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Abstract: Negative information provides important additional knowledge that is not
exploited for sensor data fusion tasks by default. This paper presents a new approach
to incorporate such information about unoccupied, observed areas or missing mea-
surements in the Kalman filtering process. For this purpose, a combination with a
grid-based method is proposed to generate a visibility map. This enables a plausibility
check and an enhanced understanding for the collaborative perception of the environ-
ment with multiple cognitive vehicles. Results from a realistic traffic simulation are
presented.

1 Introduction

The field of information fusion has a large amount of applications in advanced driver as-
sistance systems. Most systems require extensive knowledge and understanding of the
complex vehicle’s environment. The collaborative perception by an inter-vehicle network
promises a multitude of improvements. Each vehicle acts as sensor and fuses its informa-
tion with the perception of others to an enhanced description of the environment. Up to
now, we only consider positive measurements in this data fusion. The knowledge about
unoccupied observed areas is not modelled explicitly, even though such regions are impor-
tant for the trajectory planning of a moving vehicle. Considering the special application of
cooperative vehicles, negative information is required for a meaningful plausibility check.
The recognition of contradictions in overlapping measurement areas leads to different in-
terpretations regarding the reliability of the sensors or the existence of a detected object.

By negative information the general case is described that within a sensor controlled area
no objects are detected. With his illustrative Eiffel Tower example Thrun [3] already shows
that negative information is more difficult to deal with in an adequate way than positive
information. Depending on the situation, the lacking of a measurement can be expected,
explainable or leads to a contradiction. For the missing, three reasons are distinguished [2].
The expected object can be out of range, it is occluded or the measurement is incorrect
due to a sensor failure. For a meaningful interpretation of the negative information, the
measurement process and the field of view have to be modelled as exactly as possible.
Additionally, occlusions by other dynamic or stationary objects have to be considered.
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2 Concept and Implementation

The integration of negative information is already interesting for the tracking of single sen-
sor detections but it becomes necessary for the interpretation and the plausibility check of
data from multiple distributed sensors. The system for a collaborative perception of the en-
vironment with multiple vehicles is described in [4]. To fuse the perceptions of distributed
sensors, we assume that all agents are equipped with an inter-vehicle communication, a
system for the spatiotemporal alignment and environmental sensors. The standard track-
ing techniques are not able to deal with two-dimensional negative information for they
use positive measurement data only. To handle the spatial information of multiple moving
fields of view, the utilization of a grid-based method is an expedient approach.

In our concept shown in Fig. 1 we represent the negative information by an additional grid
that covers the whole interesting region with rectangular cells of constant size. In the grid
map, the field of view of each single sensor S1 to Sn is registered according to the vehicle’s
pose. This leads to the so-called visibility map. Additionally, we model the detection
probability PD over the field of view of every sensor. Thereby, a specific probability is
assigned to each cell depending on the variable sensor configuration. An object is detected
by the sensor with the corresponding detection probability of its cell. Furthermore, the
occlusion of other grid cells can be noticed. In the visibility map, observed unoccupied
areas are documented and in case of overlapping fields of view inconsistencies become
obvious in the plausibility check. The visibility map is updated for each measurement
interval.

Figure 1: Concept of integrating negative information in the fusion process.

As all grid-based methods, the visibility map itself is not expedient for the data association,
filtering and tracking of fast moving vehicles. Therefore, we combine the grid with the
centralized tracking algorithm. First, the object measurements from multiple vehicles are
transformed into global Cartesian coordinates. The multiple object tracking using Kalman
filters with a constant velocity model yields directly fused tracks. For the association of
new measurements from the sensors S1 to Sn we adopt the cheap Joint Probabilistic Data
Association (cJPDA) filter [1]. The association is improved by a priori information of the
visibility map. At the end of a measurement interval, the updated tracks are compared with
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the expectations from the visibility map to check the plausibility. For the combination of
the visibility map with the tracking procedure, we introduce a check matrix CPij for each
pair of sensor and object (i, j):
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CPij contains all time steps during the sensor and object life cycle defining the measure-
ment intervals J = (ti−1, ti] and the corresponding detection probability PD(ti). The
update mark UM is set to 1 and the failure mark FM to 0, if the track of the object i is
updated by a measurement of sensor j as expected. Missing detections (UM = 0) leading
to a contradiction between the expected and the actual measurement are recognized by
comparing the update mark with the detection probability. After an occlusion check, the
sensor failure is marked by setting the failure mark FM to 1. At the end of each inter-
val, tracks are predicted or terminated according to their covariance, the visibility map is
updated and the markers reset.

There are different possibilities to interpret and handle information about a missing de-
tection due to sensor failure. If we suppose an irregular sensor failure, the function of
the sensor could be defective. This could be considered by reducing the reliability of the
sensor detections according to the failure mark, e. g. by an adjustment of the association
weight in the cJPDA filter. Another method is the reduction of the sensor’s detection prob-
ability in the visibility map. On the other hand, a missing but expected measurement can
be interpreted to the disadvantage of the object. Increasing the covariance of the process
noise could be an adequate means for this. Exemplarily, we use negative information to
adopt the existence probability Pexist of a detected object. By the first detection, the exis-
tence probability is assumed to be 50%. We suppose to have N sensors in whose field of
view the object is located, m sensor vehicles thereof which have detected the object and
n sensor vehicles which have failed contrary to expectations the detection. At the end of
each measurement interval J , the existence probability of the object is adjusted according
to the following linear model:

m > n : Pexist(ti) = Pexist(ti−1) + ε ; (2)
m ≤ n : Pexist(ti) = Pexist(ti−1) − ε . (3)

m and n can be determined by means of the update and failure marks. The value ε of
changing is arbitrarily chosen. The existence probability is increased if the majority of
the expected sensors detects the object. The upper limit of the probability is determined
according to the sensors’ reliability and the number N of sensors. The confidence in the
existence of an object will be higher if more than one sensor validates the detection.
If the majority of sensors fails unexpectedly, Pexist is decreased in order to take into ac-
count the contradiction between the sensor measurements. In our model, the decreasing of
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the existence probability is described as limited by a minimum value:

n > 0 : Pexist, min =
m

m + n
=

m

N
. (4)

In case of at least one unexpectedly missing measurement, Pexist, min is chosen as the ratio
between the number of sensors m which have detected the object and the amount N that
should have seen the object. The existence probability is valuable as new criterion for the
termination of an object track.

3 Results

To evaluate our approach, we generated a traffic scenario as depicted in Fig. 2 with our
microscopic traffic simulation that provides realistic measurement data, e. g. of a radar
sensor. The cognitive vehicle S1 is driving straight forward on the left lane of a road, de-
tecting another vehicle #1 in front of it. While #1 is crossing the junction (time t1 – t2),
it is detected by S1 and S2. From the southern side street, S2 turns parallel to S1 on the
right lane. Now, their fields of view are overlapping and vehicle #1 is detected by both (t3
– tend). Via communication the cooperative vehicles know each other. When the fields of

Figure 2: Simulated scenario.

view of S1 and S2 are overlapping in the junction, S1’s detection of object #1 is validated
by the measurement of S2. Therefore, the existence probability of #1 in Fig. 3(a) increases
compared to the probability feasible by a single sensor.
To test the algorithm in case of sensor failure we incorporate such failures in the simu-
lation. The detection of #1 by S2 is missing during the junction crossing and from t3 to
t4. The fused detections yield a continuous track of #1, but the existence probability in
Fig. 3(b) decreases due to the unexpected contradiction between the measurements which
is not explainable by occlusion. Without the negative information in the visibility map, the
missing detections of S2 would not be considered in the fusion process.
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(a) (b)

Figure 3: Existence probability for single and double detection of object #1 in the simulated scenario
(a) and in case of unexpected sensor failure (b).

4 Conclusions

The concept of incorporating negative information in the sensor data fusion process of
cooperative vehicles yields interesting new possibilities for the understanding of the situa-
tion. It enables a plausibility check in overlapping measurement areas with consideration
of observed vacant areas. The consistency of the collaborative description of the environ-
ment is increased. Future work will analyze different effects of utilizing negative informa-
tion to integrate contradictory information due to different types of faulty detections.
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