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Abstract: In biological sequence analysis, position specific scoring matrices (PSSMs)
are widely used to represent sequence motifs. In this paper, we present a new non-
heuristic algorithm, called ESAsearch, to efficiently find matches of such matrices in
large databases. Our approach preprocesses the search space, e.g. a complete genome
or a set of protein sequences, and builds an enhanced suffix array which is stored on
file. The enhanced suffix array only requires 9 bytes per input symbol, and allows
to search a database with a PSSM in sublinear expected time. We also address the
problem of non-comparable PSSM-scores by developing a method which allows to
efficiently compute a matrix similarity threshold for a PSSM, given an E-value or a
p-value. Our method is based on dynamic programming. In contrast to other methods
it employs lazy evaluation of the dynamic programming matrix: it only evaluates those
matrix entries that are necessary to derive the sought similarity threshold. We tested
algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. Compared
to the best previous methods, ESAsearch show speedups of a factor between 4 and
50 for nucleotide PSSMs, and speedups up to a factor 1.8 for amino acid PSSMs.
Comparisons with the most widely used programs even show speedups by a factor of
at least 10. The lazy evaluation method is also much faster than previous methods,
with speedups by a factor of at least 10.

1 Introduction

Position specific scoring matrices (PSSMs) have a long history in sequence analysis (see
[GME87]). A high PSSM-score in some region of a sequence often indicates a possible
biological relationship of this sequence to the family or motif characterized by the PSSM.
There are several databases incorporating PSSMs, e.g. PROSITE [HSL+04], PRINTS
[ABF+03], BLOCKS [HGPH00], or TRANSFAC [MFG+03]. While these databases are
constantly improved, there are only few improvements in the programs searching with
PSSMs. E.g. the programs FingerPrintScan [SFA99], BLIMPS [HGPH00], and MatIn-
spector [QFWW95] still use a simple straightforward O(mn)-time algorithm to search a
PSSM of length m in a sequence of length n. The most advanced program in this field
is EMATRIX [WNB00], which incorporates a technique called lookahead scoring. The
lookahead scoring technique is also employed in the suffix tree based method of [DC00].
This method performs a limited depth first traversal of the suffix tree of the set of target se-
quences. This search updates PSSM-scores along the edges of the suffix tree. Lookahead
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scoring allows to skip subtrees of the suffix tree that do not contain any matches to the
PSSM. Unfortunately, the method of [DC00] has not found its way into a widely available
and robust software system.

In this paper, we present a new algorithm for searching PSSMs. The overall structure of
the algorithm is similar to the method of [DC00]. However, instead of suffix trees we use
enhanced suffix arrays, a data structure which is as powerful as suffix trees (cf. [AKO04]).
Enhanced suffix arrays provide several advantages over suffix trees, which make them
more suitable for searching PSSMs:

• While suffix trees require about 12n bytes in the best available implementation (cf.
[Ku99]), the enhanced suffix array used for searching with PSSMs only needs 9n

bytes of space.
• While the suffix tree is only computed in main memory, the enhanced suffix array

is computed once and stored on file. Whenever a PSSM is to be searched with, the
enhanced suffix array is mapped into main memory which requires no extra time.

• While the limited depth first traversal of the suffix tree suffers from the poor local-
ity behavior of the data structure (cf. [GK95]), the enhanced suffix array provides
optimal locality, because it is sequentially scanned from left to right.

One of the algorithmic contributions of this paper is a new technique that allows to skip
parts of the enhanced suffix array containing no matches to the PSSM. Due to the skipping,
our algorithm achieves an expected running time that is sublinear in the size of the search
space (i.e. the size of the nucleotide or protein database). As a consequence, our algorithm
scales very well for large data sizes.

When searching with a PSSM it is very important to determine a suitable threshold for a
PSSM-match. Usually, the user prefers to specify a significance threshold (i.e. an E-value
or a p-value) which has to be transformed into an absolute score threshold for the PSSM
under consideration. This can be done by computing the score distribution of the PSSM,
using well-known dynamic programming (DP, for short) methods, e.g. [St89, WNB00,
Ra03, RMV03]. Unfortunately, these methods are not fast enough for large PSSMs. For
this reason, we have developed a new lazy evaluation algorithm that only computes a small
fraction of the complete score distribution. Our algorithm speeds up the computation of
the threshold by factor of at least 10, compared to standard DP methods. This makes our
algorithm applicable for on-the-fly computations of the score thresholds.

The new algorithms described in this paper are implemented as part of the PoSSuMsearch
software package. This is available free of charge for non-commercial research institu-
tions. For details, see http://bibiserv.techfak.uni-bielefeld.de/possumsearch/.

2 PSSMs and lookahead scoring: LAsearch

A PSSM is a representation of a multiple alignment of related sequences. We define it as a
function M : [0, m− 1]×Σ →

�
, where m is the length of M and Σ is a finite alphabet.

Usually M is represented by an m × |Σ| matrix, see Table 1 for an example. Each row
of the matrix reflects the frequency of occurrence of each amino acid or nucleotide at the
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A C D E F G H I K L M N P Q R S T V W Y thd σd

-19 92 -45 -49 -30 -36 -38 -12 -41 -21 -22 -40 -46 -44 -44 -30 -25 16 -35 -34 2 398
5 -17 17 22 -28 -15 -7 -23 -8 -27 -21 26 18 -7 -13 -9 9 -19 -33 -25 24 376
7 -8 -29 -28 2 -25 -10 25 -23 -4 -5 -25 -32 -26 -25 -18 13 22 -11 36 60 340

-29 99 -55 -61 -42 -45 -47 -31 -52 -34 -36 -49 -56 -55 -55 -38 -35 -29 -44 -46 159 241
-14 -22 14 22 -28 9 -8 -26 15 -27 -20 -7 -26 -3 31 -13 5 -23 -30 -24 181 219
-25 -34 -25 -16 -37 -30 -15 -36 45 -34 -26 -18 -35 -9 49 -25 -26 -33 -39 -31 230 170

7 -8 -25 -24 -19 -23 -22 4 -15 -10 -8 -19 -29 -21 11 -13 31 31 -31 -22 261 139
-34 -27 -44 -43 60 -41 -8 -16 -38 -14 -17 -39 -51 -40 -36 -39 -35 -21 -1 56 317 83

7 40 -16 -14 -9 -14 -6 -17 14 -20 -15 -10 -24 -11 12 15 9 -13 -16 20 357 43
-7 43 16 -7 -27 -15 -9 -24 -5 -26 -18 -6 -25 25 13 25 -8 -21 -30 -24 400 0

Table 1: Amino acid PSSM of length m = 10 of a zinc-finger motif. If the score threshold is
th = 400, then only substrings beginning with C or V can match the PSSM, because all other
amino acids score below the intermediate threshold th0 = 2. That is, lookahead scoring will skip
over all substrings which begin with amino acids different from C and V .

corresponding position of the alignment. From now on, let M be a PSSM of length m. We
define sc(w, M) =

∑m−1

i=0
M(i, w[i]) for a sequence w ∈ Σm of length m. sc(w, M) is

the match score of w w.r.t. to M . Given a sequence S of length n over alphabet Σ and a
score threshold th, the PSSM searching problem is to find all positions j ∈ [0, n−m] in
S s.t. sc(S[j..j + m− 1], M) ≥ th .

A simple algorithm for the PSSM searching problem slides along the sequence and com-
putes sc(w, M) for each w = S[j..j + m− 1], j ∈ [0, n −m]. The running time of this
algorithm is O(mn). It is used e.g. in the programs FingerPrintScan [SFA99], BLIMPS
[HGPH00], MatInspector [QFWW95], and MATCH [KGR+03].

In [WNB00], lookahead scoring is introduced to improve the simple algorithm. Lookahead
scoring allows to stop the calculation of sc(w, M) when it is clear that the given overall
score threshold th cannot be achieved. To explain the method, define pfxscd(w, M) =∑d

h=0
M(h, w[h]), maxd = max{M(d, a) | a ∈ Σ}, and σd =

∑m−1

h=d+1
maxh for any

d ∈ [0, m − 1]. pfxscd(w, M) is the prefix score of depth d. σd is the maximal score
that can be achieved in the last m − d − 1 positions of the PSSM. Let thd = th − σd be
the intermediate threshold at position d. It is easy to prove that sc(w, M) ≥ th implies
pfxscd(w, M) ≥ thd for all d ∈ [0, m− 1]. This gives a necessary condition for a PSSM-
match which can easily be exploited: When computing sc(w, M) by scanning w from
left to right, one checks for d = 0, 1, . . ., if the intermediate threshold thd is achieved. If
not, the computation can be stopped. See Table 1 for an example. The lookahead scoring
algorithm (called LAsearch) runs in O(kn) time, where k is the average number of PSSM-
positions per sequence position actually evaluated. In the worst case, k ∈ O(m), which
leads to the worst case running time of O(mn), not better than the simple algorithm.
However, k is expected to be much smaller than m, leading to considerable speedups in
practice.

Our reformulation of lookahead scoring and its implementation is the basis for improve-
ments and evaluation in the subsequent sections.
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   i        suf[i]       lcp[i]       skp[i]  Ssuf[i]

  0            1                          12   aaaaccacac$
  1            2             3             2   aaaccacac$
  2            3             2             3   aaccacac$
  3            7             1             6   acac$
  4            4             2             6   accacac$
  5            9             2             6   ac$
  6            0             0           12   caaaaccacac$
  7            6             2             9   cacac$
  8            8             3             9   cac$
  9            5             1           11   ccacac$
10          10             1           11   c$
11          11             0           12   $

 accacac$
 ccacac$

 ccacac$
 ac$
 cacac$
 $
 aaaaccacac$
          ac$
          $

    cacac$
    $

$

a

a

a
a

c c

c

Figure 1: The enhanced suffix array and the suffix tree for sequence S = caaaaccacac. Some
skp entries are shown in the tree as red arrows: If skp[i] = j, then an arrow points from row i to row
j.

3 PSSM searching using enhanced suffix arrays: ESAsearch

The enhanced suffix array for a given sequence S of length n consists of three tables suf,
lcp, and skp. Let $ be a symbol in Σ, larger than all other symbols, which does not occur
in S. suf is a table of integers in the range 0 to n, specifying the lexicographic ordering of
the n + 1 suffixes of the string S$. That is, Ssuf[0], Ssuf[1], . . . , Ssuf[n] is the sequence of
suffixes of S$ in ascending lexicographic order, where Si = S[i..n − 1]$ denotes the ith
nonempty suffix of the string S$, for i ∈ [0, n]. suf can be constructed in O(n) time and
requires 4n bytes.

lcp is a table in the range 0 to n such that lcp[i] is the length of the longest common prefix
of Ssuf[i−1] and Ssuf[i], for i ∈ [1, n]. Table lcp can be computed in linear time from suf.
For PSSM searching we do not access values in table lcp larger than 255, and hence we
can store it in n bytes.

skp is a table in the range 0 to n s.t. skp[i] = min({n + 1} ∪ {j ∈ [i + 1, n] | lcp[i] >

lcp[j]}). In terms of suffix trees, skp[i] denotes the lexicographically next leaf that does not
occur in the subtree below the branching node corresponding to the longest common prefix
of Ssuf[i−1] and Ssuf[i]. Fig. 1 shows this relation. Array skp can be computed in O(n) time
given suf and lcp. For the algorithm to be described we assume that the enhanced suffix
array for S has been precomputed.

In a suffix tree, all substrings of S of a fixed length m can be scored with a PSSM by a
depth first traversal of the tree. Using lookahead scoring, one can skip certain subtrees that
do not contain matches to the PSSM. Since suffix trees have several disadvantages (see the
introduction), we use enhanced suffix arrays to search PSSMs. Like in other algorithms on
enhanced suffix arrays (cf. [AKO04]), one simulates a depth first traversal of the suffix tree
by processing the arrays suf and lcp from left to right. To incorporate lookahead scoring
while searching we must be able to skip certain ranges of suffixes in suf. To facilitate this,
we use table skp. We will now make this more precise.
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For i ∈ [0, n], let vi = Ssuf[i], li = min{m, |vi|} − 1, and di = max({−1}∪ {d ∈ [0, li] |
pfxscd(vi, M) ≥ thd}). Now observe that di = m− 1 ⇔ pfxscm−1(vi, M) ≥ thm−1 ⇔
sc(vi, M) ≥ th . Hence, M matches at position j = suf[i] if and only if di = m − 1.
Thus, to solve the PSSM searching problem, it suffices to compute all i ∈ [0, n] satisfying
di = m − 1. We compute di along with Ci[d] := pfxscd(vi, M) for any d ∈ [0, di]. d0

and C0 are easily determined in O(m) time. Now let i ∈ [1, n] and suppose that di−1

and Ci−1[d] are determined for d ∈ [0, di−1]. Since vi−1 and vi have a common prefix of
length lcp[i], we have Ci[d] = Ci−1[d] for any d ∈ [0, lcp[i]− 1]. Consider the following
cases:

• If di−1+1 ≥ lcp[i], then compute Ci[d] for d ≥ lcp[i] while d ≤ li and Ci[d] ≥ thd.
We obtain di = d.

• If di−1 + 1 < lcp[i], then let j be the minimum value in the range [i + 1, n + 1]
such that all suffixes vi, vi+1, . . . , vj−1 have a common prefix of length di−1 + 1
with vi−1. Due to the common prefix we have pfxscd(vi−1, M) = pfxscd(vr , M)
for all d ∈ [0, di−1 + 1] and r ∈ [i, j − 1]. Hence di−1 = dr for r ∈ [i, j − 1]. If
di−1 = m−1, then there are PSSM matches at all positions suf[r] for r ∈ [i, j−1].
If di−1 < m− 1, then there are no PSSM matches at any of these positions. That is,
we can directly proceed with index j. We obtain j by following a chain of entries in
table skp: compute a sequence of values j0 = i, j1 = skp[j0], . . . , jk = skp[jk−1]
such that di−1 + 1 < lcp[j1], . . . , di−1 + 1 < lcp[jk−1], and di−1 + 1 ≥ lcp[jk ].
Then j = jk.

These case distinctions lead to the program ESAsearch. In the worst case, ESAsearch has
to evaluate m positions for each suffix of S. This leads to a running time of O(mn).
However, if the score threshold is stringent, then often large ranges of suffixes can be
skipped, leading to a sublinear running time.

4 Finding an appropriate threshold for PSSM searching: LazyDistrib

4.1 Probabilities and Expectation values

The results of PSSM searches strongly depend on the choice of an appropriate threshold
value th . A small threshold may produce a large number of false positive matches without
any biological meaning, whereas meaningful matches may not be found if the threshold
is too stringent. PSSM-scores are not equally distributed and thus scores of two different
PSSMs are not comparable. It is therefore desirable to let the user define a significance
threshold instead. The expected number of matches in a given random sequence database
(E-value) is a widely accepted measure of the significance. We can compute the E-value
for a known background distribution and length of the database by exhaustive enumeration
of all substrings. However, the time complexity of such a computation is O(|Σ|mm) for a
PSSM of length m. If the values in M are integers within a certain range [rmin, rmax] of
width R = rmax−rmin +1, then DP methods (cf. [St89, WNB00, Ra03, RMV03]) allow
to compute the probability distribution (and hence the E-value) in O(m2R|Σ|) time.
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While recent publications focus on the computation of the complete probability distribu-
tion, what is required specifically for PSSM matching, is computing a partial cumulative
distribution corresponding to an E-value resp. p-value specified by the user. Therefore we
have developed a new “lazy” method to efficiently compute only a small fraction of the
complete distribution.

We formulate the problem we solve w.r.t. to E-values and p-values: Given a user specified
E-value η, find the minimum threshold TminE(η, M), such that the expected number of
matches of M in sequence S is at most η. Given a user specified p-value π, find the
minimum threshold TminP(π, M), such that the probability that M matches a random
string of length m is at most π.

The threshold TminE(η, M) can be computed from TminP(π, M) according to the equa-
tion TminE(πn, M) = TminP(π, M). Hence we restrict on computing TminP(π, M).

Since all strings of length m have a score between scmin(M) =
∑m−1

d=0
min{M(d, a) |

a ∈ Σ} and scmax(M) =
∑m−1

d=0
max{M(d, a) | a ∈ Σ}, we conclude TminP(1, M) =

scmin(M) and TminP(0, M) > scmax(M). To explain our lazy evaluation method, we
first consider existing methods based on DP.

4.2 Evaluation with dynamic programming

We assume that at each position in sequence S, the symbols occur independently, with
probability f(a) = (1/n) · | {i ∈ [0, n− 1] | S[i] = a} |. Thus a substring w of length
m in S occurs with probability

∏m−1

i=0
f(w[i]) and the probability of observing the event

sc(w, M) = t is � [sc(w, M) = t] =
∑

w∈Σm,sc(w,M)=t

∏m−1

i=0
f(w[i]). We obtain

TminP (π, M) by a lookup in the distribution:

TminP (π, M) = min{t | scmin(M) ≤ t < scmax(M) + 1, � [sc(w, M) ≥ t] ≤ π}.

If the values in the PSSM M are integers in a range of width R, dynamic programming
allows to efficiently compute the probability distribution (see Figure 2). The dynamic pro-
gramming aspect becomes more obvious by introducing for each k ∈ [0, m− 1] the prefix
PSSM Mk : [0, k] × Σ → � defined by Mk(j, a) = M(j, a) for j ∈ [0, k] and a ∈ Σ.
Corresponding distributions Qk(t) for k ∈ [0, m− 1] and t ∈ [scmin(Mk), scmax(Mk)],
and Q−1(t), are defined by

Qk(t) =

{
if t = 0 then 1 else undefined if k = −1∑

a∈Σ
Qk−1(t−M(k, a))f(a) otherwise

We have � [sc(w, M) = t] = Qm−1(t). The algorithm computing Qk determines a set of
probability distributions for M0, . . . , Mk. Qk is evaluated in O(scmax(M)|Σ|) time from
Qk−1, summing up to O(scmax(M)|Σ|m) total time.

If we allow for floating point scores that are rounded to ε decimal places, the time and
space requirement increases by a factor of 10ε. Conversely, if all integer scores share a
greatest common divisor z, the matrix should be canceled down by z.
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Σ

Q   0

Q1

Q2

Q3

Matchscore

      Prob  

200 190 180 170 160

0,0625 

 80 70 60 50

140 130 120 110

10

10

10203040

100 90

0,0625 0,1875 0,0625 

0,003906 0,003906 0,011719 0,003906 

0,125 0,1250,125

0,03125

0,078125

0,015625 0,015625 0,015625 0,046875

0,1875 

0,046875 

0,015625 

150

0,023438

0,03125

* Pr(1,30)

1

0

* Pr(0,30)

* Pr(1,50)

* Pr(2,60)

* Pr(3,60)

* Pr(0,20) * Pr(0,10)

         Q

Determine threshold for σ=0,02

−1

0,019531 0,023438   0,007812

A      C       G      T

PSSM:

10     30     10     20

 0      10     50     30

10       0      60    10

60       0     10     20

Step            0      10     20     30

Threshold   200   190   180   170

0,003906 

20 10

0,5  0,25  0,25  

30

Figure 2: The simple DP scheme of section 4.2 computes all probability vectors Q0, Q1, Q2, Q3

completely. Scores that cannot occur at all (like 199) are omitted in the figure. Since scmax(M) =
200, sums over Q(200), Q(199), Q(198), . . . are computed until the given p-value π = 0.02 is
exceeded. The sought score threshold is TminP(π, M) = 171. In contrast to the simple scheme,
the restricted computation only evaluates the colored parts of the probability vectors. In step 0
Q(200) is computed, as indicated by the same color for all concerned components. For threshold
t = 180 we obtain the intermediate thresholds th2 = 120, th1 = 60, and th0 = 10. After step 30,
in which Q(170) is computed, the rest of the computation can be skipped.

4.3 Restricted probability computation

In order to find TminP(π, M) it is not necessary to compute the whole codomain of the
distribution function Q = Qm−1. We propose a new method only computing a partial
distribution by summing over the probabilities for decreasing threshold values scmax(M),
scmax(M)− 1, . . ., until the given p-value π is exceeded.

In step d we compute Q(scmax(M) − d) where all intermediate scores contributing to
scmax(M) − d have to be considered. In analogy to lookahead scoring, in each row j

of M we avoid all intermediate scores below the intermediate threshold th j because they
do not contribute to Q(scmax(M)− d). The algorithm stops if the cumulated probability
for threshold scmax(M)− d exceeds the given p-value π and we obtain TminP(π, M) =
scmax(M)− d + 1.
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Σ

Matchscore

Prob / Pbuf

0

30

* Pr(1,30)

* Pr(0,60)

* Pr(1,60)

* Pr(2,50)

* Pr(3,30) * Pr(3,20)
* Pr(3,10) * Pr(3,10)

* Pr(3,20)

   

Startvectortable T :

 V                    V                     

  V

        V

V        V        V 

0 3

3

2

2

2

3

1

1

1

1

0

0

0

          TH   200     190     180     170     160     150
Step

Q

Q1

Q   0

Q2

Q3

Determine threshold for σ=0,02

ordered PSSM:

−1 1 / −

0

0,25  / −

60

120

0,0625 / −

170
0,0156 / −

150
0,0156 / −

0,0039 / −

200 190

0,0039 / − 0,0117/ −

180 170

− / 0,0039 − / 0,07812

160
V        V        V                    V 

V        V                    V 

0,0039             0,00781            0,0195              0,0234            

10

20

60     10     10      0

60     20     10      0

50     30     10      0

30     20     10     10

30

20

10

0

Figure 3: In this example we use the same PSSM as in Figure 2. However, in each row the scores are
sorted in descending order, and the rows are sorted with the most discriminant row coming first. For
every threshold th , table T contains the index i, where the probability vectors Qi, Qi+1, . . . , Qm−1

have to be updated for the computation of Q(th). Vectors Q0, . . . , Qi−1 can be skipped. In step 0
Q(200) is computed, resulting in the update of Q0, Q1, Q2, Q3. In step 20, the buffers of Q3(170)
and Q3(160) are filled to avoid re-access of M(2, C) = max2 −20 = 30. In step 30, the buffer of
Q3(170) is added to Q3(170) and the computation is finished.
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4.4 Lazy evaluation of the permuted matrix

The restricted computation strategy performs best if there are only few iterations (i.e.
TminP (π, M) is close to scmax(M)) and in each iteration step the computation of Qk(t)
can be skipped in an early stage, i.e. for small values of k. The latter occurs to be more
likely if the first rows of M contain strongly discriminative values leading to the exclusion
of the small values by comparison with the intermediate thresholds. An example of this
situation is given in Table 1. Since Qk(t) is invariant to the permutation of the rows of M ,
we can sort the rows of M such that the most discriminative rows come first. We found
that the difference between the largest two values of a row is a suitable measure for the
level of discrimination since a larger difference increases the probability to remain below
the intermediate threshold. Since the rows of M are scanned several times, we save time
by initially sorting each row in order of descending score.

We divide the computation steps where the step d computes Q(scmax(M)− d): In step 0
only the maximal scores maxi, i ∈ [0, m− 1] in each row have to be evaluated.

In step d > 0 all scores M(i, a) ≥ maxi−d may contribute to Q(scmax(M)−d). Since in
general a score value M(i, a) ≥ maxi −d also gives contribution to Q(scmax(M)−l), l >

d we can save time by storing Qi(maxi−l), l > d in step d in a buffer and reusing the
buffer in steps d+1, d+2, . . .. This allows for the computation of Qk(scmax(M)−d) only
based on the buffer and scores M(i, a) = maxi−d while scores M(i, a) > maxi −d,
i ∈ [0, m − 1] can be omitted. We therefore have developed an algorithm LazyDistrib
employing lazy evaluation of the distribution: Given a threshold t, the algorithm only
evaluates parts of the DP vectors necessary to determine Qk(t) and simultaneously saves
subresults concerned with score t in an additional buffer matrix Pbuf (instead of recom-
puting them later) (see Figure 3). This is described by the following recurrence:

Qk(t− d) = Pbuf Mk
(t− d) +
∑

a∈Σ,M(k,a)≥maxk −d

Qk−1(t− d−M(k, a))f(a)

Pbuf Mk
(t− d) =

∑

a∈Σ,M(k−1,a)<maxk −d

Qk−1(t− d−M(k − 1, a))f(a)

In the present implementation, the algorithm assumes independently distributed symbols.
The algorithm can be extended to an order d-Markov model (w.r.t. the background alphabet
distribution). This increases the computation time by a factor of |Σ|d.

5 Implementation and Results

We implemented LAsearch, ESAsearch, and LazyDistrib in C as part of our program PoS-
SuMsearch. The program was compiled with the GNU C compiler (version 3.1, opti-
mization option -O3). All measurements were performed on a 8 CPU Sun UltraSparc
III computer running at 900MHz, with 64GB main memory (using only one CPU and a
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Experiment 1 Experiment 2 Experiment 3 Experiment 4
# searched sequences 59021 15668 5000 1 (H.s. Chr. 6)
total length 20.2 MB 17.9 MB 2.0 MB 162.9 MB
sequence source see [DC00] DBTSS 3.0 SwissProt 42.8 Sanger V1.4
sequence type/PSSM type protein DNA protein DNA
# PSSMs 4034 219 10931 576
PSSM source see [DC00] MatInspector PRINTS 36 TRANSFAC Prof. 6.2
avg. length of PSSMs 29.74 14.21 17.37 13.33
index construction (sec) 41 32 2.3 586
mdc (min) 129 − 480 −
MatInspector ×
FingerPrintScan ×
DN00 ×
LAsearch × × × ×
ESAsearch × × × ×

Table 2: Overview of the sequences and PSSMs used in the performed experiments. For the ex-
periments that use p-value or E-value cutoffs, we precomputed the cumulative score distributions
and stored them on file. mdc is the time needed for this task. In Experiment 1 we measured the
running time of the Java-program from [DC00], referred to by DN00. We ran DN00 with a max-
imum of 2 GB memory assigned to the Java virtual machine. DN00 constructs the suffix tree in
main memory and then performs the searches. For a fair comparison, we therefore measured the
total running time, and the time for matching the PSSMs (without suffix tree construction). For
Experiment 2, we implemented the matrix similarity scoring scheme (MSS) of MatInspector and
matched the PSSMs against both strands of the DNA sequences with different MSS cutoff values.
Instead of using the reverse strand we use the reverse complement M of the PSSM M , defined by
M(i, a) = M(m− 1− i, a) for all i ∈ [0, m− 1] and a ∈ Σ, where a is the Watson Crick comple-
ment of nucleotide a. This allows to use the same enhanced suffix array for both strands. The last
five rows show which programs were used in which experiment.

small fraction of the memory). Enhanced suffix arrays were constructed with the program
mkvtree, see http://www.vmatch.de/.

We performed four experiments comparing different programs for searching PSSMs. Ta-
ble 2 gives more details on the experimental input. In these experiments ESAsearch per-
formed very well, especially on nucleotide PSSMs, see Experiments 2 and 4. It is faster
than MatInspector by a factor between 11 and 697, depending on the stringency of the
given thresholds. The commercial advancement of MatInspector, called MATCH was not
available for our comparisons, but based on [MFG+03] we presume a running time com-
parable to MatInspector. Compared to LAsearch, ESAsearch is faster by a factor between
4 and 50. In the experiments using protein PSSMs, ESAsearch is faster than the method
of [DC00] by a factor between 1.5 and 1.8 (see Experiment 1). This is due to the better
locality behavior of the enhanced suffix array compared to a suffix tree. For larger p-values
LAsearch performs slightly better than ESAsearch. Increasing the stringency, the perfor-
mance of ESAsearch increases, resulting in a speedup of factor 1.5 for a p-value of 10−40.
We explain this behavior by the larger alphabet size, resulting in shorter common prefixes
and therefore smaller skipped areas of the enhanced suffix array. With increasing strin-
gency of the threshold, the number of positions in each suffix to score decreases, resulting
in smaller values for di, and finally larger skipped areas of the enhanced suffix array. Com-
pared to the FingerPrintScan program, ESAsearch achieves a speedup factor between 55
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Experiment 1: 4034 PSSMs in 21.2 MB protein sequences
p-value DN00 DN00 LAsearch ESAsearch

(total time) (search) +41 sec.
10
−10 65808 64939 39839 41813

10
−20 38773 37706 23786 24378

10
−30 21449 20362 14111 13084

10
−40 9606 8533 8067 5374

Experiment 2: 219 PSSMs in 18.8 MB DNA
MSS MatInspector LAsearch ESAsearch

+32 sec.
0.80 6440 2239 553
0.85 6344 1826 278
0.90 6303 1542 143
0.95 6283 1261 62
1.00 6273 452 9

Experiment 3: 10931 PSSMs in 2 MB protein sequences
E-value FingerPrintScan LAsearch ESAsearch

+2.3 sec.
10
−10 13521 1922 242

10
−20 13521 882 20

10
−30 13516 814 12

Experiment 4: 576 PSSMs in 169 MB DNA
MSS LAsearch ESAsearch

+586 sec.
0.85 38432 1217
0.90 34127 815
0.95 28705 596
1.00 11016 452

Table 3: Experiment 1: Running times in seconds of the different PSSM searching methods at
different levels of stringency, when searching for 4034 amino acid PSSMs in 59021 sequences
(21.2 MB) from SwissProt. These are the same PSSMs and sequences used in the experiments
of [DC00]. Experiment 2: Running times in seconds of MatInspector, LAsearch, and ESAsearch,
when searching 219 PSSMs on both strands of 18.8 MB DNA sequence data at different matrix sim-
ilarity score (MSS) cutoffs. Experiment 3: Running times in seconds of FingerPrintScan, LAsearch,
and ESAsearch when searching all 10931 PSSMs from the PRINTS database in the first 5000 se-
quences of SwissProt for different E-values. Experiment 4: Running times in seconds of LAsearch
and ESAsearch when searching 576 PSSMs in H. sapiens chr. 6 at different matrix similarity score
(MSS) cutoffs. The additional time needed for the construction of the enhanced suffix array is shown
for each experiment in the head of the ESAsearch column.

and 1126, see Experiment 3. In a final experiment, we compared algorithm LazyDistrib
with the DP-algorithm computing the complete distribution. LazyDistrib shows a speedup
factor of 16 on our test set (see Table 4).

p-value simple DP LazyDistrib speedup factor
10
−10 4800 479 10.0

10
−20 4800 320 15.0

10
−30 4800 304 15.8

10
−40 4800 298 16.1

Table 4: Running times in seconds when computing score thresholds for all 10931 PSSMs from the
PRINTS database, given different p-values.

6 Conclusion

We have presented a new non-heuristic algorithm for searching PSSMs, achieving ex-
pected sublinear running time. It shows superior performance over the most widely used
programs, especially for DNA sequences. The enhanced suffix array, on which the method
is based, requires only 9n bytes. This is a space reduction of more than 45 percent com-
pared to the 17n bytes implementation of [DC00]. Our second main contribution is a new
algorithm for the efficient calculation of score thresholds from user defined E-values and
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p-values. The algorithm allows for accurate on-the-fly calculations of thresholds, and has
the potential to replace formerly used approximation approaches.
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