrates the result of performance studies for this EJB scenario. For a query
set with 100 queries, splitting the original file into two chunks already yields a perfor-
mance reduction from 64473ms to (5027+(32757+5087))=42871ms for chunking and
XPath evaluation with regard to the single chunks. It is interesting to note that in this spe-
cific context this splitting scheme seems to be the optimal chunking scheme, because fur-
ther splits increase the overall time needed to evaluate the XPath queries.

Figure 12b und c show a summary of performance gains. The average runtime needed for
a chunking scheme with 2, 3, and 4 chunks is given in figure 12b for query sets with 100,
500, and 2000 XPath expressions. An optimization with only two chunks results in a re-
duction of the runtime to 60-70% compared to the original case. Since the time needed for
the chunking tool and the query execution costs for the individual chunks are summarized

0

200000

400000

600000

800000

1000000

1200000

1400000

100 500 2000

number of queries

tim
in

m
s

produce XML output no XML output

Fig. 11: Performance Measurements for Scenario 1

a) time needed to produce XML output

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

ch
un

k too
l

ch
un

k 1

ch
un

k 2

ch
un

k 3

ch
un

k 4

ch
un

k 5

po
tpo

urr
i

su
m

or
igina

l

tim
e

in
m

s

3 chunks
4 chunks
5 chunks

b) evaluating 100 XPath expressions

c) evaluating 500 XPath expressions d) evaluating 2000 XPath expressions

0

20000

40000

60000

80000

100000

120000

140000

ch
un

k too
l

ch
un

k 1

ch
un

k 2

ch
un

k 3

ch
un

k 4

ch
un

k 5

po
tpp

ou
rri

su
m

ori
gina

l

tim
e

in
m

s

3 chunks
4 chunks
5 chunks

0

50000

100000

150000

200000

250000

300000

350000

ch
un

k too
l

ch
un

k 1

ch
un

k 2

ch
un

k 3

ch
un

k 4

ch
un

k 5

po
tpo

urr
i

su
m

ori
gina

l

tim
e

in
m

s

3 chunks
4 chunks
5 chunks

time needed to
create the XML output

+ ⇔
⇔+

+
⇔ ⇔

+

(1)
(2)

(1) (2)

and therefore comparable with the execution based on the original XML document, the
chunking scheme exhibits another advantage. Individual chunks with the corresponding
XPath expressions may be prioritized so that the execution order determines the time of
the earliest/latest delivery of the XPath evaluations. Figure 12c holds this information
computed by the time needed for the chunking plus the minimum/maximum of the XPath
expression evaluation based on the chunks compared to the original runtime. For example,
when evaluating 2000 XPath expressions on three chunks, the first query set is ready after
2% of the original query runtime.

6 Summary and Conclusion

Providing an efficient filtering mechanism is the core to build an efficient and large scale
information dissemination system. Since XML is the base for exchanging data in loose-
coupled information systems, we focus on improving the filtering mechanism for subscrip-
tions specified as XPath expressions evaluated on incoming XML document with known
schema. The main idea of our approach is to analyze the registered set of XPath expres-
sions during a prepare phase and generate a filtering scheme to partition the set of queries
and splitting the incoming XML document into separate chunks. The size reduction of the

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

2 chunks 3 chunks 4 chunks

100 queries 500 queries 2000 queries

100 queries 500 queries 2000 queries

c) earliest and latest result deliveryb) ratio of chunk-based compared to
regular XPath evaluation

Fig. 12: Performance Measurements for Scenario 2

a) 100 XPath queries with a chunking scheme of 2 to 6 chunks

0

10000

20000

30000

40000

50000

60000

70000

ch
un

k tool

ch
un

k 1

ch
unk

2

ch
un

k 3

ch
unk

4

ch
un

k 5

ch
unk

6
su

m

orig
ina

l

2 chunks
3 chunks
4 chunks
5 chunks
6 chunks
no chunking

earliest:

latest:

+ ⇔

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

2 chunks 3 chunks 4 chunks

100 queries 500 queries 2000 queries

XML document is crucial for applying the filtering mechanism. Comprehensive perfor-
mance evaluations demonstrate performance gains even in case of a sequential execution
of the XPath query sets based on the associated XML chunks. Moreover, the proposed so-
lution might be starting point for priority scheme

The advantage increases when performing the filtering process in parallel based on the
customized XML chunks. Since our preprocessing step is independent of the underlying
filtering technique, is can be integrated into an existing subscription evaluation system.

References
AAB+98 Altinel, M.; Aksoy, D.; Baby, T.; Franklin, M.; Shapiro, W.; Zdonik, S.: DBIS-

Toolkit: Adaptable Middleware For Large Scale Data Delivery. In: SIGMOD’99,
pp. 544-546

AgCL91 Agrawal, R.; Cochrane, R.; Lindsay, B.: On Maintaining Priorities in a Production
Rule System. In: VLDB’91, pp. 479-487

AlFr00 Altinel, M.; Franklin, M.J.: Efficient Filtering of XML Documents for Selective
Dissemination of Information. In: VLDB 2000, pp. 53-63

ASS+99 Aguilera, M.; Strom, R.; Sturman, D.; Astley, M.; Chandra, T.: Matching Events in
a Content-Based Subscription System. In: PODC’99, pp. 53-61

BaWi01 Babu, S.; Widom, J.: Continous Queries over Data Streams. In: SIGMOD Record
30(3), 2001, pp. 109-120

BBC+01 Berglund, A.; Boag, S.; Chamberlin, D.; Fernandez, M.F.; Kay, M.; Robie, J.;
Simeon, J.: XML Path Language (XPath) 2.0. Working Draft, Version 2.0, World
Wide Web Consortium (W3C), 2001, http://www.w3c.org/TR/xpath20/

BeCr92 Belkin, N.J.; Croft, W.B.: Information Filtering and Information Retrieval: Two
Sides of the Same Coin? In: CACM, 35(12),1992, pp. 29-38

CDTW00 Chen, J.; DeWitt, D.J.; Tian, F.; Wang Y.: NiagaraCQ: A Scalable Continous Query
System for Internet Databases. In: SIGMOD 2000, pp. 379-390

CFGR02 Chan, C.-Y.; Felber, P.; Garofalakis, M.N.; Rastogi, R.: Efficient Filtering of XML
Documents with XPath Expressions. In: ICDE 2002, pp. 235-244

CFR+01 Chamberlin, D.; Florescu, D.; Robie, J.; Simeon, J.; Stedanescu, M. (Hrsg.):
XQuery: A Query Language for XML, Working Draft. World Wide Web
Consortium (W3C), 2001, http://www.w3c.org/TR/xquery/

ChMS02 Chung, C.-W.; Min, J.K.; Shim, K.: APEX: An Adaptive Path Index for XML Data.
In: SIGMOD 2002

Fall01 Fallside, D.C.: XML Schema Part 0: Primer. W3C Recommendation, World Wide
Web Consortium (W3C), 2001, http://www.w3c.org/TR/xschema-0

FJL+01 Fabret, F.; Jacobsen, H.-A.; Llirbat,F.; Pereira, J.; Ross, K.A.; Shasha, D.: Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe. In: SIGMOD
2001, pp. 115-126

FoDu92 Foltz, P.W.; Dumais, S.T.: Personalized Information Delivery: An Analysis of
Information Filtering Methods. In: CACM 35(12), 1992, pp. 51-60

GoWi97 Goldmann, R.; Widom, J.: DataGuides: Enabling Query Formulation and
Optimization in Semistructured Database. In: VLDB’97, pp. 436-445

http://www.w3c.org/TR/xpath20/
http://www.w3c.org/TR/xquery/
http://www.w3c.org/TR/xschema-0

Grus02 Grust, T.: Accelerating XPath Location Steps. In: SIGMOD 2002

HCH+99 Hanson, E.N.; Carnes, C.; Huang, L.; Konyala, M.; Noronha, L.; Parthasarathy, S.;
Park, J.B.;Vernon, A.: Scalable Trigger Processing. In: ICDE’99, pp. 266-275

KrRo95 Krishnamurthy, B.; Rosenblum, D.; Yeast: A General Purpose Event-Action
System. In: TSE 21(10), 1995, pp. 845-857

LaPa02 Lakshmanan, L.V.S.; Parthasarathy, S:: On Efficient Matching of Streaming XML
Documents and Queries. In: EDBT 2002, pp. 142-160

LiMo01 Li, Q.; Moon, B.: Indexing and Querying XML Data for Regular Path Expression.
In: VLDB 2001, pp. 361-370

LiPT99 Liu, L.; Pu, C.; Tang, W.: Continual Queries for Internet Scale Event-Driven
Information Delivery. In: TKDE 11(4), 1999, pp. 610-628

LPCZ01 Lehner, W.; Pirahesh, H.; Cochrane, R.; Zaharoudakis, M.: fAST Refresh using
Mass Query Optimization. In: ICDE 2001, pp. 391-398

MiSu99 Milo, T.; Suciu, D.: Index Structures for Path Expressions. In: ICDT’99, pp. 277-295

PFJ+01 Pereira, J.; Fabret, F.; Jacobson, H.A.; Llirbat, F.; Shasha, D.: WebFilter: A High-
throughput XML-based Publish and Subcribe System. In: VLDB 2001, pp. 723-724

RoWo97 Rosenblum, D.S.; Wolf, A.L.: A Design Framework for Internet-Scale Event
Observation and Notification. In. SIGSOFT’97, pp. 344-360

WHA+00 Wood, L.;Hors, A.L.; Apparao, V.; Byrne, S.; Champion, M.; Isaacs, S.; Jacobs, I.;
Nicol, G.; Robie, J.; Sutor, R.; Wilson, C.: Document Object Model (DOM) Level 1
Specification (Second Edition).W3C Working Draft. World Wide Web Consortium
(W3C), 2000, http://www.w3.org/TR/REC-DOM-Level-1

YaGa95 Yan, T.W.; Garcia-Molina, H.: SIFT - A Tool for Wide Area Information
Dissemination. In: USENIX’95, pp. 177-186

Appendix A: Description of Sample Scenarios

A1) DTD and Chunk Size of Sample Scenario 1

<!ELEMENT db (student+,professor+,assistant+,secretary+,lecturer+) >

<!ELEMENT student (name,email?,url?,link?)>
<!ATTLIST student id ID #REQUIRED>

<!ELEMENT professor (name,email?,url?,link?)>
<!ATTLIST professor id ID #REQUIRED>

<!ELEMENT assistant (name,email?,url?,link?)>
<!ATTLIST assistant id ID #REQUIRED>

<!ELEMENT secretary (name,email?,url?,link?)>
<!ATTLIST secretary id ID #REQUIRED>

<!ELEMENT lecturer (name,email?,url?,link?)>
<!ATTLIST lecturer id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT url (#PCDATA)>
<!ATTLIST url href CDATA #REQUIRED>

<!ELEMENT link (#PCDATA)>
<!ATTLIST link manager IDREF #IMPLIED subordinates IDREFS #IMPLIED>

of chunks /
size in KB

3 4 5

chunk 1 170 170 170

chunk 2 206 206 206

chunk 3 1233 1233 1233

chunk 4 1145 1145

chunk 5 1537

potpurri
chunk

4969 4969 0

chunk and potpurri size

http://www.w3.org/TR/REC-DOM-Level-1

A2) DTD of Sample Scenario 2

A3) Chunk Size and Query Distribution of Sample Scenario 2

number of
chunks

relative
query

distribution
prefix selection for individual chunks

chunk
cardinality

Chunk 1
Chunk 2

54%
46%

/ejb-jar/assembly-descriptor
/ejb-jar/enterprise-beans

3,972
681

Chunk 1
Chunk 2
Chunk 3

19%
35%
46%

/ejb-jar/assembly-descriptor/container-transaction
/ejb-jar/assembly-descriptor
/ejb-jar/enterprise-beans

1,351
3,972

681

Chunk 1
Chunk 2
Chunk 3
Chunk 4

19%
18%
17%
46%

/ejb-jar/assembly-descriptor/container-transaction
/ejb-jar/assembly-descriptor/method-permission
/ejb-jar/assembly-descriptor/security-role
/ejb-jar/enterprise-beans

1,351
2,583

41
681

Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5

19%
18%
17%
16%
30%

/ejb-jar/assembly-descriptor/container-transaction
/ejb-jar/assembly-descriptor/method-permission
/ejb-jar/assembly-descriptor/security-role
/ejb-jar/enterprise-beans/session
/ejb-jar/enterprise-beans

1,351
2,583

41
162
681

Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5
Chunk 6

19%
18%
17%
16%
15%
14%

/ejb-jar/assembly-descriptor/container-transaction
/ejb-jar/assembly-descriptor/method-permission
/ejb-jar/assembly-descriptor/security-role
/ejb-jar/enterprise-beans/session
/ejb-jar/enterprise-beans/message-driven
/ejb-jar/enterprise-beans/entity

1,351
2,583

41
162

44
497

<!ELEMENT assembly-descriptor (container-transaction+, security-role+, method-permission+) >

<!ELEMENT cmp-field (field-name) >

<!ELEMENT container-transaction (method+, trans-attribute) >

<!ELEMENT ejb-jar (enterprise-beans, assembly-descriptor) >

<!ELEMENT ejb-ref (ejb-ref-name, ejb-ref-type, home, remote, ejb-link) >

<!ELEMENT enterprise-beans (message-driven, session+, entity+) >

<!ELEMENT entity (ejb-name, home, remote, ejb-class, persistence-type,
prim-key-class, reentrant, cmp-field+, primkey-field?) >

<!ELEMENT message-driven (ejb-name, ejb-class, message-selector, transaction-type,
acknowledge-mode, message-driven-destination, ejb-ref+) >

<!ELEMENT message-driven-destination (destination-type) >

<!ELEMENT message-selector EMPTY >

<!ELEMENT method (ejb-name | method | method-intf | method-name | method-params)* >

<!ELEMENT method-params (method-param*) >

<!ELEMENT method-permission (role-name, method+) >

<!ELEMENT run-as (role-name) >

<!ELEMENT security-identity (run-as) >

<!ELEMENT security-role (description, role-name) >

<!ELEMENT session (ejb-class | ejb-name | ejb-ref | home | remote |
security-identity | session-type | transaction-type)* >

all other not explicitly mentioned ELEMENTs are of type #PCDATA

	page1071: 108
	page1081: 109
	page1091: 110
	page1101: 111
	page1111: 112
	page1121: 113
	page1131: 114
	page1141: 115
	page1151: 116
	page1161: 117
	page1171: 118
	page1181: 119
	page1191: 120
	page1201: 121
	page1211: 122
	page1221: 123
	page1231: 124
	page1241: 125
	page1251: 126

