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Abstract: To synchronize concurrent regions of a state machine, the Unified Model-
ing Language (UML) provides the concept of so-called “synch states”. Synch states
insure that one region leaves a particular state or states before another region can enter
a particular state or states. For some application areas, it is beneficial to synchronize
not only regions but also state machines. For example, in data and telecommunica-
tions, a pure black box specification of communication interfaces via statechart dia-
grams gives no adequate means to describe their coordination and synchronization. To
circumvent the limitations of the UML, this paper presents the concepts of Trigger De-
tection Points (TDP) and Trigger Initiation Points (TIP); it allows a modeler to couple
state machines. The approach is generic, easy to extend and smoothly fits to the event
model of the UML; it could also substitute the more specific concept of synch states.

1 Introduction

The problem of synchronizing concurrent state machines raised as an issue in a research
project at Ericsson [9]. Concerned with architectural modeling of telecommunication sys-
tems, we developed a ROOM (Real-Time Object-Oriented Modeling) [20] like notation
(see [8]) but were soon confronted with the question of coupling interfaces: How do we
model the interaction between interfaces (or ports) of a single component without referring
to its internals? The intention was to describe an architecture in a black box manner, though
being capable to understand and simulate interface coordination and synchronization. In

∗This work is being funded by Ericsson and is run in cooperation with the Department of Computer Science
III, Aachen University of Technology, Germany.
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other words, the question was how to properly couple the individual state machines, which
specify the interface behavior of a single component.

Independent of this investigation, an Ericsson internal study on the use of modeling lan-
guages for service and protocol specifications exactly points out the same problem. It
shows that the coupling problem is of theoretical as well as practical relevance. It is
also one of the reasons, why modeling languages like the UML (Unified Modeling Lan-
guage) [17] have not successfully penetrated the systems engineering domain, yet. System
designers of data and telecommunication systems do not find reasonable support in today’s
modeling languages for their problem domain [7].

In the following two subsections, the telecommunication background is introduced and the
problem is described in more detail. Subsequent sections discuss the proposed solution: In
section 2 we elaborate on the model presented in subsection 1.1 in form of a case study.
There, we study the TCP (Transmission Control Protocol) layer of a data communication
system and show how the external interfaces can be described by a Finite State Machine
(FSM) each. Section 3 discusses the coupling problem from different perspectives and
demonstrates how FSMs can be synchronized via Trigger Detection Points (TDP) and
Trigger Initiation Points (TIP). The implementation of a prototype, verifying the TDP/TIP
concept, indicates how the UML could incorporate the TIPs and TDPs as extensions and
supersede synch states; this is subject to section 4. Finally, section 5 closes with some
observations and conclusions.

1.1 Background

On an architectural level, any data or telecommunication system can be structured accord-
ing to two different directions of communication, “vertically” and “horizontally”. “Verti-
cal” communication refers to the exchange of information between layers. The “point” at
which a layer publishes its services for access to an “upper” layer is called Service Ac-
cess Point (SAP). “Horizontal” communication, on the opposite, refers to the exchange
of information between remote peers. Remote peers are physically distributed, they re-
side in different nodes, and communicate with each other according to a protocol. We call
the “point” describing the protocol interface Connection Endpoint (CEP). Note that the
concept of a protocol is well-known and generally defines a set of messages and rules
(see e.g. [2, p.191]); however, it has a special meaning in data and telecommunications.
Whereas software engineers associate a reliable, indestructible communication relation
with the term “protocol”, data and telecommunication engineers are faced with the “real”
world: They have to add error correction, connection control, flow control and so on as
an integral part to the protocol. A communication relation between remote peers can al-
ways break, be subject to noise, congestion etc. This is the reason why communication
engineers introduced protocol stacks, with each protocol level comprising a dedicated set
of functionality, thereby “stackwise” abstracting the communication service. These stacks
naturally give means to “vertically” divide a node into layers.
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Figure 1: A simplified communication model based on OSI RM

Consequently, three main interfaces completely describe the behavior of a node layer from
an outer perspective, each interface covering a specific aspect of the communication rela-
tion, see figure 1. The SAP, denoted by a filled diamond symbol, provides layer (N) ser-
vices by means of so-called service primitives to a service user, the upper layer (N + 1).
Service primitives can be implemented as procedure calls, library calls, signals, methods
etc., which is a design decision. The CEP, symbolized by a filled circle, describes the
“horizontal” relation to another remote peer entity. A CEP holds the specification of a
communication protocol such as the Transmission Control Protocol (TCP) [19] or the In-
ternet Protocol (IP) [18]. In fact, we will exemplify the topic of discussion on TCP. Be
aware that the CEP is purely virtual and represents a logical interface only. All protocol
messages are transmitted using the services of a lower layer. This interface function is
given by the inverse SAP (SAP−1), which uses services from a lower layer (N − 1) by
accessing the (N − 1)-SAP; it is depicted by an “empty” diamond symbol.

The model described bases on the OSI (Open Systems Interconnection) Reference Model
[12], which has laid a solid foundation for understanding distributed system intercommu-
nication [3]. The notation used for the SAP and SAP−1 is an extension to ROOM; for a
thorough discussion see [8].

1.2 The Problem

Given the model presented, one faces some important problems in modeling the behavior
of a layer in a communication system. There are in principle two alternatives for specifying
layer (N). For this discussion, we assume that Finite State Machines (FSM) according to
the Unified Modeling Language (UML) [17] are the primary means to describe behavioral
aspects. FSMs are a common tool for specifying protocols [11].
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2 Black box view: Specifying a layer in a black box manner means that we give a
complete description of the behavior of each and every external interface. In that
case, the CEP, the SAP, and the SAP−1 are specified by an FSM each, which is a
precise description of the remote peer protocol and the two interface protocols. Even
though this view is ideal from a modeling point of view, the problem is that such a
black box model can neither simulate nor explain the interface interaction without
being wired with the internal behavior.

2 White box view: Specifying a layer in a white box manner means that we define
a more or less huge and complex FSM that gives a complete specification of the
internals driving the external behavior. As a result, the communication at an exter-
nal interface cannot be understood without looking inside the layer; at best, a list of
messages (or service primitives) going in and out at the external interface can be de-
clared. This corresponds to the notion of an interface in UML, see e.g. [4, p.155ff.].
Here, the problem is that the FSM is difficult to structure in a way, so that at least
internally the behavioral aspects of the external interfaces are made clear.

What both problems have in common is that different views change scope and redefine
how states or state machines are coupled with each other. In case of white box specifi-
cations, the UML offers the concept of composite states, which can be decomposed into
two or more concurrent substates, also called regions. In order to enable synchronization
and coordination of regions, the UML introduced synch states. However, synch states do
not sufficiently support enough synchronization means as the case study presented below
shows, nor do they solve the problem of synchronizing states of distinct state machines.
Driven by a black box view, we propose the idea of Trigger Detection Points (TDP) to
enable FSM separation but smooth coupling. TDPs together with Trigger Initiation Points
(TIP) are introduced as a concept extending state machine modeling; they were motivated
by the concept of detection points in [1].

2 Case Study: The TCP Communication Layer

The TCP protocol serves as an excellent example for discussing layer design and spec-
ification problems. It is simple to understand, easy to read (the technical standard [19]
sums up to less than one hundred pages)1, public available, and – most important – it is
widespread and one of the most used protocols world-wide. Together with IP, the TCP/IP
protocol suite forms the backbone of the Internet architecture.

Looking at how the TCP standard [19] specifies the protocol unveils a typical problem: It
presents the whole layer by a state machine and does not clearly separate the TCP protocol
from its user (or application) interface. Both are combined, see figure 2; it is the result of
a white box view. The figure uses a compact notation and shows both the server FSM and
the client FSM. It reads as follows: When a user in his role as a server submits a LISTEN
command, the state changes from CLOSED to LISTEN. If, on the other side, the client user

1Clarifications and bug fixes are detailed in [5], extensions are given in [14].
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Figure 2: The TCP FSM figure is derived from [21, p.532]. The heavy solid line is the normal path
for a client. The heavy dashed line is the normal path for a server. The light lines are unusual events.
User commands are given in bold font.

submits a CONNECT, the TCP protocol sends out a message with the synchronization
bit SYN set to one, and the client’s state changes to SYN SENT. On receipt of the TCP
message with SYN equal to one, the server sends out a TCP message with SYN and ACK
(the acknowledgment bit) set to one and changes to state SYN RCVD. When the three-way
handshake completes successfully, both parties end up in state ESTABLISHED and are
ready to send and receive data respectively. This short description of figure 2 neglects a
lot of details of TCP (e.g. timeouts, which are important to resolve deadlocks and failures)
but is sufficient for the purpose of our discussion. The interested reader may consult [21]
for more information.

In order to structure TCP according to its interface functions (figure 1) the FSM in figure 2
needs to be partitioned. The result of this step is shown in figure 3 in UML notation. The
left hand side of figure 3 displays the FSM, which corresponds in functionality to the
SAP. Instead of using the TCP service commands LISTEN, CONNECT, SEND etc., the
commands have been converted to service primitives, which are more narrative. Again,
the client and the server side are combined in a single SAP FSM. From a user’s viewpoint
the communication with the client/server SAPs looks like follows: When a user requests
a connection (Conn.req), the client’s SAP changes to state C-PENDG. The server gets
notified by the connection request via a connection indication (Conn.ind) and may respond
with Conn.res, accepting the request. This is confirmed to the client via Conn.con and
finally, the SAPs end up in state DATA. Note that neither the user of the client SAP nor
the user of the server SAP see the underlying TCP protocol being used. They only see the
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Figure 3: The FSMs of the SAP and the CEP of the TCP layer. The shortcuts stand for connect and
disconnect; the postfixes stand for request, confirmation, indication, and response

SAP interface; the layer and its use of TCP is hidden.

The logical CEP holds the protocol specification of TCP, see the right hand side of figure 3.
Since we have not introduced any coupling yet, the CEP FSM is strictly separated from
the SAP FSM. That is why there is for example no indication what might have triggered
the transition from CLOSED to SYN SENT at the client’s side; but when the transition is
triggered, no matter how it happened, then it sends out a TCP message with the SYN bit
set. Otherwise, figure 3b is similar to figure 2; just all the numerous SAP related details
have been stripped off. To reduce complexity, we slightly simplified the TCP protocol
specification and added transitions to the data transfer state ESTABLISHED.

As described, TCP calls on a lower level protocol module to actually send and receive
information over a network. This lower level protocol module usually is IP and is accessed
via the inverse TCP SAP−1. To avoid cluttering up the discussion and distracting the reader
with too many FSMs, we intentionally left out an example figure. For the sake of brevity,
the SAP−1 is not considered and supposed not to exist; that is we assume the logical
connection between the CEPs to be for real. Consequently, we can restrict the discussion
on the interaction between the SAP and the CEP; this simplifies and eases the topic under
discussion.

3 The Concept of Coupled State Machines

We managed to partition TCP according to its layer interfaces, which already is an achieve-
ment. All further details of TCP like flow control and buffering, congestion control, frag-
mentation, error control, window flow control etc. are hidden and subject of a refined view.
As was mentioned above: If we prefer a white box view, the two state machines could be

180



interpreted as concurrent regions in a “higher level” statechart and synchronized via synch
states. If we, on the opposite, demand a rigid black box view (as is often the case for archi-
tectural modeling), the SAP and the CEP are described by two separate FSMs specifying
the “horizontal” and “vertical” communication behavior; there are no coupling capabili-
ties. However, for model understanding it would be beneficial to show how the different
interfaces of the communication layer interact with each other without referring to any
internals. As was shown by Ericsson’s language study, it is usually the “inside”, which
drives the “outside”. We are looking for a way that allows the modeler to keep a purely
external view.

One way to couple the individual FSMs is by the usual event messaging mechanism pro-
vided by UML, that means by signals and/or call events. The drawback of this approach
is that one would again tightly connect the FSMs. For example, the Conn.req transition of
the SAP (see figure 3a) needs to have an activity attached that sends a signal to the CEP
(see figure 3b). This signal would then represent the CLOSED/SYN SENT transition that
triggers the tcp.out message. As a result, the FSM of the CEP would more or less turn out
to be the original TCP FSM and finally look like figure 2. In other words, the modeler
would not be better off, and splitting of the TCP FSMs seems to be an academic exercise
only. Obviously, another technique is needed.

Our solution to this problem is the introduction of so-called Trigger Detection Points
(TDPs) and Trigger Initiation Points (TIPs). A TDP can be attached at the arrow head of
an transition in a statechart diagram; it detects whenever this specific transition fires and
broadcasts a notification message to all corresponding TIPs. TDPs are notated by small
filled boxes, see figure 4. A TIP can be attached at the beginning of the transition arrow
and triggers the transition to fire. An active TIP stimulates the transition to fire on receipt
of a TDP notifier independent of the transition’s event-signature. That means, that either
the event specified by the transition’s event-signature or the TIP can trigger the transition.
Active TIPs are visualized by small filled triangles, see figure 4. Passive TIPs, on the other
hand, have a locking mechanism and can be meaningfully used with “normal” transitions
only, i.e. the transition explicitly requires an event-signature. The transition cannot fire
unless the TIP’s corresponding TDP has been passed and unless the transition’s event has
been received. The order of occurrence is irrelevant, it is just the combination of the TIP
event and the transition event, which unlock the transition and let it fire. Passive TIPs be-
have like a logical “and” to synchronize a transition, whereas active TIPs realize a logical
“or”. An example of a passive TIP can be found in figure 4a; it is pictured by a small,
“empty” triangle. In general, the relation of a TIP and a TDP is given by a name consisting
of a single or more capital letters. Note that one or more TIPs may be related to a single
TDP.

Now, the coupling of the SAP and the CEP can be easily described, see figure 4a and 4b.
For example, when a client user sends a Conn.req to the SAP, TDP A detects the transition
NULL to C-PENDG firing and broadcasts a notifier event to all corresponding TIPs. The
notifier event causes the CEP to fire the CLOSED/SYN SENT transition and results in
sending out a TCP message with the SYN bit set to one; the rest of the scenario is straight
forward. However, some explanations should help understand the purpose of a passive
TIP. Let us assume, that the protocol at the server side has just entered state SYN RCVD,
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Figure 4: The FSMs of the SAP and the CEP of the TCP layer coupled via TDPs and TIPs

which triggers TIP C at the server SAP and results in a connection indication (Conn.ind)
to the SAP user. Now, there are two concurrent and competing threads. The user of the
server SAP may either accept the connection indication and answer with Conn.res or,
alternatively, the user may deny the request and answer with a Disc.req. Concurrently, on
the protocol thread, the server’s CEP enters state ESTABLISHED at some point in time.
It is the passive TIP D that prevents the SAP FSM entering DATA on Conn.req unless the
protocol has reached ESTABLISHED. On the other hand, if the user has decided to reject
the connection indication (Conn.ind) via Disc.req, the CEP starts the disconnect procedure
based on the TDP G trigger. All this could not be done using conventional messaging
without changing the FSMs.

The advantage of using TDPs and TIPs is that the FSMs remain autonomous but get cou-
pled. They can notify each other about important state changes and use it for synchroniza-
tion purposes; there is no need to introduce new event messages and modify transitions.
TDPs and TIPs could be interpreted as some sort of annotations (with precise semantics),
which specify FSM interaction and coordination. The modeler does not need to modify the
original interface specification or reference to any internal “engine” driving the whole. If
the broadcasting mechanism of TDP events can be directed, it is possible to couple exter-
nal interface FSMs with layer internal FSMs reusing the same set of TDPs and TIPs. That
means, that a black box and a white box view could peacefully coexist without blurring
the difference between both views.

4 Extending the UML

Synch states as known from the UML correspond in their behavior to what we called
passive TIPs: A synch state is used in conjunction with forks and joins to insure that one

182



Figure 5: The design of the FSM prototype

region leaves a particular state or states before another region can enter a particular state
or states [17]. Clearly, synch states do not support other synchronization means between
regions like TIPs do and they are not suited for inter-FSM synchronization. Good reasons
to think about integrating TIPs and TDPs in the UML and to substitute synch states.

TDPs and TIPs can be smoothly integrated in an event driven execution model for FSMs.
The prototype we developed at Ericsson (programmed in Python [16]) treats TDPs as a
specialization of messages, see figure 5, and dispatches notifier events to the event queue.
The implementation of TIPs required only a few modifications to the event processor.

If one compares the prototype design and the metamodel for state machines (see sec-
tion 2.12 of the UML [17] semantics), the required extensions to the UML can be easily
identified: First, the notifier event needs to be subclassed to the event metaclass;2 this can
be achieved by using stereotypes. Then, it is to be decided how TDPs can be attached to
the transition metaclass. Since transitions are restricted to have not more than one event
trigger, it is not possible to add TDPs as a second trigger. Rather, the transition metaclass
can be extended by some few properties. A TDP property is needed referring to the notifier
event, optionally added by a property holding a list of state machines the notifier event is
selectively broadcasted to. Another property are the TIP and the TIP type, which hold the
notifier reference and the value active or passive, respectively. The required changes to
the execution semantics of state machines are uncritical, since the UML is relatively open
to adaptations. To conclude, the extensions described are the simplest form to introduce
TDPs and TIPs to the UML using its extension mechanisms [10].

Note that TDPs and TIPs make synch states superfluous. TDPs/TIPs contain the concept
of synch states but allow much more semantic variations and extensions. Synch states are
an oddity in the UML with no clear conceptual roots; TDPs and TIPs are their generaliza-
tion but they are put in a meaningful semantical context of transitions and events. In fact,
TIPs and TDPs specify a synchronization protocol between states machines or regions.
Such a protocol does not only seem more appropriate to capture complex interactions of

2Regarding events, the UML is a bit different designed than our message based prototype.
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synchronization but also semantically cleaner. That is why we propose to remove synch
states from the UML metamodel and instead introduce the notifier event subclass, insert
metaclasses for TDPs and TIPs and associate them to the transition metaclass. This would
enable flexible semantic extensions via stereotypes to the UML user.

5 Conclusions

Actually, the TDP/TIP concept relates very much to the observer pattern [6]; it allows the
modeler to notify other FSMs about state changes. Because of the distinction in active
and passive TIPs, the concept of coupled state machines implements an extended observer
pattern. This lifts the observer pattern from its use in the design domain in form of class
diagrams to the modeling domain with an explicit notation for coupling, which is a quite
interesting aspect. Furthermore, it is an interesting question, if TIPs and TDPs could be of
use in sequence diagrams or Message Sequence Charts (MSC) [13].

Since the approach presented gives means to specify and separate aspects of a modeling
entity, one could also investigate to which extend TDPs and TIPs enable aspect-oriented
modeling in extension to aspect-oriented programming [15]. It also allows the modeler to
specify APIs (Application Programming Interface) much more elegant; for instance, the
TCP SAP could be seen as an API to TCP. As was shown in the case study, the design
of communication protocols gains a lot of clarity from the separation of logical concerns.
In short, it looks like that many application areas could benefit from using coupled state
machines.

Due to the specific nature of the application domain (data and telecommunications) we
study, we cannot claim that we have identified all types of TDPs and TIPs required for
coupling FSMs in an efficient manner. Extensions or specializations are conceivable. How-
ever, TDPs and TIPs appear to be a powerful modeling concept, they substitute synch
states, and put a modeler in a better position especially for modeling the coordination and
synchronization of concurrent systems.

Acknowledgements: Many thanks to Andreas Witzel, who triggered the idea of coupled
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ninger (all Ericsson) for their support.
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