
Generating Accurate and Compact Edit Scripts using Tree
Differencing

Veit Frick, Thomas Grassauer, Martin Pinzger1, Fabian Beck2

Abstract: For analyzing changes in source code, edit scripts are used to describe the differences
between two versions of a Ąle. These scripts consist of a list of actions that, applied to the source Ąle,
result in the new version of the Ąle. In contrast to line-based source code differencing, tree-based
approaches such as GumTree, MTDIFF, or ChangeDistiller extract changes by comparing the abstract
syntax trees (AST) of two versions of a source Ąle. One beneĄt of tree-based approaches is their ability
to capture moved (sub)trees in the AST. Our approach, the Iterative Java Matcher (IJM), builds upon
GumTree and aims at generating more accurate and compact edit scripts that capture the developerŠs
intent. This is achieved by improving the quality of the generated move and update actions, which are
the main source of inaccurate actions generated by previous approaches. To evaluate our approach, we
conducted a study with 11 external experts and manually analyzed the accuracy of 2400 randomly
selected edit actions. Comparing IJM to GumTree and MTDIFF, the results show that IJM provides
better accuracy for move and update actions and is more beneĄcial to understanding the changes.

Keywords: Change Extraction; Tree Differencing; Abstract Syntax Trees; Software Evolution

Edit scripts describe the differences between two versions of a source code Ąle. Such
scripts consist of a list of actions that, when applied to a given source code Ąle, correctly
transfers it from one version of that Ąle to another. While edit scripts gnerated by line-based
differencing algorithms are quickly generated and provide an overview, they are coarse
grained and do not consider syntax information. Approaches such as GumTree [Fa14] and
MTDIFF [DP16], compare the ASTs parsed from the source code Ąles instead. This allows
the algorithms to reĄne the granularity down to the level of single AST nodes.

Existing state-of-the-art approaches generate edit scripts that are correct in the sense of
transforming one AST into another. However, in a manual investigation, we found that those
edit scripts can consist of actions, especially move and update actions, that can be classiĄed
as inaccurate. Consider an edit script where every node of the original AST is deleted and
every node of the new AST is inserted. This edit script always correctly transfers the original
AST into the new AST, even if both ASTs are exactly the same. The actions of such an edit
script would be correct but not accurate. We propose the following deĄnition of an accurate
edit action: An accurate action has to fulĄll all of the following three criteria: The action
has to be comprehensible, helpful, and the most simple solution. We found that over 55% of
GumTreeŠs and over 81% of MTDIFFŠs generated move and update actions are inaccurate

1 Alpen-Adria-Universität Klagenfurt, SERG, vorname.nachname@aau.at
2 University of Duisburg-Essen, fabian.beck@paluno.uni-due.de

cba doi:10.18420/SE2020_24

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 85

https://creativecommons.org/licenses/by-sa/4.0/
vorname.nachname@aau.at
fabian.beck@paluno.uni-due.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_24


according to our deĄnition given above. We argue that such a high misclassiĄcation rate
signiĄcantly impacts the understanding of code changes, in particular of moved and updated
code. Our approach is based on the GumTree approach and aims at improving the matching
phase. We use the existing implementation of the algorithm by Chawathe et al. [Ch96] to
create the Ąnal edit scripts. For improving the matching of AST nodes and subtrees, we add
three matching strategies:

Partial Matching: We restrict the scope for the matching to selected parts of the source code,
each represented by a subtree in the AST. We assume that most of the changes happen within
such a subtree and only few changes happen between them. For instance, the source code
of a method is more likely to be changed and moved within the same method. The partial
matching approach is therefore to divide the AST into smaller parts that are individually
matched. IJM is built as a combination of different matchers.

Merged Name Nodes: Name nodes are children of various other nodes like method or
type declarations containing the name of their parent node as value. In order to prevent
these nodes from beeing matched with other name nodes, belonging to different parents,
IJM merges the name node together with their parent into one atomic node. This reduces
mismatched name nodes and shortens the AST.

Name Aware Matching: GumTree, in its bottom-up phase, only uses the node type to
determine whether or not two nodes can be matched. IJM addresses this by adding name-
awareness to the bottom-up phase of GumTree. This is realized by considering the similarity
of the names of the nodes in addition to their node types.

We evaluated and compared the accuracy and helpfulness of IJM to the state of the art
approaches GumTree and MTDIFF. A study with 2400 randomly selected edits shows a
higher accuracy for move and update actions without increasing the misclassiĄcation rate
for insert and delete actions. A study with 11 independent external experts showed that they
found more helpful for understanding the changes in a revision. Furthermore, an evaluation
on 10 Java open source projects shows no increase in edit script size and runtime.

References
[Ch96] Chawathe, Sudarshan S.; Rajaraman, Anand; Garcia-Molina, Hector; Widom, Jennifer:

Change Detection in Hierarchically Structured Information. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. SIGMOD Š96, ACM, New
York, NY, USA, pp. 493Ű504, 1996.

[DP16] Dotzler, G.; Philippsen, M.: Move-optimized source code tree differencing. In: Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering. ASE
Š16, pp. 660Ű671, Sept 2016.

[Fa14] Falleri, Jean-Rémy; Morandat, Floréal; Blanc, Xavier; Martinez, Matias; Monperrus, Martin:
Fine-grained and Accurate Source Code Differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. ASE Š14, ACM, New York,
NY, USA, pp. 313Ű324, 2014.

86 Veit Frick, Thomas Grassauer, Fabian Beck, Martin Pinzger


