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Preface

This volume contains papers presented at the German Conference on Bioinformat-
ics, GCB 2009, held in Halle (Saale), Germany, September 28-30, 2009. The Ger-
man Conference on Bioinformatics is an annual, international conference, which
provides a forum for the presentation of current research in bioinformatics and
computational biology. It is organized on behalf of the Special Interest Group on
Informatics in Biology of the German Society of Computer Science (GI) and the
German Society of Chemical Technique and Biotechnology (Dechema) in coopera-
tion with the German Society for Biochemistry and Molecular Biology (GBM).

Six leading scientists were invited to give keynote lectures to the conference.
Svante Pääbo spoke on “A Neandertal Perspective on Human Origins”, David
Fell on “Building and Analyzing Genome-Scale Models of Metabolism”, and Ewan
Birney on “Ensembl and ENCODE: Understanding our genome and its variation”.
The focus of GCB 2009 — applying bioinformatics approaches to the field of plant
science — is reflected in the keynotes “Phenotyping of Plants: Quantification of
Structure and Function — Concepts and Infrastructure” by Ulrich Schurr and
“Challenges of utilizing plant genetic resources” by Andreas Graner. The lecture
by Theo van Hintum on “The role of bioinformatics in a global attempt to fight
hunger” was given open to the general public.

The scientific program comprised 22 contributed talks presenting 18 regular and
four short papers. These were selected from a total of 47 submissions after review
by the program committee All regular papers and one short paper are collected in
this proceedings. The remaining short papers and the 128 poster abstracts accepted
to be presented at the poster session are published in a separate volume.

We like to thank all program committee members and all local organizers and
helpers for the efforts. Thanks are also due to all contributing to and participating
in GCB 2009 and the sponsors for their financial support of the conference. Special
thanks to Matthias Hübenthal for compiling these proceedings.

August 2009, Ivo Große, Martin Luther University Halle-Wittenberg
Steffen Neumann, IPB Halle

Stefan Posch, Martin Luther University Halle-Wittenberg
Falk Schreiber, University of Halle-Wittenberg

& IPK Gatersleben, Germany
Peter F. Stadler, University Leipzig
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2D Projections of RNA folding Landscapes

Ronny Lorenz, Christoph Flamm, Ivo L. Hofacker
{ronny, xtof, ivo}@tbi.univie.ac.at

Institute for Theoretical Chemistry
University of Vienna, Währingerstraße 17, 1090 Wien, Austria

Abstract: The analysis of RNA folding landscapes yields insights into the kinetic fold-
ing behavior not available from classical structure prediction methods. This is espe-
cially important for multi-stable RNAs whose function is related to structural changes,
as in the case of riboswitches. However, exact methods such as barrier tree analysis
scale exponentially with sequence length. Here we present an algorithm that com-
putes a projection of the energy landscape into two dimensions, namely the distances
to two reference structures. This yields an abstraction of the high-dimensional energy
landscape that can be conveniently visualized, and can serve as the basis for estimating
energy barriers and refolding pathways. With an asymptotic time complexity of O(n7)
the algorithm is computationally demanding. However, by exploiting the sparsity of
the dynamic programming matrices and parallelization for multi-core processors, our
implementation is practical for sequences of up to 400 nt, which includes most RNAs
of biological interest.

1 Introduction

Structure formation of RNA molecules is crucial for the function of non-coding RNAs
(ncRNAs) as well as for coding mRNAs with regulatory elements like riboswitches and
attenuators. Some RNAs possess distinct meta-stable structures with different biological
activity. A prime example are riboswitches that regulate gene expression depending on
the presence or absence of a small ligand molecule. The pathogenity of viral agents like
viroids is achieved by distinct meta stable structures of their ’genome’. While efficient
RNA folding algorithms such as mfold [Zuk89] or the Vienna RNA package [HFS+94]
can be used to compute most equilibrium properties of an RNA molecule, they provide
little information on folding dynamics. In this case one has to resort to either stochas-
tic simulation of the folding process [FHMS+01, IS00, GFW+08] or analysis of the en-
ergy landscape based on enumeration or sampling. In particular the barriers program
[FHSW02] is used to find all local minima in the energy landscape and their connecting
transition states and energy barriers. The algorithm is based on a complete enumeration of
all low-energy conformations [WFHS99] in the landscape and therefore scales exponen-
tially with sequence length. In contrast, the paRNAss tool [GHR99] relies on sampling
structures and clustering in order to detect multi-stable RNAs but gives no information on
energy barriers.

The dynamic programming (DP) approach to RNA folding can also be extended to obtain

Lorenz et al. 11



more information on the energy landscape: Cupal et al. [CHS96] proposed an algorithm
that computes the density of states, i.e. the number of structures that fall into a particular
energy bin, by extending the usual DP table into a third dimension corresponding to the
energy bins. The RNAbor algorithm [FMC07], uses the base pair distance to a reference
structure as the additional dimension and computes the optimal secondary structure as well
as partition function for each distance class (δ-neighborhood).

Both approaches can be viewed as a one-dimensional projection of the high dimensional
energy landscape, which however results into a drastic loss of information. Here, we
describe a related method that employs the distances to two reference structures in order
to compute a 2D projection which retains enough information to predict qualitative folding
behavior and is easy to visualize. In particular, we define a κ, λ - neighborhood to be all
secondary structures s with dBP(s1, s) = κ and dBP(s2, s) = λ, where dBP(sa, sb) is the
base pair distance of sa and sb, and proceed to compute minimum free energy (MFE)
structure, as well as partition function and Boltzmann weighted structure samples for each
κ, λ - neighborhood .

2 Methods

2.1 Minimum free energy algorithm

In the following we will write (i, j) to denote a base pair between the ith and jth nu-
cleotide. A secondary structure s is regarded as a set of base pairs, the base pair dis-
tance between two structures is defined as dBP(s1, s2) = |s1 ∪ s2| − |s1 ∩ s2| and
equals the number of base pairs present in either but not both structures. We will write
s[i, j] = {(p, q) ∈ s : i ≤ p < q ≤ j}, to identify the substructure on the sequence
interval [i, j]. E(s) denotes the free energy of structure s.

For reference, we reproduce below the classic recurrences for MFE folding, which we
will extend to the κ, λ - neighborhood in the following section. Note that the recursions
employ an unambiguous decomposition of secondary structures as implemented in the
Vienna RNA package [HFS+94].

Fi,j = min
%

Fi,j−1, min
i<k≤j

Fik + Ck+1,j

8
Ci,j = min

%
H(i, j), min

i<k<l<j
Ckl + I(i, j; k, l), min

i<u<j
Mi+1,u + M̂u+1,j−1 + a

8
Mi,j = min

%
min

i<u<j
(u − i − 1)c + Cu+1,j + b, min

i<u<j
Mi,u + Cu+1,j + b, Mi,j−1 + c

8
M̂i,j = min

)
M̂i,j−1 + c, Cij + b

#
(1)

The upper triangular matrices Fi,j , Ci,j , Mi,j and M̂i,j contain the optimal folding energy
on the sequence interval [i, j], optimal energy given that (i, j) form a pair, given that i and j

12 Lorenz et al.



reside in a multi-loop, and for multi-loop components with exactly one stem in the interval
[i, j], respectively. H(i, j) denotes the energy of a haipin-loop closed by (i, j), I(i, j, p, q)
the energy of an interior-loop closed by (i, j) and (p, q). The parameters a, b, and c contain
the penalties for closing a multi-loop, for adding a multi-loop component, and enlarging a
multi-loop by one unpaired base. We use the energy parameters as tabulated by the Turner
group [MSZT99]. After filling the matrices the MFE structure is found by backtracking in
the usual manner.

2.2 Minimum free energy κ, λ-neighbors

For a given RNA sequence S and two fixed reference structures s1 and s2, the MFE version
of the κ, λ - neighborhood algorithm computes energetically optimal structures sκ,λ

opt ∈
Sκ,λ where Sκ,λ = {s | dBP(s1, s) = κ ∧ dBP(s, s2) = λ} is the κ, λ - neighborhood of
reference structure s1 and s2. We extend the recursions (1) such that for each entry of the
energy matrices F ,C,M and M̂ the optimal energy contribution of substructures s[i, j]
with dBP(s1[i, j], s[i, j]) = κ and dBP(s2[i, j], s[i, j]) = λ are computed. This leads to
two additional dimensions in the energy matrices denoted by Fκ,λ,Cκ,λ,Mκ,λ and M̂κ,λ.
Since closing base pairs may lead to an increase of the base pair distance to both reference
structures s1 and s2, additional decomposition constraints have to be introduced in the
recurrences.

A hairpin loop closed by (i, j), for example, contributes to Cκ,λ
i,j only if the substructure

s[i, j] consisting of the single pair {(i, j)} only has distances κ and λ to the two substruc-
tures s1[i, j] and s2[i, j], respectively. Thus, we introduce the shorthand

H(i, j, κ, λ) =
% H(i, j) if dBP(s1[i, j], {(i, j)}) = κ, dBP(s2[i, j], {(i, j)}) = λ

∞ else
(2)

For non-hairpin loops, we introduce five terms δx
1 − δx

5 , where the superscript x is either 1
or 2, denoting the reference structure.

δx
1 (i, j) = dBP(sx[i, j], sx[i, j − 1]) (3)

δx
2 (i, j, u) = dBP(sx[i, j], sx[i, u − 1] ∪ sx[u, j]) (4)

δx
3 (i, j, p, q) = dBP(sx[i, j], {(i, j)} ∪ sx[p, q]) (5)
δx
4 (i, j, u) = dBP(sx[i, j], {(i, j)} ∪ sx[i + 1, u] ∪ sx[u + 1, j − 1]) (6)

δx
5 (i, j, u) = dBP(sx[i, j], sx[u, j]) (7)

Each of the δ in eqs. (3-7) covers a distinct case in the energy minimization recursions,
and denotes the minimal distance to the reference structure incurred when decomposing a
substructure into two parts (since base pairs in the reference structure crossing the decom-
position splitting positions j, u, p and q must be opened). For example δx

1 (i, j) equals 1,
if j is paired in the structure interval sx[i, j] of the reference structure sx and 0 otherwise.

Decompositions into more than one substructure lead to additional combinatorial possibil-
ities. They are taken into account by minimizing over (ω, ω̂) pairs, where the sum (ω + ω̂)

Lorenz et al. 13



reflects the residual of the base pair distance between the substructures and the references.

Thus, the recursions to compute E(sκ,λ
opt ) = Fκ,λ

1,n are:

Fκ,λ
i,j = min


F

κ−δ1
1(i,j),λ−δ2

1(i,j)
i,j−1 ,

min
i≤u<j

min
ω1+ω̂1=κ−δ1

2(i,j,u)

ω2+ω̂2=λ−δ2
2(i,j,u)

Fω1,ω2
i,u−1 + Cω̂1,ω̂2

u,j

Cκ,λ
i,j = min


H(i, j, κ, λ),

min
i<p<q<j

)
C

κ−δ1
3(i,j,p,q),λ−δ2

3(i,j,p,q)
p,q + I(i, j, p, q)

#
,

min
i<u<j

min
ω1+ω̂1=κ−δ1

4(i,j,u)

ω2+ω̂2=λ−δ2
4(i,j,u)

)
Mω1,ω2

i+1,u + M̂ ω̂1,ω̂2
u+1,j−1 + a

#

Mκ,λ
i,j = min


M

κ−δ1
1(i,j−1),λ−δ2

1(i,j)
i,j + c

min
i≤u<j

)
(u − i) · c + C

κ−δ1
5(i,j,u),λ−δ2

5(i,j,u)
u,j + b

#
,

min
i≤u<j

min
ω1+ω̂1=κ−δ1

2(i,j,u)

ω2+ω̂2=λ−δ2
2(i,j,u)

)
Mω1,ω2

i,u−1 + Cω̂1,ω̂2
u,j + b

#
,

M̂κ,λ
i,j = min

(
Cκ,λ

i,j + b

M̂
κ−δ1

1(i,j),λ−δ2
1(i,j)

i,j−1 + c,
(8)

2.3 Time and memory complexity

Regarding the time complexity of the algorithm, a contribution of O(n3), where n denotes
RNA sequence length is implicit due to the underlying MFE folding algorithm. The ad-
ditional degrees of freedom of the multi-loop decompositions in Cκ,λ

i,j and Mκ,λ
i,j increase

the complexity by a factor of κ · λ. The extension of the dynamic programming matrices
by two further dimensions κ and λ additionally requires quadratically more effort. If the
maximum distance values of κ and λ is limited to κ ≤ d1 and λ ≤ d2, the time complex-
ity becomes O(n3 · d2

1 · d2
2). Since the maximum number of base pairs on a sequence of

length n is ∼ n
2 , the maximum achievable base pair distance between any two structures

is bounded by n. Thus, the total asymptotic time complexity of the κ, λ - neighborhood
algorithm results in O(n7) for any distance boundaries d1 and d2.

A similar argument holds for the memory complexity which is O(n2 · d1 · d2) = O(n4).
Thus, the memory increase compared to regular MFE folding is d1 · d2 ≤ n2.
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2.4 Partition function of the κ, λ - neighborhood

A modification of algorithm (8) to compute the partition function

Qκ,λ =
?

sx∈Sκ,λ

e−E(sx)/kT (9)

for each κ, λ - neighborhood according to the algorithm of McCaskill et al. [McC90] is
straight forward. The energy contributions are Boltzmann weighted and all sums/minimi-
zations are replaced by products/sums. This can be done, as the recursions (8) perform
unique decompositions and therefore already constitute a partitioning.

Since clustering of the complete secondary structure space into κ, λ - neighborhoods is a
partitioning too,

=
κ,λ Qκ,λ = Q, where Q =

=
s e−E(s)/kT is the partition function of

the complete ensemble of all secondary structures.

The Boltzmann probabilities of a κ, λ - neighborhood in the complete ensemble and for a
structure sx ∈ Sκ,λ inside a κ, λ - neighborhood become

P (Sκ,λ) =
Qκ,λ

Q
and P (sx ∈ Sκ.λ) =

e−E(sx)/kT

Qκ,λ
(10)

Stochastic backtracking yields a Boltzmann weighted sample of representative structures.

2.5 Sparse matrix approach and Parallelization

Some properties of the κ, λ - neighborhood can be used to improve the runtime and re-
duce memory requirements. Due to the definition of the κ, λ - neighborhood of two struc-
tures s1 and s2, there exist combinations of κ, λ distance pairs which do not contribute
to any solution. For example, there is no κ, λ-neighbor with κ + λ < dBP(s1, s2). An
increase or decrease of the base pair distance of a structure s to one of the reference struc-
tures implicitly changes the base pair distance to the other reference. In particular, if
dBP(s1, s2) = even (resp. odd), then κ + λ = even (resp. odd). This checkerboard-like
pattern of the κ, λ - neighborhood roughly halves the number of entries in the extended
dimensions κ and λ actually needed for the calculations. Furthermore, the maximum dis-
tance dmax to any reference structure in any substructure s[i, j] of length m = j − i + 1
is constrained to dmax < m. These observations introduce sparsity in the dynamic pro-
gramming matrices. Hence, two-dimensional matrices F, C, M, M̂ with lists of triples,
containing energy E, distance κ and distance λ at each matrix entry can be used. By it-
erating over the list instead of all κ, λ combinations, impossible structure formations are
avoided.

Further runtime improvements can be obtained through parallelization by noting that all
entries of the matrices F , C, M and M̂ with j − i = const. can be computed concurrently
if the matrices are filled in diagonal order, see [FHS00].
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Figure 1: Runtimes of MFE calculation for the complete κ, λ - neighborhood . Timings are given for
naı̈ve approach (1st implementation) and the sparse matrix approach (SMA) using 1, 4 and 8 threads
on a dual quad-core Intel R% Xeon R% E5450 @3.00GHz with 32GB RAM. Runtimes are means of 15
random sequences. Reference structures used were the MFE structure and the open chain. With 8
processor cores, a sequence of 400 nt can be processed in about 5.8h.

3 Results

3.1 Implementation

The partition function as well as the MFE version of the κ, λ - neighborhood algorithm was
implemented in ISO C and will be available as a stand-alone program RNA2Dfold in
one of the next releases of the Vienna RNA Package. A release candidate is available from
http://www.tbi.univie.ac.at/˜ronny/RNA/. The implementation provides
most of the command line options of RNAfold such as different dangling end models
and temperature. Given an RNA sequence S and two reference structures s1 and s2,
RNA2Dfold computes for each κ, λ - neighborhood the MFE structure sκ,λ

opt and its free
energy, the probabilities P (Sκ,λ), P (sκ,λ

opt ∈ Sκ.λ), the probability of sκ,λ
opt in the complete

ensemble and the Gibbs free energy ΔGκ,λ. The maximum values d1 and d2 with κ ≤ d1

and λ ≤ d2 can be specified by the user.

For parallelization we used OpenMP which allows efficient use of modern multi-core sys-
tems while requiring only small changes to the serial version of the source code. The
performance gain from exploiting sparsity as well as parallelization is demonstrated in
Fig. 1. The resulting speedups for 4 and 8 cores were 2.0 and 2.9, respectively. On mod-
ern multi-core systems RNA2Dfold can easily compute the MFE structures and partition
functions for all κ, λ - neighborhoods for RNA sequences up to about 400 nt. This length
range covers functional RNAs such as riboswitches and viroids.
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3.2 2D Projection of the energy landscape

The probability densities and partition functions calculated by RNA2Dfold can be used
for several secondary structure space analysis. One of the possible applications of the κ, λ -
neighborhood algorithm is the prediction of metastable structure states and the detection of
bi-stable RNA switches. Typically, the MFE structure is used as the first reference structure
s1. A meta-stable state, suitable as second reference structure s2, can be obtained e.g. from
a first run of RNA2Dfold using the open chain as second reference, and selecting s2 from
the sκ,λ

opt . We note that this provides an alternative to the paRNAss approach for detecting
RNA switches that avoids sampling errors. Computing the κ, λ - neighborhood of s1 and
s2 and plotting the MFE values, probability densities and/or the Gibbs free energy of the
partitioned landscape as a two dimensional height map reveals a qualitative picture of the
roughness of the landscape. In the examples of Fig. 2 both RNAs can be clearly recognized
as bi-stable switches. Molecules with more than 2 long-lived meta-stable states should
exhibit additional minima in the interior of the height map. Furthermore, the height map
yields a lower bound on the energy barrier between s1 and s2, and indicates the difficulty
of refolding from s1 to s2 and vice versa.

3.3 A heuristic for finding non direct refolding paths

Most existing approaches utilize heuristics that consider only direct (minimal length) re-
folding paths between two states [MH98, FHMS+01]. Since direct paths allow no detours,
potentially stabilizing base pairs which are not in either of the two ground states cannot
be formed. This can lead to intermediate structures with energetically unfavorable loop
motifs and thus unnecessarily high energy barriers. In contrast, a refolding path with guar-
anteed minimal barrier can be obtained from the barriers program [FHSW02]. Since
the approach is based of exhaustive enumeration of the energy landscape, it is limited to
short sequences, typically less than a 100 nt.

The κ, λ - neighborhood can be used as base for various heuristics estimating the refolding
path and energy barrier. Note however that taking the representatives sκ,λ

opt from a series
of adjacent κ, λ-neighbors does usually not yield a continuous path of adjacent structures.
Nevertheless, the height map already provides a lower bound for the height of the transis-
tion state and therefore for the energy barrier too. Direct path heuristics perform poorly
when the two structures are far apart. Therefore, a natural extension is to construct an
intermediate structure sm, termed mesh-point, thus splitting the path construction problem
between the two reference structures s1 to s2 into two path constructions from s1 to sm

and from sm to s2. The problem is of course to find suitable mesh points, and the κ, λ -
neighborhoods turn out to be an excellent starting point for this. The Pathfinder al-
gorithm given below (3.1) connects such mesh points using the direct path heuristic from
[FHMS+01]. The method produces indirect paths, since the mesh points need not lie on a
shortest path between s1 and s2.

After computing the κ, λ - neighborhood of the start (s1) and target (s2) structure, we test
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Algorithm 3.1 Pseudo-code of the Pathfinder(sa, sb, iter) algorithm where sa is the start
structure, sb is the stop structure, iter is the maximal number of iterations

MeshpointHeap ← ∅ /∗ initialize min-order mesh-point heap ∗/
bestpath ← DirectPath(sa, sb) /∗ get best refolding path so far ∗/
while Meshpoints available ∧ |MeshpointHeap| < m do

s ← Meshpoint structure /∗ sample a mesh point structure ∗/
path ← DirectPath(sa, s) + DirectPath(s, sb)
if Barrier(path) < Barrier(bestpath) then

insert(MeshpointHeap, (s, path, Barrier(path)))
end if

end while
if iter > 0 then

for 0 . . . m do
(s, path) ← pop(MeshpointHeap)
path ← Pathfinder(sa, s, iter − 1) + Pathfinder(s, sb, iter − 1)
if Barrier(path) < Barrier(bestpath) then

bestpath ← path
end if

end for
else

(s, path) ← pop(MeshpointHeap)
bestpath ← path

end if
return bestpath

as mesh-points all MFE structures sκ,λ
opt where κ+λ ≤ γ with a constant γ. This constraint

limits the maximal deviation from a direct path and allows an adjustable exploration of the
underlying energy landscape. Clearly, it is possible to recursively subdivide the problem
further if required (see Pseudocode). With this simple approach the Pathfinder algo-
rithm is able to find refolding paths with energy barriers very close or identical to those of
an exhaustive search using the barriers program [FHSW02]. Results for an artificially
designed RNA switch of 45 nt length revealed a barrier height of 10.7 kcal/mol (see Fig.
2A) which is the same as found with a barrier tree analysis. In contrast to that, a direct
path generated according to [FHMS+01] predicts an energy barrier of 13.33 kcal/mol.
As mentioned before, the heightmap already provides a lower bound for the energy bar-
rier. Here, direct paths are bounded by at least 13.3 kcal/mol, while indirect paths are
bounded by 10.0 kcal/mol. Refolding between the aptamer- and non-aptamer fold of the
add-riboswitch [RLGM07] (Fig. 2B) also shows the same energy barrier of 6.77 kcal/mol
for both, Pathfinder and barrier tree analysis, while a direct path exhibits 7.28 kcal/mol.

4 Conclusion

We introduced a method for a unique partitioning of the RNA secondary structure space,
in which structures are lumped together according to their base pair distances to two ref-
erence structures. In effect, this provides a 2D projection of the high-dimensional folding
space. To overcome the high time complexity of O(n7) our implementation exploits the
sparseness of the dynamic programming matrices as well as OpenMP parallelization. The

18 Lorenz et al.



0 5 10 15 20 25 30
bp-distance to mfe struct

0

5

10

15

20

25

30

bp
-d

is
ta

nc
e

to
al

te
rn

at
iv

e

0

0

-4

-4

-8

-8

-8

-12

-12

-16

-16

0 5 10 15 20
bp-distance to non-aptamer fold

0

5

10

15

20

bp
-d

is
ta

nc
e

to
ap

ta
m

er
fo

ld

-32

-32

-32

-34

-34

-34

-34

-36

BA

Figure 2: Gibbs free energy height map of all κ, λ - neighborhoods and projection of the re-
folding paths generated by barriers (red line) and the Pathfinder (blue dashed line)
without recursive refinement. Mesh-points are taken from the κ, λ - neighborhood of both
reference structures. A: MFE- and alternative structure of an artificial RNA switch with
sequence GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU and meta stable structure
conformations (((((.....)))))(((((.....)))))(((((.....))))) (MFE structure) and
((((((((((.....(((((.....))))).....)))))))))) (alternative structure). B: Aptamer-
and non-aptamer fold of an add-riboswitch [RLGM07]. In contrast to direct paths (straight diagonal
green line), the Pathfinder solution is as good as the (optimal) solution generated by barriers
in both cases. In B, identical refolding paths are obtained for Pathfinder and barriers anal-
ysis.

resulting program is fast enough to treat RNA molecules up to 400 nt which covers most
biologically interesting cases such as riboswitches and viroids.

The κ, λ - neighborhoods provide both a qualitative picture of the energy landscape, as
well as a convenient starting point for more detailed exploration. As an example we show
that it can be used to suggest excellent intermediate nodes for the construction of refolding
paths, resulting in a fast heuristic that often gives optimal results. Such heuristics are
needed e.g. for kinetic folding strategies like Kinwalker [GFW+08]. Furthermore, the
height maps could provide the starting point for methods that recognize RNA switches or
for coarse grained folding simulations.
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Abstract: Graphs are often used to describe and analyze the geometry and physic-
ochemical composition of biomolecular structures, such as chemical compounds and
protein active sites. A key problem in graph-based structure analysis is to define a
measure of similarity that enables a meaningful comparison of such structures. In
this regard, so-called kernel functions have recently attracted a lot of attention, es-
pecially since they allow for the application of a rich repertoire of methods from the
field of kernel-based machine learning. Most of the existing kernel functions on graph
structures, however, have been designed for the case of unlabeled and/or unweighted
graphs. Since proteins are often more naturally and more exactly represented in terms
of node-labeled and edge-weighted graphs, we propose corresponding extensions of
existing graph kernels. Moreover, we propose an instance of the substructure finger-
print kernel suitability for the analysis of protein binding sites. The performance of
these kernels is investigated by means of an experimental study in which graph kernels
are used as similarity measures in the context of classification.

1 Introduction

The functional analysis of proteins is a key research problem in the life sciences and a
main prerequisite for resolving the proteome and interactome of living cells, tissues and
organisms. Since improved technology has led to an increased number of known protein
structures, structure-based prediction of protein function has now become a viable alter-
native to classical sequence-based prediction methods. In fact, structure-based approaches
complement sequence-based methods in a reasonable way, as it is well-known that func-
tional similarity does not necessarily come along with sequence similarity [GMB96].

Prediction of protein function can be seen as a classification problem. In machine learn-
ing, a large repertoire of classification methods has been developed, most of them relying,
in one way or the other, on a kind of similarity measure between the objects to be clas-
sified. What is needed, therefore, is a measure of similarity between protein structures.
More specifically, our focus in this paper will be on the special case of protein binding
sites derived from crystal structures. To model such structures in a formal way, we re-
sort to a graph representation which is able to capture the most important geometrical and
physicochemical properties of a binding site.

For a long time, graphs have been used in chemoinformatics for the modeling of chemical
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compounds [BJ00]. In bioinformatics, they are becoming more and more important, too,
due to their general versatility in modeling complex structures such as proteins or inter-
action networks [BL04]. It is hence not surprising that a number of methods has been
developed for comparing graphs representing protein structures (e.g. [JIDG03; WHKK07;
FMKH09]), and for computing related similarity measures, for example based the con-
cepts of maximum (minimum) common subgraph (supergraph) [RGW02; RW02] or graph
edit distance [NB07].

In this context, so-called kernel functions (on graphs) have attracted increasing attention in
recent years[Gär03]. Here, the term ‘kernel’ refers to a class of functions that fulfill certain
mathematical properties and can typically be interpreted as similarity measures. These
functions are especially attractive as they can be used as a ‘plug-in’ for every kernel-based
machine learning method. In other words, as soon as a kernel function has been defined
on a certain class of objects, the related domain becomes amenable to these methods.

The random walk kernel [Gär03] and the shortest path kernel [Bor07] are among the most
prominent graph kernels that have been used in the fields of bio- or chemoinformatics.
However, as they have originally been defined for unweighted graphs, they are not imme-
diately applicable to the case of graphs modeling protein binding sites. In fact, as will be
explained in more detail in Section 2, binding sites are more naturally modeled in terms of
graphs with node labels and edge weights, and a representation ignoring labels and weights
would come along with an unacceptable loss of information. In Section 3, we therefore
extend the aforementioned kernel functions to the case of node-labeled and edge-weighted
graphs. Besides, we make use of the substructure fingerprint representation [FHZ06] to
define a class of kernels for protein binding sites. An experimental comparison of these
graph kernels will be presented in Section 4 and discussed in Section 5.

2 Modeling Protein Binding Sites

To model protein binding sites as graphs, we build upon CavBase [SHK01; SKK02], a
database developed for the purpose of identifying and extracting putative protein binding
sites from structural data deposited in the protein database (PDB) [BWF+00]. CavBase
detects putative binding sites as cavities on the surface of proteins by using the LIGSITE
algorithm [HRB97]. The geometry of a protein binding site is internally represented by a
set of pseudocenters, spatial points that represent the physico-chemical properties of a sur-
face patch within the binding site. Currently, CavBase uses seven types of pseudocenters
(donor, acceptor, donor-acceptor, pi, aromatic, aliphatic and metal) that account for dif-
ferent types of possible interactions between residues of the binding site and the substrate
of the protein. These pseudocenters are derived from the amino acid composition of the
binding site.

As a natural way to model such structures, we make use of node-labeled and edge-weighted
graphs. Nodes correspond to pseudocenters and are thus labeled with the pseudocenter
type. On average, a graph representation of a binding pocket has around 100 nodes, though
graphs with several hundred nodes and some extremes with thousands of nodes do exist.
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Edges are weighted by the Euclidean distance between the pseudocenters and thus cap-
ture the geometry of the binding site. To reduce the complexity of the representation and
increase algorithmic efficiency, we use an approximate representation in which edges ex-
ceeding a certain length are ignored; in this regard, a threshold of 11 Angström has proved
to be a reasonable choice [FMKH09]. Despite this approximation, our representation will
produce graphs that are rather dense, as approximately 20 percent of all pairs of nodes are
connected by an edge. Consequently, the graphs have a large number of cycles. Indeed, a
cycle-free representation will normally not be able to reproduce the geometry of a binding
site in an accurate way. As will be seen later on, this property leads to problems for certain
types of kernel functions.

Formally, a node-labeled and edge-weighted graph will be denoted by G = (V, E, lV , lE),
where V is a finite set of nodes and E ⊆ V × V a set of edges. Moreover, lV : V →
LV is a function that maps each node to one among a finite set of labels LV . Likewise,
lE : E → R+ is a mapping that assigns weights to edges. We define the size of a graph in
terms of its number of nodes |V |. The adjacency matrix of a graph G will be denoted by
A.

We note that, since our edges are undirected, it would be more correct to use a subset
instead of a tuple representation. For convenience, however, we stick to the simpler tu-
ple notation, with the implicit understanding that (u, v) ∈ E implies (v, u) ∈ E and
lE((u, v)) = lE((v, u)).

3 Kernels for Node-Labeled and Edge-Weighted Graphs

Let G be a set of objects, in our case graphs. A G × G → R mapping k is called kernel if
it is symmetric and positive definite, that is, k(x, y) = k(y, x) for all x, y ∈ G and

m?
i,j=1

cicjk(xi, xj) ≥ 0

for all m ∈ N, {c1, . . . , cm} ⊆ R, and {x1, . . . , xm} ⊆ G.

A generic way to define similarity measures for complex objects, such as graphs, is to
use decomposition techniques, that is, to decompose a complex object into a set of sim-
ple substructures of a specific type, and to reduce the comparison to the level of these
substructures. The idea is that, for such substructures, the definition of adequate similar-
ity measures is less difficult and, hopefully, the computation more efficient. Therefore,
graph kernels often belong to the class of R-convolution kernels, a special type of kernel
especially suitable for composite objects in a discrete space. Generally, an R-convolution
kernel k : G × G → R can be expressed in the following from:

k(G, G′) =
?

g∈R−1(G)

?
g!∈R−1(G!)

κ(g, g′) , (1)

where R−1(G) denotes a decomposition of G into substructures, and κ is a kernel defined
on such substructures. In the following, we consider specific instances of (1).
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3.1 Random Walk Kernels

Random walk kernels were introduced in [Gär03] for unweighted graphs. Roughly speak-
ing, they decompose a graph into sequences of nodes generated by random walks, and
count the number of identical random walks that can be found in two graphs. Thus, the
random walk kernel is an R-convolution kernels with substructures given by paths. In the
following, we present an extension of these kernels to the case of edge-weighted graphs.

Interestingly, to compute a graph kernel, it is not necessary to sample random walks. In-
stead, one can exploit an important property of the adjacency matrix A of a graph G,
namely that [An]i,j is the number of paths of length n from node i to node j; here, An

denotes the n-th power of A. Let G× = G×G′ be the product graph of the graphs G and
G′, where the node and the edge set of G× are defined as follows:

V× = { (vi, v
′
j) | vi ∈ V, v′

j ∈ V ′, lV (vi) = lV (v′j) }

E× =
& 7

(vi, v
′
j), (vk, v′l)

3 ∈ V× × V× | AlE(vi, vk) − lE(v′j , v
′
l)A ≤ Y

<
Since [An

×]i,j now corresponds to the number of equal paths of length n from node i to
node j that occur in G as well as in G′, the product graph G× allows one to calculate
k(G, G′) by performing simple matrix-operations. The requirement that node labels and
edge weights have to match along two paths is implicitly encoded in the definition of the
product graph (namely by the restriction to node pairs with lV (vi) = lV (v′j) and edges
with AlE(vi, v

′
j) − lE(vk, v′l)A ≤ Y); this idea was already used by [BOS+05], albeit only

for discrete edge labels. The similarity of the graphs G and G′, considering all equal paths
of length 1 to ∞, is finally given by

kRW (G, G′) =
|V×|?
i,j=1

0 ∞?
k=0

λk · Ak
×

*
i,j

, (2)

where λk is a factor that guarantees convergence of the series. For certain choices of
λ, the above series can be calculated in a simple way. Choosing λk = (1/a)k, with
a ≥ maxv∈V×{degree(v)}, leads to the geometrical series, and (2) reduces to

kRWgeo
(G, G′) =

|V×|?
i,j=1

-
(I − λ · A×)−1

@
i,j

, (3)

where I is the unit matrix. Choosing λk = βk

k! leads to the exponential series and to

kRWexp
(G, G′) =

|V×|?
i,j=1

-
eβ·A×

@
i,j

.

Since the product graph is of quadratic size and matrix inversion has cubic complexity, the
complexity of the random walk kernel is O(M6), with M = max{|V |, |V ′|}.
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3.2 Shortest Path Kernels

The random walk kernel considers an extremely large number of substructures (paths).
Intuitively, this may not only come with a high computational complexity but also produce
a certain redundancy. To reduce the number of substructures, Borgwardt [BK05] proposed
to consider only the shortest paths between two nodes, an idea which leads to the shortest
path kernel. Again, we propose an extension of this kernel to the case of edge-weighted
graphs.

For two nodes vi, vj ∈ G, let sp(vi, vj) denote the length of the shortest path (sum of edge
weights on the path) between these nodes, and let

SP (vi, vj) = ({lV (vi), lV (vj)}, sp(vi, vj)) .

Thus, a path is represented by its length and the labels of the start and the end node (while
the node labels in-between are ignored). A simple kernel on substructures of this type is
the identity (Dirac kernel):

κpath(SP (vi, vj), SP (vk, vl)) =

(
1 if SP (vi, vj) = SP (vk, vl)
0 else

.

Since testing equality is of course not reasonable for real-valued edge lengths, we assume
these lengths to be discretized (into bins of length δ).

Now, we can define the generalized shortest path kernel as follows:

kSP (G, G′) =
1
C

?
vi,vj∈V

?
vk,vl∈V !

κpath(SP (vi, vj), SP (vk, vl)) ,

where C = 1
4 (|V |2 − |V |) · (|V ′|2 − |V ′|) is a normalizing factor that guarantees 0 ≤

kSP (G, G′) ≤ 1.

To analyze the complexity of the shortest path kernel, assume |V | = |V ′| = M . The
computation of all shortest paths can be done using the Floyd-Warshall [Flo62] algorithm
in time O(M3). The results are stored in a shortest path matrix, in which the entry at
position (i, j) gives the cost of the shortest path from node i to node j. We consider in a
pairwise way all paths in both shortest path matrices and compare them using κpath which
needs time O(1). Since there are M4 comparisons to perform, the shortest path kernel
needs time O(M4).

3.3 Fingerprint Kernels

A very simple type of kernel, which has nevertheless been applied successfully for learning
on structured data such as molecules [FHZ06], is based on the idea of mapping a structured
object to a fingerprint vector of fixed length first, and to compare these vectors afterward.
Typically, each entry in this vector informs about the presence or absence of a specific
substructure (pattern).
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In our case, we consider as substructures all non-isomorphic graphs of size 3. Assuming
n distinct node and k distinct edge labels, there exist

N(n, k) =
5

n

3

1
· k3 + n(n − 1) · k ·

5
k + 1

2

1
+ n ·

5
k + 2

3

1
substructures of this type, which can be verified by means of a case distinction: (i) All
three node labels are distinct: There are

7
n
3

3
possibilities to choose 3 distinct labels from

a set of n labels. Moreover, since edges are ordered uniquely in this case, there exist k3

possibilities for the edge labels. (ii) Two node labels are equal and different from the third:
There are n(n − 1) possibilities to choose the two labels, one for the identically labeled
nodes and one for the other. Assuming an arbitrary ordering on the nodes and edges, an
isomorphism can switch the equally labeled nodes so that the ordering of two edges will
change, too. To map isomorphic graphs uniquely, we sort the edges, which leads to only
k·7k+1

2

3
possible edge combinations. (iii) All nodes have equal label: An isomorphism can

reorder all nodes in this case. Therefore, to obtain a unique representation of the possible
graphs, all edges must be sorted according to their label. Thus, there are n possible node
labels and

7
k+2
3

3
edge combinations.

For a graph G, let

fG =
7
G H t1, G H t2, . . . , G H tN(n,k)

3 ∈ {0, 1}N(n,k)

where {t1, . . . , tN(n,k)} is the set of all non-isomorphic subgraphs of size 3, numbered in
an arbitrary but fixed order. The predicate G H ti tests whether ti is contained in G and,
by convention, returns 1 if it evaluates to true and 0 otherwise. To compare two graphs
G and G′ in terms of their respective fingerprint vectors fG and fG! , different kernels can
be used. The simplest approach is to look for the Hamming distance of the two vectors,
which leads to

kFPH(G, G′) =
1

N(n, k)

N(n,k)?
i=1

κδ([fG]i, [fG! ]i) , (4)

where [fG]i denotes the i-th entry in the vector fG, and κδ is the Dirac kernel (i.e.,
κδ(x, y) = 1 if x = y and = 0 if x <= y). As a potential disadvantage of this approach,
note that it does not only reward the co-occurrence of a substructure in both graphs, but
also the simultaneous absence: If the i-th pattern neither occurs in G nor in G′, then
κδ([fG]i, [fG! ]i) = κδ(0, 0) = 1, which may not be desirable. An alternative measure
avoiding this problem is the well-known Jaccard coefficient:

kFPJ(G, G′) =
=N(n,k)

i=1 min([fG]i, [fG! ]i)=N(n,k)
i=1 max([fG]i, [fG! ]i)

. (5)

Our current implementation of the fingerprint approach is a naive one, in which testing the
presence of a substructure in a graph G has complexity O(M3), with M = |V | the number
of nodes in G. Thus, the overall complexity of computing k(G, G′) is O(N(n, k) · M3),
with M = max(|V |, |V ′|). Of course, more efficient implementations are possible, for
example based on the use of hashing techniques [WKHK04].
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4 Experimental Evaluation

In our experiments, we compared the graph kernels discussed in the previous section,
namely the random walk kernel (RW) using (3) with a given by the maximum size of
the graphs in the data set (plus 1), the shortest path kernel (SP), and the fingerprint kernel
based on (4) and (5), respectively (FPH and FPJ). Moreover, to get an idea of their absolute
performance, we additionally included two state-of-the-art methods for comparing protein
binding sites in terms of their similarity. Both approaches are based on the concept of
a graph alignment that has recently been introduced in [WHKK07]. The first method
(GA) is the original algorithm proposed in the same paper, which is based on a heuristic
(greedy) optimization strategy. The second method (GAVEO) makes use of evolutionary
optimization techniques to compute a graph alignment [FMKH09]. Both methods need a
number of parameters, which we defined as recommended in [WHKK07]. For the kernel
methods, we set the parameter Y (tolerance for edge length comparison) to 0.2.

The assessment of a similarity measure for biomolecular structures, such as protein bind-
ing sites, is clearly a non-trivial problem. In particular, since the concept of similarity by
itself is rather vague and subjective, it is difficult to evaluate corresponding measures in an
objective way. To circumvent this problem, we propose to evaluate similarity measures in
an indirect way, namely by means of their performance in the context of nearest neighbor
(NN) classification. The underlying idea is that, the better a similarity measure is, the
better he predictive performance we expect from an NN classifier using this measure for
determining similar cases.

4.1 Data

We selected two classes of binding sites that bind, respectively, to NADH or ATP. This
gives rise to a binary classification problem: Given a protein binding site, predict whether
it binds NADH or ATP. More concretely, we compiled a set of 355 protein binding pockets
representing two classes of proteins that share, respectively, ATP and NADH as a cofactor.
To this end, we used CavBase to retrieve all known non-redundant ATP and NADH bind-
ing pockets that were co-crystallized with the respective ligand. Subsequently, we reduced
the set to one cavity per protein, thus representing the enzymes by a single binding pocket
to ensure that no identical binding pockets are present in our data set. As protein ligands
adopt different conformations due to their structural flexibility, it is likely that the ligands
in our data set are bound in completely different conformations, hence the corresponding
binding pockets do not necessarily share much structural similarity. To ensure a minimum
level of similarity, we therefore utilized the ligand information available for these binding
pockets, as these structures where all co-crystallized with the corresponding ligand. Using
the Kabsch algorithm [Kab76], we calculated the root mean squared deviation (RMSD) be-
tween pairs of ligand structures and combined all proteins whose ligands yielded a RMSD
value below a threshold of 0.4, thus ensuring that the ligands are roughly oriented in the
same way. This value was chosen as a trade-off between data set size and similarity. Even-
tually, we thus obtained a two-class data set comprising 214 NADH-binding proteins and
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141 ATP-binding proteins.

4.2 Results

The performance of the different methods, using a simple k-nearest neighbor classifier
(k = 1, 3, 5, 7, 9) for prediction, is summarized in Table 1. More specifically, the table
shows the percentage of correct classifications in a leave-one-out cross validation: For
each structure, a class prediction is derived from its k nearest neighbors (in terms of the
respective similarity measure) by means of majority voting, and the prediction is compared
with the true class.

method RW SP FPH FPJ GA GAVEO
k = 1 0.597 0.606 0.828 0.842 0.766 0.789
k = 3 0.597 0.628 0.839 0.882 0.718 0.766
k = 5 0.597 0.634 0.839 0.873 0.724 0.780
k = 7 0.608 0.625 0.819 0.859 0.718 0.786
k = 9 0.608 0.634 0.814 0.836 0.713 0.766

Table 1: Classification rates of a k-nearest-neighbor classifier in a leave-one-out cross validation
using different values of k and different similarity measures: random walk kernel (RW), shortest
path kernel (SP), fingerprint kernel (FPH, FPJ), and graph alignment (GA, GAVEO).

Table 2 shows the average time complexity of the methods, namely the time needed for
a single pairwise comparison of two structures. These numbers have been determined by
averaging over 1000 comparisons with randomly chosen structures.

method RW SP FP GA GAVEO
runtime 65.51 ± 89.07 9.75 ± 97.77 2.05 ± 3.66 74.24 ± 85.61 > 5 min

Table 2: Average runtime (in seconds) of the different methods for a single pairwise comparison.

We investigated the behavior of the best approach FPJ more in detail. A critical parameter
of this approach is k, the number of distinct edge labels, that influence strongly the number
N(n, k) of graphs of size three. Obviously the runtime will decrease if k is becoming
smaller since there are less comparisons to perform. A remaining question is, if as a
consequence thereof the accuracy is also decreasing. To investigate this we varied the
granularity (discretized edge weights into bins of length δ) and measured the accuracy and
runtime for the whole leave-one-out procedure. As can be seen in figure 1 the runtime
is a strictly decreasing curve as already prognosticated. However, the benefit of a lower
runtime is redeemed by a lower accuracy. Nevertheless, the runtime decreases much faster
than the accuracy so that for a fast screening of a database higher δ values can be used.
We do not recommend to use smaller δ values since the runtime is growing exponentially
with decreasing δ.

28 Fober et al.



1 1.5 2 2.5 3
0.78

0.8

0.82

0.84

0.86

ac
cu

ra
cy

1 1.5 2 2.5 3
0

20

40

60

80

granularity

ru
nt

im
e

[m
in

]

Figure 1: Runtime and accuracy w.r.t. δ; the dotted line illustrates the runtime, the solid line the
accuracy.

5 Discussion and Conclusion

The results convey are relatively clear picture: The fingerprint kernels perform best, the
random walk and shortest path kernel worst, and the graph alignment methods are in-
between. The overall best results are achieved by the Jaccard-variant of the fingerprint
kernel. In terms of efficiency, the fingerprint kernels are superior, too (despite the naive
implementation). Thus, this type of kernel is clearly of high interest in the context of
comparing protein binding sites.

The poor performance of the random walk and shortest path kernels can possibly be at-
tributed to their characteristics as R-convolution kernels. In general, the ‘all-against-all’
comparison of substructures performed by kernels of this type appears to be problematic
for diverse objects with a large number of substructures. In the random walk kernel, nodes
and edges can appear more than once in a random walk, a problem known as tottering.
This problem becomes especially severe in the presence of many cycles within a graph, a
property which, as mentioned earlier, our graph descriptors of protein binding sites will in-
evitably exhibit. The shortest path kernel avoids tottering but has another problem known
as halting: As it only looks at shortest paths, it tends to be dominated by a large number
of paths with very few nodes. As we consider graphs representing geometric constraints
within a binding pocket, this is likely to result in a loss of information.

The strong performance of the fingerprint kernel suggests to elaborate on this approach
in more detail. In fact, the approach presented in this paper is rather simple and can be
extended in different ways. First, substructures other than subgraphs of size 3 might be
considered, even though our experience so far has shown that this class of patterns is able
to capture considerable information while still being manageable in terms of complexity.
Second, the fingerprint vectors could be constructed (and compared) in a more sophisti-
cated way. For example, instead of just indicating the presence or absence of a pattern,
one may count its number of occurrences and then apply similarity measures for frequency
vectors. Besides, as mentioned earlier, the approach can be implemented in a much more
efficient way.

Fober et al. 29



References

[BJ00] Horst Bunke and Xiaoyi Jiang. Graph matching and similarity. Intelligent
systems and interfaces, 15:281 – 304, 2000.

[BK05] K. M. Borgwardt and H. P. Kriegel. Shortest-path kernels on graphs. In In-
ternational Conference on Data Mining, pages 74–81, Houston, Texas, 2005.
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Aligning Protein Structures Using Distance Matrices
and Combinatorial Optimization

Inken Wohlers∗ Lars Petzold† Francisco S. Domingues‡ Gunnar W. Klau∗

Abstract: Structural alignments of proteins are used to identify structural similarities.
These similarities can indicate homology or a common or similar function. Several,
mostly heuristic methods are available to compute structural alignments.

In this paper, we present a novel algorithm that uses methods from combinatorial
optimization to compute provably optimal structural alignments of sparse protein dis-
tance matrices. Our algorithm extends an elegant integer linear programming approach
proposed by Caprara et al. for the alignment of protein contact maps. We consider two
different types of distance matrices with distances either between Cα atoms or between
the two closest atoms of each residue. Via a comprehensive parameter optimization
on HOMSTRAD alignments, we determine a scoring function for aligned pairs of dis-
tances. We introduce a negative score for non-structural, purely sequence-based parts
of the alignment as a means to adjust the locality of the resulting structural alignments.

Our approach is implemented in a freely available software tool named PAUL (Pro-
tein structural Alignment Using Lagrangian relaxation). On the challenging SISY data
set of 130 reference alignments we compare PAUL to six state-of-the-art structural
alignment algorithms, DALI, MATRAS, FATCAT, SHEBA, CA, and CE. Here, PAUL
reaches the highest average and median alignment accuracies of all methods and is the
most accurate method for more than 30% of the alignments. PAUL is thus a competitive
tool for pairwise high-quality structural alignment.

1 Introduction

Background. Structural alignments of proteins help identify structural similarities. They
are used to detect homologous proteins, to identify common structural elements, and to
determine protein function. Frequently, the function of a protein is defined by its three-
dimensional structure, and protein structure is often more conserved during evolution than
protein sequence. Therefore, structural alignment is especially useful to detect remotely
homologous proteins with low sequence identity, which lie either in the twilight zone
[Doo86] of 20% to 35% sequence identity or in the midnight zone [Ros97] of less than
20% sequence identity. Furthermore, structural alignment is applied to identify new pro-
tein folds or to map protein structures to already established folds. Detected structural
similarities are used effectively for functional annotation [YYS+04].

There are two established approaches to compute protein structural alignments: minimiz-
∗CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands, {inken.wohlers,gunnar.klau}@cwi.nl
†Freie Universität Berlin, 14195 Berlin, Germany
‡Max Planck Institute for Informatics, 66123 Saarbrücken, Germany

Wohlers et al. 33



ing the root mean square deviation (RMSD) of rigid body superposition and maximizing
the score for an assignment of distance matrix rows and columns. A popular heuristic algo-
rithm of the second type is DALI [HS93]. DALI scans in a first step protein distance matri-
ces for similar distance patterns by computing a similarity score for aligning fragments of
six residues. In a second step combinations of non-overlapping fragments are repeatedly
chosen in a random fashion. Each set of fragments makes up an alignment and is evaluated
using a scoring function. Finally the alignment with highest score is reported. Several
other algorithms also aim at finding good combinations of aligned fragment pairs, e.g.,
CE [SB98] and FATCAT (flexible structure alignment by chaining aligned fragment pairs
allowing twists) [YG03]. Other methods like MATRAS (Markovian transition of struc-
ture evolution) [Kaw03] match in a first step secondary structure elements and compute
an alignment on atomic level in a second step. A sequence-order independent approach
to compute alignments is geometric hashing, which is applied by CA [BFNW93]. The
method SHEBA (structural homology by environment-based alignment) [JL00] compares
in a first step lists of primary, secondary and tertiary structure characteristics and then im-
proves the initial alignment using weighted RMSD. Further state-of-the-art approaches are
SSAP [TO89], which is based on double dynamic programming, PPM [CBZ08], a method
that minimizes the cost of morphing one structure into the other, TM-ALIGN [ZS05] that
maximizes the TM-score, and PROTDEFORM [RSWD09] and MATT [MBC08], which align
proteins in a flexible fashion. Furthermore, structural alignments have also been computed
by aligning protein contact maps [CCI+04].

Contribution. In this paper, we present a structural alignment approach based on combi-
natorial optimization. In our approach, which builds upon an algorithm for the alignment
of protein contact maps by Caprara et al. [CCI+04], we align sparse distance matrices. We
compute an alignment by maximizing a function that scores aligned distances. We tailor
our method specifically towards high-quality pairwise alignments. In order to efficiently
use the elegant integer linear programming approach of [CCI+04] we determine a suit-
able distance threshold and scoring function, decrease the number of variables in the inte-
ger linear program and add a parameter that scores non-structural, purely sequence-based
parts of the alignment in order to balance global against local alignment. We optimize our
method for Cα distance matrices as well as for all-atom distance matrices that contain the
minimum distance between any pair of atoms of two residues. In this study we investi-
gate which distances should be included in the integer linear program in order to increase
the accuracy of pairwise alignments. We did not optimize for speed—this issue will be
dealt with in future work. Our approach is implemented in the freely available software
tool PAUL (protein structural alignment using Lagrangian relaxation). We evaluate PAUL
on the challenging SISY data set [MDL07] comparing it to six state-of-the-art structural
alignment tools. PAUL reaches higher average and median alignment accuracies than any
of the other methods.
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Figure 1: Maximum contact map overlap problem. (a) Two protein contact maps. (b) Alignment of
the two proteins. (c) Corresponding solution in the graph problem. Alignments are characterized by
non-crossing matches, or traces, in the complete bipartite alignment graph (V1 ∪ V2, L) [Kec93].
Here, vertices in V1 and V2 denote the residues of the two proteins, resp., and L is the complete set
of alignment edges, i.e., L = {(i, j) | i ∈ V1, j ∈ V2}. The displayed trace (bold alignment edges)
maximizes the contact map overlap, in the example there are three shared contacts (also shown in
bold). (d) A pair of aligned distances. Functions δ(·, ·) and σ(·, ·) denote the distance between two
residues with respect to their three-dimensional coordinates and sequential position, respectively.

2 Methods

Combinatorial approach to structural alignment. In [CCI+04], the authors give an
algorithm to compute pairwise alignments of two protein structures that maximize the
number of common contacts. Two residues of a protein are in contact if they are in some
sort of chemical interaction, e.g., by hydrogen bonding. However, a simple distance crite-
rion is used: whenever the distance between two residues is below a predefined threshold,
the residues are considered to be in contact. Caprara et al. have introduced the maximum
contact map overlap problem and have given an integer linear programming (ILP) formu-
lation. They propose to solve the ILP using an elegant Lagrangian relaxation approach.

The underlying ILP formulation relies on a reformulation of the structural alignment prob-
lem as a graph problem. Figure 1 explains the relation. In their ILP approach, Caprara et
al. introduce binary variables xl for each alignment edge l ∈ L and binary variables ylm

for each potentially shared common contact represented by the two alignment edges l and
m. The binary variables indicate the presence or absence of the corresponding objects in
the solution. The authors express the set of feasible solutions using linear inequalities and
integrality constraints involving x and y and find the largest set of common contacts using
the objective function max

=
(l,m)∈(L

2) ylm. For a detailed description, refer to [CCI+04].

We extend the approach by Caprara et al. by replacing the rigid contact definition and
taking into account the three-dimensional and sequential distances between the residues
in order to align inter-residue distances. Let (l, m) be a pair of aligned distances of two
proteins A and B with l = (lA, lB) and m = (mA, mB), see also Fig. 1(d). We use
two distance measures δ(·, ·) and σ(·, ·) that denote the distance between two residues
with respect to their three-dimensional coordinates and sequential position, resp., and are
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now able to align inter-residue distances instead of contacts. To this end, we replace the
objective function max

=
(l,m)∈(L

2) ylm by

max
?

(l,m)∈(L
2)

wlmylm +
?
l∈L

c xl , where (1)

wlm =

(
max{0, θR − Δlm} Δlm ≤ Δt and Γlm ≤ Γt

0 otherwise ,
(2)

with Δlm = |δ(lA, mA) − δ(lB , mB)| and Γlm = |σ(lA, mA) − σ(lB , mB)|. Here, θR,
Δt, Γt, and c are constant parameters. Our choices of (1) and (2) are motivated by the
following considerations.

1. A scoring function for pairs of inter-residue distances from two proteins A and B
should be symmetric with respect to the order of A and B. This is achieved by tak-
ing absolute values.

2. Aligning similar distances is more preferable than aligning dissimilar ones, i.e., the
contribution of a pair of aligned distances to the objective function should decrease
with increasing difference Δlm. Inspired by the rigid similarity measure introduced by
Holm and Sander in their paper [HS93] on DALI, we use the term θR − Δlm to score
pairs of distances. Parameter θR modulates the score such that in one extreme example
slight differences in distance cause great differences in score and in the other extreme
example all combinations of distances have the same score—this second scoring is
identical to the contact map overlap. See also Fig. 2(b).

3. Analogous to contact map alignment, the overall time and space complexity of our
method is O(|EA|, |EB |), where EA and EB are the numbers of distances in the ILP
from protein A and B respectively. The major restriction of solving protein struc-
tural alignment to provable optimality is therefore the high demand of computational
resources. In principle, each pair of distances has to be considered explicitly in the
ILP, leading to

7
nA

2

37
nB

2

3
y-variables, where nA and nB are the number of residues

in proteins A and B, resp. The Lagrangian relaxation approach is highly sensitive
to the number of y-variables, making it practically infeasible to include all pairs of
distances. Therefore, we consider only such distance combinations that are likely to
denote structural similarity between the two proteins and derive a distance threshold
dt and a threshold for distance differences Δt. We find that sequential distance dif-
ferences Γlm of aligned distances are typically low, but are aware that by applying a
threshold Γt we neglect distances between different secondary structure elements that
are divided by an insertion or deletion greater than Γt. Therefore we do not apply a
threshold Γt in this study. Applying thresholds leads to a large number of variables ylm

with wlm = 0. Due to the nature of the ILP formulation, we can safely omit variables
with zero coefficients.

4. Due to the structure of the ILP we do not have the possibility to penalize aligned dis-
tances by using negative scores wlm. Therefore we penalize parts of the alignment
without structural conservation by giving each alignment edge a negative score c. Thus,
alignment edges will only be chosen if they contribute significantly to multiple pairs of
aligned distances with large weight. This prevents the alignment of residues that do not
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indicate sufficient structural similarity. If we decrease this penalty, we can tune PAUL
towards local alignment by concentrating on structurally extremely similar parts while
neglecting less similar parts. On the other side we can tune PAUL also towards rigorous
global alignment by increasing the penalty or setting it to zero.

Implementation. We implemented the novel structural alignment algorithm as the freely
available package PAUL within the C++ software library PLANET LISA [K+]. PAUL sup-
ports different input formats, e.g., PDB files, lists of pre-selected distances or complete
distance matrices. Distance matrix representations are currently built internally in either
of two modes: based on the distances between the Cα atoms of residues or based on the
minimum distance between each pair of atoms of residues. While the alignment of Cα

distances aims at finding equal or similar protein backbone conformations, the alignment
of all-atom distances shows similar residue interactions in the two proteins. Beside the
type of distances, scoring function parameters can also be chosen. In this way additional
information about the pair of proteins that are aligned can be incorporated. For instance,
the penalty c can be adjusted to favour global or local alignment. By default, the optimized
scoring function parameters for Cα and all-atom distances reported in this paper are used.

Experimental setup for parameter setting, optimization, and evaluation. To determine
good and robust parameters for the distance difference threshold Δt, the steepness θR, and
the penalty c we use structure-based alignments from the Homologous Structure Align-
ment Database (HOMSTRAD, Oct 2008 release) [MDBO98]. As these alignments are man-
ually curated by experts, we consider them as gold standard reference alignments. From
HOMSTRAD we consider only protein families with exactly two members from the twilight
or midnight zone of sequence identities below 35%. Hereby we define sequence identity as
the number of identically aligned residues divided by the total number of aligned residues.
We optimize the parameters on a training set of 200 alignments and evaluate them on a test
set that consists of the remaining 102 alignments. We measure the quality of the results
computed by structural alignment algorithms in terms of the achieved alignment accu-
racy, which is the number of correctly aligned residues divided by the number of aligned
residues in the reference alignment.

In a preprocessing step we compute histograms of aligned distances over the training set
alignments. Fig. 2(a) displays the results for Cα distances. For all-atom distances the
distribution is similar, but shifted to smaller distances. For close distances of less than
12Å we observe distinct peaks for certain aligned distances. These peaks represent typical
distances within secondary structure elements and within super-secondary structures. The
histograms help identify distance thresholds for Cα and all-atom distance matrices that are
qualitatively equivalent in terms of overall number of distances included in the ILP as well
as in terms of inclusion of biological features. We optimized parameters for the distance
thresholds dt ∈ {7.5Å, 8Å,. . . , 10Å} and dt ∈ {5Å, 5.5Å,. . .,7Å} for Cα and all-atom
distance matrices, resp.

We carry out a parameter sweep in order to optimize the scoring function parameters θR,
Δt and c. We use 7 nodes equipped each with two quad core 2.33 GHz Intel Xeon pro-
cessors and 8 GB of main memory running 64 bit Linux. On each node we compute 4
PAUL alignments in parallel using OpenMP. We choose a maximum time limit of 90 CPU
s and a maximum number of 1 000 Lagrange iterations for each computation. In a first
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Figure 2: (a) Number of aligned Cα distances over all HOMSTRAD training set alignments. (b)
Scoring function for Cα distance matrices (dt = 9.5, θR = 4.5 and Δt = 3).

broad sweep we choose 10 values for the steepness of the scoring function, θR, in such a
way that the angle is divided equally. We then refine the sweep by focusing on an interval
of good parameter values and equally divide this interval again, obtaining 10 more values
for θR. For the maximum distance difference we evaluate Δt ∈ {1.5, 2, . . . , dt − 1.5}
for Cα matrices and Δt ∈ {0.5, 1, . . . , dt − 0.5} for all-atom matrices. The sequence
penalty ranges over c ∈ {0,− 1

2θR, . . . ,−3θR}. Since aligning two identical distances
receives a maximum score of θR, the range of penalty values covers the cases of aligning
two residues if they maintain at least 0, 1, 2, or 3 aligned distances of maximum score. We
compute the average alignment accuracy for each parameter set (θR, Δt, c), resulting in
more than 150 evaluations of the full training set for each distance threshold. We then ap-
ply 10-fold cross-validation in order to assess the performance of PAUL on the HOMSTRAD
training set alignments. We use the best parameter set for Cα and all-atom distances resp.
to align the HOMSTRAD test set alignments and compare PAUL performance to DALI.

Experimental setup of computational study. We use the parameters optimized on the
HOMSTRAD data set to compare PAUL with the state-of-the-art structural alignment pro-
grams DALI, MATRAS, FATCAT, SHEBA, CA and CE on a second, distinct data set, the SISY
set [MDL07, L+]. This set is assembled from SISYPHUS [APHM07], a manually curated
database for alignments of proteins with non-trivial relationships. It consists of 130 very
diverse reference alignments: the lengths of the protein chains vary greatly, from 32 up to
1 283 residues, as do the lengths of the number of aligned residues, from 17 to 372. For
aligning the SISY set we use a maximum runtime of 30 minutes per alignment, in order to
exploit the benefit of using a high distance threshold. Note that, depending on the pair of
proteins, the actual runtime in which we observe improvements is usually a lot shorter (see
HOMSTRAD), but in order to proof the optimality of a solution a longer runtime is needed.
However, in terms of speed our method is not yet competitive to others, therefore we did
not compare runtimes.
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PAUL MATRAS DALI FATCAT SHEBA CA CE

average % 72.93 71.83 69.44 62.40 59.43 51.45 50.13
median % 92.48 91.42 90.96 78.30 84.41 59.55 57.43

Table 1: Results on the SISY data set. Average and median alignment accuracies of different state-
of-the-art structural alignment algorithms. Overall best values denoted in bold.

3 Results

Optimized scoring function. The best distance thresholds for Cα distance matrices were
8Å with an alignment accuracy of 87.56% followed by 8.5Å with 87.34% and closely
followed by 9.5Å with 87.30%. The corresponding optimized parameters are similar, for
dt = 9.5 they are θR = 4.5, Δt = 3 and c = −4.5. For all-atom distance matrices
the best parameters are dt = 5.5, θR = 3.5, Δt = 3 and c = −1.75 with an alignment
accuracy of 87.23%. Although the parameters vary over a large range, the resulting opti-
mized parameters are of the same order of magnitude for all distance thresholds dt, with
alignment accuracies between 86.77 and 87.56% for Cα distances and between 85.17 and
87.23 for all-atom distances. The result of the 10-fold cross-validation over all distance
thresholds and parameter sets amounts to 86.76% for Cα and 86.42% for all-atom dis-
tances, compared to 85.08% alignment accuracy achieved by DALI. For a visualization of
the optimized scoring function for Cα distances refer to Fig. 2(b).

We test our optimized parameters on the HOMSTRAD test set. For Cα distance matrices
PAUL reaches an average alignment accuracy of 85.86% for dt = 8, of 85.49% for dt =
8.5, and of 86.56% for dt = 9.5; all-atom distance matrices with dt = 5.5 reach 86.22%.
The alignment accuracy for Cα distances and dt = 9.5 is slightly higher than the average
alignment accuracy of DALI alignments, which amounts to 86.32%. Based on these results,
we decide to use Cα distance matrices with dt = 9.5 for the evaluation on the SISY data
set.

Results on SISY data set. We investigate the alignment accuracy in terms of percentages
of correctly aligned residues on the more challenging SISY data set and compare PAUL’s
performance to six other state-of-the-art structural alignment algorithms. Table 1 contains
the average and median alignment accuracies for the set of 130 alignments. Fig. 3(a) shows
the distributions of the percentages of alignment accuracies for PAUL and each of the other
structural alignment methods using box-and-whisker plots. Fig. 3(b) visualizes a difficult
SISY alignment, for which PAUL outperforms the other structural alignment methods.

We observe that PAUL alignments shows higher average and median accuracy than any
other method. Furthermore, according to two-sided Wilcoxon signed-rank tests with
paired observations, PAUL matches the SISY gold standard alignments significantly better
than SHEBA, CA, and CE. Additionally, we investigate the correlation between alignment
accuracy values using Pearson correlation coefficients. These are around 0.5 for any pair
of methods and are thus generally low, whereas the correlation between PAUL and MATRAS
has a Pearson correlation coefficient of 0.56 and between PAUL and DALI of 0.49.
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(a) (b)

Figure 3: (a) Box-and-whisker plots display median and quartiles of the distributions of percentages
of alignment accuracies for the SISY set for PAUL, MATRAS, DALI, FATCAT, SHEBA, CA and CE.
Additionally, blue lines denote the average alignment accuracies. (b) PAUL alignment of semaphorin
4D, PDB 1olz chain A, (grey) with hepatocyte growth factor, PDB 1shy chain B, (purple). Protein
lengths are 621 and 499 residues, resp. The proteins are oriented according to the optimal super-
position of the matching residues given by PAUL. The alignment given by PAUL is mostly correct,
with an alignment accuracy of 94.74%; the other methods generate alignments with lower accuracy
(DALI 86.84%, FATCAT 81.58%, MATRAS 57.89%, SHEBA 10.53%, CA 2.63%, CE 0%).

4 Discussion

We suggest a novel structural alignment algorithm that is based on aligning small inter-
residue distances using techniques from combinatorial optimization. By considering each
combination of distances explicitly in our integer linear program we are able to solve the
structural alignment problem on single-residue level and potentially to optimality without
applying heuristics. This has several advantages. First of all, only a method that provides
provably optimal alignments with respect to the scoring function allows to question, as-
sess, and validate the underlying model, which is, in the case of structural alignment, the
measure that evaluates structural similarity. Provably optimal solutions allow to attribute
poor alignments to the measure of structural similarity that we maximize. For heuris-
tic methods, however, a corrupt alignment might be suboptimal and then may have to be
attributed to a poor search algorithm.

In order to be able to handle the combinatorial complexity in an explicit, non-heuristic
manner, we have to restrict our method to sparse distance matrices and accept a signifi-
cantly longer runtime than other, heuristic methods. PAUL’s running time highly depends
on protein length and protein similarity and may vary significantly. Therefore, in terms
of improving the running time and estimating the status of the solution process, a lot of
work still needs to be done. However, using the SISY set, we show that our scoring func-
tion and problem formulation is capable of finding difficult similarities, and on the HOM-
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STRAD data set we show that this can also be done in shorter time scales, because PAUL
achieves higher alignment accuracies than DALI—on the training set, as determined by
cross-validation, as well as on the test set. Furthermore, we demonstrate that by aligning
only small inter-residue distances, we still can compute alignments as good as or better
than alignments computed by DALI, a heuristic structural alignment method that aligns
complete inter-residue distance matrices.

There are two aspects that influence the performance of PAUL. Firstly, this is the suitability
of scoring function parameters. Optimal or close to optimal parameters are of the same
order of magnitude for different distance thresholds dt. This denotes a common distance
difference Δt, at which a majority of pairs of distances is structurally non-significant as
well as a common preference for differentiated scoring of aligned distances, denoted by
θR. The second aspect is the distance threshold dt itself and the resulting computation
time. Including more distances in the problem description renders the computation of a
good alignment gradually more difficult, inefficient and thus time-consuming. This effect
has to be counterbalanced by a gain of accuracy in describing protein structure, which
leads to an overall higher alignment accuracy. Remarkably, different distance thresholds
dt and thus different numbers of distances in the ILP led to similar alignment accuracies
on HOMSTRAD alignments. Therefore, we find that higher distance thresholds increase
alignment accuracy, however, only when combined with a significantly longer runtime.
In order to assess the importance of the penalty c we use different penalties to compute
SISY alignments. We find that PAUL almost always finds an alignment as good as the best
alignment from any of the other six methods. Therefore PAUL almost never fails due to
algorithmic problems, but the balance between global and local alignment is crucial.

On the challenging SISY set, PAUL reaches the highest average and median alignment accu-
racies. This illustrates the soundness of our approach and its capability to detect structural
similarity even in difficult cases. An example is given in Fig. 3(b). For more than 30%
of the alignments PAUL achieves the maximum alignment accuracy that is reached by the
seven structural alignment methods. In addition to its good performance, PAUL computes
21 alignments to provable optimality and thus with maximum score with respect to the
scoring function. On the SISY set PAUL alignment accuracies correlate poorer to DALI
than to MATRAS alignment accuracies, despite the common approach of aligning inter-
residue distances. This might be attributed to qualitatively different scoring functions,
to the fact that PAUL aligns only sparse distance matrices, and to the restriction of DALI
to compute scores based on fragments and not on single-residue level. PAUL as well as
DALI alignments benefit from a high degree of flexibility, because the approach of align-
ing distances instead of computing rigid superpositions allows to detect similarities of high
RMSD, for which other algorithms need to introduce twists. The results on the SISY set
thus demonstrate that PAUL is a beneficial tool for high-quality alignments, on its own as
well as when complementing other structural alignment methods.
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Self-taught learning for classification of mass spectrometry
data: a case study of colorectal cancer
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Abstract: Mass spectrometry is an important technique for chemical profiling and is
a major tool in proteomics, a discipline interested in large-scale studies of proteins ex-
pressed by an organism. In this paper we propose using a sparse coding algorithm for
classification of mass spectrometry serum protein profiles of colorectal cancer patients
and healthy individuals following the so-called self-taught learning approach. Being
applied to the dataset of 112 spectra of length 4731 bins, the sparse coding algorithm
represents each of them by means of less then ten prototype spectra. The classifica-
tion of spectra is done as in our previous study on the same dataset [ADM+09], using
Support Vector Machines evaluated by means of the double cross-validation. How-
ever, the classifiers take as input not discrete wavelet coefficients but the sparse coding
coefficients. Comparing the classification results with reference results, we show that
providing the same total recognition rate, the sparse coding-based procedure leads to
higher generalization performance. Moreover, we propose using the sparse coding co-
efficients for clustering of mass spectra and demonstrate that this approach allows one
to highlight differences between the cancer spectra.

1 Introduction

Mass spectrometry (MS) is an important technique for chemical profiling and is a major
tool in proteomics, a discipline interested in large-scale studies of proteins expressed by an
organism. In medicine, MS-based proteomics contributes to clinical research by identifi-
cation of biomarker proteins related to a disease, e.g. produced by a tumor tissue or by the
immune system in response to a disease. Since 2002, when it was first proposed to clas-
sify cancer patients and healthy individuals based on MS protein profiles, researchers have
shown an increased interest in application of mass spectrometry for biomarker detection.

Given a sample of blood, urine or serum, an MS instrument produces a high dimensional
histogram-like spectrum. The peaks of the spectrum express chemical compounds with
high concentrations. The spectra for different groups of subjects are collected (e.g. cancer
patients and control individuals groups) and a quality of classification is studied. If a
successful classification is possible, one is interested in interpreting peaks which are used
in the classification and in identifying proteins corresponding to those peaks.

In [ADM+09], we investigated the use of Discrete Wavelet Transformation (DWT) to-
gether with Support Vector Machines (SVM) for classification of spectra of colorectal
cancer patients and healthy individuals. First, we calculated wavelet coefficients for each
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spectrum. Then statistically different coefficients were classified using SVM. Along with
standard DWT we exploited APPDWT (“approximation DWT”), a modified DWT where
only approximation coefficients were used. The classification results proved that this type
of DWT outperforms the standard DWT. APPDWT can be interpreted as dictionary repre-
sentation of a spectrum, where the dictionary is constructed by translating and shifting a
wavelet scaling function.

Recently, [LBRN06] introduced a sparse coding (SC) algorithm which, given a set of vec-
tors, learns in an unsupervised manner a sparse basis for optimal linear representation of
the original vectors. Note that the basis can be overcomplete and its elements are not neces-
sarily orthonormal, i.e., formally speaking, it is not a basis but a dictionary. In [ASKS09]
we demonstrated that being applied to MS data, the SC algorithm allows one to pick
class-relevant peaks. For this aim, we improved the original SC algorithm replacing l1-
regularization with an elastic-net regularization (combination of l1- and l2-regularization
terms), for more details see [ASKS09] and [AKL+09].

Later, [RBL+07] proposed using the SC algorithm for classification, calling their approach
“self-taught learning” as features used in classification are learned from the data. In this
paper we follow this approach, classifying mass spectra of colorectal cancer patients and
healthy individuals. The improved version [AKL+09] of the SC algorithm is used. For
the classification the same scheme as in [ADM+09] is applied, but instead of DWT (AP-
PDWT) coefficients we exploit the coefficients of the basis learned using the SC algorithm.

Our procedure of classification of mass spectra is as follows. First, given a set of spectra
of different classes, we apply the SC algorithm producing a set of few basis vectors and
a matrix of coefficients representing each original spectrum in the basis learned. We call
each basis vector a prototype spectrum. Use of SC coefficients for MS data processing is
promising because peaks of different width can be extracted. In the ideal case, any peak or
combination of peaks which take place in sufficiently many spectra and represents a sizable
contribution to a large portion of the dataset, will be represented using a SC coefficient.
For each original spectrum we build a feature vector consisting of its coefficients. Second,
the feature vectors are classified using SVM where the evaluation is done by mean of the
double cross-validation, for more details see [ADM+09].

In Section 2 we concisely describe the data investigated, as well as the sparse coding
algorithm and the classification scheme used. In Section 3.1 we present the results of SC
algorithm. Then, in Section 3.2, we show the classification results and compare them with
the reference results of [ADM+09]. Moreover, in Section 3.3 we provide a closer look at
the SC results and propose clustering the spectra based on the SC coefficients. Section 4
concludes the paper.
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2 Methods

2.1 Mass spectrometry data

The dataset used in this paper consists of matrix-assisted laser desorption ionization time-
of-flight (MALDI-TOF) serum protein profiles of colorectal cancer patients and healthy
individuals, first published in [dNMO+06]. Colorectal cancer is one of the most com-
mon malignancies and remains a principal cause of cancer-related morbidity and mortal-
ity. Diagnosing colorectal cancer still requires a sensitive test relaying on easily accessible
body fluids, like serum. After a preprocessing of spectra and outliers removal, described
in [ADM+09], we have 64 cancer and 48 control spectra of length 16331 points cover-
ing an mz (mass-over-charge) domain of 960–11163 Da.1 For this paper we took only a
part of the whole mz domain, namely 1100–3000 Da, which contains the most significant
peaks for the cancer discrimination according to [dNMO+06] and [ADM+09]. A part of
a spectrum in this domain consists of 4731 points. The final data is shown in Fig. 1

Figure 1: 64 cancer (with numbers 1-64) and 48 control mass spectrometry protein profiles.

2.2 Improved Sparse Coding algorithm with elastic-net regularization

For each original spectrum the SC algorithm calculates its coefficients in a basis expansion,
where the basis vectors are learned from the data as follows.

We suppose that the dataset consists of R spectra of length L which belong to D classes
(D @ R) each characterized by common peaks at the same positions and with similar
heights. Given a matrix X ∈ RL×R with spectra in columns, the improved SC algorithm
with an elastic-net regularization term represents each spectrum (a column of X) in a self-

1The data is available at http://www.math.uni-bremen.de/∼theodore/MALDIDWT.
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taught sparse basis solving the following optimization problem:

min
B,S

1
2 ||X − BS||2F + α

=
j ||Sj ||1 + β

2

=
j ||Sj ||2 , (1)

subject to ||Bj ||2 ≤ γ, (2)

with respect to a matrix B ∈ RL×L of basis vectors and a matrix S ∈ RL×R of the
corresponding coefficients, where ||·||F is the matrix Frobenius norm, ||·||1 is the vector l1-
norm, and ||·|| is the standard euclidean norm; Sj and Bj denote the j-th column of S and
B, respectively. The hyperparameters of the optimization problem are the l1-regularization
parameter α, l2-regularization parameter β and the boundary on the basis vectors norm γ.

The minimization problem (1) is solved in two steps. First, we learn the coefficients S
keeping the basis fixed using the Feature Sign Search (FSS) algorithm minimizing (1) for a
fixed B, then for the learned coefficients we optimize the basis B using the Lagrange dual.
For more details, see [LBRN06]. For motivation of using the elastic-net regularization
instead of the original l1-regularization, see [AKL+09] and [ASKS09].

Finally, for each column Xj of X we have its sparse representation in the basis B with
only a few basis vectors Bj (j ∈ I) corresponding to non-zero rows Sj with indices I.

2.3 Classification using Support Vector Machines with double cross-validation

After the SC algorithm produced a matrix B of basis vectors and a matrix S of coefficients,
we classified the spectra where for each spectrum its coefficients (that is j-th column
Sj of S for j-th spectrum) are used as features. The classification was performed using
Support Vector Machine (SVM) of type C-SVM with the gaussian kernel with two-level
grid search for the hyperparameters σ (the width of the gaussian kernel) and C (the C-
SVM regularization parameter). The tested values are 2−4:2:16 (a grid with values from
2−4 to 216 with a step 22) for σ and 2−4:2:12 for C at the first grid search level and 2−1:1:1

for both σ and C at the second level of grid search used for refinement. The simultaneous
parameters selection and classifiers assessment was done by means of the double cross-
validation (double CV) with the leave-one-out cross-validation (i.e. 112-fold) used for the
outer loop and 10-fold cross-validation used for the inner loop, again as in [ADM+09]. In
this setting, the i-th step of the double CV scheme consists of two stages: (1) the choice
of hyperparameters is done using 10-fold CV on all but the i-th spectrum optimizing CV
recognition rate (the ratio of spectra correctly classified in CV), (2) a classifier with the
chosen hyperparameters is trained using all but the i-th spectrum and applied to the i-th
spectrum excluded at the first.

The following characteristics were calculated after the outer loop classification: total
recognition rate or TRR (the ratio of correctly classified spectra), specificity, and sensitiv-
ity. Moreover, following [BST99] and [ADM+09], we considered the number of support
vectors (SV) as a measure of generalization performance of classifiers. The values of these
characteristics have been compared with corresponding values reported in [ADM+09],
where the same dataset is used (except for the mz-domain as explained in section 2.1).
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3 Results

3.1 Sparse coding representation

We applied to the matrix X ∈ R4371×112 with spectra in columns the improved SC algo-
rithm with an elastic-net penalty term with different values of parameters α (from 5 to 100
with a step 5) and γ (from 500 to 2500 with a step 500). The used value of the parameter
corresponding to the l2-penalty was β = 10−10, which was selected as small as possible,
as recommended in [AKL+09].

For each pair of parameters (α, γ) we calculated the matrices B and S of basis vectors and
corresponding coefficients. Recall that only basis vectors with indices I corresponding to
non-zero rows of the coefficients matrix S are considered. In the following we refer to the
computed basis vectors as the prototype spectra because each original spectrum is a linear
combination of the basis vectors with weights equal to the corresponding coefficients.
Fig. 2 shows the numbers of prototype spectra (sizes of I) for all pairs of α and γ. As
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Figure 2: The numbers of prototype spectra for all pairs of α and γ considered.

can be seen from Fig. 2, for all parameters considered a spectrum can be represented by
only a small number of prototype spectra (from 2 to 10). Once, for α = 45 and c = 1000,
only one prototype spectrum is produced. Interestingly, though it is natural to expect that
the number of prototype spectra increases as α decreases (because α is a multiplier of the
sparsity term), this effect can be hardly observed.

In the following we consider the results of the SC algorithm for α = 10 and γ = 1000
selected as producing the best classification results (presented later in Section 3.2). Fig. 3
shows the five prototype spectra computed for these parameters. Fig. 4 depicts the non-
zero rows of the matrix S (each row is normalized to have values from zero to one). One
can visually observe that the 4-th and 5-th rows highly discriminate cancer (the first 64)
and control (the last 48) spectra since their values are visually grouped into two clusters:
corresponding to spectra with numbers 1-64 and 65-112. To confirm this observation
and to evaluate the separation efficiency of the produced coefficients, we plot a Principal
Components Analysis (PCA) score plot, see Fig. 4 which shows clear though not ideal
separation between two classes. Here PCA is used only for visualization. In next section
we present close to perfect classification results achieved using SVM. A PCA score plots
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scores of the second principal component against scores of the first principal component
and is often used for visualization of high-dimensional data. Fig. 4 demonstrates that the
computed coefficients after a linear PCA-transformation allows one to clearly separate
the groups of cancer and control individuals. This confirms the potential of using sparse
coding coefficients for classifying cancer and control spectra.
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Figure 3: Prototype spectra (self-taught basis vectors) corresponding to non-zero coefficients ex-
tracted for α = 10, γ = 1000, shifted in intensity for better visualization.
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Figure 4: Left: non-zero coefficients (the matrix S) used for representation of original spectra in the
basis depicted on Fig. 3; right: a score plot showing the data (as usual, mean-corrected) projection
onto the first two principal components.

3.2 Classification results

For each pair of the sparse coding parameters α and γ, we applied the SVM classification
where the SVM hyperparameters selection and the classifiers assessment is done using the
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α
5 10 15 20 25 30 35

γ

500 94.64 93.75 93.75 90.18 88.39 90.18 90.18
1000 92.86 97.32 91.07 87.50 89.29 89.29 91.07
1500 90.18 91.07 90.18 89.29 90.18 89.29 90.18
2000 92.86 96.43 94.64 91.07 87.50 91.07 91.07
1500 93.75 91.07 87.50 95.54 91.96 92.86 91.07

Table 1: Total recognition rates for different α and γ for SVM classifiers using sparse coding coef-
ficients, calculated through the double cross-validation. The best value (97.32%) is shown in bold.

double cross-validation, as described in Section 2.3 and, more detailed, in [ADM+09].
The computed total recognition rates for all pairs of α and γ as well as the numbers of
support vectors used are shown in Fig. 5.
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Figure 5: Classification results for different pairs of α and γ for SVM classifiers using sparse coding
coefficients, calculated using the double cross-validation. Left: Total recognition rates; right: mean
numbers of support vectors.

First, the achieved TRRs are quite high in comparison with the reference results. The
best TRR is higher than the results of classification using the reduced-rank Linear Dis-
criminant Analysis also evaluated using the double CV (92.6%) reported by [dNMO+06]
and is as hight as the results of the same classification procedure but applied on the DWT
coefficients (97.3%) reported by [ADM+09].

Although results presented in Fig. 5 are quite variable, there is a noticeable trend of de-
creasing TRR and increasing the mean number of SV (as α increases) that is better demon-
strated by the plots of per-α maximal TRRs and per-α minimal mean number of SVs. For
this reason, we showed in Table 1 and Table 2 the values of TRRs and the mean num-
bers of SV only for the first considered values of α (from 5 to 35). The best TRR is
achieved for α = 10 and γ = 1000 and is equal to 97.3% which is as high as reported
by [ADM+09] where DWT coefficients instead of sparse coding coefficients are exploited.
The corresponding values of sensitivity and specificity are 96.9% and 97.9%, respectively.
The most striking result to emerge from Table 2 is that the same classification efficiency
is achieved using only 17 support vectors (corresponding to 15% of a training dataset of
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α
5 10 15 20 25 30 35

γ

500 16.8 18.6 23.5 37.1 33.4 29.6 41.2
1000 17.9 16.6 27.2 42.2 36.9 37.4 42.6
1500 28.0 20.3 20.3 27.2 28.4 54.1 44.8
2000 18.2 15.9 14.9 28.6 30.1 31.4 41.5
1500 20.2 28.1 20.2 85.8 15.8 17.2 38.7

Table 2: Mean numbers of SVM support vectors for different pairs of α and γ for SVM classifiers
using sparse coding coefficients, calculated by means of the double cross-validation (the size of a
training dataset is 111).

size 111) vs. 43 reported for the DWT-SVM procedure. It seems possible that the low
numbers of the SV are due to the low number of features used in classification (less than
10 according to Fig. 2 vs. 300–600 for DWT and 1500–7000 for APPDWT as reported
in [ADM+09]).

As discussed in [ADM+09], the number of support vectors is a proxy-measure of general-
ization performance of the classifiers. Any significant improvement of the generalization
performance is very important in mass spectrometry-based proteomics, since the results
should be reproducible when the data is prepared using different protocols, measured in
different laboratories and in different conditions. All this leads to additional non-reducible
variability in data and imposes high demands on the generalization performance of the
exploited classifiers. From this point of view, the achieved advantage in the number of
support vectors seems to be relevant and significant.

3.3 Closer look at the prototype spectra and sparse coding coefficients

Let us consider the 4-th and 5-th prototype spectra, see Fig. 6, since as conducted by
means of visual inspection, their coefficients are the most discriminative between cancer
and control groups. This choice is partially confirmed by the following fact. Considering
the values of loadings of the first principal component (a direction of the largest variance)
which are 0.1 (for the first prototype spectrum), -0.1 (second), -0.0 (third), -0.4 (fourth), -
0.9 (fifth), we see that the 4-th and 5-th prototype spectra have the largest loadings, i.e. the
largest contributions into a direction of the highest variance. Fig. 6 shows the scaled
cancer and control mean spectra as well. The cancer (control) mean spectrum is manually
attributed to the 4-th (5-th) prototype spectrum.

Fig. 6 shows that the prototype spectra are very similar to the per-class means spectra
although they are extracted in an unsupervised manner, i.e. not using the labels of spectra.

It is interesting to compare Fig. 6 with Fig. 4a of [ADM+09] showing the biomarker pat-
terns reconstructed by the 1784 most discriminative APPDWT coefficients. In the region
of 1100–2400 Da the prototype patterns are very similar to the biomarker patterns which
is not surprising since they are similar to the per-class mean spectra. At the same time,
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Figure 6: Forth and fifth prototype spectra (self-taught basis vectors) for α = 10, γ = 1000 (shifted
in intensity for better visualization) as well as the scaled cancer and control mean spectra.

note that the DWT biomarker patterns contain only a part of peaks presented in the mean
spectra, which is especially noticeable in the region of 2400–3000 Da. This highlights the
difference between local properties of wavelets and global (throughout the whole spectrum
length) nature of the self-taught basis vectors.

An advantage of the self-taught sparse coding basis as compared to an APPDWT-induced
dictionary is that it is learned in an unsupervised manner. Thus, the coefficients can be used
not only for classification but also clustering of the spectra. For demonstration, we per-
formed clustering of the spectra using High Dimensional Discriminant Analysis [BGS07].
The clusters number was set to 10 but the procedure automatically reduced it to 7; the used
model is [aijbiQidi]; the scree-test threshold is 0.2, for explanations see [BGS07].
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Example results of spectra clustering using the sparse coding coefficients

Figure 7: Example results of clustering of spectra using the sparse coding coefficients (α = 10,
γ = 1000): number of a cluster assigned to a spectrum against the spectrum number. A dash line is
plotted for better visualization and separates cancer (spectra 1-64) from control (65-112) spectra.

Although Fig. 7 is shown mostly to demonstrate the potential of using sparse coding coef-
ficients for spectra clustering, it is surprising to see that the control spectra are attributed
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only to two clusters. At the same time, the cancer spectra are not so homogeneous and
form five clusters that probably indicates the difference in protein profiles of the cancer
samples due to several tumor stages used in the measurements or other factors. A special
investigation of these results is required which is out of scope of this paper.

4 Conclusions

In this paper we proved the potential of the sparse coding classification scheme proposed
by [RBL+07] using the improved sparse coding algorithm of [AKL+09] for applications
in mass spectrometry. The combination of SC and SVM demonstrated the same accu-
racy as DWT-SVM procedure [ADM+09] but with a significantly higher generalization
performance measured by the number of support vectors. We demonstrate that the SC
coefficients can be used not only for classification but also for clustering of the spectra.

Acknowledgements. The author thanks Stefan Schiffler for his implementation of the Fea-
ture Sign Search algorithm.
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Abstract: Resistance testing is an important tool in today’s anti-HIV therapy man-
agement for improving the success of antiretroviral therapy. Routinely, the genetic
sequence of viral target proteins is obtained. These sequences are then inspected for
mutations that might confer resistance to antiretroviral drugs. However, interpretation
of the genomic data is challenging. In recent years, approaches that employ supervised
statistical learning methods were made available to assist the interpretation of the com-
plex genetic information (e.g. geno2pheno and VircoTYPE). However, these methods
rely on large amounts of labeled training data, which are expensive and labor-intensive
to obtain. This work evaluates the application of semi-supervised learning (SSL) for
improving the prediction of resistance from the viral genome.

1 Introduction

The Human Immunodeficiency Virus (HIV) is causing one of the most challenging infec-
tious diseases. HIV is a retrovirus that mainly infects cells of the human immune system.
Today there are about 25 antiretroviral drugs approved by the US Food and Drug Admin-
istration for treating HIV infections1. These drugs can be divided into different classes
by their mechanism of action and the viral proteins they target. Reverse transcriptase
inhibitors aim at prohibiting the synthesis of DNA from viral RNA by the viral protein
reverse transcriptase (RT). This can currently be accomplished by nucleos(t)id analogs
that lead to abortion of DNA synthesis after their incorporation. In constrast to these
nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase
inhibitors (NNRTIs) bind to the viral RT and impair its flexibility. Integrase inhibitors pre-
vent the integration of the viral DNA into the host genome by blocking the viral enzyme
integrase. Finally, protease inhibitors (PIs) bind to the active site of the viral protease that
cleaves precursor proteins into functionally units. The large number of drugs that are on
the marketplace is required because the process of reverse transcription is error prone and
therefore HIV eventually develops mutations in the targeted proteins that confer resistance
against the applied drugs. These mutations enable the virus to replicate in the presence

1http://www.fda.gov/oashi/aids/virals.html
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of a drug and are therefore selected evolutionarily. Unfortunately, these resistance muta-
tions also confer drug resistance to drugs of the same class that were not applied yet, this
phenomenon is termed cross-resistance. Resistance testing is an important tool in therapy
management for choosing an appropriate drug regimen for the patient and consequently
slow down disease progression to AIDS and death. There are two approaches to resis-
tance testing. The first approach, phenotyping, affords a lab test that compares the viral
replication of the virus of a patient with that of a wild type virus in the presence of the
drug [Wa99]. The quotient of dosages of the drug that are required to cut the replication
rate of the patient sample and the wild type, respectively, in half is called the resistance
factor. The second approach, genotyping, amounts to sequencing the genes of the viral
drug targets harbored by the virus variant predominating in the patient. These sequences
have to be inspected for mutations that are related to drug resistance. Phenotyping is ex-
pensive and labor-intensive but delivers a single number per drug that is easy to interpret.
Genotyping on the other hand is fast, cheap, and standardized, but the correct interpreta-
tion of the genetic sequence poses a major challenge. One way to address this problem is
provided by knowledge-based approaches (expert systems) that apply classification rules.
These rules are hand-crafted by experts based on literature, in vitro results, and clinical
experience. Rule sets can be found, e.g. in Stanford’s HIVdb [Rh99]. More system-
atic approaches employ supervised statistical learning methods to predict the resistance of
a virus against drug based on the sequences of the genes coding for the target proteins,
e.g. geno2pheno [Be03] and VircoTYPE [Ve07]. These supervised learning methods are
trained on viral samples for which both, a genotypic test and a phenotypic test has been
performed. However, for achieving a good performance a sufficient number of training
samples is required (at least several hundred), which is in general expensive and labor-
intensive to collect. Thus, especially, at the time shortly after the approval of a novel drug
usually only a small number of genotype-phenotype pairs is available and consequently
prediction methods lag behind in providing an assessment of these drugs. Since relevant
parts of the HIV genome are routinely sequenced for diagnostic reasons, ample genotypic
data without phenotypic measurements are available in clinical databases. This work fo-
cuses on the use of semi-supervised learning (SSL) for improving the prediction of drug
resistance based on genotype-phenotype data together with available routinely collected
sequence data. Recently, an SSL approach using unlabeled data from clinical routine for
improved dimensionality reduction was applied to predict in vivo response to antiretrovi-
ral combination therapies [RAS09]. Section 2 provides a brief overview over the available
data as well as supervised and semi-supervised methods that were applied. Section 3
presents the results, and section 4 gives a conclusion and an outlook.

2 Materials and Methods

2.1 Data

The genome sequences of the target proteins were available as amino acid sequences that
had been aligned to the reference sequence HXB2. For the protease all 99 amino acids and
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NRTI NNRTI
drug name ZDV 3TC ddI d4T ABC TDF EFV NVP
cutoff 0.9 1.37 0.37 0.25 0.54 0.25 0.7 0.67
susceptible (%) 49 57 50 53 44 42 61 50
|Slabeled| 1055 740 882 881 871 598 1037 880
|Sdrug| 2717 5143 2329 3047 1225 1668 1264 1237
|Sclass| 7887 2502

PI
drug name APV ATV IDV LPV NFV SQV DRV TPV
cutoff 0.59 1.13 0.72 0.6 0.67 0.98 1.14 0.61
susceptible (%) 54 60 48 66 43 59 50 48
|Slabeled| 645 523 721 682 725 725 55 60
|Sdrug| 290 320 756 1442 1075 687 0 0
|Sclass| 4435

Table 1: Description of the data. |Slabeled| indicates the number of available genotype-phenotype
pairs. The row cutoff lists the log10(resistance factor) cutoff values used to dichotomize the con-
tinuous value into the categories susceptible (below the cutoff) and resistant (above the cutoff).
The row susceptible (%) indicates the percentage of labeled data that was considered susceptible
after dichotomization. The rows |Sdrug| and |Sclass| list the numbers of sequences that were ob-
tained during exposure to the specific drug and drug class, respectively. Drugs: zidovudine (ZDV),
lamivudine (3TC), didanosine (ddI), stavudine (d4T), abacavir (ABC), tenofovir disoproxil fumer-
ate (TDF), efavirenz (EFV), nevirapine (NVP), (fos-)amprenavir (APV), atazanavir (ATV), indinavir
(IDV), lopinavir (LPV), nelfinavir (NFV), saquinavir (SQV), darunavir (DRV), tipranavir (TPV).

for the RT only the first 220 amino acids were considered. The genotype-phenotype pairs
were provided by the Arevir database [Ro06]. For every drug a different number of mea-
sured resistance factors (RFs) with corresponding genotype was available (see: Table 1).
Unfortunately, most SSL approaches work for classification only, thus the continuous RFs
were dichotomized to susceptible and resistant using a drug-specific cutoff. This cutoff
was defined by the intersection of two Gaussian distributions, which the RFs display when
plotted on logarithmic scale. The two Gaussian distributions represent the susceptible and
resistant subpopulation as described in [Be03]. The cutoffs derived in this way for each
drug are listed in Table 1. Sequences generated in diagnostic routine were taken from the
EuResist database [Ro08] and constitute the unlabeled data used by the SSL methods. Se-
quences were categorized as to whether they were exposed to a specific drug (Sdrug) or to
a specific drug class (Sclass) at the time the sample was obtained (see Table 1).

2.2 Statistical Methods

Semi-supervised learning methods operate on a labeled set Slabeled = {(x1, y1), (x2, y2) ,
..., (xn, yn)} and a set of unlabeled data Sunlabeled = {x∗

1, x
∗
2, ..., x

∗
m}, where xi and yi

denote feature vector and corresponding label, respectively. The unlabeled data Sunlabeled
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reveals information about the underlying data density. This knowledge can be exploited
by SSL methods for generating improved prediction models compared to supervised meth-
ods. We can expect that SSL improves the prediction only, if labels show a tendency to
be locally constant in input data space. This assumption is termed smoothness assumption
and states that: if two points are located closely in data space, then their corresponding
output is more likely to be similar (regression) or identical (classification). Consequently,
the decision boundary derived by a SSL classification method should not cut through re-
gions of high data density. Most of the semi-supervised methods perform transductive
learning, i.e. the learner has to predict a set of labels {y∗

1 , y∗
2 , ..., y∗

m} for the given unla-
beled data Sunlabeled = {x∗

1, x
∗
2, ..., x

∗
m}. These unlabeled samples have to be available

while training the method. According to the definition of transductive learning in [Zh07],
transductive methods cannot handle unseen data. Thus, if a prediction for a new unlabeled
sample x∗

m+1 is needed, a new model using x∗
m+1∪ Sunlabeled has to be trained for com-

puting the label y∗
m+1. In contrast, inductive learners (e.g. classic supervised methods)

yield a prediction function on the whole input space. Thus, inductive learners can also
handle previously unseen data.

This section gives a brief overview over the SSL methods used in this work. The large
number of different SSL approaches (for an overview see [CSZ06, Zh07]) was restricted
to methods that are easily accessible (e.g. in the form of command line tools or available
source code). As reference supervised methods support vector machines (SVMs) [CL01]
were used for classification and regression, whereas regularized least-squares regression
(RLSR) [SGV98] was used for regression only.

Transductive Support Vector Machine (tSVM) The standard soft margin SVM opti-
mizes the following function:

min
w

1
2
AwA + C

N?
i=1

ξi, subject to ξi ≥ 0, yi(wxi + b) ≥ 1 − ξi, ∀i (1)

where w and b define the hyperplane, ξi are the slack variables that allow for misclassifi-
cation and C is the cost parameter for misclassified examples. The tSVM aims at deter-
mining a separating hyperplane under consideration of the unlabeled samples, therefore
equation (1) is extended in the following way:

min
w

1
2
AwA + C

n?
i=1

ξi + C∗
m?

j=1

ξ∗j , subject to

ξi, ξ
∗
j ≥ 0, yi(wxi + b) ≥ 1 − ξi, y

∗
j (wx∗

j + b) ≥ 1 − ξ∗j , ∀i,j (2)

where the additional parameters ξ∗j and C∗ are the slack variables and the misclassification
cost parameter for the unlabeled instances, respectively. Thus, the optimization problem in
(2) differs from (1) in that the tSVM has to find a labeling y∗

1 , ..., y∗
m for the unlabeled data

and a hyperplane < w, b > simultaneously. An approximative optimization procedure,
which is required due to the complexity of the optimization problem, has been imple-
mented in the software library SV M light by Joachims [Jo99]. The approach begins with

58 Perner et al.



a labeling of x∗
1, ..., x

∗
m based on the classification of an inductive SVM and a low weight

C∗ for the penalty for misclassified unlabeled data points. Then the labels of two randomly
selected samples (one positive and one negative) are swapped. If the objective function is
improved by that exchange of labels, then the switch is made permanent. This process is
repeated until there are no more switches possible that yield an improved objective func-
tion. At this point the penalty for misclassified unlabeled data points C∗ is increased and
further labels are swapped to greedily improve the objective function. The iterative pro-
cedure stops when C∗ exceeds a user defined value. Notice that applying the definition
of transductive learning stated above, tSVMs are in fact inductive learners. However, the
name tSVM originated from the intention to work only on the observed data [Zh07].

Low Density Separation The Low Density Separation (LDS) approach introduced in
[CZ05] is a combination of a tSVM and a kernel based on graph distances that takes ad-
vantage of unlabeled data. The main idea of LDS is the construction of a density-sensitive
kernel. This is achieved by representing the feature vectors xi and x∗

j of labeled and un-
labeled samples as nodes in a graph. Each node is connected to its k nearest neighbors
by weighted edges, with the weight of an edge corresponding to the Euclidean distance
of its endpoints. For all paths between two points the largest edge weight on the path is
computed. The similarity of two points is then defined as a function of the minimum of
these largest edge weights. The main idea behind the density-sensitive kernel for SSL is to
enlarge the distance between points that are separated by regions of low data density. This
kernel is used by a tSVM that applies gradient descent for finding a solution of a slightly
modified version of equation (2) and is therefore termed >SVM. For a detailed description
of the approach see [CZ05].

Co-Regularized Least-Squares Regression (coRLSR) In comparison with semi-super-
vised classification, semi-supervised regression is largely under-studied. However, in
[Br06] an efficient semi-supervised regression method is introduced that is based on the
idea of co-learning. Briefly, the approach assumes the existence of multiple views, i.e. dis-
tinct sets of features, which are equally well suited for predicting the outcome. CoRLSR
trains one regularized least-squares regression (RLSR) for each view on the labeled data
and the available unlabeled data are used to measure the disagreement of the models. By
the optimization process the disagreement of models for different views is minimized.
CoRLSR with two views has the following optimization function:

Q(c) =
2?

v=1

2
Ayv − LvcvA2 + νvct

vLvcv

+
+ λv

2?
u,v=1

AUucu − UvcvA2 (3)

where c = (c1, c2) ∈ Rn1×Rn2 represents the trained model for each view, nv is the num-
ber of training samples in each view, νv and λv control the influence of the regularization
term ct

vLvcv and the penalty for disagreement between views, respectively. Furthermore,
Lv ∈ Rnv×nv is the kernel matrix for all labeled samples and the matrix Uv ∈ Rm×nv

comprises the inner products of all combinations of unlabeled and labeled instances. The
first term of the sum represents the optimization criterion for fitting a regularized least-
squares model, the second part of the sum calculates the disagreement of two views on the
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unlabeled samples. In the setting under study different views were not available. However,
results in [BS04] demonstrated that for many problems the feature set can be randomly
split into different views and, together with co-classification approaches, still outperform
traditional single-view learning algorithms. Thus, in the experiments the amino acid posi-
tions of protease and RT were randomly distributed among two views.

2.3 Evaluation setup

The labeled data that were used to train the methods are denoted by L, where L is a
subset of Slabeled. Method performance was then assessed on the remaining labeled data
Slabeled − L. From this subset only the genome sequences were used in the training
procedure of SSL approaches and those are referred to as Ulab = {xi|(xi, yi) ∈ (Slabeled−
L)}. The genetic sequences from routine diagnostic used by the SSL methods are referred
to as Sdrug and Sclass for sequences exposed to the same drug and to the same drug class
as the drug for which a prediction model is trained, respectively. The training data of the
SSL methods comprised L∪Ulab∪Sdrug or L∪Ulab∪Sclass while the training data for the
standard supervised methods were restricted to L. For each drug listed in Table 1 separate
models were trained. Performance was computed by using 10-fold cross-validation, which
means that for each cross-validation fold 90% of Slabeled were attributed to L and the
remaining 10% to Ulab. In addition to evaluating the usefulness of SSL methods (using
different sets of unlabeled data) over standard supervised methods, the influence of the
size of available labeled data on the prediction performance was studied. To this end,
only a randomly chosen subset of L was actually used during training. The size of that
subset was either 2.5%, 5%, 10%, 20%, 40%, 60%, 80%, or 100% of the size of L.
The remaining samples from L were excluded from the respective analysis. All learning
approaches except LDS applied a linear kernel. The amino acid sequences were encoded as
described in [Be03]: one amino acid position was represented by 20 indicator variables, i.e.
one indicator for each amino acid. Classification performance was assessed by calculating
the the area under the receiver operating characteristics (ROC) curve (AUC). Regression
performance was measured as mean squared error (MSE) between predicted log10(RF)
and measured log10(RF). The model parameters of the methods (see section 2.2) were
optimized during the 10-fold cross-validation. Sets of different parameters were tested for
each fold and the set performing best was used for performance computation.

3 Results and Discussion

3.1 Classification

Figure 1 summarizes the classification results by depicting the performance of all methods
for all drugs when 10% and 100% of L were used during training, respectively. These
fractions of L were selected for reflecting the amount data typically available shortly after
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Figure 1: Mean area under the ROC curve (AUC) for 10% (left) and 100% (right) of the labeled data
for the reference method and both SSL classification methods trained with the additional unlabeled
sets Sdrug and Sclass, respectively. Whiskers indicate the standard deviation computed via 10-fold
cross-validation.

approval of a novel drug and the amount of maximally available data. Figure 2 shows
the AUC for varying volume of labeled data for three drugs representing the three drug
classes. For protease inhibitors SSL brought a consistent benefit over supervised learning.
With only 10% of L used during training all SSL methods performed at least as well as
the supervised SVM for all PIs. Usage of the smaller unlabeled set Sdrug brought a slight
benefit over Sclass. When 100% of L were used the gain in performance of SSL meth-
ods over the SVM was less pronounced. TPV and DRV are novel drugs in the class of
PIs. The amount of labeled data is small and none of the available sequences were ever
exposed to these drugs (Table 1). For both drugs SSL classification models did not show
an improvement over the supervised SVM classification. However, this lack of observable
improvement might be a consequence of the low number of instances available for assess-
ing the performance. This assumption is supported by the large standard deviation of the
AUC. For the two NNRTIs the results were less consistent. For EFV the SSL version in
SV M light did not show an improvement over classical supervised learning for any frac-
tion of labeled data (Figure 2). For NFV the use of the SSL routine in SV M light resulted
in a clearly lower performance only when a small volume (10%) of labeled data was used.
LDS performed for both drugs as well as or slightly better than the supervised SVM. For
the group of NRTIs the results were even more diverse. While for ZDV and a small volume
of labeled data the SSL methods displayed an improvement over the supervised SVM, for
3TC both SSL approaches drastically corrupted the performance. This difference might
be explained by the different resistance profiles of the drugs. For 3TC one amino acid
exchange is sufficient to confer complete resistance, while for ZDV several mutations are
necessary. NRTIs are usually given in pairs to the patients, thus viruses that were exposed
to 3TC were also exposed to other NRTIs with more complicated resistance patterns (e.g.
ZDV). As a consequence, the data density does not reflect the labeling of 3TC resistance,
which is a violation of the smoothness assumption. This finding is supported by the fact
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that LDS with its density-sensitive kernel performs worse than SV M light for 3TC. For
the remaining four NRTIs the classification performance was worse compared to the re-
maining drugs. This is related to the small ranges of resistance factors that are observed
for these drugs. Consequently, the Gaussian densities for the susceptible and resistant
subpopulations are heavily overlapping, and therefor the computations of an appropriate
cutoff is difficult. However, SV M lightperformed better than the supervised SVM.
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Figure 2: Development of the area under the ROC curve (AUC) for different volumes of labeled
data for the reference method and both SSL classification methods trained with the additional unla-
beled sets Sdrug and Sclass, respectively, for three drugs. Lopinavir (left), efavirenz (middle), and
zidovudine (right). Whiskers indicate the standard deviation computed via 10-fold cross-validation.

3.2 Regression

Figure 3 depicts the performance of SVM, RLSR, and coRLSR for all drugs when 10%
and 100% of L were used during training, respectively. Figure 4 shows the detailed de-
velopment of the mean squared error for increasing volume of labeled data for LPV, EFV,
and ZDV. CoRLSR, the only semi-supervised regression method tested in this study, did
not improve the performance over RLSR or support vector regression. Moreover, the set
of unlabeled data used during training (Sdrug or Sclass) did not play any substantial role
in the performance of coRLSR. CoRLSR performed worse than RLSR for 3TC. As a con-
sequence of dividing the amino acid positions among the two views for coRLSR, only one
view had access to the single amino acid position that causes 3TC resistance. This fact
violates the assumption that both views are sufficient for correct predictions and therefore
lead to a significantly decreased performance compared to RLSR.

4 Conclusion and Outlook

Semi-supervised learning has the capability to improve the prediction of drug resistance
from important regions in the HIV genome. The classification methods displayed a clear
benefit over classical supervised learning for most drugs when only few labeled training
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Figure 3: Mean squared error for 10% (left) and 100% (right) of the labeled data for the reference
methods and coRLSR trained with the unlabeled sets Sdrug and Sclass, respectively. Whiskers
indicate the standard deviation computed via 10-fold cross-validation.

samples were available. PIs, a drug class with strong cross-resistance between drugs,
benefited the most from the use of SSL. The results support that SSL methods are suitable
for improving prediction of drug resistance for novel drugs in established drug classes,
such as daraunavir and tipranavir. Generally, it is not clear whether SSL is helpful for drugs
belonging to novel drug classes (e.g. integrase inhibitors), because only few sequences
harboring resistance mutations are available and SSL can also corrupt the classification
results as seen for 3TC. The only semi-supervised regression model coRLSR could not
improve the performance over the supervised methods.
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Abstract: Solving problems in bioinformatics often needs extensive computational
power. Current trends in processor architecture, especially massive multi-core proces-
sors for graphic cards, combine a large number of cores into a single chip to improve
the overall performance. The Compute Unified Device Architecture (CUDA) provides
programming interfaces to make full use of the computing power of graphics process-
ing units. We present a way to use CUDA for substantial performance improvement
of methods based on multi-dimensional scaling (MDS). The suitability of the CUDA
architecture as a high-performance computing platform is studied by adapting a MDS
algorithm on specific hardware properties. We show how typical bioinformatics prob-
lems related to dimension reduction and network layout benefit from the multi-core
implementation of the MDS algorithm. CUDA-based methods are introduced and
compared to standard solutions, demonstrating 50-fold acceleration and above.

1 Introduction

Bioinformatics is faced with accelerating increase of data set sizes originating from pow-
erful high-throughput measuring devices. The implementation of computational intensive
tasks in parallel technology is one of the key solutions to time-efficient data processing.
Today, often compute jobs are performed on cluster computers or on large multi-core
servers to take advance of parallelization. We will discuss an evolving path to provide
work-efficient, parallel and desktop-suitable solutions based on acceleration by graph-
ics processing units using the compute unified device architecture (CUDA) for compu-
tation on commonly available graphics processing units (GPU). High-throughput multi-
dimensional scaling (HiT-MDS) is a versatile tool for biological data analyses that is sys-
tematically transferred to the GPU for taking advantages of the massively parallel hard-
ware architecture for scientific computing.
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1.1 Multidimensional Scaling

Multidimensional scaling (MDS) is a data processing method suitable for addressing sev-
eral analytical purposes: (i) for dimension reduction of vector data, providing a nonlin-
ear alternative to the projection to principal components; (ii) for the reconstruction of a
data dissimilarity matrix of pairwise relationships in the Euclidean output space; (iii) for
conversion of a given metric space, such as data compared by Manhattan distance, into
Euclidean space, (iv) for dealing with missing data relationships using zero force assump-
tion. These features make MDS a valuable tool for the analysis of large data tables and
for dealing with (partial) information about data relationships [IMO09, SSUS07, TO05].
We focus on two examples of MDS application: one is related to dimension reduction in
gene expression time series data, the other one is related to network layout from adjacency
information.

1.2 GPGPU Programming with NVIDIA CUDA

In the last ten years general purpose computing on graphics processors became more and
more important. Higher memory bandwidth, increasing (parallel) floating point perfor-
mance compared to CPUs and rising memory capacities as well as low costs get attractive
to scientists because of impressive speed up factors of up to several hundred times in dif-
ferent CUDA based analyses [BK09, GHGC09, JK09, LKPM09]. Following the trend to
take advance of a little ’supercomputer at home’, approaches with massive parallelism on
the GPU have been implemented in scientifically important tools such as MATLAB or
FORTRAN libraries [FJ07, GDD08].

Because of the development from simple graphics devices into highly parallel, multi-
threaded many-core processors, today GPUs are very appropriate to solve problems trans-
formable into data parallel instructions operation. That is, the more independent sub-
sequent instructions are the lower is the communication overhead which usually causes
performance loss. By massive parallel operations memory access latency can even be
avoided by in-place recalculations instead of accessing big data caches. For that purpose,
parallel instructions are embedded into a logical grid of thread blocks, which is mapped
to scalar processors by the instruction unit of a multiprocessor as illustrated in Figure 1.
This architecture is called SIMT (single-instruction, multiple-thread) which is similar to
the well-known SIMD (single-instruction, multiple-data) concept [Cor08].

For controlling the GPU computation CUDA was developed as a hybrid CPU-GPU inter-
action model. The above mentioned single-instruction functions are called from a CPU
thread (referred to as host in the following). Such functions are called kernels whose in-
structions and amount of executed threads can be specified by the coder. As shown by
Ryoo et al. not only aiming at best local acceleration, but also the distribution of threads
within the grids and blocks can significantly influence the performance [RRS+07].

Another important feature of NVIDIA’s CUDA enabled devices is the heterogeneous mem-
ory (see Figure 1). The large global memory reaching gigabytes of capacity contains small
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Figure 1: CUDA memory, processor and programming model. IU - Instruction Unit, R - Register,
SP - Scalar processor

subsets of two cached memory types, texture and constant memory, which are available
in every thread and accessible as fast as registers after being cached. The on-chip shared
memory is available within all threads of a block. In case of no bank conflicts, it is as
fast as register. Bank conflicts occur if two threads try to read the same memory contem-
poraneously, which is then serialised [Cor08]. Nearly all implementations use these fast
memories to achieve communication between threads. This leads to massive performance
gain compared to the usage of global memory or the even much worse communication de-
lay via host control [CMS08, Cor08, Sel08]. To get the best out of global memory Seland
pointed out to access contiguous (coalesced) memory and reported speed up factors of up
to ten by using this technique [Sel08].

Furthermore NVIDIA declares CUDA as an extension to the C programming language
and targets to simplify parallel computation. Hence working with CUDA is quite intuitive,
and there is a low learning curve even without much knowledge about graphics hardware
or OpenGL. This makes CUDA attractive for tool development for bioinformatics tasks.

2 Methods

This section is organised as follows: First we describe the multi-dimensional scaling
(MDS) method. Then the implementation and optimisation of the algorithms in CUDA
are described in detail. We close this section with two important applications of MDS:
gene expression analysis and automatic layout of biological networks.
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2.1 Multi Dimensional Scaling

Very intuitive visualisation of relationships between different data records can be obtained
by reconstructing these relationships as pairwise distances in the usual Euclidean 2D plane
or 3D space. Usually data projections to the principal components are used for that pur-
pose, referred to as PCA projection. However, PCA is restricted to linear mappings of
high-dimensional data, thereby focusing on directions of maximum Euclidean variance. A
more natural goal is to obtain a low-dimensional display of a Euclidean space that reflects
most faithfully the similarities among the source data.

In principle, this goal can be reached by using multi-dimensional scaling (MDS) tech-
niques. In classical approaches, distances between the reconstructed low-dimensional
points should be maximum similar to distances between the original data records. This
strict optimisation task can be very hard, though, because of ambiguous compromise solu-
tions for complex source relationships being rendered into a low-dimensional target space.
Most MDS methods define quite stringent cost functions, such as least squares approaches
targeting identity of the distances between the reconstructed point locations and the dis-
tances of corresponding input data.

Alternatively, Pearson correlation r ∈ [−1; 1] can be computed between the distance
matrices D = (dij)i,j=1...n and D̂ = (d̂ij)i,j=1...n of input data and of reconstructed
points, respectively, by

r(D, D̂) =

=n
i<j (dij − µD) · (d̂ij − µD̂)/=n

i<j (dij − µD)2 ·
/=n

i<j (d̂ij − µD̂)2
=:

B√
C · D

with µḊ =
2

n · (n − 1)
·

n?
i<j

ḋij , Ḋ ∈ {D, D̂} , ḋij ∈ {dij , d̂ij} . (1)

This correlation approach allows infinitely many more solutions than strict identity optimi-
sation, while ensuring maximum correlation between source and target distances. Relax-
ation of the optimisation procedure is explained by the invariance of Pearson correlation
against rescaling of vectors by a factor and against baseline shifts by an additive offset.
The following method, called high-throughput multidimensional scaling (HiT-MDS), de-
scribes how correlation is used to help alleviate the optimisation task of finding proper
low-dimensional point locations.

Referring to source vectors xi ∈ X, target vectors x̂i ∈ X̂ and their respective dimensions
q and q̂, the correlation r(D, D̂) between entries of the source distance matrix D and
the reconstructed distances D̂ is maximised by minimising the following embedding cost
function:

s = −r ◦ D̂ ◦ X̂ ⇒ ∂s
∂x̂i

k

= −
j (=i?

j=1...n

∂r

∂d̂ij

· ∂d̂ij

∂x̂i
k

→ 0, i = 1 . . . n (2)

Locations of all points x̂i in the target space induce pairwise distances and, consequently,
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correlations between source and target distances. These locations are obtained by gradi-
ent descent on the stress function s using the chain rule. The derivatives in Equation 2
are [SSUS07]

∂r

∂d̂ij

=
(dij − µD) − B

D · (d̂ij − µD̂)√
C · D

∂d̂ij

∂x̂i
k

= (x̂i
k − x̂j

k)
A

d̂ij for Euclidean d̂ij =

B?q̂

l=1
(x̂i

l − x̂j
l )2 .

While for intuitive plotting results target distances d̂ij are usually Euclidean, input dis-
tances can be mere dissimilarities, such as mirrored Pearson correlation dij = (1 −
r(xi, xj)) or powers of which. These correlations between data vectors must not be con-
fused with the target value r in the correlation-based cost function optimisation in Equa-
tion 2 of HiT-MDS.

Two major revisions are made to the previous version of HiT-MDS described in [SSUS07].

First, the update replaces the specific value of the cost function derivative in Equation 2
by the sign sgn(∂s/∂x̂i

k). This forces updates, irrespective of the order of magnitude
of the derivative for maintaining a constant convergence process. The effective rate of
convergence is controlled by a single factor only, the learning rate γt, decreasing in time.
Thus, an atomic update quantity of the k-th component of the i-th reconstruction point at
time point t is computed by

Δtx̂
i
k = −γt · sgn

5
∂s

∂x̂i
k

1
, γt → 0 for t → tmax . (3)

Convergence is forced by driving the learning rate monotonously to zero, in the limit of
maximum cycles tmax +1. In practice, the learning rate starts at γ0 = 0.1 and gets linearly
decreased to zero. This update scheme is very robust against the choice of the learning rate
and turns out to yield excellent results.

Secondly, batch optimisation is realised. This means that updates from all pairs of data
records are integrated before being applied synchronously to the reconstructed points.
This strategy can be formally expressed as operations on distance matrices and, hence,
efficiently parallelised. Illustrative MATLAB/Octave and R implementations with vec-
torised code as well as CUDA codes are available online [Hit].

A general formulation of the point reconstruction procedure is given in Algorithm 1. Much
of the work is actually done in line 8 of the program. Apparently, the depicted algorithm
is specialised in the task of fast reconstruction of a given dissimilarity matrix D, thereby
depending only on the target dimension, adaptation rate, and the number of cycles.

One of the main challenges of transferring the general algorithm to CUDA is an efficient
use of memory and threads, which is detailed in the next sections. Another important issue
to be discussed is the handling of adjacency matrices for being processed by the HiT-MDS
algorithm.
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Algorithm 1 General HiT-MDS algorithm
1: Initialise x̂i

k randomly from the unit interval
2: for t ← 1 . . . tmax {iterations} do
3: Calculate distance matrix D̂ of all x̂, including B, C , D , and µD̂

4: Calculate update rate γt ← γ0 · (1 − t/(tmax + 1))
5: for k ← 1 . . . q̂ {each target dimension} do
6: reset k-th dimension update vector y ← 0
7: for i ← 1 . . . n {each target point} do
8: yi ← Δtx̂

i
k (using Equation. 3)

9: end for
10: for i ← 1 . . . n {apply integrated update to each target point} do
11: x̂i

k ← x̂i
k + yi

12: end for
13: end for
14: end for

2.2 Implementation on CUDA

As depicted in equations 1, 2 and 3 the essential work of HiT-MDS is done by calculating
the Pearson correlation coefficient r(D, D̂). Therefore, three intensive summations in-
cluding mean value computation as well as the Euclidean distances have to be computed.
These two tasks are very well suited for being transformed into parallel problems, as de-
scribed following. We will point out the way of theoretical parallelization complexities and
CUDA specific implementation details. Additionally, we included a degree based and a
second all-pairs-shortest-path based algorithm to enhance the graph distance interpretation
possibilities of HiT-MDS for creating network layouts.

All pairwise distances are stored in a half n2-matrix and accessed by a function
getPos(x, y) = row coord[y] + x for a graph G = (V, E), (x, y) ∈ E. row coord
contains pre-calculated coordinates of starting points for each row of the given half ma-
trix. On the GPU this is realised as an array in fast constant memory to provide best access
times.

The Prefix Reduction or partial-sums problem is a well understood algorithmic ap-
proach to maintain partial sums of a given array A[1..n]. It is specified for elements A[i]
to come from an arbitrary group H containing at least 2δ elements. For the cell-probe
model with b-bit cells a problem complexity of Ω =

7
δ
b · lg n

3
was proven [PD04].

For parallel implementations, it was shown that the naı̈ve algorithm’s time complexity
is O (log n) performing O (n log2 n) addition operations. Furthermore, work efficient
implementations (Algorithm 2) perform only O (n) addition operations [HSO07].

To get additional speed improvements, it is necessary to take advantage of the multiproces-
sors shared memory. All threads running in the same block have communication access to
the same shared memory. In this case, communication means to copy all elements known
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Algorithm 2 Work-efficient partial-sum algorithm
1: for d ← 0 . . . log2 n − 1 do
2: for k ← 0 . . . n − 1 by 2d+1 in parallel do
3: A[k + 2d+1 − 1] ← A[k + 2d − 1] + A[k + 2d+1 − 1]
4: end for
5: end for

by a thread into a smaller shared memory array. As mentioned above, shared memory is
substantially faster than global memory.

To avoid bank conflicts, we use the blockIDs and threadIDs to calculate memory addresses
of elements in shared memory that a thread adds up, schematically given as

sum = shared [threadID] + shared [threadID + blockDim/2] (4)

Thus, with a limitation to the maximum number of threads per block of 512, caused by
CUDA constraints, one can add 1024 elements per block. The result is written back to
global memory and is source of the next loop. Therefore, in every step of outer for-loop of
Algorithm 2, there are 2 · k global memory accesses. To take advance of coalescing mem-
ory, we address the elements read from global memory by a similar idea as in formula 4.

Euclidean Distances computation time complexity is in O
;

n2

p

4
. We reached accelera-

tion factors of more than 20 up to 30 by using a simple kernel according to Algorithm 3.
This approach uses the CUDA built-in register variables id.x and id.y to find out the vir-
tual location of an active thread.

Algorithm 3 Parallel pairwise Euclidean distances with thread IDs in q̂-dimensional space
1: for i ← 0 . . . n2 in parallel do

2: d̂id.x,id.y ←
/=q̂

l=1(x̂
id.x
l − x̂id.y

l )2

3: end for

Floyd-Warshall Algorithm According to use MDS as graph layout tool, a simple ap-
proach to get more information out of sparse graphs is to compute extra distances from
existing graph edges by finding all node pairs shortest path. The Floyd-Warshall algo-
rithm was designed with this in mind and is, similar to the Euclidean distances algorithm,
very simple to transform into a parallel version. It is a single O (n) operation looping over
O (n) threads as shown in Algorithm 4 and pointed out by Harish and Narayanan [HN07]
who reported significant speed improvements. Again, we use the texture memory access
method to profit from caching effects.

Degree Based Distance Manipulation An alternative and fast method to visualise net-
work structures is to pre-compute distances out of adjacencies. The main idea is to declare
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Algorithm 4 Parallel Floyd-Warshall( G=(V,E) )
1: create adjacency matrix A from G
2: for k ← 1 . . . n do
3: for all elements in the adjacency matrix A, where 1 ≤ i, j ≤ n in parallel do
4: A[i, j] ← min(A[i, j], A[i, k] + A[k, i])
5: end for
6: end for

nodes with many neighbours as large nodes. Basically, this method is in a time complex-
ity of O(no) with o is the average number of neighbours per node. Since most networks
in biology are sparse, the algorithm works very fast. In substance, in such a network
G = (V, E) the distances are defined as l(e) = deg(u) + deg(v) for e = (u, v) ∈ E.

HiT-MDS is applied two times on the pre-computed distance values using half of the stan-
dard cycle number each. In the first run, we set unknown distances belonging to different
components to the graph’s doubled diameter. This first step separates all components.
In the second step, and hence, during the second half of total algorithm cycles, points
are moved to their best correlation based positions. A result of this approach is given in
Figure 2.

Figure 2: Yeast protein interaction network with 4554 nodes, evaluated with degree based distance
interpretation. The node positions are visualised on the basis of CUDA’s OpenGL-interoperability.
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Figure 3: HiT-MDS scatter plot of embedded temporal gene expression data. Correlation similarity
(1− r(xi, xj))p is considered at p = 8 for magnification of high-correlation subsets, which explains
the characteristic sand glass shape.

2.3 Application Examples

2.3.1 Global Patterns of Gene Expression

Visualisation is sought for 4824 high-quality genes covering 14 time points of developing
Barley
grains [SSUS07]. Their scatter plot is obtained by running HiT-MDS for 50 data cycles,
yielding the high-quality display shown in Figure 3. In contrast to previous results the
processing time dropped from 861 seconds by a sequential C program to merely 6 seconds
using CUDA (not including disk read).

The characteristic sand glass shape results from using eighth power of the correlation
measure, more precisely, (1 − r(xi, xj))8, applied to highly correlated 14-dimensional
time series profiles of up-regulation vs. down-regulation processes. The power of eight
magnifies subtle dissimilarities in highly correlated genes, this way enhancing their visual
differentiation. By posterior labelling with known gene annotations, the exemplary group
of hormone and signaling related genes are highlighted in orange colours, other func-
tional categories are marked in gray. Additionally, data boxes, brushed in blue, and their
corresponding plots of temporal patterns have been manually picked in order to demon-
strate the high spatial connectivity of similar regulatory profiles and their embedded two-
dimensional counterparts. A smooth transition can be found from the western side (W)
with patterns of down-regulation, via south (S) corresponding to patterns of intermedi-
ate up-regulation and up-regulation located in the east (E) to north (N) with intermediate
down-regulation, back to west. Since the underlying array was designed for capturing gene
expression connected to developmental processes, the majority of genes is in fact expected
to be either up- or down-regulated, as visually confirmed by the two major structures. Rare
and unique regulation patterns are found in the interior of the sand glass shape.

The prominent temporal expression patterns are easily revealed by browsing the scatter
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plot in the way described above. The plot shows that the correlation space is very homo-
geneous, dominated by patterns of up- and down-regulation, according to the experimental
design. Overall, the HiT-MDS embedding procedure applied to transcriptome data of bar-
ley tissue development yields a faithful arrangement of genes with their typical temporal
expressions. Together with functional annotation data this is a very instrumental tool for
screening sets of co-regulation and for an initial derivation of tentative pathways.

2.3.2 Network Layout

Many processes and interactions in biology are represented as networks. Furthermore,
there are two common ways to interpret experimental data resulting in networks: i) as a
biological network and ii) in the context of an underlying network. Due to the increasing
amount of experimental data and the steadily growing size of networks, automatic network
layout is important to better understand the relationships and interactions between biolog-
ical objects such as genes, transcripts, proteins and metabolites. One widely used method
for network layout is the force-directed layout method [FR91].

Let G = (V, E) be a network consisting of a set of nodes V = {v1, . . . , vn} represent-
ing the biological objects (e. g. proteins) and a set of edges E = {(vi, vj)|vi, vj ∈ V }
representing the interactions between the biological objects (e. g. interactions between
proteins). A layout of the network is represented by coordinates for the nodes and curves
for the edges. A force-directed layout method uses a physical analogy to draw networks.
It simulates a system of physical forces defined on the network and produces a drawing
which represents a locally minimal energy configuration of that physical system. Force-
directed layout methods consist of two parts: i) a system of forces defined by the nodes
and edges, and ii) a method to find positions for the nodes (representing the layout of the
network) such that for each node the total force is (close to) zero.

A typical method interprets nodes as mutually repulsive ’particles’ and edges as ’springs’
connecting these particles. This results in attractive forces fa between adjacent nodes and
repulsive forces fr between non-adjacent nodes. For the current layout for each node v ∈
V the force F (v) =

=
(u,v)∈E fa(u, v)+

=
(u,v)∈V ×V fr(u, v) is computed, which is the

sum of all attractive forces fa and all repulsive forces fr affecting node v. For example, for
the x component the forces fa and fr are defined as fa(u, v) = c1 ·(d(u, v)− l) · x(v)−x(u)

d(u,v)

and fr(u, v) = c2
d(u,v)2 · x(v)−x(u)

d(u,v) , respectively, where l is the optimal distance between
any pair of adjacent nodes, d(u, v) is the current distance between the nodes u and v, x(v)
is the x-coordinate of node v, and c1, c2 are positive constants. Iterative numerical analysis
is used to find a locally minimal energy configuration by moving each node in the direction
of F (v) to produce a new layout. Finally, the nodes are connected by straight lines.

There are several often used varieties of force-directed methods [Ead84, KK89, SM95].
The computation of the layout is computationally demanding, and fast force-directed
methods have been proposed such as an incremental multidimensional scaling heuris-
tic [Bas99] or Walshaw’s algorithm (a multi level version of the original algorithm [FR91])
in [HJP02]. The previously shown network example in Figure 2 is based on the HiT-MDS
node layout for visualizing a protein interaction network in yeast containing 4554 nodes.
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instant size MATLAB [s] CUDA [s] speedup
64 0.114±0.010 0.012±0.004 9.5 x

128 0.126±0.006 0.014±0.007 9.0 x
256 0.616±0.012 0.021±0.003 29.3 x
512 2.777±0.205 0.048±0.004 57.9 x

1024 9.975±0.485 0.178±0.004 56.0 x
2048 43.473±2.832 0.721±0.003 60.3 x
4096 183.700±11.915 3.361±0.024 54.7 x
8192 750.129±48.643 13.997±0.015 53.6 x

Table 1: Performance comparison of optimized MATLAB and CUDA code on test instances of
different sizes. The target dimension is three. Measurements refer to time in seconds, excluding data
import time.

3 Results

The core HiT-MDS algorithm has been implemented on three different platforms. Two
vectorized code samples are available for R and MATLAB/GNU Octave as well as the
CUDA version. Code profiling tools of MATLAB and CUDA were used to optimize the
performance. Code for R and GNU Octave was manually optimized and is by a factor of
2 to 4 slower than the MATLAB version, because only MATLAB is able to make use of
fast single precision arithmetics, thereby using multi-threaded linear algebra routines and
loop optimization. Therefore, the fastest code of MATLAB is compared with the CUDA
implementation.

Random distance matrices of different sizes were generated for performance tests on the
reference server machine, a 16 core server equipped with 3 GHz AMD Opteron CPUs and
a NVidia TESLA S870 GPU rack. MATLAB 7.7.0 with multi-thread mode and CUDA 2.1
were used for performance comparisons. Average run times of 10 independent starts with
50 cycles per run were measured and compiled in Table 1. The instant size column refers
to matrices representing between 64x64 to 8192x8192 distances. For the fixed number
of cycles, the embedding speed is independent of the matrix entries, no matter if full or
sparse matrices are processed. This also indicates a general validity of the recorded speed,
no matter if for scatter plot generation or for network layout.

Significantly faster execution times of CUDA are found. Yet, small instances yield less
speedup than instances of sizes around 2048x2048 for which robust factors over 50 fold
acceleration can be stated. Moreover, very small standard deviations are obtained for
CUDA, indicating undisturbed use of the GPU hardware for high-performance scientific
calculations.
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4 Discussion

HiT-MDS is a versatile algorithm with good parallelization potential for reconstruction
of dissimilarity relationships in a Euclidean space. It can be used as faithful dimension
reduction method, for converting data with a specific data metric into a Euclidean repre-
sentation, and, by a straight-forward extension, for network reconstruction of adjacency
matrices. The method is thus perfectly suited for dealing with data screening, complexity
reduction, and relationship characterization, tasks that regularly exist in biological sci-
ences.

At first glance the presented performance comparison between MATLAB and CUDA
might seem to be unfair. Yet, only few lines of MATLAB code need to be interpreted
per algorithmic cycle. Virtually all matrix operations are handled by internal MATLAB
functions of optimized algebra subroutines that can be hardly beaten by hand-written C++
code. Just another theoretical factor of 2 would be gained for MATLAB if symmetry of the
matrices could be efficiently exploited. Yet another clear time benefit of CUDA remains:
thanks to the GPU server architecture heavy computations can run almost independent of
the host, if memory transfer between CPU and GPU remains at a low level.

The main ingredients to successful utilization of CUDA turned out to be (i) the consistent
use of the reduction principle for using fast shared memory on the multiprocessors instead
of slow global memory on the graphics board, (ii) the use of texture memory, and (iii) a
good arrangement of threads into logical blocks, and (vi) the use of thread-interleaving
memory access (coalescence). For the computing task at hand, single precision floating
point numbers of 32 bit worked as reliably as double precision. The technical limitation of
the size of the distance matrix is currently at about 14000x14000 elements on a graphics
board with 1.5 GB memory. Yet, larger memory capacity, double precision calculations,
and more multiprocessors per GPU are already available at low prices.

Future tasks are related to deal with larger network structures, which requires an imple-
mentation of a sparse matrix data structure. Another challenge will be the identification of
network nodes in very large graph structures.
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Abstract: Gene prioritization based on background knowledge mined from litera-
ture has become an important method for the analysis of results from high-throughput
experimental assays such as gene expression microarrays, RNAi screens and genome-
wide association studies. We apply our gene mention identifier, which achieved the
best result of over 80% in the BioCreative II text-mining challenge [HPR+08], and
show how text-mined associations can be complemented using guilt-by-association on
high confidence protein interaction networks.

First, we predict hand-curated gene-disease relationships in the OMIM database,
Entrez Gene summaries and GeneRIFs with 37% success rate. Second, we confirm
24% of novel cell-cycle genes identified in a recent RNAi screen [KPH+07] by using
text-mining and high confidence protein interactions. Moreover, we show how 71%
of GOA cell-cycle annotations can be automatically recovered. Third, we devise a
method to rank genes based on novelty, increasing interest, impact, and popularity.

1 Introduction

With high-throughput methods such as gene expression analyses, high-throughput RNA
interference, and genome-wide association studies, gene prioritization becomes an im-
portant problem. Gene prioritization orders lists of genes according to their likelihood
to be associated to a process, phenotype, or disease. In particular, genetic linkage anal-
yses identify chromosomal regions, which are linked to a disease and which can con-
tain hundred candidate genes linked to a disease. The problem becomes one of estab-
lishing indirect links from the candidate genes to the disease. These links can be of
very different nature such as protein interactions [GLF+06, LKS+07], similarity of an-
notations from controlled vocabularies (phenotype in MeSH [LKS+07]), GeneOntology
[AAE+05, PIBA02, TCS03], anatomy [TKP+05], sequence similarity [TCS03, GLF+06,
AAE+05, LBO04, PIBA02], phylogeny [LBO04], or co-expression of genes [TKP+05,
TCS03, vDCK+03, vDCK+05]. As a result, these approaches manage to significantly re-
duce the number of candidate genes [TAT+06] or even directly identify the disease gene
such as [LKS+07], who predict for 298 out of 669 linkage intervals the correct disease
gene.

While the above studies prioritize some hundred genes regarding their link to a disease,
other efforts aim to establish large scale links between all genes of a genome and disease.
[BK06] mine meta-information of all data sets in the Gene Expression Omnibus by ex-
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tracting UMLS concepts from descriptions. This way they can identify novel genes linked
to aging. Similarly, [GCV+07] link human protein interaction with expression and disease
data. They conclude that disease genes are less likely to be essential interaction hubs and
are functionally on the periphery.

In general, protein interaction data can be beneficial to infer indirect relationships by ap-
plying the principle of guilt-by-association. Both [GLF+06] and [LKS+07] make use
of interactions in their analysis of linkage intervals and [GUT+08] find that half of their
correct gene-disease associations are indirectly inferred via protein interactions.

Summarizing the above work, there are three interesting aspects:

• First, only few approaches (e.g. [TKP+05, LKS+07]), apply text-mining to asso-
ciate genes and diseases and none of them apply large-scale identification of genes
and diseases in the whole of the medical literature.

• Second, only few (e.g. [GLF+06, LKS+07, GUT+08]) use protein interactions and
the principle of guilt-by-association.

• Third, experimental validation of prediction of novel disease genes is scarce, since
such links are inherently difficult to verify due to the complexity of diseases.

In this paper, we address these three points. We show how state-of-the-art entity recogni-
tion of cancer genes, cell-cycle terminology, diseases, and their co-occurrences combined
with the principle of guilt-by-association can predict hot cancer genes and novel cell-cycle
genes. Hot cancer genes i) are novel, ii) have been published in high impact journals, iii)
their popularity has not yet peaked, iv) and they attract a large group of researchers. This
meta information, which is the result of the comprehensive mining of literature, lends it-
self to identify genes worthy of exploitation since there is a direct or indirect link and they
are truly novel candidates. As argued above, the validation of gene-disease predictions
is difficult, since there are no straight forward experiments. We address this problem by
validating our approach on novel cell-cycle genes, which have been identified in a genome-
wide RNAi screen [KPH+07]. The screen provides a gold standard of over 850 novel cell
cycle genes, which have not been discussed in literature before.

The cornerstone of our approach is our entity recognition algorithm, which achieved the
best results (81% success rate) in the recent BioCreative text-mining task of human gene
name identification [HPR+08]. Since then we have further improved it to 86% success
rate. We applied the algorithm, which is online accessible via the BioCreative meta server
[LKRP+08], to over 17,000,000 abstracts from PubMed. Additionally, we considered
for each abstract any annotated disease terms from the Medical Subject Heading, MeSH,
and all stemmed cell-cycle terminology from the Gene Ontology literally appearing in the
abstracts. Overall, our method identifies 2.74 million abstracts mentioning a gene, 1.71
million abstracts mentioning a gene and a disease, and 210.000 a gene and cell-cycle term.
This resource is now available as GoGene 1 [PRW+09].

With this large data source, we define a simple co-occurrence model and set out to solve
the following problems: First, how well can our model predict hand-curated gene-disease

1http://gopubmed.org/gogene
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relationships in the OMIM database, and in Entrez Gene GeneRIFs. Second, how many
of the over 850 novel cell-cycle genes identified in the RNAi screen [KPH+07] can be
predicted with our method and which role does text-mining play and which inference
through protein interactions? Third, we devise a method to rank genes based on novelty,
increasing interest, impact, and popularity. With this ranking, we discuss 50 hot cancer
genes and 20 hot cell-cycle genes in detail.

2 Methods

Identification of human genes in PubMed. We identify human gene mentions in
PubMed by parsing each abstract with a dictionary of gene names, synonyms, and spelling
variants. First we find as many hits as possible. In a second step, a context sensitive filter
is applied to remove false positive matches by looking at tokens in the neighborhood of
each name/hit and by resolving abbreviations to long forms. Finally, polysemous names,
i.e. names referring to more than one gene, are disambiguated by comparing the text at
hand against each candidate profile. A profile contains all known information of a gene,
e.g. GO annotations, diseases, background texts etc. taken from the high quality databases
Entrez Gene and SwissProt. The profile that best fits the text is taken as sense for the
ambiguous gene name. For a detailed explanation of our gene identification method see
[HPR+08].

Gene ranking. For researchers trying to obtain insights from large screening data, not
all genes are equally important. Some genes have often been discussed in the literature.
For some genes, the research interest of the community has reached saturation and has
since then declined. These declining genes have well-known and stable functions. It is
less probable that new insights into their function can be discovered . Yet, they do provide
a rich source of information that can shed light on the experiment. In contrast, other genes
lie at the forefront of research and have just recently received names and are only found
in recent publications. The probability to discover new insights for these genes is higher
due to their novelty. Moreover, a novel gene with many recent mentions in high impact
journals constitutes an even better candidate. By compiling the publication dates of all
human gene mentions in MEDLINE we can decide for each human gene whether research
interest has peaked and is dwindling, if the gene belongs to some hot topic of research, or
if the gene is discussed in a large body of high-impact literature.

Bibliometric features. We chose four features to measure how ‘interesting’ a gene
is. First the category peaked/not-peaked: peakedg , second the number of publications
weighted by impact factor: volumeg , third how recent is the interest in the gene indepen-
dently of the total number of papers: noveltyg , and finally the total number of distinct
authors that contributed to the publications for that gene: communityg . We defined a
gene has having peaked if the highest count of papers is at least 3 years old and if since
then there was a consistent decrease in the number of papers. We compute novelty using a
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simple exponential decrease of the relevance of old mentions divided by the total sum of
all impact factor points: noveltyg =

=2007
y=1950 αy−2007cg,y

In this formula cg,y represents the cumulative impact factor for gene g for the year y.
We chose to use a yearly decrease of 50% toward the past (α = 0.5). The communityg

measure has a minor impact on the ranking as it is strongly correlated to the volumeg , but it
does contribute additional information about the size of the research community for a gene.
To combine these measures we use a Pareto ranking approach[MA94]. The advantage of
this scheme is that it ranks genes according to all four features in a balanced manner.
For example, shown in Table 4 are the top five genes ranked for breast cancer. Among
these is SIRT7, a novel gene with many high-impact publications in recent years, but also
BRCA1, a well known and important gene for breast cancer. Among the 36509 human
genes, 16078 are found mentioned in MEDLINE and among these 31% have peaked (as
of January 2008).

Association of Genes to MeSH and GO terms. To annotate genes with terms from
MeSH and GO, we basically count the number of co-occurrences in the literature. For
each gene-term pair we compute an association-score as follows: scoreg,t = log2

N×ng,t

ng×nt

where N is the number of articles mentioning any gene and any term from the branch
(e.g. a disease), ng,t is the number of articles mentioning the gene and the term, ng is
the number of articles mentioning the gene and any term from the branch, and nt is the
number of articles mentioning the term and any gene. The higher the association score
the more likely this pair will be mentioned together in the literature. An association score
of zero means that gene and term occur independently of one another. A negative score
signals an underrepresentation of a pair in the literature.

Guilt-by-association. Guilt-by-association is the principle by which qualities can be
transfered between associated items. In our case, we transfered the information is cell-
cycle related to all direct interaction partners of a gene if it co-occurs significantly with
cell-cycle terms in the literature. We experimented with several decision functions but
observed that simply transferring to all direct neighbors of a gene performed best. In par-
ticular, adding more distant neighbors increases recall but leads to a significant decrease
in precision (data not shown).

3 Results

Prediction of Gene-Disease Associations. We compare text mined gene-disease asso-
ciations to Entrez Gene Summaries and GeneRIFs texts2 and to the OMIM database (Ta-
bles 3 and 3). The achieved precision rates in Table 3 are underestimations because of the
many incomplete GeneRIFs and Summaries (GRS) [BCF+07]. While the precision is low
because of many incomplete GRS, the recall suffers from false positives in the benchmark

2Downloaded December 2007
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Min. Score Sig. level (%) Precision (%) Recall (%) F1 (%)

12 0.04 59.2 1.7 3.3
10 0.22 44.0 6.1 10.6
8 0.97 21.8 11.8 15.4
6 3.5 9.3 19.6 12.6
4 10.8 4.7 33.0 8.2
2 28.6 3.0 53.7 5.6
0.6 50.0 2.5 73.5 4.8

Table 1: Results for text mined gene-disease associations. Comparison of gene-disease associations
for different score thresholds. Predicted diseases are compared to automatically annotated Entrez
Gene Summaries and GeneRIFs texts.

Min. Score Sig. level (%) Precision (%) Recall (%) F1 (%)

13 0.01 88.5 6.4 12.0
12 0.04 76.3 10.2 18.1
10 0.22 50.0 29.0 36.7
8 0.97 22.4 44.5 29.8
6 3.5 8.1 59.1 14.3
4 10.8 3.1 73.8 6.0
2 28.6 1.4 88.3 2.7
0.6 50.0 0.08 93.8 1.6

Table 2: Results for text mined gene-disease associations in OMIM. Comparison of gene-disease
associations for different score thresholds. Predicted associations are compared to the OMIM gene-
disease catalog.

data set. Annotation of GRS was done automatically by simple, context insensitive match-
ing to have as many training examples as possible of all kinds of diseases at the expense
of including false positives due to ambiguous disease terms. Since GRS are manually
added to a gene’s record, they might also contain information, which is not present in the
abstracts of publications. Thus, only by looking at abstracts and not at full texts we are
likely to miss gene-disease associations. Our predictions of human genes associated with
genetic disorders are evaluated by comparing to the OMIM gene-disease catalog Table 3.
We successfully mapped 358 disease concepts in MeSH to their respective counterparts in
OMIM and used them as a benchmark data set. As expected, the achieved results in terms
of recall are much better than for our GRS benchmark, since all annotations in OMIM can
be regarded as more reliable as GRS entries.

Prediction of Cell-Cycle Genes. A recent genome-wide high-throughput RNAi screen
identified 1351 genes important for cell division in HeLa cells [KPH+07]. Among these
1351 genes, only 243 were previously associated with cell-cycle progression, and 252 pre-
viously uncharacterized genes were assigned this function. The remaining 882 genes were
known to be implicated in other functions than cell-cycle. Another study characterized the
genome-wide program of gene expression during the cell division cycle in HeLa cells us-
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ing cDNA micro-arrays [WSS+02]. They identified genes periodically expressed during
cell-cycle progression. These genes are not necessarily important to cell-cycle itself, but
are nevertheless downstream of the cell-cycle machinery. As shown in Fig. 1D only 89
genes are both important for cell-cycle and periodically expressed, and 53 among these
were previously known to be important for cell-cycle.

We compare these experimental knowledge to gene–cell-cycle associations mined from
MEDLINE abstracts Table 3. To improve recall, we used protein sequence homology
as well as protein interactions to transfer associations using the principle of guilt-by-
association. First we evaluated how many genes associated to cell-cycle in GOA and
KEGG can be recovered using text-mining. We achieve a recall of 40.6% and a preci-
sion of 43.3% using co-occurrence of genes with cell-cycle GO terms. Using the princi-
ple of guilt-by-association, the recall can be improved to 45.3% when using protein se-
quence homology, and to 67.9% when using protein interactions from the HPRD database
[MSK+06]. Thus, high-quality protein interactions are a valuable resource for improving
recall. Moreover, predicting all genes known to be related to cell-cycle either in GOA,
KEGG, [KPH+07] or [WSS+02] leads to a decrease in recall of 19.3% except when us-
ing protein interactions. In this case, the recall more than doubles to 44.3% with the best
F1-measure of 34.5%.

Next, we tried to predict the 882 new cell-cycle related genes identified by [KPH+07] us-
ing text-mining, protein sequence homology and protein interactions. Using solely gene–
cell-cycle co-occurrences, our approach achieved a maximum p-value of 0.51 indicating
the difficulty of predicting previously unknown cell-cycle genes using text-mining alone.
Adding protein sequence homology leads to a slightly better p-value of 0.24 – still in-
significant. However, using protein interactions improves the statistical significance of the
results with a p-value of 0.016 (HPRD). In this case we are able to confirm 24.3% of the
new cell-cycle genes identified by [KPH+07].

4 Discussion

The method we proposed can find novel links between genes and diseases not yet contained
in databases such as Entrez Gene and OMIM. Especially genes that link to neoplasms are
of high importance because of the high mortality of cancer patients. Among those genes,
we can highlight interesting ones using a ranking that integrates different measures for
interest such as novelty, volume, community, and peaked. We picked 10 different cancers
categories (8 by site and 2 by type) and ranked the associated genes for each category
(Tab. 4). Interestingly, none of our top ranked genes for pancreatic cancers is listed in
OMIM. A manual inspection of those genes showed that each is indeed linked to pancre-
atic cancers. A possible explanation is that OMIM only includes genes shown to follow
Mendelian inheritance patterns. For example, the top-ranked gene SIRT4 was first reported
in 1999 in a publication about the characterization of five human yeast SIR2 homologs.
Next publications followed in 2002, 2003, and 2005 revealing the regulation of SIRTs
by histone deacetylase inhibitors. Then in 2006, two papers in the high-impact journal
Cell were published reporting that SIRTs turn out to be critical regulators of metabolism
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Prediction Rec.(%) Prec.(%) F1(%) p-value(<)

gene-cell cycle GO terms co-occurrence:
GOA 55.7 32.2 40.4 10−186

GOA+KEGG 40.6 43.3 41.4 10−204

GOA+KEGG+Kittler 21.3 47.3 29.0 10−123

GOA+KEGG+Kittler+Whitfield 19.3 52.2 27.8 10−125

gene-cell cycle GO terms co-occurrence + sequence homology:
GOA 61 28.0 38.3 10−191

GOA+KEGG 45.3 38.4 41.2 10−209

GOA+KEGG+Kittler 24.4 43.0 30.8 10−125

GOA+KEGG+Kittler+Whitfield 19.3 52.2 27.8 10−125

gene-cell cycle GO terms co-occurrence + PPI:
GOA 71.7 13.5 21.9 10−136

GOA+KEGG 67.9 17.1 27 10−154

GOA+KEGG+Kittler 45.3 23.8 30.4 10−87

GOA+KEGG+Kittler+Whitfield 44.3 28.3 34.2 10−100

Predicting new cell cycle genes found in Kittler et al. [KPH+07]:
Cell cycle term co-occurence 3.4 7.0 4.2 0.51

+ protein sequence homology 6.7 7.7 6.4 0.24
+ protein interactions (HPRD) 24.3 8.0 12 0.016

Table 3: Predicting cell cycle related genes using GO term co-occurrence, protein sequence homol-
ogy and protein interactions. Predicting known cell cycle related genes from GOA can be done at a
maximal recall of 71%. Protein sequence homology only improves recall at the cost of a loss in pre-
cision. Using protein interactions improves recall, and when predicting all known cell cycle related
genes (GOA+KEGG+Kittler+Whitfield) it achieves a higher F1-measure than pure co-occurrence.
Predicting the new cell-cycle genes of [KPH+07] does not work using pure text-mining (P = 0.51),
is only marginally improved using protein sequence homology (P = 0.24), but becomes significant
when using protein interactions from HPRD (P = 0.016).

Bone Brain Breast Eye Leukemia Liver Lymphoma Pancreas Prostate Skin

FXYD6 CRB3 SIRT7 E2F5 CLLU1 LIN28B * NPC1L1 SIRT4 OR51E1 * KRT1
ADAM8 GHRHR BRIP1 * E2F1 * ARL11 * HNF1A * ULBP2 * G6PC2 OR51E2 * MSH2 *
C9orf46 SCGN BRCA1 * CDK4 * FCRL3 TCP10L * TBX21 SOX2 TMPRSS2 * MSH6 *
FGF23 * HDAC-3 SERPINB5 * KIF14 * CCDC28A UGT2B7 FHL2 FFAR1 PCA3 * MLH1 *
TRIB2 SOX4 AP1S2 RBBP8 * GATA1 * ZNF689 CCR7 CDX2 PI16 KRT15

Table 4: Top five genes for 10 cancer. The top five genes according to the Pareto ranking for 10
different neoplasms. Most of the listed genes have seen an increase in research interest in recent
years and have a high volume of high impact publications. Genes with a star are mentioned in
OMIM to be related to the corresponding disease, genes without a star are not. Note that for brain
and pancreas cancer none the top 5 genes identified are listed in OMIM.

and that SIRT4 acts in the mitochondria of pancreatic cells. The loss of SIRT4 in in-
sulinoma cells up-regulates amino-acid-stimulated insulin secretion, which links SIRT4 to
pancreatic cancers [HMH+06]. Another member of the histone deacetylase gene family is
SIRT7, which we found associated to breast cancers. Together with SIRT4, this gene was
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first reported in 1999. A recent publication in the British Journal of Cancer reports that
levels of SIRT7 expression were significantly increased in breast cancers.

As expected, we found more links to cancers among genes known to be involved in cell-
cycle progression, since defects in the cell-cycle are causative for cancers development
(Fig. 1E). A recent RNAi screen identified more than 850 new genes with impact on cell-
cycle progression [KPH+07]. Out of those, 24% can be further confirmed by literature
mining combined with high confidence protein interaction networks. A ranking of these
genes highlights the interesting candidates for further research and confirmation studies
(Fig. 1B and C). Figure 1A shows a sub-graph of the HPRD network with genes pre-
dicted by our method. For example, let’s examine the gene IRF3 – an interferon regu-
latory factor. It forms a complex with CREBBP and thus interacts in the network with
CREBBP [YLM+02]. Moreover, CREBBP co-occurs with cell-cycle terms such as ‘DNA
replication checkpoint’, ‘centriole replication’, ‘re-entry into mitotic cell-cycle’. These
co-occurrences together with the interaction between IRF3 and CREBBP is our evidence
for a link between IRF3 and cell-cycle. The importance of IRF3 for the cell-cycle can be
further confirmed in that the target genes of IRF-3 are themselves involved in cell-cycle as
shown in a recent Nature publication [AVC+07].

PALB2 is a breast cancer susceptibility gene that interacts with BRCA2 to enable its re-
combinational repair and checkpoint functions [XSN+06]. When mutated, it more than
doubles the risk of breast and ovarian cancers [WK07]. PALB2 is among the genes iden-
tified by [KPH+07] and predicted using both gene-cell-cycle co-occurrences and protein
interactions (Fig. 1C). In HPRD, PALB2 is reported to interact with BRCA2, a gene which
we find co-occurring significantly with cell-cycle terms in MEDLINE. Yet, PALB2 itself
is not associated to cell-cycle in GOA or KEGG nor does it significantly co-occur with
cell-cycle terms in the literature. This example shows how protein interactions can help to
recover such candidates. As seen in Fig. 1C, our method correctly associates PALB2 as
top ranked for ovarian cancers. PALB2 is definitely a ‘hot’ gene first researched in 2006
and discussed in 2007 in four Nature publications.

5 Conclusion

We showed the feasibility of a simple statistical co-occurrence model to find links between
genes and diseases as well as between genes and cell-cycle processes by automatically
searching the literature and using high confidence protein interactions. The achieved re-
sults for finding those associations are comparable to recent approaches to relationship
extraction from texts, such as protein-protein interactions [KLV07]. The main contribu-
tions of our work are: i) the application of a state-of-the-art gene name identifier to all
articles indexed in MEDLINE, ii) the ranking of all genes discussed in the literature by
different measures of interest, iii) the potential to find novel links between genes, cancers,
and cell-cycle processes not yet annotated in public databases, and iv) the support of high-
throughput experiments by filtering results using knowledge from literature and known
interaction networks to select the most promising gene candidates.
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Figure 1: Predicting Cell Cycle genes. (A) Example HPRD Sub-network of protein interactions
for new cell cycle genes [KPH+07] predicted using our method, and visualized using power graphs
[RRAS08]. Genes like IRF3 and NCOR2 can be predicted using both gene–cell cycle term co-
occurrence and high quality protein interactions from HPRD. (B) Top 12 hottest genes among genes
shown in the example sub-network. Genes BCL2L11, SIRT1, GATA1 and IRF3 are at top. (C)
Top 12 hottest genes among all new cell cycle genes from [KPH+07] predicted by our method to-
gether with significantly co-occurring neoplasms. (D) Overlap between [KPH+07] cell cycle genes,
[WSS+02] cell cycle periodic genes, and known cell cycle genes annotated in GOA or KEGG.
Among the 53 genes in all three sets we find genes involved in the structural aspects of cell cycle
such as histones, centromere proteins, tubulins and kinesins, that are both important and periodically
expressed. Only 36 genes are both found by [KPH+07] and [WSS+02] but are not annotated in
GOA or KEGG such as MELK and CBX3. (E) Disease associations mined from literature for all
human genes (top) compared to disease associations for cell cycle genes. As expected, cell cycle
genes are enriched in neoplasms and depleted in nutritional and metabolic diseases.
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Abstract: Alignments are part of the most important data type in the field of com-
parative genomics. They can be abstracted to a character matrix derived from aligned
sequences. A variety of biological questions forces the researcher to inspect these
alignments. Our tool, called COMPOSALIGN, was developed to sonify large scale ge-
nomic data. The resulting musical composition is based on COMMON MUSIC and
allows the mapping of genes to motifs and species to instruments. It enables the re-
searcher to listen to the musical representation of the genome-wide alignment and
contrasts a bioinformatician’s sight-oriented work at the computer.

1 Introduction

Evolution and Selection shape the phenotype and genotype of an organism in an unique
way. Homologous sequences are derived from a common ancestor by a sequence of selec-
tive changes and diverge over time. Multiple selective constraints on a genomic sequence
constrain evolution and result in interesting structures, e.g. modularization. Evolutionar-
ily shaped structures become discernible when sequences derived from a common ancestor
are aligned. The result as well as the method is called “alignment”. The data structure is
a matrix, which is not only highly informative and story-telling for a biological expert but
also patterned in a sometimes aesthetic way. Some patterns are visible when one of the
numerous visualization tools is applied [RPC+00, KKZ+09, GJ05, LBB+07].

Nevertheless, the modular and structured nature of much music has struck many as provid-
ing opportunities to understand genomic data by translating it to sound [Ohn93, Ohn87,
OO86]. However, only a few trials have been made to use music to convey the patterns
to the interested party [HCL+99, HMR00, TM07, LWHC00]. All of them focus on single
DNA or protein sequences. Early attempts transposed DNA sequences directly to mu-
sic [OO86]. The assignment of two notes to each of the four characters (4 nucleotides)
allowed for some flexibility to arrange notes to musical themes. Sonification of protein
sequences offered a larger set of initial characters (20 amino acids) but was even more
constrained and suffered from the creation of a monotonous string of notes without musi-
cal depth. Consideration of further properties [HM84, GS95, GS01, DC99] of characters
or groups of characters and mathematical derivation based upon this additional informa-
tion resulted in more exciting music but blurred the underlying information. A tool called

Ingalls et al. 93



gene2music [TM07] can be used for automated conversion of protein-coding sequences
to music. It maps the 20 amino acids on 13 chords, grouping chemically similar characters
together while the chord duration is dependent on the frequency of the underlying codon.
One system, PROMUSE [HCL+99] deals with sonification of amino acid features as well
as structural information and the similarity between related proteins along the sequences.
This similarity between proteins and genomic sequences results from common ancestry
and light variation and is of central importance to studies in evolution and genomics.

Presentation of highly complex, multidimensional data requires far more channels to trans-
port information than can be handled in the visual channel alone. Visualization and an-
imation are fairly well developed, however, research on the transport of information via
sonification is only recently gaining some interest [HR05]. Surprisingly, the complexity
of the information transported by the audio channel is usually low, even though musical
compositions for entertainment or artistic purposes show highly complex structures. In a
multi-media setting, Lodha et al. [LWHC00] showed that sonification can be efficient in
disambiguating data in cases where visual presentation alone would be unclear. However,
a direct comparison of the efficiency in auditory or visual information uptake is hard to
perform. We can expect, however, that the perception of data via sonification and visual-
ization is conceptually very different. Whether this can be beneficial for data presentation
is an area we wish to continue to exam.

In this contribution we describe COMPOSALIGN, the first prototype for alignment soni-
fication that translates genome-wide aligned data into a musical composition. Such an
acoustic representation requires an unique mapping of alignment information onto musi-
cal features. While some mapping is easy to frame, we strive for a intuitive mapping that
is easy to perceive and also lives up to the demand to be artistic, pleasant and interesting.

2 Methods

2.1 Mapping

The main focus of our approach is to sonify the presence and absence of characters in the
alignment such that their assignment to the corresponding sequence/species is clear. For
simplicity, we assume that sequences are from different species, which allows us to refer
to “different sequences” as “different species”. However, the sources of the sequences are
not essential for our theoretical framework but can be added in later steps. Therefore we
have chosen the following mapping, formalized as follows:

A musical motif or pattern is an ordered set of notes and pauses played in one measure with
a specific rhythm. Given a set S of species, a set I of instruments and a set P of (different)
patterns, we assign to each species an instrument and a pattern played by the assigned
instrument. Therefore, we define an injective function f : S → A with A = {(x, y)
with x ∈ I and y ∈ P} = I × P, i.e. we assign to every species S ∈ S a value f(S).
Thus it holds |S| ≤ |A|, since f is injective. Many mappings f fulfill the requirement that
each species S ∈ S is determined and distinguishable from another species by its values

94 Ingalls et al.



f(S). The remaining degrees of freedom can be used to include auxiliary information
such as the phylogenetic relationship of the species. Therefore, we assign instruments to
species such that the relationships among the instruments reflect the relationship among
species. However, this assignment is done by hand since the relatedness for instruments is
a matter of perception. The usage of two independent features (x, y) with x ∈ I and y ∈ P
to encode the species allows us to handle alignments with up to |I × P| species (here
10×10 = 100) and to represent two-dimensional phylogenetic information as returned by
SplitsTree [HB06]. In addition to these 100 possibilities we provide 2 further motifs
played by drums and cymbals, respectively. These rhythmical motifs are, in particular,
useful to sonify outgroup species.

Given a sequence s we consider n units u1, . . . , un which are, in particular, subsequences
of s such that

:n
i=1 ui ⊆ s. Biologically, these units are referred to as characters in

general, “genes” in this contribution. Moreover the units u1, . . . , un are ordered, such that
ui occurs before uj whenever i < j.

Each unit ui can be absent, i.e. “0”, or directed, i.e. “+” or “−” if present.

We are now able to define the following matrix A, also called alignment.

Ai,j =


+ , if ui appears in species Sj in + orientation

− , if ui appears in species Sj in − orientation

0 , else

This means that all entries Ai,j <= 0 for a fixed i are homologous. As explained we have
assigned to every species a particular instrument playing a particular pattern. In general, an
instrument and the corresponding pattern f(Sj) assigned to species Sj plays during time
interval i whenever unit ui occurs in species Sj , i.e Ai,j <= 0. Otherwise the instrument
will rest. Whether f(Sj) sounds or not is only dependent on Ai,j . However, three options
can be set to highlight particular information:

Orientation. This option indicates whether a pattern is played forwards or backwards,
depending on the orientation of the occurring unit. To be more precise let f(Sj) = (I, P )
and let unit ui occur in species Sj . Then pattern P is played forwards or backwards,
whenever Ai,j = “+′′ or Ai,j = “−′′, respectively. As a default Ai,j <= 0 is set to
Ai,j = “+′′.

Conservation. Conservation information is of central importance for a biological re-
searcher. In some situations, units present in all species are the most interesting units
which are analyzed in further detail. This option emphasizes units, present/conserved in
all species. We have chosen to implement this as a change in harmony. Altering the har-
mony of a motif is done by a diatonic transposition. It shifts every pitch of a pattern by
a fixed number of scale steps relative to the pattern’s musical scale. To every pattern we
apply a transposition that is selected with a probability depending on the patterns current
scale whenever unit ui is present in all species, Figure 2.1. The probability values, are in
part based upon general principles of common practice tonal harmony [KP00] for making
well-formed harmonic progressions. Thus a transposition maps a pattern Pj to pattern P ′

j ,
which defines the new Pj . This process is well-known as first-order Markov chain. For all
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Table 1: Transposition prob-
abilities between Markov
states: I maj6 – Tonic major
sixth, ii m7 – Supertonic
minor seventh, iii m7 –
Mediant minor seventh,
IV maj7 – Subdominant
major seventh, V7 – Major
Dominant seventh, vi m6 –
Submediant minor sixth, vii
o7 – Leading-tone diminished
seventh.

from/to I maj6 ii m7 iii m7 IV maj7 V7 vi min6 vii ◦

I maj6 0.2 0.2 0.2 0.1 0.2 0.1
ii m7 0.2 0.8
iii m7 0.3 0.7
IV maj7 0.3 0.4 0.2 0.1
V7 0.8 0.2
vi min6 0.7 0.3
vii ◦ 0.8 0.2

untuned idio- and membranophones P ′
j equals Pj (i.e. the motifs cannot be transposed),

in our case this holds for drums and cymbals. Notice that patterns Pj and P ′
j are perceived

as equal up to the change in scale.

Compression. Phylogenetic analyzes focus on differential information. In such a situa-
tion, conserved units are considered as uninformative. This option can be used to compress
the detailed information in conserved units, while indicating the occurrence of a unit in all
species. Under default options, the musical motif is played as it is. If we switch on the
compression option and unit ui is present in all species then for all species S ∈ S the cho-
sen instruments are simultaneously playing the first note of each of the respective patterns
f(S) relative to their orientation, resulting in a so-called tutti chord.

2.2 Invertibility of the Mapping

Information representation, visualization as well as sonification, attempts to convey ab-
stract information in intuitive ways. First, we require the information to be formally re-
trievable from the representation. In mathematical terms, the introduced mapping needs
to be bijective, and thus provide an unique way to retrieve the information from the repre-
sentation. Second, the information must be perceivable to the human ear. Therefore, we
want to take advantage of the human sense of hearing.

If all options are set to “off”, it is easy to see that we can determine the species Si by their
values f(Si) since f : S → A′ ⊆ A with A′ = {f(S) with S ∈ S} is a bijective function.

Orientation – Induced Constraints. If we want to distinguish if a particular unit ap-
pears in forward or backward direction in species S ∈ S it must be possible to distin-
guish whether its motif is played forwards or backwards. Thus no symmetric patterns
are allowed. Moreover, it is not allowed to have patterns P, P ′ ∈ P such that playing P
backwards sounds just like P ′ in forward direction and vice versa.

Conservation – Induced Constraints. This option requires restrictions on instrument and
pattern usage if we want to distinguish different species S by listening to their respective
values f(S). We will denote f1(S) and f2(S), as the instrument and the pattern of S,
respectively. We can distinguish two cases. First, for all pairs of species S and S′ holds that
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the instruments are unequal (f1(S) <= f1(S′)). Then the choice of pattern is unrestricted,
since each species is determined by its instrument. Second, if some species S and S′ have
the same instruments we have to distinguish them by their particular pattern. Thus it is
not allowed that any composition of transpositions of f2(S) and f2(S′), resp., leads to one
and the same pattern even in scale. If the orientation option is switched on in addition, we
have to make sure that no transposition leads to a symmetric pattern. By definition of the
term transposition this case cannot occur if no pattern is originally symmetric.

Compression – Induced Constraints. Recall that this option is used to emphasize the oc-
currence of a unit in all species and to hide detailed information by means of compression.
This could be realized in many ways. One of the simplest is the insertion of a single beep.
Due to musical reasons, we decided to play the already mentioned tutti chord instead.
We are aware that compression causes informational loss in most cases, e.g. orientation.
However, we argue that the qualitative information “presence in all species given” is suffi-
cient in most cases. Concerning the remaining cases, we suggest to omit the compression
option.

2.3 Implementation

Our program COMPOSALIGN consists of a back end for the composition of the music
using COMMON MUSIC [Tau] which runs in Gauche Scheme [Kaw]. COMMON MUSIC

is a valuable toolbox for algorithmic composition and also for outputting MIDI data. It
allows for a high level description of the compositional elements and convenient definition
of the transformation process due to the expressive power of SCHEME. Additionally, there
is a web front-end written in Haskell [tC] acting as a CGI program1, which allows easy
usage without the need to install additional software. The data flow is depicted in Figure 1.

The user can upload an input file. After the initial analysis of the file and automatic selec-
tion of settings the user has the opportunity to change various parameters. Among these
are the selection of the reference sequence and the assignment of musical instrument and
motifs to the individual sequences. The default settings are the ones discussed in this paper,
however, depending on the biological question, a different assignment might be optimal.

The alignment data is transformed to music based on the settings. For this purpose, an
appropriate SCHEME file is generated which is in turn processed by COMMON MUSIC to
create a MIDI file. The SCHEME file contains the collection of motifs, the rules for the
composition, and the mapping of the species to any of the twelve motifs and available
instruments. The user can listen to or download the generated piece of music.

Input. We use a custom comma separated ASCII file type as input which is organized as
follows. The input is a n× (3 ·m) matrix consisting of n rows for n units and m blocks of
columns each of which holds the genomic start position, end position, and orientation of
the unit for every m species. In each row all single columns are separated by a comma. If
the unit is not present in a sequence, NA is used as the value for all 3 entries (start position,
end position, and orientation). Comment lines start with a “#” symbol. The first block of

1http://www2.bioinf.uni-leipzig.de/ComposAlign/
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Common Music

Composed Piece of Music
ComposAlign

as Midi File

292, 143, +, NA, NA, NA, 285, 753, +

128, 301, +, 7064, 202, +, 108, 637, +
301, 292, +, 2202, 246, +, 605, 285, +

# D.melanogaster, D.yakuba, D.simulans

Alignment

Pattern and Instrument
Assignment

Parameter,

Composition Rules and Motifs

Figure 1: Data flow diagram of COMPOSALIGN. An alignment (input data), parameter settings
and the mapping of species to an instrument and pattern are given to COMPOSALIGN via the front-
end www2.bioinf.uni-leipzig.de/ComposAlign. Using a list of prepared motifs and
mapping rules a piece of music is composed.

columns is always treated as the reference species. In principle, it is possible to use any
tabular data with absence/presence information for sonification with COMPOSALIGN. An
example input file and the corresponding output files can be found in the supplemental
material at http://www2.bioinf.uni-leipzig.de/ComposAlign/.

3 Application and Results

3.1 Application in Gene Annotation Alignments

For a real data application we have chosen the 12 fly species, each assigned to an unique
instrument and pattern. One possible mapping is given by figure 2 and table 3. In all our
applications the assignment of species to instruments and patterns fulfills the conditions
of an unique mapping for all parameter settings except of the restriction that orientation
information is lost in the case of compression, see Section 2.2.

We attempted to sonify data of this kind in a flexible way. These motifs were designed so
that they could be placed in various registers. They were also created with varied contours
and rhythms to aid in them being individually perceivable in a musical texture.

We used the gene annotations and gene correspondences of chromosome 3R from D.
melanogaster and the other 11 sequenced Drosophilid genomes as input [Con07]. The
input is a matrix 345 × (3 · 12), i.e. 345 genes (units) and 12 species. The genes are
given by their genomic sequence interval and their orientation. We sorted the genes by
the start position in the reference species (here D. melanogaster). Furthermore, we used a
relative orientation information, with the orientation of D. melanogaster genes set to “+”,
and the orientation for other genes given by “+” or “-” when the orientation is ’the same’
or ’reverse’ compared to D. melanogaster, respectively.
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A B

Figure 2: Panel A shows the 12 motifs in forward orientation. Panel B shows the assignment of
instruments to the transposed motifs from panel A. The transpositions are based on appropriate
instrument ranges. E.g., motif 1 is transposed up two octaves to sound in a more typical flute range.
When motif 2 is set to clarinet it is transposed up an octave in order for it to be perceptible when
other instruments sound. The motifs 11 and 12 are for untuned instruments only and will be assigned
to snare drums and cymbal, respectively, in all our applications.
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Timpani

D. ananassae
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mojavensis group
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willistoni group
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Untuned Idiophone

Untuned Membranophone

Tuned Membranophone

Brass

Tuned Idiophone

Tuned Idiophone

Figure 3: Mapping of fly species to instruments. The tree on the left-hand side represents the topol-
ogy of the phylogenetic tree [Con07]. Branch lengths are arbitrary.

Moreover, we wanted to have the instrumentation reflect the relative closeness of each
species. This closeness is part of a biologist’s expert knowledge and reflected in the tree
in Figure 3. Of the 12 Drosophila species, five are very closely related – D. melanogaster,
D. simulans, D. sechellia, D. yakuba and D. erecta. One of them, D. melanogaster, is the
model organism and reference species, which we placed in a continuous motif played by
the piano, since this provided the basis for the rest of the music. Furthermore, we looked
to place the other four in strings and woodwinds so as to provide some similarity but also
enough timbral and register difference so they could be distinguished (Figure 3).

As currently implemented each measure takes 2 seconds resulting in a piece of music, 11.5
minutes long, for all 345 genes.

3.2 Evaluation

In Section 2.2 we have formally shown that the selection of an unique instrument and
pattern for each species will allow an unique mapping under certain restrictions. However,
it remains to be evaluated how the sonification is perceived by the user. The following
analysis of COMPOSALIGN is based on impressions of 50 un-trained, non-musician test
persons. The example described in 3.1 is only one of several tested cases with various
setting.

Number of Organisms/Instruments. Depending on the education in the arts of the test
persons, up to 12 instruments could be recognized. Most people felt confident to distin-
guish six instruments. If distinction of more (instrument) tracks is desired the majority
of people need to be trained to more clearly differentiate the instruments or patterns. We
might also want to consider to utilize other types of instrumental or synthesized sounds
which would be more easily identified by untrained users.

In the case of 2 or 3 species, the composition was described as “musically pleasing” and
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users found it easy to hear which genes were present in which species. However, the ability
to resolve the presence/absence pattern decreased rapidly with the number of different
instruments and/or motifs playing per measure. Nevertheless, presence/absence of genes
that involve groups of species, was still found easy to hear.

Most people who concentrated on a specific instrument and tried to observe the pres-
ence/absence at a specific time point, found the correct solution independently of the num-
ber of instruments played concurrently.

Conserved Sites – Changes in Harmony. The introduction of changes in harmony based
on the local context improved the artistic value of the output and the listeners attention
span. All participants had the impression of a much more interesting piece of music, if the
conservation option was used. Apart from this aesthetic effect, it also helped emphasized
conservation and to draw the listeners attention to conserved regions.

Conserved Sites – Compressed Units. While this sets the presence of m (while m is the
total number of species in the alignment) and less than m species clearly apart from each
other, it also causes a time compression and allows the user to focus on the data where the
absence/presence patters are more informative from a biological perspective. For emphasis
of conservation, users preferred the compression option over the conservation option.

All test persons were enthusiastic after including changes in harmony and compressed
chords about the musical variability. The outcome was described much more “happier”,
“interesting, irregular”, “less crowded”, “rhythmically interesting” and “dramatic”. The
interrogation also provides an intriguing result in that certain choices that were made
largely for aesthetic reasons also appear to make the sonification more legible to users.

Orientation of a Gene – Forward and Backward Motifs. The asymmetry of the in-
dividual motifs, some of which are clearly ascending, is an essential attribute to sonify
a character’s direction information. The character of the motifs allows the user still to
identify the mirrored motifs as belonging to the same motif. The results sound pleasant,
however most test persons found it difficult to follow which motifs were reversed when
several instruments played at the same time. It is unclear if the ear needs some training
only or if it might be necessary to explore other strategies which may help in communi-
cating this information.

Mapping – Assignment of instruments and patterns. Using different settings we ex-
pected to find combinations that might sound unpleasant. Given an uncommon combina-
tion of instruments (e.g. drums, marimba and trumpet) most people found the outcome to
be surprisingly rich in character and interesting. When various outputs for the same data
file were heard with different instruments and patterns in place, the participants felt that
this emphasized the underlying structure in the data.

4 Conclusion and Future Work

To date, COMPOSALIGN is the first prototype of an alignment sonification tool. Existing
sonification methods for single biological sequences map each individual characters (e.g.
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nucleotides or amino acids) on single notes or chords. We decided to map one character
to a measure. This had mainly two effects. First, it added the necessary degrees of free-
doms to encode more information and still allowed us to take compositional aspects into
account and make it sound pleasant. Second, it stretched the information onto a larger
time interval, allowed organized presentation of the information with a measure and there-
fore insured that the information was easy to perceive. COMPOSALIGN draws its power
from the motif design and mapping rules that are modular and flexible. Also, biological
sequence alignments are particularly suited for sonification since individual elements of
information become blurred in a composition when researcher’s become more interested
in the overall picture (e.g. groups of species with a conspicuous absence/presence pattern
in the sequences). It might turn out that music is a suitable medium to convey informa-
tion on different levels of resolution at the same time. This leads us immediately to the
question: Can sonification compete with or outperform the currently dominating visual-
ization? If not, is sonification able to transport a certain kind of information better than
visualization? The omnipresence of visualization might suggest a better performance in
all respects. However, to perform a fair test, a competitive sonification tool first needs to
be developed. Our prototype is just a small step in this direction.

Based on the experience gained during our project, we intend to construct a mapping
for alignments that allows us to add different kinds of additional/contextual information
(e.g. lengths of characters, distance between characters, higher order annotation, phastcons
score). An interactive interface shall allow the user to edit the parameters on runtime and
display the scores and alignment in flying windows. This shall allow the interested user to
play (with) his/her alignment.

“Play is the highest form of research.” (quote by Albert Einstein)
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Abstract: Understanding complex biological systems requires data from manifold
biological levels. Often this data is analysed in some meaningful context, for example,
by integrating it into biological networks. However, spatial data given as 2D images or
3D volumes is commonly not taken into consideration and analysed separately. Here
we present a new approach to integrate and analyse complex multimodal biological
data in space and time. We present a data structure to manage this kind of data and
discuss application examples for different data integration scenarios.

Figure 1: Preview of a prototypic system which integrates, analyses and visualises multimodal bio-
logical data based on a mapping graph.
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1 Background

Modern life science researchers are able to acquire massive data by using high-throughput
techniques. This leads to the accumulation of data from gene and protein activity, protein
interaction and metabolite concentration, usually called -omics data. Additionally mani-
fold in silico analysis such as flux balance analysis, kinetic modelling, network-centralities
and -motifs can gather new information about the intrinsic properties of biological systems.
To put this data into biological context network models describing the interactions and re-
lations between biological objects are developed, such as gene regulatory or metabolic
networks. Also spatial data, such as structural and functional NMR volume data, histolog-
ical cross-sections, in situ hybridization and surface models, are measured and obtained in
increasing quantity and quality and should be considered as valuable parts of models of
biological systems.

To answer biological questions often different types of data have to be integrated and con-
sidered in spatial and temporal context. Using data mapping one can bring the multimodal
data into context to each other, allowing more intuitive analysis, navigation and interpre-
tation of the data. Currently there exist some tools for integration of -omics data into
the context of networks [HMWD04, JKS06, KBT+06, Kol02, SMO+03, vIKP+08]. Also
some 2D and/or 3D data integration tools exist [Bar06, HLD+07, MPLB07, SWH05].
However, integration of all datatypes in one application with complex mapping possibil-
ities is not considered. In this paper we present a novel approach combining biological
-omics data, 2D data, 3D data and network models under consideration of space and time.

The structure of this paper is as follows: First, we propose a data structure to represent
and integrate such diverse data types. Second, we discuss different ways of mapping and
visualising the multimodal data. Last, we show some example use cases for real-world
data mapping applications. Fig. 1 gives an impression of such a system, which is able to
intuitively integrate multimodal biological data.

2 Modelling Biological Data

Data is gathered from different parts of a biological system with different resolution. What
is the structure of the data? How do we account for the spatial and temporal dimension?

The data structure for multimodal biological data can be seen in Fig. 2. It consists of two
main parts: the measured data (highlighted in blue-grey) and annotation data. There are
four types of measured data: “Simple measurements” standing for single values, such as
the concentration of a metabolite without any further spatial information (-omics data is
usually modelled by simple measurements). “Images” represents two-dimensional data
such as histological cross-sections or in situ hybridisations. “Volumes” denote three-
dimensional data such as structural and functional NMR imaging data. “Networks” stand
for structural information of biological pathways expressed as a graph. Simple measure-
ments, images and volumes have a “replicateID” to be able to distinguish experiments
carried out several times helping to obtain statistical significant results. In addition to
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Figure 2: The model for data from experiments. Experiments are carried out under special conditions
and consist of a number of samples. These include four different types of measurements: simple
measurements, images, volumes and networks. Each measurement except networks may belong to
a substance representing the measured biological object.

simple measurements images and volumes include information for their size in respective
coordinate systems (pixel- and voxelsize and -numbers). Simple measurements and im-
ages also store position information, allowing to describe a vector of simple measurements
(e.g. gradients) or images (e.g. position of image in the real biological object) in spatial
context. Networks have a name and belong to a certain network group.
An biological experiment has some metadata such as name, coordinator of the experiment,
date of import and who imported it. Additional information, for example, about the ex-
periment setup, can be stored unstructured in the “comment” attribute. Each experiment
has a number of conditions under which it was carried out: The name of the species is
stored in the first attribute. The “genotype” attribute indicates a normal genotype or al-
tered one (e.g. different transgenic lines). “Treatment” may be oxygen-depletion or other
environmental properties. Under these conditions some samples are collected at a specific
time-point, representing the temporal dimension. Measurements are also collected from
a certain “component”, for example, chloroplast (cell level) or brain (organ level). Each
sample consists of a number of measurements, described above. All measurements but
networks describe the quantity of a certain substance measured in the experiment. The
substance will serve as an identifier in the data mapping, which will be described in detail
in the next section. For simple measurement data the identifier is, for example, a metabo-
lite or a protein, whereas the identifier for two-dimensional data may be the transcript
measured in an in situ hybridization. For three-dimensional data the substance can be the
metabolite the NMR image is based on, e.g., water or protons. Networks are not related to
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substances because they only describe structural relations.

The proposed data model is simpler than that one used in the MIAME standard [BHQ+01]
(microarray data), PEDRo database [TPG+03] (proteomics data) or ArMet framework
[RJL+07] (metabolomics data). The reason is, that we do not want to model the complete
experiment workflow. This would include experiment description, design and setup, nor-
malisation methods, annotation methods, the raw and processed data, data standards and
more. Instead the focus of our model is on already processed, filtered and normalised ex-
perimental data and metadata. Therefore we consider only data required for visualisation
and analysis.

3 Integration of Multimodal Biological Data

aa

a: simple
measurement

c: image

d: volumeb: network

bb

cc

dd

ab

bd

ac

cd
ad bc

Figure 3: Mapping graph for integrating multimodal data. A node contains all biological data of
one type (simple measurements, images, volumes and networks as shown in Fig. 2). An (hyper)edge
represents a mapping between one, two or more types of biological data. There are several mappings
possible, but for comprehensibility only one- and two-type mappings are shown.

The integration of multimodal biological data is achieved by a mapping graph, whose
structure is shown in Fig. 3. The nodes represent different types of biological data, whereby
the edges represent a possible mapping between these types. In the following we describe
the kinds of data mapping. There are mappings between data of the same type (e.g. “aa”),
mappings between data of two different types (e.g. “ac”), mappings between three types
(e.g. “acd”), and mappings between all types of data (“abcd”). Note that the mapping
usually allows several ways to be processed and visualised. For example, mapping one
network on another could be represented as a stacking (see Fig. 4) or as one network
showing the difference between both. Here we will give a typical example for some of the
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mappings, but many more are possible.

aa: Mapping of simple measurements on simple measurements, for example, visualising
the correlation of metabolite concentrations by scatter plots.

bb: Mapping of networks on other networks, for example, network stacking. A detailed
use case can be found in Section 4.1.

cc: Mapping of images on images, for example, image stacking of cross-sections. This
can be useful if several cross-sections of one object have been obtained and the
images have to be placed according to their position in the real object.

dd: Mapping of volumes on volumes, which can be useful for comparing tissue shapes.
Here researchers may acquire information how the shape of tissues differ for genet-
ically altered systems.

ab: Mapping of simple measurements on networks, for example, concentration-depen-
dent node colouring. A detailed use case can be found in Section 4.3

ac: Mapping of simple measurements on images, for example, combining high-resolu-
tion metabolite concentration data and low-resolution image data showing the con-
centration distribution in two dimensions.

cd: Mapping of images on volumes, for example multimodal alignment. High-resolution
or special coloured cross-sections taken from a biological object are aligned into the
three-dimensional representation of the object. A detailed use case can be found in
Section 4.2

bd: Mapping of networks on volumes, for example, for navigation. Here segmented
tissues of the volume can be used to navigate through the different networks obtained
in experiments.

More complex mappings are also possible (e.g. “abc”), but depend on the requirements
of life scientists and are therefore often purpose-built. By using this mapping graph the
multimodal biological data, consisting of different data types, can be seamlessly combined
and integrated into one system.

The data can be imported into the mapping graph using file open dialogs or drag and
drop functionality. Such files can be exported from various tools and databases, e.g.
KEGG, MetaCrop, AMIRA [SWH05]. Several data formats will be accepted, e.g. GML,
GraphML, SBML and KGML for networks, CSV textfiles and Excel spreadsheets for
simple measurements, VRML and Analyze 7.5 for volumes and PNG, JPEG and TIFF for
images.

4 Use Cases

To show the functionality of the integration via a mapping graph we will highlight four
exemplary use cases in detail.
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4.1 Network Stacking

Figure 4: Use case network stacking: Four networks of glycolysis from different species are stacked
in the three-dimensional space to support exploration of structural differences such as missing
metabolites and interactions.

The first use case is network stacking (see Fig. 1 and 4), which is an instance of mapping
case “bb” and represented in the mapping graph by an edge between networks (see Fig. 5).
Here several networks are aligned allowing visual comparison of network properties: a
network is mapped at one plane lying in a three-dimensional space. The next network
and its plane are aligned in such a way that the corresponding nodes in the networks
are stacked on top of each other respecting the layouts (see [BDS04] for further details).
Additional networks can be aligned in the same way creating a 2 1

2D-stacking of networks.
This representation allows to explore structural differences and similarities such as missing
metabolites, unique interactions and conserved motifs for different species or genotypes.

4.2 Multimodal Alignment

Multimodal Alignment is a technique to align two-dimensional images into three-dimen-
sional volumes. Often the images are high-resolution cross-sections through the biological
object, allowing high detailed analysis and yield information obtained with specific meth-
ods such as in situ hybridisations. Volumes on the other hand represent lower-resolution
three-dimensional information of an object. The idea is to combine both information,
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Figure 5: Instance of the mapping graph for use case network stacking. The mapping graph consists
of four glycolysis networks of different species.

which means the image has to be moved to the correct position in the volume. To align
the images one can use cross-correlation or other methods (e.g. some algorithms are im-
plemented in the Insight Segmentation and Registration Toolkit [YAL02]). This means the
second use case is an instance of mapping case “cd”. An example of the result of such a
mapping can be seen in Fig. 1 on the first page.

4.3 Omics Data in the Context of Networks

For the analysis of biological data it is useful to apply an integrated view on the measured
data and its related background information, such as metabolic pathways or regulative pro-
cesses. For this purpose one can map the biological data (e.g. protein activity, metabolite
concentration, etc.) to structural information such as glycolysis pathway, which represents
a mapping of type “ab”. An automatic mapping of experiment data onto relevant network
elements occurs if the measured data and the network nodes have common identifiers.
For the visualisation of mapped data the display of multiple mapped datasets for a single
network element is supported. Using line charts, bar charts and similar techniques the
scientist is able to visualise more complicated datasets, such as data from different time
points, experimental conditions and replicates. For further information about this mapping
see [JKS06].

4.4 Oxygen Gradient and Flux Balance Analysis

The last exemplary use case consists of a mapping “ab” and can be seen in Fig. 6 and 7.
At the top of Fig. 6 there is an oxygen gradient, which consists of a number of simple mea-
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Figure 6: Use case flux balance analysis: One-dimensional oxygen gradient used as an input for
flux balance analysis [KPE03]. The simulation results for different oxygen levels are mapped to the
glycolysis network. The visualisation of the data shows, that the higher the oxygen concentration
the higher the starch accumulating flux (middle, left, right).

surements. Such gradients could be obtained as time series or by a probe moving through
a tissue and measuring the relative oxygen level for different positions (see [RWW+04]).
The values of this gradient are used as an input for flux balance analysis [KPE03], which
models fluxes in networks on basis of structural and stoichiometric information. Some
starting concentrations are necessary, which are taken from the oxygen gradient as input
for different scenarios: The middle network visualises the fluxes near oxygen depletion,
the left one normal oxygen level and the right one higher oxygen level than in the air.
In this way respective flux visualisations can be shown for different scenarios, based on
simple measurements.
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Figure 7: Instance of the mapping graph for use case flux balance analysis. The mapping graph
consists of an oxygen gradient (simple measurement), which is mapped to a glycolysis network of
barley and used for flux balance analysis.

5 Conclusion and Outlook

Using high-throughput methods biological researchers gather lots of data of different types
from multiple -omics areas, network models and spatial data. For intuitive exploration
of this data we propose a data structure representing the biological data and supporting
all necessary mapping and data exploration methods. The biological data was integrated
using a mapping graph, which allows intuitive combination of data. Its nodes represent
the data types and its edges represent mappings between data types. Some mapping types
were analysed and finally four exemplary use cases of data integration were described in
detail.

The data structure and some of the mappings and use cases are implemented on the basis
of the VANTED system [JKS06] in Java3D to provide scientists with the possibility to
handle not only -omics data and network models, but also to account for two- and three-
dimensional data in one system. We plan to complete the development and implementation
of further mapping and interaction methods together with life scientists before releasing it
as an Open Source Add-On for VANTED.
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Abstract: Apomixis is a reproductive phenomenon that occurs in flowering plants.
It allows a plant to produce asexual seeds, with its same genetic constitution. The
existence of a genetic basis for apomixis is crushing, but the molecular mechanisms
are unclear. The search for the “master apomixis gene” had led to the isolation of
various candidate transcripts, but neither of them could be confirmed in different plant
species. Here we tried to isolate homologues to all those transcripts in one unique
plant, Brachiaria. In order to achieve this, a new method for degenerate primer design
was employed, since classical methods have proven to be unsuccessful. We used mul-
tiple local alignments, instead of global, with the Multiple Expectation – Maximiza-
tion for Motif Elicitation (MEME) algorithm, to find conserved blocks and motifs.
These alignments were followed by ePCR simulation and standard primer pair design
programs. The method demonstrated to be useful to amplify fragments homologous
to genes poorly molecular and biologically characterized, with which multiple global
alignments showed no conserved regions. The obtained amplicons showed differential
expression according to tissue in some cases. This technique can be used to design
degenerate primers in cases where one sequence exhibits poor global similarity and
has low biological characterization, and it is useful to amplify orthologous genes in an
organism weakly described at the molecular level.

Keywords: Primer design, apospory, degenerate primers, MEME

1 INTRODUCTION

The development of degenerate primer pairs often involves the amplification of ortholo-
gous DNA fragments which have little conservation, even in the same taxonomic group.
Therefore, typical tecnhiques used to design them are unable to find the conserved blocks
necessary to generate the oligonucleotides. One reason for this is the employment of
multiple global alignment algorithms as the starting point to find the blocks [GMDK05,
KCSW94]. The use of this kind of algorithms demands a relatively high degree of con-
servation along the entire sequence and between all the aligned sequences. If the analyzed

Gorrón et al. 117



DNA region lacks it, we are forced to look for specific primers for each genera if we try to
amplify it in different members of a taxa, or to find alternate ways to do that.

We faced this problem in our laboratory in the analysis of sequences related to a phe-
nomenon called apomixis. Apomixis consists in the ability of some flowering plants to
produce viable seeds by asexual ways. It has two basic characteristics: the avoiding
of meiosis or the degeneration of meiotic-derived cells, a situation known as apomeio-
sis, and the generation of a megagametophyte genetically equal to the surrounding tis-
sues [AJ92]. Many observations in different apomictic plants [AJ92, BBK00, KG03,
OARH98, POL+97, Mat89] has led to the conclusion that apomixis has a very strong
genetic component, and this phenomenon is regulated by one or a few genes [AHOA05,
AMR+05, LBC+02, PMB+04, PEO+98]. Some previous works have found some can-
didate transcripts [CCA+99, GRR+00, LAP+97, PEM+01, RCD+03, VCNB+96], but
neither could confirm clearly any of them. For these reasons, trying to analyze expres-
sion patterns of candidate transcripts in one plant species is very important, as a first step
to obtain a general and clearer molecular model. To do this, we tried to design degener-
ate primers from many reported sequences related to apomixis in different plant species,
in order to obtain all their orthologous counterparts in the genus Brachiaria. However,
many of the reported transcripts have not obvious molecular functions and, in fact, are
sequences with unknown function in many cases. There are not reference sequences with
high similarities with them. Multiple global alignments did not show clear conserved re-
gions. Hence, primer design, even degenerate primer design, was not possible with the
standard bioinformatic techniques [GMDK05, KCSW94].

In this work, we propose the use of a new method to design primers, which could be used
to create oligonucleotides for sequences with poor global similarity to their suspected ho-
mologues or when they don’t show well conserved blocks in multiple global alignments.
The technique is based in the use of multiple local alignments instead of global, process
carried with the Multiple Expectation – Maximization for Motif Elicitation (MEME) al-
gorithm. This algorithm was initially suited to look for conserved motifs in protein and
DNA sequences, in order to identify possibly functional homologies between them. In
our study we used it to search for conserved regions long enough to design an accept-
able primer pair. The result of MEME is powered with a confirmation with electronic
PCR (e-PCR) over the list of sequences used and a verification of annealing temperatures,
secondary structure formation and primer dimers with standard programs. With it, ampli-
fication of homologues of one gene in a related species, which is poorly characterized at
the molecular level, is possible, as we confirmed this with laboratory assays.

2 MATERIALS AND METHODS

Obtention of sequences related to apomixis. Sequences associated to the apomictic
trait were retrieved from the GenBank database, after a literature review about expression
analysis and candidate genes in different apomictic plant species. The original GenBank
accesion number was used to reference the obtained primer pairs and the respective results.
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Construction of a database for BLAST search and BLAST analysis. In order to look
for homologues of these transcripts in relative species of Brachiaria, we used the TIGR
databases TIGR Gene Indices (http://compbio.dfci.harvard.edu/tgi/) and
TIGR Plant Transcript Assemblies (http://plantta.tigr.org, both consulted on
September 2007). The assemblies from all species included in the families Alliaceae and
Poaceae were downloaded, to construct a database of EST assemblies specific for relatives
of Brachiaria. The sequences obtained from GenBank as associated to apomixis were used
as queries in searches against this database using the BLAST algorithm. The maximum
accepted e-value in this test was 10-6; sequences without homology under this value were
discarded.

MEME alignment. Each sequence and the group of sequences similar to it according
to BLAST were aligned, initially using T-COFFEE (http://tcoffee.vital-it.
ch/cgi-bin/Tcoffee/tcoffee_cgi/index.cgi? stage1=1& daction=
TCOFFEE::Regular& referer0=embnet) to see global similarity, and then with
MEME (http://meme.sdsc.edu/meme4_1/cgi-bin/meme.cgi) [BWML06].
The conditions of this last alignment included a minimum length of 18 nt and a maximum
of 25, and minsites = 2/3 of the sum of sequences, conditions that was considered opti-
mal for primer design. In order to maintain a relatively equal representation of different
species, when some plant species predominated in BLAST results (for example rice), some
of its associated sequences were eliminated. Sequences with low similarity in MEME
alignment were also deleted. With the remaining sequences, a second round of MEME
was made.

Construction of motif pairs and e-PCR simulation. The 20 first motifs obtained in
each MEME run were extracted and ordered by their score given in the program. All
possible pairs between them were virtually assembled, creating all the combinations of
motifs, in order to test each pair as primer. Every pair was run over the group of corre-
sponding sequences (the sequences used in the second MEME alignment) in the e-PCR
program [Sch97] under the condition that amplicon size must be at least 200 bp in length.

Final selection of primer pairs and synthesis. Motif pairs, which show an adequate
amplicon size in e-PCR, were manually verified in their corresponding MEME align-
ment. First, the motif pair with the highest score was evaluated. The presence of the
original query sequence and the number of degenerations was verified. If the query se-
quence was absent in motif alignments and/or the number of degenerations was greater
than 12 between both motifs, the pair was discarded and the test continued with the next
pair. If we saw some pattern associated with taxa (for example an A shared between all
members of Panicoideae) in a degenerate position, the nucleotide present in Panicoideae
was left, and no degeneration was considered. When one motif pair was acceptable,
it was tested in NetPrimer (http://www.premierbiosoft.com/netprimer/
netprlaunch/netprlaunch.html), in order to verify annealing temperatures, sec-
ond structure formation and possible primer dimers. If the pair had undesirable Tm, a Tm
difference greater than 5ºC, or formed dimers or secondary structures with high ΔG (over
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-8KJ/mol), bases of one or both motifs were eliminated, until the conditions were accept-
able. The minimium size allowed for each motif was 17 nt. If the motif pair, even with
these adjustments, did not show to be adequate, the pair was discarded and the test contin-
ued with the next pair. Finally, when one pair was accepted, the degenerations were put in
their positions and it was synthesized as degenerate primers (Integrated DNA Technolo-
gies, Coralville, Iowa). If neither motif pair had the required conditions, the analysis for
this particular sequence stopped.

Plant material. Brachiaria decumbens accession 16494 (CIAT code) was employed.
Pistils of 1,7-2,2 mm in length were collected with all RNA extraction cautions, and they
were deposited in 600 µl of RNAlater (Ambion Inc, Austin, Texas). A total of 200 pistils
were taken. This sample was maintained in -80°C until RNA extraction. Leaves, roots and
stems of plants were also taken.

RNA extraction and cDNA synthesis. The pistils sample was centrifuged at 14000rpm
by at least 20 minutes to allow deposit of pistils at the bottom. RNAlater solution was dis-
carded and pistils were macerated in liquid nitrogen. Total RNA was extracted using Pi-
copure RNA Isolation Kit (Molecular Devices, Sunnyvale, CA), following manufacturer’s
instructions. Leaves, roots and stems were also macerated in liquid nitrogen and total
RNA was extracted using Trizol (GibcoBRL, Carlsbad, CA). cDNA of all type of samples
were synthesized using the Creator SMART cDNA Library Construction Kit (Clontech,
Mountain View, CA).

Amplification with the designed degenerate primers. PCR reactions were carried with
cDNA from pistils (reproductive tissue), in one hand, and a bulk of cDNA from leaves,
roots and stems (vegetative tissue), on the other hand, both diluted at 5ng/ µl. PCR reac-
tions were initially tested with the next mix: Tris-HCl 20mM, KCl 50mM, MgCl2 1,4mM,
dNTPs 0,2mM each one, 1 U Taq Polimerase, each primer at 0,6 µM, 5 µl of diluted DNA,
final volume 25 µl. PCR cycling program was 94ºC 2 minutes, followed by 40 cycles of
94ºC 30 seconds, the theoretical annealing temperature of each primer pair by 30 sec-
onds, and 72ºC 1 minute 30 seconds, and finally 72ºC 5 minutes. If amplification was not
observed under these conditions for a particular primer pair, the DNA concentration was
increased, making a lower DNA dilution. When more DNA did not improve results, the
annealing temperature in the program was reduced another 5ºC. The primer pairs that did
not amplify with these changes were not assayed again.

Sequencing of resulting amplicons. Amplicons obtained in the PCR reactions were
cloned using pGEM-T Easy Cloning Kit (Promega, Madison, WI) and sequenced with
ABI PRISM Big Dye kit (Applied Biosystems, Foster City, CA). Every different amplicon
was sequenced three times. Sequences were edited and analyzed using Sequencher 4,8
(Gene Codes Corporation, Ann Arbor, MI).
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Bioinformatic analysis of obtained sequences. The obtained sequences were analyzed
using BLAST against the GenBank database. Each sequence was compared against its
original query, obtained initially from GenBank, using BLAST2Seqs (http://www.
ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi) (blastn algorithm) and
LALIGN (http://www.ch.embnet.org/software/LALIGN_form.html)
(global alignment, the other parameters by default). This comparison was also made when
we obtained, with the same primer pair, amplicons of different sizes when the PCR was
made in reproductive or vegetative tissue.

3 RESULTS

Sequences obtained from GenBank database. After the literature review, only 27
sequences associated to apomixis in GenBank were obtained (Table 1). Many of the
sequences are short sequences (200-400 bp) and are not highly similar to known se-
quences. Two sequences from Saccharomyces cerevisiae were also included; their cor-
responding two genes were reported as linked with a yeast meiotic phenomenon also
called apomixis [BMG83]. When BLAST analysis was made, only 11 of the 27 sequences
showed results with similarities with e-value under 10-25. For this reason, the parameters
of algorithm were changed and similarities with e-value under 10-20 were accepted. This
allowed the inclusion of another 5 sequences in the analysis. With a final change in the
limits of BLAST search to tolerate results with similarities with e-value less than 10-6,
nine more sequences were included, and three sequences (u65386, u65387 and yscspoa)
did not show any acceptable results and were no more analyzed. For the two sequences
of S. cerevisiae, BLAST was made in GenBank database too and plant results were also
included in further examination.

Multiple alignments. Many of the sequences did not show very high similarity with
their respective BLAST results. So, as we expected, T-COFFEE alignments showed no
satisfactory global similarity in any case (data not shown). MEME alignments, however,
were capable to reveal motifs with good levels of conservation. More than half of the
results exhibited a common arrangement of motifs between the analyzed sequences, in-
dicating a global similarity that could not be well resolved with common algorithms of
multiple global alignments (Figure 1a). This was a good precedent for primer design,
because it proved the existence of well-conserved regions and similarity in these cases.
Nevertheless, 5 of the remaining 24 query sequences did not have a satisfactory similarity
in its alignment, especially because the query did not share motifs with the others (Fig-
ure 1b). The first eleven motifs have an acceptable level of degeneracy, and they were
preferred to make subsequent scrutiny.

e-PCR and primer design. The MEME motifs were virtually combined in pairs and
assayed in electronic PCR against every set of sequences (the query plus their BLAST
results). An average between 30 and 50 pairs of motifs had an amplicon of at least 200 bp,
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GenBank code Name

AB000809 Panicum maximum A2-134 mRNA, complete cds

AF242539 Paspalum notatum clone apo417 apomixis-related protein 1 mRNA, partial cds

AF475105 Triticum aestivum apomixis-associated protein mRNA, partial cds

AJ786393 Poa pratensis APOSTART2 gene for START domain-containing protein, exons 1-22

AJ810708 Poa pratensis mRNA for RAB1-like (rab1-2 gene)

AJ810709 Poa pratensis mRNA for Ankyrin protein kinase-like (apk gene)

AJ810710 Poa pratensis mRNA for Armadillo-like (arm gene)

AJ841698 Poa pratensis serk1 gene for somatic embryogenesis receptor-like kinase 1, exons 1-11, allele 1.

AY375366 Pennisetum squamulatum Opie-2-like retrotransposon, partial sequence

D37938 Pennisetum ciliare apomixis-associated mRNA, clone:psb C

D37939 Pennisetum ciliare apomixis-associated mRNA, clone:psb3-1a

D37940 Pennisetum ciliare apomixis-associated mRNA, clone:psb H.

EF517497 Cenchrus ciliaris apomixis-related protein Pca21 (Pca21) mRNA, complete cds

EF517498 Cenchrus ciliaris apomixis-related protein Pca24 (Pca24) mRNA, partial cds

EF530198 Hieracium caespitosum DMC1 gene, complete cds

EF530199 Hieracium piloselloides putative ubiquitin associated/TS-N domain-containing protein (UBA) mRNA,
complete cds

M32653 S. cerevisiae sporulation protein (SPO16 and SPO12) genes, complete cds

M38357 Saccharomyces cerevisiae meiosis-specific protein (SPO13) gene, complete cds, clone p(SPO13)1

U40219 Pennisetum ciliare possible apospory-associated protein mRNA, complete cds

U65082 PCU65382 Buffelgrass obligatory sexual ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65383 PCU65383 Buffelgrass obligatory sexual ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65384 PCU65384 Buffelgrass obligatory sexual ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65385 PCU65385 Buffelgrass obligatory sexual ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65386 PCU65386 Buffelgrass obligatory apomictic ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65387 PCU65387 Buffelgrass obligatory apomictic ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65388 PCU65388 Buffelgrass obligatory apomictic ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

U65389 PCU65389 Buffelgrass obligatory apomictic ovary (M.A.Hussey) Cenchrus ciliaris cDNA, mRNA sequence

Table 1: Sequences retrieved from GenBank and used for degenerate primer design

which were organized by their score. The MEME alignment of every pair, starting with the
pair with the highest score, was manually revised. We saw some cases in which one tribe
or genus has one nucleotide and the others had another nucleotide, indicating a taxonomic
pattern of the degeneracy (Figure 2). In that case, that degeneracy was not considered and
the nucleotide shared by members of the tribe Panicoideae, to which Brachiaria belong, is
putted in that position.

Many motif pairs, however, were discarded in the verification step with NetPrimer, because
their Tms were very different and/or the predicted dimers had ΔG over 8KJ/mol. So, the
finding of the adequate motif pair took a long time. This manual process of verification
was particularly very laborious and time consuming.

Finally, primer pairs were designed for 22 sequences (Table 2), and for another two this
was impossible. The degeneracies given by MEME were put in their corresponding posi-
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Figure 1: MEME general results (motif general arrangement) for a) the sequence aj810708.1, which
serves as an example of MEME results, and b) for the sequence yscspo13. In the red rectangle, the
original query sequence is shown; the other sequences, which were taken from its corresponding
BLAST results, are represented below it. Every numbered color box represents a specific motif.
MEME general motif arrangement results for the sequence yscspo13. In the red rectangle, the origi-
nal query sequence is shown; the other sequences, which were taken from its corresponding BLAST
results, are represented over it. Every numbered color box represents a specific motif.

tions. The strict process of selection followed in this analysis allowed primers to have 120
of degeneracy as maximium. For each primer pair, the accession number of the original
query sequence was left as name.

PCR assays in vegetative and reproductive tissues. PCR reactions were assayed using
the cDNA of pistils or vegetative tissue (leaves, roots and stems). The length of the pistils
was chosen in basis of previous observations [AMP+00, DW99]; in them, the embryo sac
formation at this specific pistil size is reported. So, if the query sequences are specific of
a process related to reproductive development, there is more chance to obtain them if we
assay this specific part and moment of maturity.

Initially, we tried with 25 ng of starting cDNA as template, but neither of the primers
showed positive results. It could imply that all amplified transcripts have low expression
levels. So, we had to work with more concentrated DNA. A ten-dilution fold of the origi-
nal cDNA gave amplification of 12 primer pairs in vegetative tissues (ab000809, af475105,
aj810709, aj841698, penpsbca, penps31ab, ef517497, ef517498, ef530198, yscspo13,
pcu40219, u65082) and only six in pistils (ab000809, aj810709, aj841698, ef517497,
ef517498, yscspo13). As we expected always the presence of the product in reproduc-
tive tissue, we assayed again with a five-dilution fold. In this case, one primer (penps-
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Figure 2: MEME alignment for motif #6 for the sequence u65082, as an example of alignments
with taxonomic patterns. In green rectangles, the sequences of Panicoideae are shown; in the red
rectangle there are sequences of Pooideae. Two letters followed by gi are employed to annotate
the species associated with a particular sequence: zm = Zea mays; sb = Sorghum bicolor; so =
Saccharum officinarum, hv = Hordeum vulgare; ta = Triticum aestivum. In this example, in the
three degeneracies, the 9th base is always G in Panicoideae and T in Pooideae; the 19th is A in
Panicoideae and C in Pooideae, and the 24th is G in Panicoideae and A in Pooideae; so, the consensus
considered in this case don’t include the T, A and A of Pooideae and the considered motif was
GAGGCACGGAAATTCATCAAAGGGT.

bca) showed amplification in reproductive tissue and another primer pair in both samples
(aj810708). Finally, we employed cDNA directly for the remaining ones, allowing positive
results in pistils for the other five primer pairs that amplified only in vegetative tissue in
1:10 cDNA dilutions and another 2 primer pairs (aj786393, u65384) in both tissues. This
may means that some sequences have greater expression levels in vegetative tissues that in
reproductive ones. Seven primer pairs (aj810710, penpsbhc, ef530199, u65383, u65385,
u65388 and u65389) never gave amplicons under neither of the assayed conditions.

Many of the obtained products had no more than 300bp in size (Figure 3). This is in
concordance with the amplicon predicted by ePCR. In many cases, the amplicons obtained
from vegetative and reproductive tissue were undistinguishable. However, 4 primer pairs
(aj786393, aj810708, penpsbca and ef517498) gave products of different size according to
the tissue assayed; the fragment in these situations was always of larger molecular weight
in pistils. Events of specific tissue expression and differential splicing are plausible.

One very interesting result about these reactions is the fact that almost neither primer pair
gave multiple bands, as could happen if the primer is highly degenerate. In most cases,
a unique band was observed. The primer pair aj786393 is the only one that had multiple
bands. But even that, a predominant band is observed, not only in the vegetative bulk but
also in pistils. These bands could be obtained apart in the cloning tests (data not shown).
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Figure 3: PCR products obtained for the 5 primer pairs that gave positive results. The name of
each primer pair (equal to the accession number of the original query sequence) is shown above its
corresponding result. The TRH title over one well indicates that the product there is from vegetative
tissue, and a P, from pistils. Ladder: 1 kb DNA ladder (Invitrogen).

Bioinformatic analysis of sequenced amplicons. The PCR products were cloned and
sequenced. Comparisons between the obtained sequences and the original query sequences
using BLAST2SEQS and LALIGN showed high similarity including the entire acquired
product and covering at least part of the query in all cases, except three. The query also
appeared as heading result when BLAST search was made in these cases.

The three cases that did not show the expected similarity with queries were yscspo13,
ab000809 and ef517498. The BLAST results of yscspo13 were overall sequences of
the family of N-acetyltransferases, having similarities above 95% over the entire query.
Ab000809 sequence matched with a group of functionally uncharacterized transcripts with
high resemblance with threonin aldolase gene. Ef517498 is 88% similar to diverse tran-
scripts of Oryza sativa related to the DMC1 gene in S. cerevisiae, a gene specific to meiotic
events in that yeast.

Comparisons between the amplicons of different tissues were made. In the situations
where both amplicons had the same molecular weight, the sequences were also the same.
In the four cases when the PCR product showed different size, the sequence from veg-
etative tissue was always longer than from pistils. This supports the idea of differential
splicing according to tissue, indicating a high spatial and, possibly, functional specificity.
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4 DISCUSSION

In the present study, we developed a new method to design degenerate primers to tar-
get specific genes in Brachiaria. In contrast to earlier approaches, the method employed
here does not require to start from large conserved blocks, extracted from multiple global
alignments. Instead, it employs directly conserved motifs obtained from multiple local
alignments. This allows us to work with poorly characterized sequences at the biolog-
ical level and with few or neither homologues previously verified. The MEME algo-
rithm [BWML06] was directly employed for this purpose. To the best of our knowledge,
this is the first time that this program is used in this way. Also and for the first time, MEME
was combined with ePCR (electronic PCR) [Sch97], which served as an initial filter for
the motif pairs. On whole, the method developed in this study combines the use of bioin-
formatic programs which were not integrated before, and with a goal for which they were
not originally made.

Our approach amplified finally and correctly 12 sequences (44% with respect to the 27
original sequences and 54% with respect to the 22 sequences for which primers could be
made). These results are considered very positive, not only because the low knowledge
about them, but also because many times we started from few similar sequences.

The three false positive results and, in general terms, the cases where an amplicon cannot
be obtained, were associated to low similarity patterns in MEME analysis. As a conse-
quence, the respective genetic family could not be detected or one family, different from
the target group, was amplified, producing unspecific results. Another consequence of us-
ing these patterns is the obtention of high degeneracy levels (ej. penpsbhc, see Table 1). In
some situations (u65082, u65383 and u65384), the small size of the fragments made dif-
ficult to find similar sequences, and this caused low similarity arrangements. Patterns like
yscspo13 (Figure 1b), and in general where some conservation in the motif arrangement
cannot be seen, should be avoided as much as possible, in order to increase the successful-
ness of the technique.

Excluding these cases, the method reported here showed good results. This is reflected in
a low difference in the Tm of the primer pairs and between theoretical and experimental
Tm, and in low degeneracy levels. The careful selection process of the degeneracies, which
took into account taxonomic relationships, contributed to the favorable results obtained.
It is desirable to look for ways to automatize and optimize this phase. Bioinformatic
analysis could verify the amplification of the correct homologues. Thus, in general terms,
the method has a good efficiency, which could be improved in further studies being more
rigorous with the differences in Tm, the length of the sequences and the local and global
similarity seen.

Qualitative differences in the expression of some of the evaluated transcripts could be
observed, when sequences from somatic and reproductive tissues were compared. The
loss of DNA segments could suggest specific differential splicing events. This suggests
the existence of factors which alter mRNA in a tissue – specific manner, a possibility that
should be deeply explored in Brachiaria. In events like this and in differential splicing,
part of the explanation to apomixis could be found. So, the long sequence (from pistils)
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could have a specific role in the reproductive development, and it must be analyzed in
major detail.

In conclusion, we could develop a new bioinformatic method which allows us to amplify
homologous genes associated to a very poorly characterized phenomenon at the molecular
level like apomixis. The obtention of these sequences by this method is a very important
step in order to stablish a clear and concrete molecular model of apospory, in this case in
the plant genus Brachiaria. This method could help to make amplifications in other poorly
understood biological events, in which there are few related sequences. In general terms,
the technique can be used for sequences that have very few known homologues, or to
confirm them, and to design degenerate primers when the classical methods do not work.
The method, however, needs to be improved, for example with the automatization of some
time consuming steps and the avoiding of patterns of low similarity. The results obtained
here point to possible events related to differential splicing that could help to explain this
very interesting trait. Our results will allow the analysis of all those proposed candidate
genes in a unique plant species. In additional studies, the differences in expression and
functional characteristics of the obtained sequences must be evaluated, like microarray
analysis and real-time PCR. These sequences are being included in microarray analysis in
our laboratory.
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Discovering temporal patterns of differential gene
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Abstract: A wealth of time series of microarray measurements have become available
over recent years. Several two-sample tests for detecting differential gene expression
in these time series have been defined, but they can only answer the question whether a
gene is differentially expressed across the whole time series, not in which intervals it is
differentially expressed. In this article, we propose a Gaussian process based approach
for studying these dynamics of differential gene expression. In experiments on Ara-
bidopsis thaliana gene expression levels, our novel technique helps us to uncover that
the family of WRKY transcription factors appears to be involved in the early response
to infection by a fungal pathogen.

1 Introduction
Microarray data are a major resource for studying the response of an organism to exter-
nal conditions and stimuli. In the past, the majority of studies considered only a single
measurement in each condition. Recent advances in microarray technology and falling
costs have led to an increasing number of studies where expression levels are measured in
different conditions over time rather than in a single snapshot.

A range of techniques to test for differential expression have been proposed in the com-
putational biology and statistics communities. In statistics, this task is often referred
to as the two-sample problem. The majority of these existing methods are aimed at
identifying differentially expressed genes from static microarray experiments, for exam-
ple (KMC00, DYCS02, ETST01).

More recent approaches are specifically designed for time series (JGS+03; SXL+05;
TS06; CDCMP07; ACC+08), and a range of desired properties of a two-sample test for
microarray time series have been established. First, the test should explicitly address the
dependencies between consecutive measurements. Second, the method should not make
overly strong assumptions about functions describing the time series, such as assuming a
linear or finite model basis (Yua06). Third, to accommodate data characteristics specific
to the microarray platform, it is beneficial to handle missing values and deal with multiple
replicates. Finally, robustness with respect to outliers has proven useful for reliable results
on microarray datasets (CDCMP07; ACC+08).

To address all of these issues, we defined a robust Bayesian two-sample test for differential
gene expression using Gaussian processes (GP) in (SDW+09). In addition to solving
the basic two-sample problem, the presented method can also be used to decide whether
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differential expression occurs at a specific time point in the time series.

However, the test from (SDW+09) does not reflect‘smoothness’ between decisions at con-
secutive time points. That is, there can be abrupt switches from non-differential gene
expression to differential gene expression (and vice versa) from one time point to the next.
If one wants to detect meaningful temporal intervals of differential gene expression rather
than individual time steps, it is vital to incorporate this smoothness assumption into the
formulation of the statistical model. This is exactly the goal of this article.

The remainder of this article is organised as follows. We start by reviewing how Gaus-
sian processes can be applied to test for differential expression in microarray time se-
ries (SDW+09). In Section 3, this basic test is extended to a temporal model detecting
intervals of differential gene expression. Finally, in Section 4, we demonstrate how this
additional information can be useful to gain insights into regulatory mechanisms involved
in the response of Arabidopsis to an infection by a fungal pathogen.

2 Gaussian Process-based two-sample test
The task of detecting differential gene expression is defined as follows: Given observed
gene expression levels from two biological replicates that are exposed to different condi-
tions, the goal is to determine whether a given gene probe is differentially expressed in
these conditions or not.

The principle underlying the Gaussian process-based two-sample test (GPTwoSample)
from (SDW+09) is the comparison of two models: The first model assumes that the mi-
croarray time series in both conditions are samples drawn from an identical shared distri-
bution. An alternative model describes the time series in both conditions as samples from
two independent distributions. As these distributions need to be defined over functions, a
Gaussian process is an appealing model. A GP incorporates beliefs about smoothness and
allows all model parameters except for a handful of hyperparameters to be integrated out
analytically, allowing for tractable model comparison. The two alternatives, the shared
model (HS) and the independent model (HI) can then be objectively compared using the
logarithm of the Bayes factor

Score = log
P (DA,DB |HI)
P (DA,DB |HS)

, (1)

where DA and DB are observed expression levels in two conditions A and B. Writing out
the GP models explicitly leads to

Score = log
P (YA |HGP,TA, θI)P (YB |HGP,TB , θI)

P (YA ∪ YB |HGP,TA ∪ TB , θS)
, (2)

where Y A/B are observed expression levels and TA/B are the corresponding time points in
both conditions and θI, θS are hyperparameters of both models. For details see (SDW+09).
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Figure 1: Bayesian network for the temporal GPTwoSample model. At observed time
points {tn}, binary indicator variables {ztn

} determine the state of a gate and hence which
expert explains the corresponding observations. If the state of the indicator is 1 the inde-
pendent expert is used, while if the switch is 0, the shared expert is used. The shared
expert uses a single GP f(t) to model both conditions. The independent expert uses two
GPs fA(t), fB(t). Smoothness of the GP priors is indicated by the thick bands coupling
function values at different time points. A logistic Gaussian process, g(t), incorporates
smoothness over the state of the indicator variables.

3 Detecting intervals of differential gene expression
Once we know that a particular gene is differentially expressed, it is interesting to ask in
which intervals of the time series this effect is present. Such detailed analysis is particu-
larly valuable for longer time series, where differential behaviour might be present only
temporarily or occur after a certain time delay.

To address this question, we propose a mixture model over time, where one mixture com-
ponent (expert) corresponds to the shared model and a second mixture component to the
independent model. A Bayesian network representation of this temporal GPTwoSample
model is shown in Figure 1. The model is closely related to mixtures of Gaussian process
experts (RG01). The shared expert is a single GP explaining expression levels in both
conditions, while the independent expert uses a separate GP for each condition.

At observed time points binary switches z = {zt1 , . . . , ztn
} determine which expert ex-

plains the corresponding expression levels. In the same way that the expression levels vary
smoothly over time, we also believe that the states of the indicators follow a smooth trend,
typically reflecting a transition from the shared expert to the independent expert. This
belief about smoothness is expressed in a gating network, implying a joint probability
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distribution over all indicators P (z |T, θG).

The coupling of the observed expression levels Y by the GP experts renders inference in
this mixture model difficult. While the latent function values f can be integrated out in
closed form, marginalising over the state of the indicators z yields an exponential sum
over all possible configurations:

P (Y |T, θS, θI, θG) =
?
z

P (z |θG)
-
P (Y{yn:ztn=0} |HS,T{tn:ztn=0}, θS)

×P (Y{yn:ztn=1} |HI,T{tn:ztn=1}, θI)
@
. (3)

The two terms in the sum are the data likelihoods from both GP experts introduced in
Section 2. Here we follow (RG01) and exploit tractable conditional distributions. Con-
ditioned on a particular configuration of the indicators z, the likelihood factorises into a
product over the two experts, where the data are split between the experts according to the
state of the indicator variables.

A Gibbs sampler is well suited for this inference task. The latent function values of the ex-
perts can be integrated out or collapsed and hence Gibbs sampling steps reduce to updates
of one indicator at a time, conditioning on the current state of all remaining indicators and
data. The conditional distribution over a particular indicator zti is

P
;
zti = s | z\ti ,T,Y, θS, θI, θG

4
∝P

;
Y | zti = s, z\ti ,T, θI, θS

4
×P

;
zti = s | z\ti , θG

4
, (4)

with s ∈ {0, 1}. The first term is the conditional data likelihood. Rewriting this term as

P
;
Y | zti

= s, z\ti ,T, θI, θS

4
=P (yti

| zti
= s, z\ti ,Y\yti ,T)

×P (Y\yi | z\ti ,T\ti) (5)

reveals that for Gibbs sampling it is sufficient to calculate the probability of yti
under the

leave-one-out predictive distribution of both GP experts.

The second term in (4) is the probability of the indicator zti
under the predictive distri-

bution of the gating network, given all other indicators. We choose a logistic Gaussian
process as a gating network, where smoothness is expressed by a GP prior on a latent
function g(t) (Figure 1). Bernoulli predictions of an indicator zti

are related to the Gaus-
sian predictive function values by a probit likelihood model (full details in accompanying
technical report),

P (zti
= 1 | z\ti ,T) =

>
gti

Φ(gti
)N 7

gti

66 µti
, σ2

ti

3
dgti

. (6)

The likelihood models of both Gaussian process experts as well as the gating network
are all non-Gaussian and hence predictive distributions are not available in closed form.
Expectation Propagation (EP) (see tech report, (SDW+09)) is applied to all these cases to
obtain tractable approximate predictive densities.
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Sampling of the indicators is repeated for a number of randomised sweeps through all
indicators. After every full sweep, the GP hyperparameters from the GP experts and the
gating function are sampled using Hamiltonian Monte Carlo (e.g. (Mac03)). The complete
sampling scheme is summarized in Algorithm 1.

Algorithm 1 Sampling scheme for the temporal GPTwoSample model

1: for ng = 1 . . . Ng Gibbs sweeps do
2: for n ∈ 1, . . . , N measurements do
3: Resample indicator ztn

(Equation (4)).
4: end for
5: Sample the hyperparameters θS, θI and θG conditioned on z.
6: end for

To identify temporal patterns of differential expression, we are most interested in the in-
ferred states of the indicators. After a burn-in period, the generated samples yield an
empirical posterior distribution over the indicator variables z. Predictions of the gating
network at test times tT can be obtained by integrating out z using a set of S samples

P (zT = 1 |Y,T, tT) ≈ 1
S

S?
s=1

P (zT = 1 |Y,T, tT, z(s), θ
(s)
G ), (7)

yielding a mixture of Bernoulli distributions. These marginal predictions ignore the cou-
pling at different time points that is introduced from the sampled states {z(s)}. However,
after a sufficient burn-in period, most of the indicators are constant across samples {z(s)}
and hence marginal predictions are appropriate. The same argument applies to predictions
of the latent function values of the GP experts. These mixtures of Gaussians are well
approximated by a Gaussian predictive distribution.

4 Detecting transition points in Arabidopsis microarray time series
We applied the temporal GPTwoSample model1 to detect intervals of differential expres-
sion of gene probes from an Arabidopsis time series dataset.

In this particular experiment, the stress response of interest is an infection of Arabidopsis
thaliana by the fungal pathogen Botrytis cinerea. The ultimate goal is to elucidate the gene
regulatory networks controlling the plant defense against this pathogen. The identification
of intervals of differentially expressed genes is an important first step towards this goal.

Data were obtained from an experiment in which detached Arabidopsis leaves were inocu-
lated with a B. cinerea spore suspension (or mock-inoculated) and harvested every 2 hr up
to 48 hr post-inoculation for a total of 24 time points. B. cinerea spores (suspended in half-
strength grape juice) germinate, penetrate the leaf and cause expanding necrotic lesions.
Mock-inoculated leaves were treated with droplets of half-strength grape juice. At each
time point and for both treatments, one leaf was harvested from four plants under identical

1Software will be made available with the accompanying tech report.
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Figure 2: An example result produced by the GPTwoSample temporal test. Top: The
posterior probability of differential expression as a function of time. Bottom: Dashed lines
represent replicates of gene expression measurements for control (green) and treatment
(red). Thick solid lines are Gaussian process mean predictions of the latent process traces;
error bars of plus or minus 2 standard deviations are indicated by shaded areas. The
intensity of the shaded areas is modulated by the posterior probability of the respective
Gaussian process expert. The score in the figure title is the Bayes factor of the standard
GPTwoSample test.

conditions (i.e. there were 4 biological replicates). Full genome expression profiles were
generated from these whole leaves covering a total of 30,336 gene probes.

In the experiments, we used our novel test for detecting intervals of differential gene ex-
pression for each of the 30,336 probes. In the computations, a total of 50 Gibbs sweeps
were performed. After every Gibbs sweep 5 Hamiltonian Monte Carlo updates were inter-
leaved. To allow for a burn-in period, posterior parameters were estimated from samples
of the last 25 sweeps.

Figure 2 gives an example result of the temporal GPTwoSample model. The top panel
shows the marginal predictive distribution for the indicator state z(t), choosing between
the shared, z(t) = 0, and the independent, z(t) = 1, expert. The bottom panel shows the
raw data and marginal predictions of latent function values from both GP experts. For this
particular gene the test identified intervals of clear differential expression that started at
around 22 hr post inoculation and lasted until the end of the time series recording.

Additional results for a representative selection of gene probes are shown in Figure 3.

Delayed differential expression

Applying the temporal GPTwoSample test to a large set of differentially expressed genes,
it is possible to study the distribution of their start and stop times of differential expression.
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(a) CATMA1a64350: Early diff. expr. (b) CATMA2c47710: Delayed diff. expr.

(c) CATMA1c71184: Transient diff. expr. (d) CATMA5a14990: Permanent diff. expr.

Figure 3: Example results of the temporal GPTwoSample model applied to the Arabidop-
sis data. Panels (a) and (b) show examples of particularly early and late differential
expression. In (c) a gene probe is shown for which differential expression appeared to
be transient. Example (d) shows a probe with weak evidence for differential expression
throughout the time series.

For this analysis, the top 6000 genes that had a score suggesting significant differential
expression were used. For each gene the start time of differential expression was de-
termined as the first time point at which the posterior probability of differential expres-
sion, P (ztn

= 1), exceeded 0.5, evaluated at a discretisation of 100 points in the interval
[0, 50] hr. Analogously the stop time was deduced as the time point where differential ex-
pression ended, i.e. P (ztn = 0) ≤ 0.5. The lower panel in Figure 4 shows the histogram of
the start time for the considered 6000 gene probes. The identification of transition points
for individual gene expression profiles shows that a significant change in the transcrip-
tional program began at around 17 hr post-inoculation. This program of gene expression
change appeared to have two strong waves peaking around 21 hr and 25 hr. For a small
fraction of genes this change in the transcriptional program started at either significantly
earlier or later times; Figures 3a and 3b give examples of such genes. Figure 3d shows re-
sults for one of the approximately 200 genes that were identified as differentially expressed
right from the start of the time series. Most of these genes were weakly expressed and an
offset between the measurements in both conditions triggered the early classification as
differentially expressed.

The top panel of Figure 4 shows the stop time of differential expression for 13 genes for
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Figure 4: Histogram of the most likely start and stop of differential expression for the top
6000 differentially expressed genes. Stop time are shown for a total of 13 genes that appear
to exhibit transient differential expression ending within the observed time window.

which the differential expression program ended within the measured time interval. An
example of one of these genes with transient differential expression is given in Figure 3c.

Interpreting waves of differential expression

It is interesting to understand the causes for the different onset-timings of differential ex-
pression for individual genes. We expect regulators (if involved in the response to the
fungus infection) to be expressed at earlier times than the downstream genes they control.
In the Arabidopsis response to stress, several relevant regulatory mechanisms have been
established in the literature. These include transcription factors (CPG+02; SYS00) as well
as kinases (FFN+06; CRBX05).

Figure 5 shows histograms of the start time of differential expression for groupings of the
6000 genes that correspond to different gene categories. Tentatively, transcription factors
and kinases appeared to be stronger represented in the earlier wave; however application
of a Kolmogorov-Smirnov (KS) test revealed that these differences were not significant
(transcription factors: p = 0.092, kinases: p = 0.964).

The differential expression onset-timing can be broken down further, for instance into sub-
families of transcription factors. The family of WRKY transcription factors is known to
play a role in response to biotic stresses (CPG+02). The onset times of transcription factors
in this family appeared to be overrepresented in early differential expression compared to
other transcription factors. A KS-test revealed that this subset of 26 transcription factors
exhibited a significantly different distribution of onset-times than other genes (p = 3.3 ·
10−6). This results demonstrates the usefulness of the time-local two-sample test. By
analysing the onset timing it is possible to narrow down the set of interesting candidate
genes to study. When designing further experiments to elucidate transcriptional networks
mediating the defense response against B. cinerea, regulatory genes whose expression first
changes in the 21 hr wave or earlier would be of particular interest.
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Figure 5: Histogram of the most likely start differential expression for the top 6000 dif-
ferentially expressed genes split up into different gene categories. From top to bottom
the histograms show results for all 6000 genes, kinases , known and putative transcription
factors and WRKY transcription factors.

5 Discussion and outlook
The temporal GPTwoSample model, which we presented in this article, extends the stan-
dard paradigm of the two-sample problem and our previous work (SDW+09) to the iden-
tification of smooth intervals of differential expression. The proposed method is compu-
tationally efficient and can be applied to large datasets with thousands of genes using a
standard desktop PC. Experimental results on 6000 differentially expressed Arabidopsis
thaliana gene probes revealed patterns in the timing of the response to a fungal infection
(Figure 3). As an example application we studied the distribution of the start and stop times
of differential expression (Figure 4) that led to insights on waves of differential expression
in Arabidopsis genes (Figure 5).

Several extensions of the method developed in this article would be of interest. First,
the current model does not distinguish between different expression patterns and anti cor-
related genes. Explicit modeling of anti-correlation is an important next step. Second,
extensions to model differential gene expression at a network view rather than at the level
of individual genes are an interesting direction of future development of differential gene
expression models. The presented method provides the required per-gene level model for
such future investigation.
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Comparative Generalized Logic Modeling Reveals
Differential Gene Interactions during Cell Cycle

Exit in Drosophila Wing Development

Mingzhou (Joe) Song†, Chung-Chien Hong†, Yang Zhang†, Laura Buttitta‡, Bruce A. Edgar‡
†Department of Computer Science, New Mexico State University, Las Cruces, U.S.A.
‡Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, U.S.A.

Abstract: A comparative interaction detection paradigm is proposed to study the com-
plex gene regulatory networks that control cell proliferation during development. In-
stead of attempting to reconstruct the entire cell cycle regulatory network from tem-
poral transcript data, differential interactions – represented by generalized logic – are
detected directly from time course transcript data under two distinct conditions. This
comparative approach is scale- and shift-invariant and is capable of detecting nonlin-
ear differential interactions. Simulation studies on E. coli circuits demonstrated that
the proposed comparative method has substantially increased statistical power over the
intuitive reconstruct-then-compare approach. This method was therefore applied to a
microarray experiment, profiling gene expression in the fruit fly wing as cells exit the
cell cycle, and under a condition which delays this exit, over-expression of the cell
cycle regulator E2F. One statistically significant differential interaction was identified
between two gene clusters that is strongly influenced by E2F activity, and suggests the
involvement of the Hippo signaling pathway in response to E2F, a finding that may
provide additional insights on cell cycle control mechanisms. Furthermore, the com-
parative modeling can be applied to both static and dynamic gene expression data, and
is extendible to deal with more than two conditions, useful in many biological studies.

1 Introduction

Comparative experimental designs for gene expression studies have yet to be explored
for their full potential in understanding differential and conserved gene interactions in
important biological phenomena such as cell cycle control. An interaction is an association
from one or more parent genes to a child gene. Because complex interactions may only
stand out when contrasted, we have developed a comparative modeling paradigm to detect
novel gene interactions, represented by generalized logic (glog), for such experiments. Our
strategy, based on heterogeneity and homogeneity chi-square tests, extends meta-analysis
which has been traditionally used for comparing data sets of similar studies from different
researchers. Our new comparative modeling approach is designed to uncover novel gene
interactions, missed by other approaches.

Our goal is to fundamentally increase sensitivity in detecting how gene interactions may
be either conserved or shifted in a comparative experiment. As microarray technologies
mature, many approaches to gene expression analysis have been developed. Some per-
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form single-gene differential expression analysis [TTC01], ignoring either dynamics or
gene interactions; while others carry out gene regulatory network reconstruction [Fri04],
relying on exhaustive genome-wide perturbation experiments for mathematical accuracy.
As pointed out by Bonneau [Bon08], reconstruction is often cost-ineffective and believed
to be “beyond our current reach”. A step forward is the strategies summarized in [TBB07]
that identify conserved and differential interactions by shifted Pearson linear correlation
coefficients, which do not integrate temporal associations, nonlinear interactions, or inter-
actions involving more than two genes. Still no rigorous statistical framework exists for
comparative gene interaction detection beyond pair-wise linear correlation.

Our innovation is to extend the heterogeneity and homogeneity chi-square tests by associ-
ating child gene expression with potential parent gene expression at the same or previous
time points. This association takes a non-parametric form that can be highly nonlinear.
Our approach generalizes the correlation-based comparisons [BL06], which can be con-
sidered a single-parent, linear, zero-delay, and static interaction. We use a glog to rep-
resent an interaction. Our approach directly assesses the contrastive strength of a pair of
potential interactions, instead of reconstructing-then-comparing the interaction under each
condition. An interaction will be selected if it consistently shows either similar or dif-
ferential patterns. Such a strategy embraces uncertainty in glog, while other approaches
assume zero variance. A remarkable property of this strategy is its determination of par-
ents without having to estimate accurately the actual glog. Although this paper explores
discrete differential gene interactions, we have also developed a nice analogous approach
for continuous differential interactions [OS09]. The discrete approach captures switch-like
behaviors of interactions, while the continuous approach is effective for subtle and gradual
interactions, complementarily.

The biological phenomenon we examine with this approach is cell cycle exit, an event crit-
ical during the process of organism development, and mis-regulated in cancers. Normally,
cells differentiating into their final fates exit the cell cycle and become unresponsive to
proliferative cues, but this process is somehow blocked or disrupted in cancer. To uncover
how differentiation so potently blocks the cell cycle, we have examined the process of cell
cycle exit in the model organism Drosophila melanogaster. Drosophila has been a key
organism for studies of the cell cycle and provides an excellent system for a wide array of
genetic manipulations. The Drosophila wing is particularly useful for studies of cell cycle
control because it is highly homogenous with over 90% of the cells consisting of a single
epithelial cell type, which undergo a well-characterized temporally synchronized cell cy-
cle exit [SP87, MCGB96, BKP+07]. Due to this synchrony, it is an excellent system for a
time-course study of differential genetic interactions upon cell cycle exit in vivo.

The final cell cycle in the wing occurs between 122-144 hours of development. Exactly
how this relatively synchronous cell cycle exit is controlled remains unknown, but restrain-
ing the activity of the transcription factor complex E2F has been shown to be critical for
the proper timing of exit in vivo [BKP+07]. The E2F transcription factor complex is a
master regulator of cell cycle genes, promoting expression of many genes for G1-S as well
as G2-M cell cycle transitions. Consistent with its role in promoting the cell cycle, the E2F
complex is a well-established target for negative regulation by tumor suppressor proteins
such as Retinoblastoma. It is also positively regulated by oncogenes such as SV40 Large
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T and Adenovirus E1A [vdHD08]. We have found the E2F complex to regulate the ex-
pression of ∼900 genes, covering a number of cell cycle regulators, chromatin modifiers
and other factors comprising the “E2F transcriptional program”.

By comparative modeling on gene expression under normal conditions and conditions
where E2F activity is high, we successfully identified a significant differential interaction
between two clusters of genes influenced by E2F activity during cell cycle exit. We pro-
pose that this approach uncovers novel genetic networks that are perturbed upon aberrant
E2F activity, providing insight into the global function of this transcription factor in vivo.

2 Interactions in generalized logic and their reconstruction

Let child node X have Q quantization levels ranging from 0 to Q − 1, controlled by K
parents z1, z2, . . ., zK of Q1, Q2, . . ., QK quantization levels, respectively. The glog H of
node X is a function that maps all possible combinations of parent node values to values of
X . We also call glog H an interaction. The glog can incorporate temporal dependencies
by introducing time t and delays of each parent τ1, . . . , τK .

We apply chi-square test to detect an interaction from a contingency table obtained from
experimental data. The number of rows in the table is R = Q1Q2 · · ·QK and the number
of column is Q nr,c is the number of observations in which the parents take the values in
the r-th row and X takes the value of c. Let n·,c be the sum of column c. Let nr,· be the sum
of row r. Let n̄r,c = nr,·n·,c/n be the expected count when the parents are not associated

with X . Then, χ2 =
=R−1

r=0

=Q−1
c=0

(nr,c−n̄r,c)
2

n̄r,c
is asymptotically chi-square distributed

with (R−1)(Q−1) degrees of freedom (d.f.) when the parents do not influence the child.
Further details can be found in [SLLea09].

3 Differential interactions and their detection by heterogeneity tests

An interaction is conserved if it does not change from one condition to another; otherwise,
it is differential if any change occurs in parent identity or strength for any parent. An in-
teraction under two conditions can have both homogenous and heterogenous components:
the former represents an overall agreement of the interaction under the two conditions; the

0 1 2
0 X 0 0
1 0 X 0
2 0 0 X

0 1 2
0 0 0 X
1 0 X 0
2 X 0 0

(a) Detectable linear differential interaction:
1 versus -1 for Pearson coefficients.

0 1 2
0 X 0 X
1 X 0 X
2 0 X 0

0 1 2
0 0 X 0
1 X 0 X
2 X 0 X

(b) Undetectable nonlinear differential inter-
actions: 0 versus 0 for Pearson coefficients.

Figure 1: Linear correlation differential interaction detection: Detectable and undetectable.

latter represents deviation from the overall agreement.

Existing comparative methods compare interactions numerically, ignoring the variance in
the estimated models. For example, pair-wise linear correlation based approaches will
be effective on linear differential interaction detection (Fig. 1(a)), but not nonlinear ones
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(Fig. 1(b)). Our strategy will instead consider both nonlinearity and uncertainty in two data
sets collected under comparative experimental conditions. Such a consideration enables
much greater statistical power than other approaches.

3.1 Detect the differential interaction of a child with known parents

We develop a procedure based on chi-square statistics to determine whether a fixed topol-
ogy interaction shows any significant shift under two conditions. The null hypothesis
assumes no interaction between the parents and the child. The test statistics measure the
homogenous and heterogenous components in interactions, illustrated in Fig. 2.

1 2

2 2 2

tv v vχ χ χ= +

: Total strength
of two interactions

: Strength of
heterogenous
component

: Strength of
homogenous
component

2

dvχ

2

cvχ

dp

cp

tp

Figure 2: Components in an interaction.

Let the two data sets (temporal or static), collected under two different conditions, be T1

and T2. Let π → X represent an interaction from parents π to child X . We first obtain the
contingency tables C1 and C2 from T1 and T2, respectively, associated with π → X . χ2

v1
,

d.f. v1, and p-value p1 are computed from C1, so do χ2
v2

, v2, and p2.

The total chi-square from two interactions is χ2
vt

= χ2
v1

+χ2
v2

, with d.f. vt = v1 +v2 and
p-value pt. This statistic measures by pt the total strength of any interaction under either
conditions, regardless of differential or conserved.

The homogenous component is the conserved portion of an interaction under two condi-
tions. A contingency table Cpool is filled, using parent and child values, from both T1 and
T2. From Cpool, one can compute χ2

vc
with d.f. vc and p-value pc, which is the strength of

interaction homogeneity under different conditions.
Algorithm 1 Decide-Interaction-Type(X , π, T1, T2, α)
1: Form contingency table C1 for π → X|T1, C2 for π → X|T2, and Cpool for π → X|T1, T2

2: Calculate heterogenous component χ2
vd

and strength pd

3: Calculate homogenous component χ2
vc

and strength pc

4: Calculate total chi-square χ2
vt

and total strength pt

5: if heterogenous component is significant (pd ≤ α) then
6: if total chi-square is significant (pt ≤ α) then
7: comparative interaction type ← absolute differential
8: else
9: comparative interaction type ← relative differential

10: end if
11: else if homogenous component is significant (pc ≤ α) then
12: comparative interaction type ← conserved
13: else
14: comparative interaction type ← null
15: end if
16: Return the comparative interaction type and {C1, C2, Cpool, χ2

vd
, χ2

vc
, χ2

vt
, pd, pc, pt}π

The heterogenous component is the differential portion of an interaction under two con-
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ditions, defined by χ2
vd

= χ2
v1

+ χ2
v2

− χ2
vc

with d.f. vd = v1 + v2 − vc and p-value pd,
which is the strength of interaction heterogeneity under different conditions.

For a parent set π, Algorithm 1 determines the interaction type: conserved, absolute or
relative differential, and null. Our principle is that a pair of interactions is considered
differential if it has a significant heterogenous component regardless of the significance of
its homogenous component. We further classify a differential pair to be relative differential
if the total chi-square is insignificant and otherwise absolute differential.

A simulation study to demonstrate the power advantage is shown in Fig. 3. The power
gain can be as high as about 40% when the noise is at an intermediate level.
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Figure 3: Advantage of comparative modeling versus reconstruct-then-compare in statistical power
and false positive rate of differential interactions when parent are fixed. The example was based on
a 2-parent binary interaction.

3.2 Ab initio comparative interaction modeling in networks of unknown topology

In ab initio comparative modeling, we find differential or conserved interactions of each
child when parents identities are unknown. This is thus both a modeling problem to de-

Table 1: Selection of parent sets.
Interaction π1 → X Interaction π2 → X Condition True False

Conserved Conserved pπ1
c ≤ pπ2

c π1 π2
Abs. differential Abs. differential p

π1
t ≤ p

π2
t π1 π2

Rel. differential Rel. differential p
π1
d ≤ p

π2
d π1 π2

Conserved Abs. differential pπ1
c ≤ p

π2
t π1 π2

Abs. differential Conserved pπ2
c ≤ p

π1
t π2 π1

Conserved or abs. diff. Rel. diff. - π1 π1
Rel. diff. Conserved or abs. diff. - π2 π2

null null p
π1
t ≤ p

π2
t π1 π2

non-null null - π1 π1
null non-null - π2 π2

termine the most likely parents for each child, as well as a detection problem to check
differential interactions. The rationale of such an approach lies in that it is unlikely for
non-parents to show consistently differential or conserved interactions with a child.

We compare two parent sets, π1 and π2, for child X , using Table 1. The interaction types
under each parent set are determined first. We assume all p-values have been adjusted for
multiple comparisons. The selection of parent set is based on four interaction types. The
same type is compared by the p-values associated with that type. When the types differ, p-
values are not compared but a prioritized list of conserved or absolute differential, relative

Song et al. 147



differential, and null is used. The principle is that a conserved or absolute differential
parent set is selected over a relative differential one and non-null is over null. If both are
null, the parent set with smaller pt is selected.

4 Simulation study on comparing 78 pairs of E. coli circuits

The simulation study in Fig. 3 indicates that for known parents, the statistical power for
comparative modeling is higher to reconstruct-then-compare under the same false positive
rate. We now evaluate the performance of ab initio comparative modeling (Section 3.2),
in reference to the reconstruct-then-compare approach. We used 13 E. coli networks
[GEHL02], also called circuits, to form 78 pairs of circuits for comparison. Each cir-
cuit has four binary nodes: the inducible repressors (LacI and TetR), λ CI, and GFP. All
circuits are first Markovian with a maximum of one parent for each child.

We evaluate the performance node-wise. An interaction for a node is true negative (TN) if
it is conserved and announced so, false positive (FP) if conserved announced differential,
false negative (FN) if differential announced conserved, and true positive (TP) if differ-
ential announced so. The performance of comparing two networks is accumulated over
all the nodes in them. The network TNs is the total number of TN children, FPs the total
number of FP children, FNs the total number of FN children, and TPs the total number of
TP children.

The noise model is defined such that one node at a particular expression level is more
likely to jump to its adjacent levels:

P (j|i, θ) =

(;
1 − |j−i|= K−1

d=0 |d−i|

4
θ

K−1 , j <= i

1 − θ, j = i
(1)

where θ denotes the noise level (from 0 to 1)1, j denotes the noisy version of true value i,
and K is the number of quantization levels.

Figure 4 shows the performance advantage of comparative modeling versus the reconstruct-
then-compare approach.2 When noise level is relatively high (0.1), comparative modeling
significantly outperformed: its TPs is almost twice of reconstruct-then-compare. This im-
plies comparative modeling can detect differential interactions more accurately without
increasing FPs.

5 Differential gene interactions in cell cycle exit in Drosophila wings

We next applied comparative modeling to the study of cell cycle control during devel-
opment in vivo. For this study, we obtained transcriptomic profiles of Drosophila wings

1For comparative modeling, the worst noise is 0.5.
2The non-monotonic ROC of the reconstruct-then-compare approach is expected as a pair of differential

interactions involving a null and a non-null can become conserved of two null interactions when α increases.
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Figure 4: ROC advantage of comparative modeling versus reconstruct-then-compare, demonstrated
by a simulation study on 78 pairs of E. coli circuits.

during cell cycle exit under normal conditions, and conditions of excessive E2F activity.

Microarray experiments – Ten pupal wings from either control animals (E2F-) or ani-
mals expressing the E2F/DP transcription factor complex under the control of the Gal4/UAS
system (E2F+) were dissected at 0h, 24h, and 36h after pupa formation (APF). RNA was
isolated using Trizol, and cDNA synthesis was performed with one subsequent round
of T7-dependent linear RNA amplification using the commercially available Message
AmpTM kit from Ambion. Amplified RNA labeled and hybridized to Nimblegen Drosophila
expression arrays of 15,473 probes according to the manufacturer’s specifications. Hy-
bridizations were repeated 4 times with independently obtained samples. Microarray scan-
ning and normalization was performed as recommended by the manufacturer. Importantly,
cell cycle exit occurs at 24h APF under normal conditions (E2F-), while under E2F+ con-
ditions cells go through an extra cycle and instead exit at 36h APF [BKP+07].

Preprocessing – Two-way ANOVA on time (24h/36h), condition (E2F+/-), and their in-
teraction was applied to filtered out genes insignificantly differentially expressed, resulting
in 5,867 selected out of 15,473. We performed hierarchical clustering to form 127 groups
of linearly correlated transcripts at 24h and 36h. A total of 127 representatives that best
represent transcripts in each cluster were selected. Genes in the same cluster are consid-
ered mathematically equivalent and only the representatives were used in the subsequent
modeling. A joint quantization was applied to convert continuous gene expression levels
at 0h, 24h, and 36h to discrete levels of low, intermediate, and high.

Comparative modeling – Comparative glog interaction modeling was applied to data at
24h and 36h to contrast the interactions under E2F+ versus E2F-. The α-level used was
0.05. The maximum number of parents is 1.

Differential interactions – The only significant differential interaction detected is from
cluster C125(22) to C34(59). The number in the parentheses is the total number of genes
in that cluster. The original gene expression levels in the two clusters are shown in Fig. 5.

Table 2 shows the observed differential interaction between C125(22) to C34(59). The
C125(22)→C34(59) interaction contains a significant heterogenous component (pd = 0.031)
and is also overall significant (pt = 0.039), indicating a consistent shift in the way the two
clusters interact under E2F+ or - conditions.
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Figure 5: Expression levels (scaled and shifted) of transcripts in clusters C125(22) and C34(59).
Time course sample index 1 to 8 represent 8 replicates under E2F- (1 to 4 at 24h; 5 to 8 at 36h).
Sample index 9 to 16 represent 8 replicates under E2F+ (9 to 12 at 24h; 13 to 16 at 36h).

Table 2: Interaction of E2F and C125(22) with C34(59). The numbers in the table represent the
occurrences of the associations in the observed expression data.

C34(59)

E2F C125(22) Low Intermediate High

- Low 4 1 0
- Intermediate 0 1 1
- High 1 0 0

+ Low 0 0 2
+ Intermediate 0 2 0
+ High 4 0 0

6 Discussion

From this preliminary analysis we identified two clusters of genes, C125(22) and C34(59),
that display a differential interaction under high E2F activity. Surprisingly, few of the
genes in these clusters have known roles in cell cycle control, and none have known in-
teractions with E2F. We have examined whether any genes within these clusters have any
known genetic or physical interactions with each other, either directly or through sec-
ondary partners, using the FlyGRID database and the Osprey network visualization pro-
gram. Figs. 6(a) and 6(b) show the results of the analysis. While we found no direct known
interactions between E2F and the two clusters, we do find a single known direct interaction
between the clusters, via CG14534 binding to Salvador (Sav) in a yeast two-hybrid protein
binding assay (Fig. 6(a)). Sav is a scaffolding protein, known to be a key component of
the Hippo pathway, a pathway involved in cell growth and proliferation [Edg06]. This
interaction will therefore have the highest priority for further validation.

Additionally, these two clusters have multiple interactions through secondary partners. For
example, CG14534 interacts with 3 targets in C34: CG15771, Syx16 and Sav, via protein-
protein binding through secondary partners. CG14030 interacts with Syx16 (C34) through
a secondary partner CG4328 and CG13220 (C125) also interacts with Syx16 (C34) via the
chromatin modifier Bap60. Thus additional connections can be drawn through intermedi-
ate partners with Sav and Syx16 being the most highly connected targets in C34. How-
ever, two more interactions between these clusters are independent of the highly connected
Syx16 and Sav nodes. They are: the CG6904 (C125) interaction with CG15771 (C34) via
CG15631 and the CG8927 (C125) interaction with RpL6 (C34) through CG13576. These
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(a) A known genetic and protein-protein interaction
from CG14534 in C125(22) to Sav in C34(59).

(b) Genetic and protein-protein interactions includ-
ing secondary interactors.

Figure 6: Known direct and secondary interactions among genes in C125(22) and C34(59) were
provided by FlyGRID and Osprey. Genes in C34 are displayed as small nodes in a circular array
where colors indicate different gene ontology annotations. Genes in C125 are displayed as large
nodes aligned at right. E2F and DP are displayed as small nodes in the center of the C34 circular
array. Known genetic or physical interactions are represented as edges between nodes with purple
edges indicating a physical interaction via yeast two-hybrid assays.

results suggest several potential networks for further investigation (Fig. 6(b)).

Interestingly, a genetic interaction between the Hippo signaling pathway and E2F was re-
cently described [NF08], where repression of Hippo signaling resulted in increased E2F
expression and activity. In contrast, our work suggests that activation of E2F also alters
the level of Hippo signaling via changes in Sav expression. Together these genetic inter-
actions could result in a feedback loop, stably coordinating changes in E2F activity during
development in vivo with compensatory alterations in Hippo signaling. We plan to further
test this hypothesis by direct genetic experiments examining Hippo signaling in vivo.

Importantly, our modeling approach allows new interactions present only under certain
conditions to be uncovered. Therefore we do not expect that many of the important in-
teractions will be identified by the genome-wide analyses present in the database, which
are done exclusively under normal conditions. To address this in future work, we can
systematically test the requirement for certain genes in cluster C125 on the induction of
genes in C34 under high E2F activity at 36h. This could be carried out using gene specific
RNAis to knock-down the levels of highly connected genes in C125 to test the effects on
transcripts in C34 by quantitative RT-PCR.

We have demonstrated that novel genetic interactions can be proposed from modeling gene
expression associations at the same time point. However our total sample size of 16 for the
comparative analysis is small. In future work, by doubling the sample size, the statistical
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power is expected to improve substantially. By increasing the number of time points, we
will expand our efforts to detect differential temporal interactions. We anticipate compar-
ative modeling will enable more fundamental understanding of gene expression programs
either within a species under different conditions or across species under same conditions.
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Abstract: Enzymes and other proteins coded by nuclear genes are targeted towards
various compartments in the plant cell. Here, we describe a method by which localisa-
tion of enzymes in a plant cell may be predicted based on their transcription profile in
conjunction with analysis of the structure of the metabolic network. This method uses
reaction correlation coefficients to identify reactions in a metabolic model that carry
similar flux.

First a correlation matrix for the expression of genes of interest is calculated and
the columns clustered hierarchically using the correlation coefficient. The rows clus-
tered using reaction correlation coefficients. In the resulting matrix, we show that the
genes in a particular compartment are clustered together and compartmental predic-
tions, with respect to a reference gene can be readily made.

1 Introduction

Spatial organisation of metabolism and other cellular functions is a well known feature of
plant cells. Enzymes and other proteins coded by nuclear genes are targeted towards var-
ious compartments in the plant cell with the help of the targeting information within their
amino acid sequence. Identifying the localisation of proteins is thus an important step
towards a broader understanding of the cellular function as a whole and may help in deter-
mining the role of thousands of uncharacterised proteins predicted by the genome sequenc-
ing projects. Modern organelle-focused experimental approaches can identify proteins in
a given compartment. However, reliable protein localisation requires that the technique
used must be able to distinguish between genuine organelle residents and contaminating
proteins [DDWL04]. Although reasonably pure preparations of some organelles can be
achieved, there are many difficulties associated with measuring and characterising proteins
that are in a compartment [DHS+06]. Nevertheless, a variety of experimental methods are
currently being used to identify protein localisation. Recently chimeric fusion proteins
(FPs) and mass spectrometry (MS) techniques have been successfully employed to deduce
the localisation of approximately 1100 and 2600 proteins, respectively [HVTF+06]. Al-
though these techniques have accelerated the flow of protein localisation information, the
subcellular location of the majority of proteins in a plant cell is still not known.

A relatively simple, low-cost and rapid means to tackle this issue is to employ bioinfor-
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matic targeting algorithms to predict protein localisation from amino acid sequence. A
number of software tools exists, including TargetP [EBvHN07], Predotar [SPLL04], iP-
SORT [BTM+02], SubLoc [HS01], MitoProt II [CV96], MITOPRED [GFS04], PeroxiP
[EEvHC03], and WoLF PSORT [HPO+07], which can predict proteins targeted towards
plastid, cytosol, nucleus, mitochondria, peroxisome or the endoplasmic reticulum. How-
ever, the output of such programs has been found to be somewhat inconsistent with each
other, or with experimentally determined results [HVTFM05], making them unreliable for
some analyses.

The advent of whole-system approaches such as microarrays and metabolomics and the
accumulation of such high-throughput data have created new opportunities for studying
how reactions are coordinated to meet cellular demands. Microarray experiments monitor
the expression of thousands of genes simultaneously. Grouping together genes of similar
expression pattern is a general starting point in the analysis of expression data. Similarity
between genes is measured by the correlation of their expression profiles and hierarchi-
cal clustering methods are used to partition data into clusters of genes exhibiting similar
expression patters [IBB04]. Numerous studies have shown that co-expression patterns of
gene expression across many microarray datasets form modules of genes that are function-
ally correlated [WPM+06, MDO+08]. Recently this approach was successfully employed
in identifying new genes involved in cellulose synthesis in plants [PWM+05].

Here, we describe a method by which localisation of enzymes may be predicted based
on the co-expression profiles of genes coding for reactions in a structural model of plant
carbon metabolism. Structural models contain stoichiometries of reactions in a metabolic
system. Based on the correlation between these reactions, it can be represented hierarchi-
cally as a metabolic tree in which the root node represents the complete system, leaf nodes
represent individual reactions, and the intermediate nodes represent metabolic modules
capable of the net interconversion of metabolites common to reactions inside and outside
the module [PSPF07]. Our technique uses reaction correlation profiles generated from
metabolic models together with expression correlation profiles obtained from the microar-
rray data to identify the distribution of enzymes in a particular compartment with respect
to the experimentally determined location of a protein representing that compartment.

2 Materials and methods

2.1 Construction of the model of plant carbon metabolism

A structural model of plant carbon metabolism including plastid and cytosol compart-
ments was constructed (Figure 1). The model contains reactions of the Calvin cycle, light
reactions and glycolysis and is based, in part, on previous models of plant metabolism con-
structed in our group [PFR03, Ass05]. Protons, CO2, pyruvate and sucrose were made ex-
ternal (metabolites that are in constant exchange with the extracellular environment) yield-
ing a model with a total of 53 reactions and 49 metabolites. Reversibility of the reactions
was determined based on literature. All modelling and model analysis were performed
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Figure 1: Reaction schema of the model of plant carbon metabolism. For simplicity, the light re-
actions are depicted here as two separate reactions producing ATP and NADPH. Protons, CO2 and
sucrose are considered external. ‘ str’ and ‘ cyt’ represent the compartments stroma and cytosol,
respectively. Notice the transporters connecting reactions of the plastid and the cytosol.
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Figure 2: Metabolic tree constructed from the model showing four separate clusters containing reac-
tions capable of net interconversion of metabolites; A. Reactions of the Malate/Oxaloacetate shuttle.
B. Calvin cycle reactions. C. Reactions of glycolysis. D. Reactions involved in the regeneration of
cytosolic UDP. ‘ str’ and ‘ cyt’ represent the compartments chloroplast and cytosol, respectively.

using the metabolic modelling tool ScrumPy (http://mudshark.brookes.ac.uk) [Poo06].

The model represents the formation of sucrose and pyruvate from the Calvin cycle in-
termediates transported to the cytosol via specific transport proteins. It contains several
reactions such as phosphoglyceromutase, enolase, pyruvate kinase and malate dehydro-
genase that are active in both the chloroplast and cytosol. Presence of these reactions in
the model will enable us not only to identify their distribution between the compartments
but also to distinguish isoforms of genes that code for same reactions in both the com-
partments. This model is publically available as SBML or in the ScrumPy ‘.spy’ format
(http://mudshark.brookes.ac.uk/index.php/User:Cbaunni).

2.2 Expression data analysis of genes coding for reactions in the model

The gene to reaction associations describe the dependence of reactions on genes. The gene
to reaction associations in the model were mapped using the AraCyc [ZFT+05] database
(http://www.arabidopsis.org/biocyc/index.jsp). The result is a set of genes that potentially
code for all the reactions in the model.
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The expression data for analysing these genes were obtained from the Nottingham Ara-
bidopsis Stock Centre’s (NASC) microarray database (http://affymetrix.arabidopsis.info/).
The ‘super bulk gene’ file containing nearly 3500 hybridisations, each with expression
level measurements for over 22000 genes represented on the ATH1 array was downloaded
(http://affymetrix.arabidopsis.info/narrays/help/usefulfiles.html, March 2009). Expression
data from individual experiments were log-transformed; no further modification or scal-
ing was made on the data unless otherwise specified. All microarray data analysis was
performed using custom modules designed for ScrumPy.

Expression data for genes ultimately coding for reactions in the model were extracted and a
large-scale correlation analysis of expression values between these genes were performed
essentially as described by Causton et al. [CQB03] by calculating the Pearson’s correlation
coefficient.

2.3 Clustering and analysis of the correlation matrix

A metabolic tree was generated from the model using the method described in [PSPF07]
(Figure 2). The order of the reactions in this tree was used to sort the genes along the rows
of the correlation matrix.

The columns of the matrix were hierarchically clustered based on the Pearson’s correlation
coefficient and an expression correlation tree was generated (Figure 3). Leaves of this tree
represent genes in the model and the intermediate nodes are clusters that represent genes
sharing similar functions. The columns of the correlation matrix were then sorted in the
order of the leaves of the expression correlation tree.

The correlation matrix was imported into TM4-MeV (http://www.tm4.org/mev.html) for
visualisation as heatmap [ESBB98]. The metabolic trees were visualised using MEGA
phylogenetic tree editor (http://www.megasoftware.net/) [KNDT08].

3 Results and Discussion

3.1 Identification of correlated genes sharing similar flux

Metabolic tree generated from the model contain four separate clusters, each representing
reactions capable of net interconversion of metabolites (Figure 2). It is notable that re-
actions of the Calvin cycle and glycolysis are represented as separate nodes on the tree.
Clustering the rows of the correlation matrix based on the genes coding for reactions rep-
resented in these nodes can rearrange the heatmap vertically based on the similarities in
flux. On the other hand, hierarchically clustering the columns of the correlation matrix
grouped genes horizontally depending on their levels of expression. Doing so resulted in
the formation of clusters in the heatmap representing genes that are expressed together and
code for enzymes that share a similar flux (Figure 4).
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Figure 3: Expression correlation tree generated by hierarchically clustering correlation coefficients
of genes coding for reactions in the model showing two separate clusters. A. Genes that predomi-
nantly code for reactions in the cytosol correlate with each other B. Genes coding for Calvin cycle
intermediates cluster together. ‘ ’ is used to separate genes from reactions and ‘&’ is used to distin-
guish reactions that the gene code for. ‘ str’ and ‘ cyt’ represent the compartments chloroplast and
cytosol, respectively.
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Figure 4: Correlation matrix generated from the expression values of genes coding for reactions in
the steady state model. The correlation coefficient ranges from -1 (green) for perfect anticorrelation
to +1 (red) for perfect correlation, with zero (black) indicating no relationship. Columns were sorted
based on the clustering expression correlation coefficient and rows sorted by clustering based on
reaction correlation coefficient. ‘A’ and ‘B’ represent two distinct clusters observed in the correlation
matrix (Figure 3). Correlated genes in cluster ‘A’ were found to be highly correlated with reference
genes known to be localised in the chloroplast. Whereas correlated genes in cluster ‘B’ showed
higher correlation with genes localised in the cytoplasm. 1, 2, 3 and 4 represent clusters in the
metabolic tree representing reactions capable of net interconversion of metabolites (Figure 2).
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We found that genes coding for reactions in the Calvin cycle are found to be tightly corre-
lated between each other and they cluster together. The same holds true for genes coding
for glycolysis reactions. Isoforms of some Calvin cycle genes anticorrelate with other
genes coding for reactions of the Calvin cycle. However, those genes that were anticorre-
lated with the genes of Calvin cycle reactions are found to be tightly correlated with genes
of the glycolysis reactions, and vice versa. Similar cases can also be observed in case of
the isoforms of glycolytic genes.

A previous study on the transcriptional coordination of metabolic network in Arabidopsis
suggested that genes coding for reactions in a pathway show tighter levels of correla-
tion [WPM+06]. Results from our study correlates with the above observation and also
suggests that the expression profiles of genes can be used to distinguish their compartmen-
tation.

3.2 Identifying compartmentation of genes

Though, this technique is efficient in clustering genes based on their compartmentation,
identification of the compartment itself requires a reference gene whose localisation is al-
ready known. For example, the plastidic ribulose biphosphate carboxylase (Rubisco) gene
ATCG00490 was used as the reference to identify genes localised in the chloroplast. Com-
partments are identified by filtering out genes that are highly correlated with the reference
gene.

The results were compared with the various bioinformatic tools described in Section 1.
Comparison with predictions made by bioinformatic tools as a whole was not possible as
many of these tools were directed towards particular compartments. Compartmentation of
genes that were predicted to be in the chloroplast showed good agreement with tools such
as TargetP and Predotar, whereas mitochondrial predictions correlated with MITOPRED
and MitoProt II predictions.

This approach was used to predict the localisation of the complete set of genes coding for
the reactions in a model containing reactions of the chloroplast, cytosol and mitochon-
dria. Given a good quality microarray expression data containing sufficient experiments
that allow reliable statistical analysis, this technique can be used more generically. With
the large number of publically available metabolic networks and expression data, this ap-
proach may significantly contribute to the identification of enzyme localisation in many
different eukaryotic systems.
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Abstract: It is often challenging to reconstruct accurately a complete dynamic bi-
ological network due to the scarcity of data collected in cost-effective experiments.
This paper addresses the possibility of comparatively identifying qualitative inter-
action shifts between two dynamical networks from comparative time course data.
An innovative approach is developed to achieve differential interaction detection by
statistically comparing the trajectories, instead of numerically comparing the recon-
structed interactions. The core of this approach is a statistical heterogeneity test that
compares two multiple linear regression equations for the derivatives in nonlinear
ordinary differential equations, statistically instead of numerically. In detecting any
shift of an interaction, the uncertainty in estimated regression coefficients is taken into
account by this test, while it is ignored by the reconstruction-based numerical com-
parison. The heterogeneity test is accomplished by assessing the gain in goodness-
of-fit from using a single common interaction to using a pair of differential interac-
tions. Compared with previous numerical comparison methods, the proposed statis-
tical comparison always achieves higher statistical power. As sample size decreases
or noise increases in a certain range, the improvement becomes substantial. The ad-
vantage is illustrated by a simulation study on the statistical power as functions of
the noise level, the sample size, and the interaction complexity. This method is also
capable of detecting interaction shifts in the oscillated and excitable domains of a dy-
namical system model describing cdc2-cyclin interactions during cell division cycle.
Generally, the described approach is applicable to comparing dynamical systems of
additive nonlinear ordinary differential equations.

1 Introduction

Reconstruction of gene regulatory networks or metabolic pathways from time course ob-
servations has been a sustaining focus of efforts [BBAIdB07]. Data-driven deterministic
and non-deterministic mathematical modeling methods [KWKK08] have been devel-
oped to reconstruct biological networks. Examples include Bayesian networks, Boolean
networks, and ordinary/partial differential equations (ODEs/PDEs). However, accurate
and complete biological network reconstruction is considered beyond our current reach.
This is due to several reasons, among which are the combinatory nature of the problems,
limited system perturbation and un-captured dynamical measurements [Bon08]. To re-
mediate these limitations, we take advantage of the comparative nature of many biology
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Figure 1: Unreliable NC estimation of the heterogeneity of an interaction from observations un-
der two conditions. Left: An interaction with a coefficient vector, (a, b), which might shift under
two conditions; Center: The observations, (O1, O2), led to estimation of a large, but insignificant,
difference between the coefficient vectors. (P1, P2) are model predictions; Right: The obser-
vations, (O1, O2), let to estimation of a small, but significant, difference between the coefficient
vectors.(P1, P2) are model predictions.

experimental designs, to pursue comparative identification of differential interactions.

When one inspects two models, numerical comparison (NC) of their coefficients is intu-
itive. As model databases such as BioModels [NBB+06] do not provide the data from
which models are built, researchers have no choice but to use numerical comparison if
they want to compare their models with those in a database. This becomes a problem
when coefficients in a model have great uncertainty due to the data used to derive them.
As NC methods do not consider variance in the comparison, they are effective only for
accurately reconstructed networks. Therefore, several biological comparative analysis
approaches have been developed [TBB07]. Differential gene expression analyses [NS04]
of each single gene ignore regulatory interactions which might cause differential expres-
sion. More recently, pair-wise gene expression correlations [TBB07] utilize patterns of
gene co-expression to detect gene interaction shifts. To the contrary of the NC method,
correlation-based comparison considers only variance but not the way two variables inter-
act, and would not be effective in telling the shift in interactions. Co-expressing genes can
be considered as a simple model involving only two genes. Consider a network shown
in the left pane of Fig. 1. A node X and a constant node C control the change of a node
Y by a coefficient vector, (a, b), which are related to the correlation coefficient vector be-
tween X, C and Y. Two sets of observations {X(1), Y (1)} and {X(2), Y (2)} are obtained
under different conditions which could cause changes in (a, b). In order to detect any
change in (a, b), the NC method will first estimate two coefficient vectors from two data
sets respectively, then compare the distance between the two estimated coefficient vectors
with an experienced threshold. However, this numerical comparison may be unreliable,
as illustrated by an example in the center and right panes of Fig. 1. Although the distance
between the two estimated coefficient vectors is greater in the center pane than in the
right pane, the data sets do not support such an interaction difference in the center pane
as strong as in the right pane considering the uncertainty in the estimated coefficients. A
threshold in between the two distances will lead to false negative differential interaction
detection on the case in the right pane.
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We establish a new paradigm of statistical comparison (SC) to detect interaction shifts in
a biological network. An SC method can be considered a generalization of NC by ex-
tending the zero-variance assumption to non-zero. The significance takes the uncertainty
into account that will be reported by a statistical heterogeneity test. The null hypothesis
is that the interactions keep the same. A differential interaction in a network will be de-
tected by rejecting the null hypothesis through analyzing the goodness-of-fit between a
common interaction and several differential interactions. The proposed method will take
uncertainty into account while focusing on the identification of interaction changes. In
this paper, considering two comparable biological networks, we assume the true topology
of the network is given but coefficients. We define an interaction by an ODE. A method is
also given based on statistical comparison of multiple linear regression equations. Then,
the performance of the proposed method will be illustrated by simulation studies under
various noise levels, data sizes and interaction complexities. We also demonstrate our
SC approach on a real biological network delineating cdc2-cyclin interactions in the cell
division cycle.

2 Interactions in dynamical systems

We focus on detecting the interaction shifts in biological networks represented by dynam-
ical system models (DSMs) composed of ODEs. We choose DSMs for two reasons: first,
ODEs are widely used in kinetic models; second, biological model databases including a
large number of DSMs, such as BioModels [NBB+06], have been created, which can be
used to test our methods. In gene regulatory network modeling, ODEs has been used to
describe transcriptional kinetics [dLD09], where gene regulation is modeled by reaction-
rate equations expressing the rate of a gene product as a function of concentrations of
other gene products or metabolites in the system. The general mathematical form is

dxi(t)
dt

= fi(x(t), β) (1)

where x(t) = (x0(t), x1(t), ..., xN−1(t))- is a vector of the concentrations of N variables
at time t, xi(t) is a target variable which can represent the concentration of a gene product
or a metabolite, β is a coefficient constant vector, and fi is a linear combination of either

linear (e.g. xj) or nonlinear (e.g. quadratic x2
j or xjxk, or sigmoidal

x2
j

1+x2
j

) terms, with
coefficients β. The pair-wise linear correlation model is a special case of the above model
as 0 = β0 + xi(t) + β1xj(t). Coefficient vector β in model fi can be estimated using
multiple linear regression. We also refer to this estimation process as reconstruction and
estimated coefficient vector as β̂.

In a pair of differential interactions for a variable, the two coefficient vectors, β(1) and
β(2), differ from each other under two experimental conditions. Take Fig. 1 as an exam-
ple. The values of node X, Y, and C can be considered gene concentrations. The rate of
change in gene Y is regulated by X and C through a coefficient vector β = (a, b). Thus,
any change in the values of (a, b) implies an interaction shift.
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3 Detecting differential interactions via heterogeneity tests

We introduce the SC method and compare it with the more intuitive NC method. The
NC method identifies interaction shifts in biological networks by numerically compar-
ing with a threshold the distance between estimated coefficient vectors of individually
reconstructed models based on several comparative data sets. On the other hand, the SC
approach tests the interaction shifts by analyzing the goodness-of-fit of individual models
(together called a heterogenous model) and a pooled model (a homogenous model) which
is assumed to produce all data sets. A p-value as the significance will be reported by SC
method finally.

How two methods work will be introduced by using the ODEs described in Eq. (1). Let
matrix X = (x[0]-, x[1]-, ..., x[T − 1]-) be one observation set from T discrete time
points. The concentration change rate, y[t], of an interested variable i at discrete time t,

y[t] =
dxi[t]

dt
(2)

will be obtained from observations by using a smoothing spline technique in this paper.
Let a vector Y = (y[0], y[1], ..., y[T − 1])- represent one derivative set of the interested
element at T time points. Assume two sets of the concentration observations in a network
under different conditions are obtained, {X(1), Y(1)} and {X(2), Y(2)}, respectively. The
comparative methods can be utilized to check if these two sets come from two differential
interactions while all observations contain the noise.

3.1 The numerical comparison approach

The NC method will produce a score based on the distance between individual models.

After using the model reconstruction method to obtain β̂
(1)

and β̂
(2)

from two observation
sets, respectively, the score will be calculated by

ScoreR =
/

(β̂
(1) − β̂

(2)
)-(β̂

(1) − β̂
(2)

) (3)

Based on the result of comparing this score with an experienced threshold, a differential
interaction will be identified while the calculated score is larger.

There are several drawbacks of this method. Take Fig. 1 as an example, a large distance
between estimated coefficients is not always associated with a difference between the
true coefficients, as noise can distort the estimated difference. Furthermore, if the scales
within a coefficient vector are not the same, normalization has to be applied as shown in
Eq. (7).
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3.2 The statistical comparison approach

We propose the SC method to identify interaction shifts in dynamic biological networks,
based on a statistical heterogeneity test to compare model coefficients in two multiple
linear regression models. The method detects the interaction shifts by analyzing the
goodness-of-fit of a heterogenous interaction model versus a homogenous interaction
model.

We formulate differential interaction detection as a statistical inference problem and ob-
tain the best estimators first. Considering two sets of observations, {X(1),Y(1)} and

{X(2),Y(2)}, we assume the best model estimators for them are β̂
(1)

and β̂
(2)

respectively,

which together form a heterogenous model (with a complexity of Phe =
=2

j=1 dim(β̂
(j)

)).
Under the null hypothesis that two data sets are from a single homogenous interaction
model (with a complexity of Pho), its best estimator is β̂ho (Pho = dim(β̂ho)) which is
calculated based on the pooled data set.

A test is now presented to test the null hypothesis of non-interaction-shift by comparing
the performance of two models, though their modeling residuals respectively

Rhe =
2?

j=1

(Ŷ
(j) − Y(j))-(Ŷ

(j) − Y(j)), Rho =
2?

j=1

(Ŷ
(j)

ho − Y(j))-(Ŷ
(j)

ho − Y(j)) (4)

where first derivatives Ŷ
(j)

= fi(X
(j), β̂

(j)
) is estimated by the heterogenous model with

the jth data set and model coefficients; one element in Y(j) which is obtained from ob-

servation directly is defined in Eq. (2); Ŷ
(j)

ho = fi(X
(j), β̂ho) is obtained by the ho-

mogenous model. We notice that heterogenous models become a homogenous one when

β̂
(1)

= β̂
(2)

implying that the homogenous model is nested within the heterogenous one
(Pho ≤ Phe). While the model complexities are taken into account, the proportion of the
performance improvement achieved by heterogenous model versus its own performance
can be inspected by using the ratio

F =
(Rho − Rhe)/df1

Rhe/df2
(5)

where df1 = Phe − Pho and df2 = T − Phe. Under the null hypothesis, which is that
both data sets are from a homogenous interaction model, the test statistic F follows an
F -distribution with df1 and df2 degrees of freedom while the data size is asymptotic
[Zar98]. If the test size α is given, using the above F -test, we can determine if two
data sets arise from differential interactions. The F value is considered as the score of
SC method. The significance level (p-value) in the application could be reported after
obtaining the distribution of the test statistic by permutation when the sample size is
small. We also point out that this method already works for comparing two additive
nonlinear ODE models and can be extended to identify interaction shifts under more than
two conditions.
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Figure 2: ROC and power advantage of the SC over the NC method under various noise levels.
Left: ROC curves under four noise levels; Right: Power as a function of noise level. Solid curves
marked by ”N” represent NC, while the dashed ones marked by ”S” represent SC. The noise level
shown is the standard deviation of the noise.

4 Performance evaluation on simulated and real biological networks

To compare the performance of the NC and SC methods, we use the receiver operating
characteristic (ROC) curve. The ROC curve is a graphical plot of the true positive rate
(TPR) vs. the false positive rate (FPR) for a binary classifier as its discrimination
threshold is varied. TPR is the detected fraction of all true differential interactions;
while FPR is the fraction of all true non-differential interactions, that are incorrectly
announced, also known as Type I error. The statistical power which is TPR at FPR =
0.05, is a function of population parameters, including but not limited to noise level,
sample size, and the complexity of the classifier. A classifier whose ROC curve is closer
to the top left corner has better performance, while the one that has an ROC of a diagonal
line from (0,0) to (1,1) is equivalent to random guessing. One can also quantify the area
under an ROC curve - a larger area indicates a better performance.

4.1 Simulation studies on the statistical power

We generated ROC curves for the SC and NC methods via a simulation study. Two types
of ODE pairs were created randomly: the first type contains two identical ODEs repre-
senting conserved interactions; the second type contains two different ODEs represent-
ing differential interactions. Three coefficient vectors of dimension N+1 or complexity
N (number of independent variables) were randomly sampled from uniform distribution
from -5 to 5. The 1st coefficient vector is shared by the pair of identical ODEs; the 2nd and
3rd are used for the pair of different ODEs. We randomly generated 300 ODE pairs for
each type. For each ODE, T observations for each independent variable on the right hand
side of Eq. (1) were sampled from the uniform distribution from -10 to 10; the left hand-
side’s first derivative was calculated directly from the ODE. Trajectories were simulated
from the ODEs using T observations and first derivatives. Additive noise of zero-mean
normal distributions is applied repeatedly to obtain noisy replicates of the trajectories.
The SC and NC methods were applied to each pair of data sets to detect differential in-
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Figure 3: Power advantage of the SC over the NC method under various sample size and interaction
complexity. Left: Statistical Power as a function of the sample size; Right: Statistical Power as a
function of independent variable dimension. The solid curves marked by ”N” represent NC, while
the dashed ones marked by ”S” represent SC.

teractions. Detection results on those pairs of data sets from the identical/different ODE
pair were used to compute the FPR/TPR for plotting the ROC curve.

The performance of NC and SC methods under different noise levels are given in Fig. 2
by setting N = 1, T = 3 and σ = (0.05, 0.4, 1.5, 4). The ROC curves are displayed in
the left pane of Fig. 2. Both methods had good performance when the noise was low,
while when the noise was high neither had any useful result. It is evident that the SC had
consistently better performance under the intermediate noise levels. The statistical power
as a function of noise level, shown in the right pane of Fig. 2, is another way to visualize
the SC advantage of the TPR at FPR = 0.05.

The SC method also achieved a better performance on sample sizes and variable dimen-
sions than the NC method, as illustrated in Fig. 3. We obtained the statistical power
curves of the sample size, shown in the left pane of Fig. 3, by setting σ = 1.5 and N = 1.
The statistical power curves of the independent variable dimension, shown in right pane
of Fig. 3, were obtained by setting σ = 1.5 and T = 7. The statistical power gain of
SC over NC in the two situations is up to 50% and 70%, respectively - an extraordinary
advantage.

4.2 Differential interactions between cdc2 and cyclin in a cell division cycle model

As difference in trajectories under comparative conditions is insufficient to imply mech-
anism shifts in a dynamic biological network, one must examine the interactions at each
node and check if any of them have changed in their coefficients. Thus we examine the
heterogeneity of interactions at each node one by one in the network. We use a dynami-
cal system model (Fig. 4) of cdc2-cyclin interaction in the cell division cycle [Tys91] to
illustrate the performance of the two comparison methods on detecting mechanism shifts
in the network. The cdc2-cyclin dynamical system model consists of six kinetic equa-
tions, shown in Table 1. Following recommendations for coefficient values in [Tys91],
we set k1[aa]/[CT ] = 0.015min−1, k2 = 0, k3[CT ] = 200min−1, k′

4 = 0.018min−1,
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Figure 4: The cdc2-cyclin interaction
dynamic network involved in the cell
division cycle [Tys91]. The variable
names used in the dynamical system
model (Table 1) are marked next to the
proteins or protein complexes they rep-
resent. The network shifts in the inter-
action change marked by #4.

d[C2]/dt = k6[M ] − k8[∼ P ][C2] + k9[CP ]
d[CP ]/dt = −k3[CP ][Y ] + k8[∼ P ][C2] − k9[CP ]
d[pM ]/dt = k3[CP ][Y ] − k′

4[pM ] − k4[pM ]([M ]/[CT ])2

d[M ]/dt = k′
4[pM ] + k4[pM ]([M ]/[CT ])2 − k5[∼ P ][M ]

−k6[M ]
d[Y ]/dt = k1[aa] − k2[Y ] − k3[CP ][Y ]
d[Y P ]/dt = k6[M ] − k7[Y P ]

Table 1: ODEs governing the cdc2-cyclin interaction in
the cell division cycle [Tys91]: t, time; ki, rate constant;
aa, amino acids. The concentrations [aa] and [∼ P ] are
assumed to be constant. Variable [C2] is for cdc2, [CP ]
for cdc2-P, [pM ] for preMPF=P-cyclin-cdc2-P, [M ] for
active MPF (P-cyclin-cdc2), [Y ] for cyclin and [Y P ]
for cyclin-P, and [CT ] for total cdc2.

k5[∼ P ] = 0, k6 = 1min−1, k7 = 0.6min−1, k8[∼ P ] = 1000000min−1 and
k9 = 1000min−1, where [CT ] was assumed to be a constant of 1. In this study, we
perturb the coefficient k4, a rate constant associated with the autocatalytic activation of
MPF by dephosphorylation of the cdc2 subunit [Tys91], marked as reaction 4 in Fig. 4.
After cell division becomes growth controlled, k4 > 150min−1, MPF enters the oscilla-
tion domain in which it alternates between active and inactive forms with a period of 35
min, roughly the cell cycle length in early frog embryos [Tys91]. While k4 < 100min−1,
MPF, being maintained in inactive forms, goes into the excitable domain (as in the resting
phase of non-proliferating somatic cells). As cells grow, k4 increases (activator accumu-
lates) and drives the regulatory system into the oscillation domain. The subsequent burst
of MPF activity triggers mitosis, causes k4 to decrease (activator degrades), and brings
the regulatory system back into the excitable domain (steady-state behavior). We use the
comparison methods to detect changed interactions due to k4, which implicates two dif-
ferential interactions for preMPF and active MPF. The remaining interactions for other
four proteins are conserved.

As the observed trajectories for the 6 involved proteins are distinctive in the two domains
of the cell division cycle, differential gene expression analysis would report statistically
significant changes in all proteins. We applied the NC and SC methods to detect differ-
ential interactions for [pM ] and [M ] as well as conserved interactions of other proteins.
k4 was set to be 180 min−1 in the oscillation domain, while in the excitable domain, k4

was randomly chosen from a uniform distribution from 70 to 80. After 20 observations of
40-min long trajectories were obtained for each domain, noises were added three times to
generate replicates. A smoothing spline technique was utilized to obtain the first deriva-
tives for each variable from the noisy observations. Assuming that the forms of kinetic
equations were known but not the coefficients, both methods were applied to detect differ-
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Figure 5: The advantage in ROC curves and statistical power of the SC (marked by ”S”) versus
the NC methods (marked by ”N”) to detect differential interactions in the cdc2-cyclin cell division
cycle model. Left: The ROC curves under different noise levels. Right: The statistical power of
both methods as a function of the noise level.

ential interactions of each protein in the network with varying thresholds under four noise
levels. Then we compared the detection results with the two true differential interactions
at [pM ] and [M ] (true positives) and four true conserved interactions at [C2], [CP ], [Y ]
and [Y P ] (true negatives) to compute the overall TPR and FPR at each noise level.

The noise level in this study is represented by signal-to-noise ratio (SNR), defined as ten
times log10 of the sum of squares of the signal divided by the sum of squares of the noise.
When the data sets contain replicates, the SNR can be estimated by

SNR = 10 log10(
=K

i=1 Ōi·=K
i=1(

=Mi

j=1(Oij − Ōi·)/Mi)
)2 (6)

where Oij means the j-th replicate of i-th observation, among a total of K observations,
the i-th observation contains Mi replicates, and Ōi· = 1

Mi

=Mi

j=1 Oij .

As the scales of coefficients were different, we modified the NC score from Eq. (3) to

ScoreR = max
i=1,...,N

(|β̂(1)
i − β̂

(2)
i |/(2 max(β̂(1)

i , β̂
(2)
i ))) (7)

where N is the dimension of β̂.

The SC method achieved consistently and significantly better performance than the NC
method on differential interaction detection in networks. From Fig. 5, we can see when
the noise was low (SNR = 45dB), both methods achieved good performance. How-
ever, when the noise strength increased (SNR = 35, 25, 20dB), the performance of NC
method dropped very quickly, while the SC maintained above 80% power at a type I error
of 0.05.

5 Discussion

We have proposed an SC method to identify differential interactions in nonlinear dynamic
biological networks, based on a statistical test to compare multiple linear regression equa-
tions. In addition to be able to announce two networks are different, the method can also
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detect which node in the network has experienced an interaction shift. Our simulation
studies demonstrated that the performance of SC approach is substantially superior to
the NC method under various noise levels, sample sizes, and interaction complexities.
The cdc2-cyclin interaction cell division cycle model was also used to test the proposed
method on real biological networks and our method achieved much improved identifica-
tion accuracy of differential interactions over the NC method. The SC method is much
more sensitive to detect consistent interaction changes while keeping a low Type I error.

Our comparative modeling is capable of generating two lists: one is a list of the genes
whose regulatory relationships from a common concerting theme under the comparative
conditions, such as [C2], [CP ], [Y ] and [Y P ] in the cell cycle model; the other is the list
of genes whose regulatory relationships consistently demonstrated distinctive signatures
under the comparative conditions, such as [pM ] and [M ] in the cell cycle model.

We are working on applying the proposed method on studying differential gene inter-
actions between embryonic and postnatal stages in mouse cerebellar development. We
anticipate our approach widely applicable to many comparative experimental designs in
life science research.
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Abstract: We present a wiki-based interface for multiple-stage mass spectra with
molecular structures and their physicochemical properties. Spectra for 453 metabo-
lites were measured on QqTOF-MSn and their ion peaks were annotated with consid-
eration of fragmentation patterns, especially bond cleavages. The resulting informa-
tion was classified on wiki pages, where related molecular formulas and their rela-
tionships were likewise accumulated. Each page is rendered with search operation(s)
using formulas as keys, and related information is automatically updated as database
contents increase. Our data management model allows internet beginners to collab-
oratively input and organize information in a multi-user environment. The system,
with links to our MassBank database (http://massbank.jp/), is available at
http://metabolomics.jp/wiki/Index:MassBank.

1 Introduction

Metabolomics has become a standard technology in analyzing natural products [VBNS+07],
and metabolite identification from mass spectra (MS) is a much investigated research topic.
Identification from electrospray-ionization (ESI) spectra has been hampered by practical
problems, however, because metabolites share similar molecular structures and physico-
chemical properties. First, there is no comprehensive database for ESI-MS. Fragmentation
pattern of ESI has been considered machine-type dependent, and few research groups have
attempted to accumulate and provide freely downloadable spectral information [Nat08,
SRL+08, WKG+09]. Second, fragmentation rules have not been well understood com-
pared to what has been accomplished in electron-ionization (EI) MS [McL59]. To over-
come these difficulties, we have designed and implemented a distributed database called
MassBank (http://massbank.jp/) for ESI spectra. Over 10 institutions joined our
consortium and share spectra as well as data management systems. In this short article,
we introduce a recent activity on our wiki-based interface to MassBank. Hereafter, MS
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stands for a deconvoluted set of ion peaks p whose m/z (mass to charge ratio) and scaled
intensity (from 0 to 1000) can be accessed by functions mass(p) and intensity(p), respec-
tively. We use these functions rather informally for elements other than ion peaks when
the context is unambiguous. We also use the word ‘mass’ to refer to m/z hereafter.

2 Data Acquisition

2.1 Statistics of Mass Spectral Data

As of June 2009, twelve laboratories contribute their mass spectra to MassBank (see
http://massbank.jp/en/published.html). The total number of ESI spectra
is > 10, 000 for over 1, 500 molecules with overlap. All records are accessible for free,
and software programs are also available under the GNU General Public License. Be-
cause the overview of the database including supported search methods will be presented
elsewhere, we focus on the analysis of precursor-product ion relationships here.

2.2 Peak Annotation

The current study used spectra of 453 metabolite standards measured on QqTOF-MSn

(Applied Biosystems Japan, Tokyo) at Keio University. Peaks were annotated with con-
sideration of fragmentation patterns, especially bond cleavage. Let us assume that, for a
standard compound M , a set of spectral peaks

{PM |∀p ∈ PM intensity(p) > 5}

is obtained. Our annotation process consisted of the following steps.

1. For each ion peak p ∈ PM , find a molecular formula fp that is a subset of molecular
composition of M and whose mass is within 50 ppm from the mass(p). If not,
remove p from PM .

2. For each remaining p ∈ PM , assign a connected molecular substructure mp of M
that corresponds to fp. If such a structure is not found, then remove p from PM .

3. For each remaining p ∈ PM , find all peaks q ∈ PM such that its structure mq can
be obtained by a single fragmentation step (i.e. cleaving up to 2 bonds) from mp.
Output all pairs (p, q). This step tries to list precursor-product pairs only, not an
arbitrary pair of fragments.

Assignments were manually checked using two commercial software programs: Mass
Frontier (Thermo Fisher Scientific Inc., Waltham MA, USA) and ACD/MS Fragmenter
(Fujitsu Inc., Kawasaki, Japan). Through this process, 1,483 different molecular formulas
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Figure 1: Statistics of Precursor-Product Ions

were identified, among which 5,557 precursor-product ion pairs were assigned. Note that
the vast majority of peaks were left unannotated: we could annotate only 3,925 out of
130,246 peaks (3%, 9 peaks per spectra on average). Among the assigned molecular
formulas, as much as 985 appeared only once. Most frequently appearing ions (and their
frequency in parentheses) were C6H5 (100), C5H5 (80), C3H6N (71), and C4H3 (70),
respectively. Not surprisingly, many ions were unsaturated fragments of C and H only
and the mass of most frequent molecular formulas were under 200. Details of annotation
results will be presented elsewhere (Ojima et al. in preparation).

3 Results and Discussion

3.1 Statistics of ESI Fragmentation

The notable character of annotated ions is the absence of clear correlation between fre-
quency and mass (Figure 1). Usually MS contain more peaks of smaller mass, and such
peaks are not informative for metabolite identification. However, except for some highly
frequent masses (lower right dots in Figure 1), annotated ions showed low frequency and
were distributed almost evenly up to mass 600. This indicates that annotated ions of
smaller mass are equally as informative in structure prediction as those of larger mass.
It must be noted that our annotation process is easier than the identification of metabo-
lites [RSGB09]. Since we know the molecular structure in advance, we only need to
traverse its possible, connected substructures (we did not consider a coupling of isolated
fragments) in steps in Section 2.2. Although the enumeration problem of such substruc-
tures is NP-hard [HRM+08], it is feasible for small metabolites under our strict condition.
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3.2 Similarity Measure using Fragment Ions

The main purpose of annotation is to use it for metabolite identification from spectra
in a future. For a fragment ion p to be used for identification, its frequency freq(p)
should not be high. To identify informative ions, Shannon’s information content H(p) =
− log(freq(p)) was used. Then, the similarity of two molecular structures M1 and M2

was defined as
=

p∈PM1∩PM2
H(p). Note that all ions were equally weighted regardless of

their mass by considering the result of Section 3.1.

3.3 Wiki-based Interface for Spectral Information

The information source of the analyses is essentially molecular formulas of product-pre-
cursor pairs, and all analyses are straightforward. Our novelty is not the analysis contents
but the accessibility of processes and results on MediaWiki pages, i.e. traceability of
research [AS08]. In other words, all operations are performed at the user-level on the
wiki-based system and any user can reproduce, verify, and edit details just like editing a
Wikipedia article.

Fragmentations observed in ESI-MSn are a quite different type of chemical reactions from
those observed in EI-MS; all the ions produced in EI-MS have odd-number electrons (“rad-
ical ions”), whereas those in ESI-MS have even-number electrons. Empirical rules that
have been accumulated for the fragmentations in EI-MS are never applicable to the degra-
dation reactions in ESI-MSn. Only a few empirical rules are known in ESI-MSn [Nak02],
and we need to accumulate more rules on its degradation reactions. To provide a web-
based forum of more chemical discussions among the mass spectral research communities,
we provide a wiki-based platform linked with MassBank. Since the wiki part is used for
annotation and discussion, not for actual spectra, default page contents should be as suc-
cinct as possible. For this reason, our wiki pages contain minimum possible information
for drawing fragmentation scheme.

Let us explain an example at

http://metabolomics.jp/wiki/MassBank:KOX002841.

The page source is the simplest: identified molecular formulas and their precursor-product
relationships only. At the time of page access, the minimum information is processed into
a precursor-product table as its display, and the search for related pages is performed on
demand. This molecule is Glycolate (MassBank ID: KOX00284), and its structural neigh-
bor, Taurocolate (KOX00601), is automatically detected through the similarity of fragment
ions. All results are always up-to-date even if other users add or remove data pages asyn-
chronously. By checking such information, users can add comments and questions on
precursor-product relationships as ordinary texts on wikis. Its advantage is obvious for a

1Currently, related pages are password-protected. To access, please login using the name “MassBank” and
password “GCB2009”.
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collaborative project like our MassBank because page edit is open to all registered con-
tributors.

The difference from conventional approaches such as Semantic Wiki is its simplicity [Ari09,
HBB+09]. Data are plainly organized in a tabular form, and are exempted from site-
specific predicates or manual addition of page links. Users’ task is drastically alleviated
since formatting and linking can be delegated to an embedded Lua programming lan-
guage [Ier06], whose programs are also written inside wiki pages. Its computational power
is restricted by running time and by closed I/O libraries to avoid web vandalism. Using
Lua functionality, pages can be designed to minimize redundancy of data.

4 Conclusion

We implemented spectral annotation of precursor-product relationships on a MediaWiki
based platform. All pages and Lua programs can be managed at the user-level, and this
consequently guarantees traceability of research. Wiki users are also encouraged to leave
references and traces of thinking in the annotation so that fragmentation rules can be
later summarized from input information. A login account can be obtained on request
to massbank@iab.keio.ac.jp.
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EFMEvolver: Computing elementary flux modes in
genome-scale metabolic networks
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Abstract: Elementary flux mode analysis (EFM analysis) is an important method in
the study of biochemical pathways. However, the computation of EFMs is limited to
small and medium size metabolic networks due to a combinatorial explosion in their
number in larger networks. Additionally, the existing tools to compute EFMs require
to enumerate all EFMs before selecting those of interest. The method presented here
extends EFM analysis to genome-scale models. Instead of computing the entire set
of EFMs an optimization problem is used to determine a single EFM. Coupled with a
genetic algorithm (GA) this allows to explore the solution space and determine specific
EFMs of interest. Applied to a network in which the set of EFMs is known our method
was able to find all EFMs in two cases and in another case almost the entire set before
aborted. Furthermore, we determined the parts of three metabolic networks that can
be used to produce particular amino acids and found that these parts correspond to
significant portions of the entire networks.
Availability: Source code and an executable are available upon request.

1 Introduction

In the post-genomic era, the analysis of metabolic networks is essential for molecular
biology. These networks are complex and the subdivision of a network into pathways
makes the analysis more comprehensive. However, the focus only on specific classically
known pathways can conceal the view on the actual metabolic capabilities of an organ-
ism [KdFS09]. Thus, the construction of genome-scale metabolic networks that model the
entire metabolism of organisms has come to importance [FP08].

A method that has been used to comprehensively studying pathways in metabolic networks
is elementary flux mode analysis [SDF99]. Elementary flux modes (EFMs) are a system-
atic definition of the biological concept of a pathway. They correspond to minimal sets of
reactions that can perform at steady state [SDF99]. EFM analysis has already been used to
study biochemical relevant metabolic pathways [CS04, dFSKF09], to study metabolic net-
work properties such as fragility and robustness [SKB+02, BWvK+08], and to optimize
microorganisms with respect to the production of a certain metabolite [TUS08]. However,
EFM analysis has been limited to small and medium scale networks because the number
of EFMs grows exponentially with the size of the network [KS02]. For instance, Yeung et

∗Both authors contributed equally
†Corresponding author (stefan.schu@uni-jena.de)
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al. [YTP07] estimated that the number of extreme pathways [SLP00], a subset of EFMs,
is at the order of 1029 for a genome-scale model of human.

Due to this problem, alternative approaches for the identification of pathways based on
graph theory have been proposed [RAS+05, CCWvH06, BK08]. These methods abstract
from the metabolic network by converting it into a graph and consider only connected
paths. While they operate efficiently in genome-scale metabolic networks, they bear the
problem that a detected pathway does not automatically imply that a net-conversion of the
source metabolite into a specific target metabolite is possible [PB08, dFSKF09].

Here we want to present a method that allows the enumeration of EFMs in genome-scale
metabolic models. Starting from an initial pathway, the space of EFMs is explored using a
genetic algorithm (GA). GAs have already been used in the analysis of metabolic networks
to find combinations of gene knockouts that improve the production of a given metabo-
lite [PRFN05]. We used benchmark models for EFM analysis to validate our new method
and applied it to a study of amino-acid synthesis in genome-scale metabolic models.

2 Methods

The aim of our algorithm is, given a metabolic network and an input medium, to find all
EFMs producing a certain metabolite. The employed strategy is based on the observation
that gene knockouts can force an organism to use pathways alternative to those found
under standard conditions. Thus, we are detecting EFMs by evolving a population in
which each individual corresponds to a set of knockouts. However, instead of considering
the knockouts of genes we here focus on the “knockout” of reactions. By searching for a
specific EFM avoiding reactions that are knocked out and iterating over different sets of
knockouts we are able to determine different EFMs.

2.1 Detecting a single EFM

A metabolic network comprising m metabolites and n reactions is defined by the mxn sto-
ichiometric matrix N. Each metabolite can be defined to be either internal or external.
External metabolites differ to internal metabolites in that their concentration is assumed
to be buffered by the system. Examples for such external metabolites are energy currency
metabolites like ATP, NADH and FADH. Since their concentration is assumed to be con-
stant they are not required to be balanced by an EFM.

To be an EFM, a flux v ∈ Rn through a reaction network has to fulfill the following
conditions: (1) steady-state condition, i.e., all internal metabolites are balanced; (2) irre-
versible reactions have positive fluxes; (3) non-decomposability of the enzyme set, i.e., the
non-zero indices of one EFM cannot be a subset of the non-zero indices of another EFM.
In our approach reversible reactions are decomposed into two irreversible reactions with
opposite directions. Therefore, all fluxes have to be positive.
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Given a set K of reactions to be knocked out and an index µ corresponding to a target reac-
tion which produces a certain metabolite of interest, the optimization problem to compute

an EFM can be formulated as a linear program by minimizing
n?

r=1

vr subject to

Nv = 0 (1)
v ≥ 0 (2)

vµ ≥ 1 (3)
∀i ∈ K : vi = 0 (4)

Using eqs. 1 and 2 we only allow for a strictly positive flux v that obeys the steady-
state condition. Eq. 3 forces the solution to have a positive flux through a given reaction
which can be the outflow of the product of interest, i.e., if a solution exists, v produces
the metabolite of interest. Eq. 4 guarantees that we only find a flux that does not use the
reactions in K that are knocked out. By minimizing the overall flux and solving the linear
program using the simplex algorithm [Sch98] we achieve that v corresponds to an EFM.
This property of v will be shown in the following.

The solution space of the steady-state and the irreversibility condition (eqs. 1 and 2) in the
space of possible fluxes Rn corresponds to a convex polyhedral cone P [GK04]. Since,
we split reversible reactions, the extreme rays or spanning vectors of P correspond to the
EFMs of the system. Furthermore, a knockout of a reaction only leads to the disappearance
of some EFMs [SDF99]. Thus, for every K chosen, the cone is still spanned by EFMs and
eq. 4 does not impact the property of the spanning vectors of P of being EFMs. Further-
more, eq. 3 cuts P with a hyperplane at vµ = 1 (Figure 1C). Since P is unbounded the
edges of the solution space of eqs. 1 - 3 correspond to the intersection points between the
EFMs defined by eqs. 1 as well as 2 and the hyperplane defined by vµ = 1. These points
can each be written as the corresponding EFM multiplied with a scaling-factor. From
linear programming it is known that the simplex algorithm used to solve such problems
always returns a solution that can be found at the edges of the solution space [Sch98].
Thus, using the simplex algorithm and minimizing the objective function subject to eqs. 1
- 4 will always return an EFM.

In principle, the described linear program can find all EFMs by testing every possible set
of knocked out reactions K. However, this is computationally inefficient and thus we will
next outline an algorithm that allows to explore the space of EFMs more efficiently.

2.2 Genetic Algorithm

The aim of the GA is to test different sets of reactions to be knocked out in order to find
all EFMs. Each such set of reactions corresponds to an individual. Each individual is
represented by a binary genome G of length n, i.e., the number of reactions in the system.
Gi = 1 indicates that reaction i can be used by that organism and Gi = 0 that this
reaction is knocked out. From each genome an EFM can be derived by mapping G to the
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Figure 1: Scheme of the computation of EFMs. A Viable individuals. The target reaction µ = r1 is
shaded in gray. In the upper row the genome of each individual is given. The second row indicates
the reactions knocked out in the model and the third row the EFM obtained from the linear program.
Even though the EFM of the third individual is also a valid EFM satisfying eqs. 1 - 4 for the second
individual it is not minimal since the sum of fluxes is higher. The fourth row gives the fitness of each
individual for a population containing the three depicted genomes. B Individual for which no EFM
can be found. C Three-dimensional solution space of eqs. 1 - 3 for 3 reactions (not shown). The
solution space is defined by the intersection of the solution space of eqs. 1 and 2, spanned by the
EFMs e1 to e4, and the half-space defined by eq. 2. Optimal solutions of the linear program can
always be found in the edges of the solution space (black circles).

set of knocked out reactions K and solving the linear program described in the previous
section. Thus, we can obtain an EFM associated to an individual (Figure 1A and 1B).
Solving the linear program described in the last section we can only find a single EFM. In
consequence, by specifying different sets of reactions that should not be used by an EFM,
that is, by knocking them out, we can sample EFMs.

Central for each GA is the definition of a fitness function that returns a numerical value
indicating the quality of an individual. In contrast to other approaches the aim of the GA
described here is not to find an individual that is optimal in some sense, but to detect all
possible EFMs in a metabolic network. Thus, we attribute higher fitness to individuals
whose associated EFMs use reactions which are not frequent in the EFMs of the popula-
tion. Given a population G1, ..., Gs of individuals and the associated EFMs e1, ..., es the
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fitness f(Gk) of a particular individual Gk is defined by

f(Gk) =
n?

i=1

sign(ek
i )

s?
j=1

sign(ej
i )

(5)

with sign(x) returning ’1’ if x is non-zero, i.e., if a reaction is used, and ’0’ otherwise.

Figure 2: Setup of the GA. Individuals from the population are cloned and subsequently mutated or
recombined. Afterward the viability of the individuals is tested by determining an EFM contained in
them that uses the target reaction µ. If no such EFM is found, the individual is discarded. Otherwise
it is reinserted by replacing a randomly chosen individual in the population.

For the GA we use the setup depicted in Figure 2. We assume a constant population size of
s individuals and use two genetic operators: mutation and recombination. Before selecting
individuals from the population it is decided whether a mutation or recombination should
be performed. With probability 1 − prec one individual is mutated and with probability
prec two individuals are recombined. To apply these operators, individuals are cloned from
the population. By cloning we mean that an individual is selected and its genome copied
creating a new individual. Thus, the original individual persists in the population. Given
the individual fitness values f(G1), ..., f(Gs) the probability of individual k to be cloned
is proportional to its fitness:

P (“Individual k is cloned”) =
f(Gk)
s?

i=1

f(Gi)

(6)

During a mutation event, after cloning a single individual, each position in its genome is
mutated with probability pmut. Subsequently, it is tested whether the new individual is
“viable” by determining the EFM associated to it. If such an EFM is found, the individual
is re-inserted into the population by replacing a randomly chosen individual. Furthermore,
the EFM that has been found is compared to all previously found EFMs and is added
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to this set if it has not already been detected. If two individuals are recombined, they
are first cloned and then the genomes are interchanged starting from a random position.
Subsequently it is tested for both if they are viable, and, if this is the case, they are re-
inserted replacing two randomly chosen individuals of the population. Thus, EFMs are
detected as a side product of checking the viability of new individuals.

An important advantage of GAs is that they can be easily parallelized by the use of separate
threads that mutate, recombine, and test individuals. Thus, the multi-processor architecture
of modern desktop PCs is fully exploited.

3 Results

We applied our method to compute EFMs producing lysine, threonine, and arginine in two
metabolic networks of Escherichia coli and one metabolic network of Corynebacterium
glutamicum. Especially for the industrial production of lysine C. glutamicum is of im-
portance [WBE06]. The first network of E. coli has been presented in [BWvK+08]. It
comprises 220 reactions and models amino acid metabolism. This network has the advan-
tage that we can compute EFMs using Metatool [vKS06]. The second network represents
a genome-scale model of E. coli metabolism and comprises 3558 reactions [FHR+07].
The model of C. glutamicum contains 641 reactions and has been presented in [KN09].
In order to avoid side-pathways used for the balancing of co-factors and to provide an in-
put medium we set the metabolites ammonium, AMP, ATP, CO2, coenzyme A, glucose,
NAD+, NADH, NADP+, NADPH, oxygen, protons, and inorganic ions to external status.
As parameters for the computation we used a population size of s = 100 individuals, a
mutation rate of pmut = 0.01 per reaction and a probability of prec = 0.3 for recombina-
tion events. Computations were performed on an Intel R4 CoreTM2 Quad Q9300 machine
with 4096 MB RAM running Linux Kernel 2.6.25 and Java Hotspot VM version 1.6.0.
Clp version 1.0.6 from the COIN-OR project [LH03] has been used to solve the linear
programs. An overview on the results is given in Table 1 and Figure 3.

As a first benchmark we tested to what extend our method can recover EFMs in a system in
which they are already known. The model of [BWvK+08] contains 3436 EFMs producing
lysine, 444 EFMs producing threonine and 27450 EFMs producing arginine. We found all
EFMs producing threonine and lysine after 491 s and 4821 s, respectively. For arginine we
recovered 95.6% of all EFMs after a running time of 7200 s. In comparison, Metatool 5.1
took only 61 s to find all 65840 EFMs. However, a direct run-time comparison even to the
currently fastest algorithm for the enumeration of EFMs presented in [TS08] does not bear
much meaning since these methods in general only return the entire set of EFMs. This is
not practicable in genome-scale networks since the number of EFMs exceeds by far current
limitations in memory and processing power [YTP07]. An interesting behavior of the GA
can be observed from these experiments. First, the time-course shows a kind of saturation
when having found most of the EFMs. Furthermore, we observe phases in which only few
new EFMs are found and sudden jumps in which the number increases rapidly as in the
case of threonine in the model of amino acid metabolism at t = 320 s. While this particular
behavior is also observable in the case of lysine in the model of C. glutamicum, a saturation
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Figure 3: Time-course of the determination of EFMs for the three test-models: E. coli AA,
[BWvK+08]; E. coli, [FHR+07]; C. glutamicum, [KN09]. The X-axis gives the running time in
seconds and the Y-axis the number of EFMs found.

can be observed for the two other amino acids. In conjunction with the limited size of this
model these results indicate that our method has already discovered a significant portion
of all EFMs producing the three amino acids. In contrast, in the genome-scale system of
E. coli we observe an almost linear increase in the number of EFMs without any saturation
indicating that the number of EFMs existing in this model is much larger than the number
already sampled.

Furthermore we tested the time required for the computation of 2000 EFMs in all models.
We found the influence of network size on the running time much smaller than expected.
Thus, it took on average 26.3 s to find 2000 EFMs in the model of C. glutamicum and 43 s
in the genome-scale model of E. coli although both models differ more than five-fold in
the number of reactions. This behaviour might be attributed to the simplex algorithm used
to solve the linear programing problem described in Section 2.1. Since we are iteratively
solving very similar problems and the simplex algorithm can start from a previous solu-
tion after changing some constraints, new solutions can be found very fast without need
to consider the entire problem, but only a specific sub-part for which constraints were
changed.

Another interesting aspect of the detected EFMs arises from the part of the network that
can be used for the production of particular amino acids. For this analysis we combined
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Model # Rea. AA # EFMs # Min. CS 2000 EFMs
E. coli 220 Lysine 3436 16 94 95 s

AA metabolism Threonine∗ 444 11 67 839 s
[BWvK+08] Arginine 26276 18 95 8 s

E. coli 3558 Lysine 118598 29 1826 49 s
Genome-scale Threonine 126491 26 2084 38 s

[FHR+07] Arginine 127988 37 1895 42 s
C. glutamicum 641 Lysine 43115 23 240 28 s
Genome-scale Threonine 131346 24 245 22 s

[KN09] Arginine 65236 35 246 29 s

Table 1: Overview on computed EFMs. For each of the three test-models (number of reactions in
the second column) the GA has been used to determine EFMs for the production of lysine, threonine
and arginine (third column). The fourth column gives the number of EFMs detected after a running
time of 7200 s. The fifth and sixth column indicate the minimal length of a detected EFM for the
production of the given amino acid and the total number of different reactions used by all EFMs.
The last column indicates the time required for the computation of 2000 EFMs averaged over 10
runs. In the case marked with ∗, the system only contained 444 EFMs.

all the computed EFMs for each test-case and determined the number of reactions used
(Table 1). Furthermore, we determined the minimal number of reactions used by an EFM
for the production of a given amino acid (Table 1). Combining all EFMs, the part of
the metabolic network that can be used for the production of each amino acid varies in
between 31% to 59% of the total network size. In consequence, there seems to be a
great versatility in potential pathways. However, this versatility can be mostly attributed
to the side-products of amino acid biosynthesis. For instance, in the production of ly-
sine succinyl-CoA is converted to succinate. There are two ways of balancing succinyl-
CoA and succinate. Either succinyl-CoA is additionally produced from the input medium
and succinate is disposed through some other pathway, or succinate is reconverted into
succinyl-CoA. Hence, we see a combinatorial explosion since the basic route producing
lysine can be combined, on the one hand, with every pathway producing succinyl-CoA and
consuming succinate. On the other hand this route can be combined with every possible
pathway converting succinate into succinyl-CoA. This is also apparent from an analysis of
the 64699 EFMs producing amino acids in the model of [BWvK+08]. Here we found that
35% of the EFMs do not only produce a single, but several amino acids. These additional
amino acids can serve as sinks for side-metabolites.

4 Discussion

In this work we have outlined a new approach based on a genetic algorithm (GA) that
allows to determine EFMs using a specific reaction in genome-scale metabolic networks.
Previous methods that are based on searching paths in a graph representation of a metabolic
network only guarantee to find connected routes while EFMs correspond to routes of actual
metabolic conversions [dFSKF09]. Computing EFMs in a network in which they also
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can be enumerated using deterministic algorithms we demonstrated that even large sets
of EFMs can be recovered almost entirely. Comparing the time-course of the number of
EFMs enumerated between a small and two large networks we concluded that we had
already found a significant portion of all EFMs in a genome-scale model of C. glutamicum
but only a small portion in a much larger model of E. coli. Analyzing the parts of the
metabolic network which can be used by EFMs we found that they corresponded to 31%
to 59% of the entire network even though individual pathways are usually much shorter.
We attributed this result to the large variability of pathways that can be used to balance
side-metabolites of amino acid biosynthetic pathways.

There exist several alternative approaches that allow a similar analysis of pathways in
genome-scale networks. They either decompose a large network into smaller subnetworks
or consider the entire network. The former approaches bear the problem that they only
consider a small network on the local scale and thus they can contain artificial pathways
that do not appear on the scale of the entire system [KdFS09]. Among the latter approaches
especially constrained based methods are of importance. Methods from this field that al-
low to perform a similar analysis are flux balance analysis (FBA, [VP94]), flux variability
analysis (FVA, [MS03]), and stochastic sampling of the solution space of eqs. 1 - 3 with
additional upper bounds on reaction fluxes [WFGP04]. However, FBA only returns a spe-
cific pathway optimizing a certain objective function [VP94] and flux variability analysis
only determines the set of reactions that can take part in alternative optimal pathways,
without allowing to identify these pathways [MS03]. Stochastic sampling in contrast is
very similar to our approach, but returns solutions that lie within the solution space of
eqs. 1 - 3. Thus, rather than EFMs fluxes that correspond to combinations of EFMs are
returned.

Our method represents an important step towards the analysis of EFMs, and thus of path-
ways, in genome-scale metabolic networks. While we used a fitness function that selects
for diversity one can think of other functions that can be used. Thus, it is of interest to
analyze suboptimal EFMs for the production of some metabolite which are in a specific
range of yield per mole of an input metabolite or fulfill additional criteria like the pro-
duction of a certain side-metabolite. Furthermore, since EFMs correspond to the concept
of minimal transition invariants (MTIs) in petri-nets [SPM+00, KH08], our approach can
also be useful to find MTIs in large petri-nets.
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Abstract: The calibration of complex models of biological systems requires numer-
ical simulation and optimization procedures to infer undetermined parameters and fit
measured data. The optimization step typically employs heuristic global optimization
algorithms, but due to measurement noise and the many degrees of freedom, it is not
guaranteed that the identified single optimum is also the most meaningful parame-
ter set. Multimodal optimization allows for identifying multiple optima in parallel.
We consider high-dimensional benchmark functions and a realistic metabolic network
model from systems biology to compare evolutionary and swarm-based multimodal
methods. We show that an extended swarm based niching algorithm is able to find
a considerable set of solutions in parallel, which have significantly more explanatory
power. As an outline of the information gain, the variations in the set of high-quality
solutions are contrasted to a state-of-the-art global sensitivity analysis.

1 Introduction

The parameter estimation for mathematical models of biological systems is a demanding
task. For complex systems of differential equations, for example, usually there is hardly
any previous knowledge on the required model type and its parameterization. Often, nu-
merical simulation and heuristic optimization of the measurement fit is the only way of
infering a parameter set that reproduces the measured data and thus the only way of judg-
ing the model’s ability to represent the measurements. [Ban08]

This approach brings with it certain ambiguities due to measurement noise and system
complexity, which not only means that the target function is non-convex (multimodal)
but also entails the existence of distinct parameter sets fitting the data with a very similar
quality. This renders the assumption that global optimization methods find the vicinity of
the global optimum very quickly [BCPB+08, RFEB06] rather challengeable. Moreover,
the local optima may be so similar that they can hardly be discriminated with respect to
biological significance—a fact usually ignored in parameter estimation, where mostly ar-
tificial data and low-scale noise are used. One way of delivering more evidence on model
properties and biological importance lies in model sensitivity [STCR04]. On the one hand,
it is usually observed that biological systems are relatively robust towards small changes,
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e.g., in concentration of substances involved in a biochemical reaction system. On the
other hand, there may be single parameter changes that disturb the system significantly
more than others, and if a mathematical model was able to predict these sensitivities, it
would increase its biological relevance. This motivates the idea to not only search for one
optimum but for a set of different high-quality solutions, to compare them and test for
common dependencies and sensitivities. This can be achieved by multimodal optimization
(MMO) methods [SD06], which, however, are often developed on simple benchmarks. We
thus perform preliminary tests on difficult benchmarks before tackling the computationally
much more expensive application. The target system, a metabolic network of the industri-
ally important Corynebacterium glutamicum, has been modeled using Generalized Mass
Action Kinetics (GMAK) and examined by unimodal optimization [DKZ+09]. In the
work at hand, MMO is applied to find sets of high-quality local optima of the biochemical
model. We contrast the parameter distribution of identified optima with a global sensitivity
analysis to show how, thereby, possibly new biological implications can be drawn.

2 Heuristic Multimodal Optimization

Researchers often face nonlinear, non-convex problems the derivative of which is infea-
sible to compute. In these cases, modern stochastic metaheuristic optimization methods
are an apt choice, because they have a higher chance to locate the global optimum com-
pared to classical local search methods [Ban08]. This is mostly because, instead of only
looking at a single possible solution at a time, a whole set (“population”) is processed,
which converges on the global optimum with higher probability. Two particularly success-
ful optimization techniques are biologically inspired. In Evolutionary Algorithms (EAs),
candidate solutions in Rn are assigned a quality measure, and better ones are selected, re-
combined and mutated hoping to produce better individuals from good ones. In Particle
Swarm Optimization (PSO), a candidate solution x ∈ Rn (“particle”) is assigned a “ve-
locity” vector. x is accelerated towards (i) the best position the particle itself has come
across so far (ph) and (ii) the best position in a particle neighborhood (pn). Formally:
vi(t +1) = ωvi(t)+φ1r1(pn

i −xi)+φ2r2(ph
i −xi) for all vector components i, where ω and

φ1/2 are control parameters, while r1/2 ∼ U(0,1) provide for randomization. A compre-
hensive introduction to EAs and PSO is given in [Eng02].

For multimodal optimization specifically, the population diversity is boosted to allow mul-
tiple optima to be occupied in parallel. Early methods such as sharing, crowding or clear-
ing [SD06, Mah95] accomplish this by punishing similarity within the EA population.
Recent approaches emphasize niching by explicitely forming sub-populations, e.g., us-
ing clustering in EA [SSUZ03] or sub-swarm-formation in PSO [BEvdB03]. The sub-
populations are to cumulate around local optima in a self-organizing way, while a diverse
main-population may keep exploring the search space. Current works often report swarm
methods to be superior to other methods [BEvdB03, ÖY07], which fail especially in higher
dimensions [SD06] and in lower dimensions may be outperformed by simple multi-start
Hill-Climbing (HC) [SSUZ03]. As swarm-based methods showed to be more promising
on the target model than traditional methods [DKZ+09], such as HC or Genetic Algo-
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Name Function Domain Parameters

fM6(gx) = 1− sin(30x3
1)sin(25 x2

2x1) [0,1]2

fM10(gx) = 1− 1
n

n

∑
i=1

[1− sin6(5πxi)] [0,1]n

fSR(gx) =
n

∑
i=1

(z2
i −10cos(2πzi)+10) [−5,5]n gz =gx−go for shifted optimum go

fM13(gx) = cn−
n

∑
i=1

xisin
,|xi| [−512.03,511.97]n c = 418.9829

Table 1: Preliminary benchmark functions.

rithms (GA), we concentrate on swarm-based niching in comparison to clustering EAs.

Typically, an MM approach introduces new parameters to the optimization procedure.
The Clustering-Based Niching EA (CBNEA, [SSUZ03]) performs density-based cluster-
ing with a strategy parameter σ on the population. Since the selection drives the population
towards areas of better fitness, it is expected that clusters form around local optima. Each
cluster is decoupled from the main population and evolved with an Evolution Strategy (ES)
or a GA to identify a local optimum. We employ CBNES with σ = 0.1 and a (µ,λ)-ES with
µ
λ = 3

10 , simple uniform step-size mutation (pm = 1) and one-point-crossover (pc = 0.5).
The real-valued CBNGA only differs in the selection method, which is tournament selec-
tion on groups of four instead of elitistic ES-selection, so its selective pressure is lower.

The NichePSO algorithm [EvL07] forms niches by looking for particles having a fitness
standard deviation σ below a threshold δ for k iterations. Any such particle forms a sub-
swarm with its closest neighbor, and they are again decoupled from the main swarm. To
allow for distributed sub-swarm formation, the neighborhood attraction is deactivated in
the main swarm (φ1 = 1.2, φ2 = 0), whereas sub-swarm particles are fully connected.
The inertness factor ω is linearly decreased, and sub-swarms are merged if they overlap.
In [ÖY07], a maximum merge distance is introduced to avoid too large sub-swarms, a
problem of the original NichePSO. ANPSO is a further extension which adaptively sets the
allowed sub-swarm radius to the average of each particle’s distance to its closest neighbor
[BL06]. ANPSO also reintroduces neighborhood attraction for the main swarm (φ2 = 0.6)
to enforce global search.

We extend the niching PSO variants by a deactivation strategy [SSUZ03]: when a sub-
swarm converges, its best position is stored and the particles are reinitialized. Similar to
sub-swarm creation, we deactivate a sub-swarm if all its particles have a fitness standard
deviation below a threshold εdeact for k iterations. We set εdeact = δ (δ = 10−4 in NichePSO
[EvL07]). Deactivation enhances exploration and allows the algorithm to identify more
optima than the initial swarm size.

Conclusively, we test the following algorithms with a population size of 200: NichePSO
with standard parameters, enhanced NichePSO (NPSO*, [EvL07]), ANPSO with stan-
dard parameters [BL06], and an ANPSO variant which employs the SPSO-strategy for the
main-swarm using the adaptive swarm-size parameter defined by ANPSO (ANPSO*). The
ANPSO* strategy parameters are set to φ1 = 1.2, φ2 = 1.2, and ω = 0.73.
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Figure 1: Number of optima identified and their average fitness for fM6 (left) and fM10 (right).

3 Preliminary Evaluation

We selected 5 diverse, multimodal functions to delineate some characteristics of the MM
methods, listed in Tab. 1. fM6 is 2-dimensional and has 33 local optima which are un-
evenly spaced, whereas fM10 has 5n optima of equal fitness distributed evenly;we set n = 5.
fSR (shifted Rastrigin’s) has numerous local optima in a global basin of attraction. fM13
(Schwefel’s sine root) has numerous local optima and no global basin of attraction. For the
latter two we test n ∈ {10,30}. All functions are treated as minimization problems with
the solution at f (gx∗) = 0. To measure optimization performance, we look at the number
of known optima found with several accuracy thresholds θi and the average fitness of the
optima. Specifically, we compare θ ∈ {0.05,0.01, 0.005,0.001,0.0001} and expect that
fewer optima are found with decreasing θ corresponding to increasing accuracy.

For fSR and fM13 we did not presume knowledge of local optima. The performance cri-
teria for fSR/ fM13 are based on post processing: the suggested solutions are clustered and
the best representative of each cluster Ci is interpreted as candidate solution ci. Each ci
is refined using a Nelder-Mead-Simplex (NMS) local search started in the close neighbor-
hood of ci. In case the NMS converges without moving away by more than θ from ci,
the candidate is classified as being locally optimal. The number of solutions found in this
way gives a relative measure on how well algorithms converge on a specific benchmark.
Additionally, we look at the average fitness of the suggested solutions without regarding
convergence state, because for difficult functions, often no close convergence is reached.

Benchmark Results: For each MMO method under consideration, we averaged the re-
sults of 25 runs à 5,000 ·n evaluations. Figures 1-2 show the number of optima found (left
axis, more is better) and their average fitness (right axis, less is better), for each method
and the five different thresholds. As can be seen in Fig. 1, NichePSO tends to find more
optima than the CBN and ANPSO methods, but with worse fitness values. For fSR the
quality delivered by NichePSO is hardly acceptable.

CBN and ANPSO usually reach better fitness and higher accuracy than NichePSO, which
invests equally in both good and bad optima. This, too, can be attributed to the absence of
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Figure 2: fSR (top) and fM13 (bottom) in 10-D (left) and 30-D (right).

a main swarm for global search in NichePSO. To rate the statistical significance, we per-
formed Student’s t-tests on all pairs of algorithms testing the null hypotheses that, for each
benchmark and threshold, they (i) find the same number of optima and (ii) reach the same
fitness quality. For a condensed comparison, we scored +1(−1) for the superior (inferior)
algorithm whenever that hypothesis could be significantly rejected at a 5% level. Table 2
shows the summed-up scores for the number of optima (left) and the fitness quality (right).
A positive number k in line Ai and column A j means that algorithm Ai was significantly
better than algorithm A j in k more cases than the other way around. The tests support the
conclusions that the CBN variants find slightly fewer optima than NPSO with better fitness
values. Also, ANPSO* finds more optima than ANPSO, whereas both find significantly
fewer optima than the other algorithms with better fitness values.

For the more difficult benchmarks fSR and fM13, some algorithms do not find any optimum
with certain accuracies θi, which can be seen from missing fitness bars, e.g., for ANPSO
on fSR-30-D and θ∈{0.005,0.001,0.0001}. Yet this is not equal to bad performance when
looking beyond the convergence state. For Tab. 3, the resulting populations were clustered,
a cluster’s best particle interpreted as local solution, and their average number, mean and
minimum fitness values are displayed. Since on fSR/M13, CBNES was outperformed by
CBNGA, and NPSO* performed very similar to NPSO, those are omitted.

The comparison indicates that, although ANPSO does not converge closely on the local
optima resulting in fewer identified optima in Fig. 2, it produces good fitness values across
the sub-swarms. As can be expected, NichePSO is competitive on fM13, but not on fSR,
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CG CE NP NP* AP AP* CG CE NP NP* AP AP*

CBNGA 0 -7 -7 -4 21 15 0 15 12 14 -11 -4
CBNES 7 0 -1 -1 26 17 -15 0 13 11 -14 -7
NPSO 7 1 0 0 18 16 -12 -13 0 -1 -17 -9
NPSO* 4 1 0 0 19 20 -14 -11 1 0 -17 -10
ANPSO -21 -26 -18 -19 0 -2 11 14 17 17 0 10
ANPSO* -15 -17 -16 -20 2 0 4 7 9 10 -10 0

Table 2: Significance scores regarding No. optima found (left) and fitness (right).

Avg. #Opt Avg. Mean Fit. Avg. Min. Fit.
Algorithm 10D 30D 10D 30D 10D 30D

fSR HC-100 100.00 100.0 80.25 351.4 42.52 207.8
CBNGA 185.60 255.7 39.60 219.2 6.12 50.2
NPSO 100.60 101.4 100.70 380.7 23.90 187.2
ANPSO 17.76 123.1 92.17 221.6 12.33 57.8
ANPSO* 15.72 17.0 48.38 269.1 11.69 100.2

fM13 HC-100 100.00 100.0 2082.9 7838.0 1175.7 4110.6
CBNGA 102.36 120.4 1407.2 5926.4 569.2 3785.1
NPSO 100.00 100.2 1614.1 4966.6 660.0 3231.8
ANPSO 76.08 170.3 1265.4 5935.7 612.7 3081.3
ANPSO* 40.80 51.1 1067.1 5285.4 417.0 2693.4

Table 3: Clustered results on fSR and fM13 in 10 / 30 dimensions.

whose global basin of attraction suits the global search components of CBN and ANPSO.

4 The Metabolic Network

Figure 3 shows the reaction pathway of the valine (Val) and leucine (Leu) biosynthesis in
C. glutamicum according to [DKZ+09]. The metabolic pathway starts with the formation
of 2-ketoisovalerate (KIV) from pyruvate (Pyr) in three reaction steps [CFF+08]. At the
KIV node the pathway branches: Two parallel reactions produce Val and one forms 2-iso-
propylmalate (2-IPM), the starting substance for the Leu production. Both Val and Leu
can be used for biomass production or secreted into the culture medium—the industrially
interesting outcome. Val and Leu inhibit their production rates in four feedback loops.
The competition of both products for the secretory protein is modeled by inhibition: Val
inhibits the secretion of Leu and vice versa. Additionally, Val inhibits reactions R1−3
while Leu inhibits R7 (Tab. 4). The fast reaction 2-IPM −−ab−− 3-IPM is assumed to process
in equilibrium and combined with 3-IPM+NAD+ −−→ 2-I3OS+NADH2 and (2S)-2-iso-
propyl-3-oxosuccinate (2-I3OS) −−→ 2-ketoisocaproate (KIC) +CO2, which only depend
on the concentration of 2-IPM, introducing the symbol IPM for both derivates.
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Reaction Parameters Reaction Parameters
(fw/bw/ihb) (fw/bw/ihb)

R1 2 Pyr −−ab−− AcLac+CO2 p0, p10, p18 R2 AcLac+NADPH2 −−ab−− DHIV+NADP+ p1, p11, p19

R3 DHIV −−ab−− KIV+H2O p2, p12, p20 R4 KIV+Gln −−ab−− Val+αKG p3, p13, −
R5 KIV+Ala −−ab−− Val+Pyr p4, p14, − R6 Val −−→ Valext p5, − , p21

R7 KIV+AcCoA −−ab−− IPM+CoA p6, p15, p22 R8 IPM+NAD+ −−ab−− KIC+NADH2 +CO2 p7, p16, −
R9 KIC+Gln −−ab−− Leu+αKG p8, p17, − R10 Leu −−→ Leuext p9, − , p23

Table 4: The reaction system. All except R6 and R10 are modeled reversibly [DKZ+09]. We refer
to Dihydroxy-isovalerate as DHIV, Acetyl-CoA as AcCoa, Acetolactate as AcLac, α-Ketoglutaric
Acid as αKG; cf. Sec. 4.
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Figure 3: Val/Leu synthesis model [DKZ+09].

Algo- Avg. Best
rithm #Opt #Opt fit.
MSHC 0 0.0 36.13
CBNGA 2 0.4 22.88
NPSO* 3 0.6 22.68
ANPSO* 110 22.0 21.05

Figure 4: No. of interesting optima
found (GMAKr model).

In an experiment by Magnus et al., a glucose shock was caused after a starvation period to
a C. glutamicum culture [MHOT06]. Over a time span of 25s, 47 samples were taken for
13 metabolites on the pathway, which serve as target system output in the optimization.
While Magnus et al. used LinLog kinetics, we model the system based on a reversible
Generalized Mass Action Kinetics formulation (GMAKr) [DKZ+09]. Table 4 outlines
the component reactions, of which all but R6 and R10—the secretion out of the cell—
are considered to be reversible. Conclusively, there are 24 velocity (forward/backward)
and inhibition factors to be optimized with respect to how well the measured data can be
reproduced by the GMAK model. Due to the strong backwards coupling in the network
and necessary numerical integration, the model is computationally expensive and highly
nonlinear. Moreover, a noticeable ratio of possible parameters are unstable, which is why
they are initialized around velocity values typically observed.

Results on the Metabolic Network: The benchmark evaluation in Sec. 3 shows that
ANPSO tends to find fewer optima of higher quality compared to NPSO and CBN meth-
ods, especially for the complex 30-D fM13 function (Tab. 3). We therefore assume ANPSO
to locate multiple high-quality solutions for C. glutamicum’s Val/Leu synthesis network.

We allow a number of 500 individuals for 500,000 evaluations per run with 5 runs per
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algorithm. Global optimization reaches fitness values near 20−23, so we define a fitness
threshold of Θ = 25 below which solutions are said to be interesting. Tab. 4 lists the
number of such solutions found in 5 runs for the multi-start hill-climber (MSHC), CBNGA
and the swarm-based variants. All population-based approaches clearly outperform the
hill-climber, yet only ANPSO* identifies a noticeable number of distinct optima per run.
The relatively bad performance of CBNGA compared to the benchmarks is consistent with
earlier results on the considered system [DKZ+09]. The performance difference between
NichePSO and ANPSO suggests that the local solutions of the target function lie within
larger areas of relatively good fitness values which can be exploited by ANPSO.

It should be noted that earlier studies reached better single fitness values using global opti-
mization, e.g., RSE 20.334 [DKZ+09]. However, due to the measurement noise, the single
optimal parameter set for a deterministic model will hardly be the most biologically plau-
sible one—it might even be a “phantom optimum” resulting from numerical inaccuracies.
A large set of high-quality solutions contains more information and is a basis for anal-
yses of properties hard to handle during optimization. For example, biological systems
are known to be stable: they operate within steady-states to which they return after small
perturbations [HS96, pp. 40–52]. Thermodynamic validity as well as global or local sen-
sitivity indices can also be regarded for the fitted parameter sets. An exemplary analysis
follows in the next section. Compared to [DKZ+09], we demonstrate that a multimodal
optimization approach delivers a set of high-quality solutions at a remarkably lower com-
putational cost, since multiple high-quality solutions can be identified within single runs,
while global optimizers are designed to converge on a single solution.

Parameter Distribution: Fig. 5 (a) shows the variations within a set of 21 interesting
solutions found in one ANPSO* run. They are contrasted with an Extended Fourier Am-
plitude Sensitivity Test (EFAST) on the target function (Fig. 5 (b)). Several correlations
are obvious: some parameters of low sensitivity, such as p5 and p11, vary over several
orders of magnitude in the set of optimized solutions, while others with a very high total
effect such as p3, p8, and p13 receive very similar values. The sensitivity analysis implies
that of parameters p3 and p4, which correspond to the parallel reactions R4 and R5, p3
shows much higher sensitivity. The variations in the high-quality solutions are very small
for p3 and larger for p4, leading to the conclusion that R4 is dominant among the two.

More interesting observations come up from variations in the optimized set that seem
unexpected from the global sensitivities: While p1 and p15 have a very similar total effect,
p1 has a considerably larger variance in the optimized set. This indicates that reaction
R7, of which p15 is the backwards velocity parameter, is as important as expected from
the global sensitivity analysis, while R2 at the entrance of the production cycle is less
sensitive for biologically relevant parameters. Yet comparing p4 and p5, both of which
exhibit very low global sensitivity, depicts that p5 varies over a much larger scale than
p4 in the optimized set. This indicates that R5, of which p4 is the forward velocity, is
of more relative importance than R6. Looking back at Tab. 4 and Fig. 3 this turns out to
be plausible, as R5 consumes the central KIV which is a key substance at the crossing of
the network, while R6—and with it p5—“only” affects the transport of Val out of the cell,
having no recurrent effects on the system.
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Figure 5: Parameter value distribution (a) and sensitivity total effect per parameter (b).

5 Conclusion

Multimodal optimization techniques aim at finding several local optima of an unknown tar-
get function in parallel. As they are usually developed on low-dimensional benchmarks,
we looked at a set of current methods and benchmarked them on high-dimensional func-
tions, finding that clustering EA approaches as well as the adaptive swarm-based approach
ANPSO are able to find multiple solutions with sensible fitness values, where an adapted
version, ANPSO*, was especially successful on the most complex benchmark function.
The standard NichePSO approach lacks a globally searching main swarm and is mostly
unable to compete on functions with many local optima on large-scale basins of attraction.
The subsequent application on a GMAK model of a metabolic network representing the
Leu/Val-synthesis of C. glutamicum showed that ANPSO* finds a considerable number of
distinct high-quality solutions in parallel, while CBN and NichePSO widely fail. This can
be attributed to the rather exploitative nature of ANPSO. Since default GA and ES strate-
gies showed to be inferior to swarm-methods on the GMAK model earlier [DKZ+09],
the success of ANPSO over the CBNEA variants is consistent. The analysis of parameter
variations of a set of local optima compared to a global sensitivity analysis allowed several
interesting interpretations which indicate that multimodal optimization can be a useful tool
for assessing the results of heuristic parameter estimation in systems biology.
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Abstract: Numerous applications in Computational Biology process molecular struc-
tures and hence require not only reliable atomic cordinates, but also correct bond or-
der information. Regrettably, this information is not always provided in molecular
databases like the Cambridge Structural Database or the Protein Data Bank. Very dif-
ferent strategies have been applied to derive bond order information, most of them
relying on the correctness of the atom coordinates. We extended a different ansatz
proposed by Wang et al. that assigns heuristic molecular penalty scores solely based
on connectivity information and tries to heuristically approximate its optimum. In
this work, we present two efficient and exact solvers for the problem replacing the
heuristic approximation scheme of the original approach: an ILP formulation and an
A* approach. Both are integrated into the upcoming version of the Biochemical Algo-
rithms Library BALL and have been successfully validated on the MMFF94 validation
suite.

1 Introduction

Correct bond order information is essential for many algorithms in Computational Struc-
tural Biology and Chemistry, since bonds do not only define the connectivity of atoms in a
molecule but also define structural aspects like rotatability of individual groups. However,
bond order information can often not be directly infered from the available experimental
data. Even important molecular databases, like the Protein Data Bank (PDB) [BHN03] and
the Cambridge Structural Database [All02], are known to contain erroneous data for con-
nectivity and bond order information [Lab05] or to even omit them entirely. For proteins
and nucleic acids, bond orders can be easily deduced due to their building block nature,
but this does not hold for other kinds of molecules like ligands. The problem is made much
worse by the fact that quite often, the bond order assignment for a given molecule is not
unique, even when neglecting symmetries in the molecule. The chemical reasons for this
effect are complex and out of scope of this work; here we just want to state that the concept
of integer bond orders is only an approximation to a full quantum chemical treatment, and
cannot explain all effects occurring in molecules. Important examples are aromatic or de-
localized bonds, leading to different resonance structures (c.f. Fig. 1). In addition, formal
charges are often not contained in the input files, but atoms carrying a formal charge will
obviously show a different bonding pattern. One body of opinion tries to overcome these
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Figure 1: Different resonance structures of 4-(N,N-dimethylamino)pyridine. A bond order assign-
ment program should optimally be able to compute all of these configurations.

obstacles by hand curation which clearly provides the highest reliability. On the other
hand, manual data curation does not scale well to large numbers of molecules, and it does
not help in conditions where modifications are systematically applied to molecules, e.g. in
computational combinatorial chemistry.

In the past decades, the problem of assigning bond orders automatically has been ad-
dressed by a number of different approaches. Early methods in the field strongly rely on
the correctness of atomic coordinates and focus on reference bond lengths and valence
angles [BH92], or additionally consider functional group detection [HRB97] and further
molecular features like hybridization states and charges [vABF+96, ZCW07]. The main
drawbacks of those approaches are the dependence on correct atomic coordinates and their
heuristic nature.

In constrast, exact solvers proposed previously represent the bond order assignment prob-
lem as a Maximum Weighted Matching for nonbipartite graphs [Lab05] or as an integer
linear programming problem that generates valid Lewis structures (electron dot structures)
with minimal formal charge on each atom [FH05].

Recently, Wang et al. [WWKC06] have presented an elegant novel approach to the prob-
lem which is implemented in the established Antechamber package, a suite of tools used
for the preparation of input structures for molecular mechanics studies. In this approach,
a chemically motivated, expert generated penalty function is used to score bond order as-
signments. This function is then heuristically optimized. However, this procedure has
two drawbacks: the score of resulting assignment is not guaranteed to be optimal and the
algorithm provides only one solution while there can be more than one assignment with
optimal score. In this work, we propose an approach that solves the problem to provable
global optimality by discrete optimization techniques. We give an integer linear program
formulation for very efficient computation of one optimal assignment and an A* approach
for enumerating all optimal or, if desired, all feasible solutions.
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2 Methods

The idea behind the bond order assignment algorithm proposed in the work of [WWKC06]
is to cast it into a discrete optimization problem. Finding the most probable consistent
bond order assignment for a given molecule is addressed by minimizing a total penalty
score tps, where each atom is assigned an atomic valence av that is defined as the sum
over all bond orders bo of all bonds connected to the atom under consideration:

av =
con?
i=1

boi

Here, con denotes the number of bonded atoms. The distance of the calculated av to the
atom’s most desirable valence value is measured by the atomic penalty score aps: the
possible valences of an atom and the corresponding distance penalty scores are stored in
a penalty table that uses a rule-based atom type classification derived by Wang et al. The
sum over all atomic penalty scores of a molecule now yields the total penalty score

tps =
n?

i=1

apsi

where n denotes the number of atoms. The smaller the tps of a given bond order assign-
ment, the more reasonable it is. In [WWKC06], minimization now proceeds in a heuristic
and greedy manner.

2.1 Integer Linear Program (ILP)

To compute a bond order assignment with guaranteed globally minimal tps, we formulated
the aforementioned problem as an integer linear program [PS98] as described below.

Let P be the penalty table. We use the following notations:

• A is the set of all atoms of the molecule under consideration.

• B(a) is the set of bonds of atom a ∈ A and B denotes the set of all bonds of the
molecule.

• V (a) ⊂ N contains the possible valences of atom a ∈ A according to the penalty
table P .

• P (a, v) is the entry of P for atom a ∈ A and valence v ∈ V (a).

Our approach uses two different classes of variables. For each bond b ∈ B, we introduce
a variable xb ∈ {1, . . . , µ}, where µ is the maximum bond order considered (in the fol-
lowing, we will set µ to 3, allowing single, double, and triple bonds). For all atoms a and
corresponding possible valences v according to the penalty table P we introduce choice
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variables ya,v ∈ {0, 1}. Each ya,v symbolizes whether the corresponding penalty P (a, v)
is chosen or not, i.e., penalty P (a, v) contributes to the score iff ya,v = 1. Thus, the ob-
jective function of our score minimization problem can be formulated as a linear function
in y with penalty prefactors:

min
y

?
a∈A

?
v∈V (a)

P (a, v) · ya,v.

To ensure that each atom is assigned exactly one valence state, we add the additional linear
constraints ?

v∈V (a)

ya,v = 1

for all a ∈ A. In addition, we have to ensure that the sum of its bond orders equals its
chosen valence. The constraints can be formulated as?

v∈V (a)

ya,v · v =
?

b∈B(a)

xb

for all a ∈ A, because the left hand side evaluates to valence v iff ya,v = 1.

In summary, the score minimization problem can be formulated as the following integer
linear program

min
x,y

?
a∈A

?
v∈V (a)

P (a, v) · ya,v

s.t.
?

v∈V (a)

ya,v · v =
?

b∈B(a)

xb ∀a ∈ A,

?
v∈V (a)

ya,v = 1 ∀a ∈ A,

ya,v ∈ {0, 1} ∀a ∈ A, ∀v ∈ V (a),
xb ∈ {1, 2, 3} ∀a ∈ A, ∀b ∈ B(a).

For the solution of ILPs to provable global optimality, several strategies can be chosen,
like the popular pure branch & bound approaches or branch & cut methods [PS98]. We
employed the open source solver lp solve [BEN] which uses a simplex-algorithm-based
branch & bound approach [PS98]. It is interesting to note that the penalties in [WWKC06]
can all be expressed as powers of two and as such led to short computation times. Still,
the problem itself is NP complete [PS98]. Empirically, however, in many test cases the
solution of the relaxed linear program, i.e., the above program without the integrality con-
straints, has been integral and, hence, a solution of the original problem (obtained without
any branching). In other cases, the solution of the linear program has been almost integral,
leading to only few branch steps. In principle, ILP solvers can also enumerate all opti-
mal solutions. However, in our experiments we have seen a drastic increase in runtime if
more than one solution is computed. Thus, the ILP approach is particularly well suited for
obtaining one optimal bond order assignment.
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2.2 The A* approach

In order to be able to efficiently enumerate all feasible solutions – optimal and non-optimal
ones – we formulated the bond order total penalty minimization problem as an A* search
algorithm. This allows enumeration of all assignments in the order of increasing penalty
and hence, for instance, to compare the assignments of all solutions for a given molecule
up to a user defined penalty threshold. In addition, such an A* algorithm is simpler to
implement, and often easier to extend, than an ILP approach; for instance, it is easily
possible to influence the order in which solutions with equal score are computed.

As a combinatorial optimization problem, the bond order assignment problem can be rep-
resented by a tree, where each layer stands for one of the decisions that have to be made.
In our case, the tree has k layers, where k is the number of bonds that have to be assigned.
A node at layer i has µ children, where µ is the number of possible bond orders, typically
3, and each edge is labeled with its corresponding order. Hence, by tracing the path from
the root to a node w at layer i, we can determine the values of the first i bonds in this par-
ticular partial assignment represented by the node w. Thus, the root node corresponds to
a completely unassigned molecule with only unknown bond orders, while the leave nodes
correspond to complete bond order assignments. If we only add child nodes if the resulting
valence state is valid the leaf nodes correspond to the feasible bond order combinations. In
order to discriminate between the different combinations, each leaf is assigned its atomic
penalty score.

Visiting all nodes in the tree, the optimal bond order assignment can be found in a brute–
force manner with exponential runtime. If, additionally, all intermediate nodes are as-
signed the atomic penalty score of the partial bond order assignment they represent, a
greedy search will yield an assignment with heuristically good (but not necessary optimal)
atomic penalty score in linear runtime. It can be shown that, if at each intermediate node
more information is provided, finding an optimal solution can be guaranteed with greatly
improved expected runtime. This leads to the popular A*-search-algorithm [HNR68],
which employs a search heuristic to guide the algorithm in descending the tree. More
formally, the algorithm associates with each node w a function f(w) = g∗(w) + h∗(w),
where g∗(w) describes the score corresponding to the decisions already made and h∗(w)
is the so-called search heuristic. For the purposes of the A*-search algorithm, the search
heuristic must be an admissible estimate of the score of the best leaf that can be reached
starting from node w and descending further down the tree. Here, admissible means that
it needs to be ’optimistic’: for all nodes w, the estimated cost h∗(w) may never be greater
than the lowest real cost to reach a goal node. Given the additional information provided
by h∗, the A*-search algorithm always expands one of the nodes with the most promising
score, ensuring that the first leaf reached is optimal (roughly speaking, if the algorithm
would visit a leaf with worse score first, the search-heuristic would have overestimated the
penalty of the real optimal solution, which an admissible heuristic never does).

In addition to the notations introduced in the previous section, we need notations that are
adapted to the partial bond order assignments corresponding to each node w in the search
tree. We denote the set of all assigned bonds in the node w by W (B), the assigned bonds
connected to atom a in node w by W (a), and the set of atoms for which all bonds are
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already assigned with a bond order by K. The bond order of an assigned bond is denoted
by bo(b). A partial bond order assignment induces a simple lower bound

vw(a) :=
?

b∈W (a)

bo(b)

for the valence of atom a. Assuming a single bond for each unassigned bond of atom a, a
tighter lower bound for the valence is given by

lo(a) := vw(a) +
?

b∈B(a)\W (a)

1 = vw(a) + |B(a)\W (a)|.

Thus, the maximum order of an unassigned bond with respect to atom a is given by

t(a) := max{V (a)} − lo(a) + 1.

Denoting by a1, a2 the atoms connected by an unassigned bond b, its maximum bond order
equals

bomax(b) := min{t(a1), t(a2)},
yielding an upper bound of the atomic valence of an atom a

up(a) := min

max{V (a)}, vw(a) +
?

b∈B(a)\W (a)

bomax(b)

 .

The functions g∗ and h∗ can then be defined as follows:

g∗ =
?
a∈K

P (a, vw(a)) (1)

h∗ =
?

a∈A\K

min
lo(a)≤i≤up(a)

{P (a, i)} . (2)

The function g∗ sums the atomic penalties of all completely assigned atoms in the partial
bond order assignment represented by node w, whereas h∗ considers all atoms with bonds
of unassigned bond order. For the atoms in this set, we compute the minimal atomic
penalty possible under the current partial assignment independently of the other atoms
in the set: each atom can choose its preferred value for each unassigned bond without
considering overall consistency. Obviously, h∗ is optimistic.

3 Results

We have implemented and integrated both approaches in the Biochemical Algorithms Li-
brary BALL (http://www.ball-project.org, [KL00]). For validating our algorithms, we
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score number ofmolecule
Antechamber BALL optimal solutions

DAKCEX.mol2 1 0 2
GETFIU.mol2 1 0 1

GIDMEL.mol2 2 1 7
KEWJIF.mol2 4 0 1

SAFKAL.mol2 1 0 1
JECYIZ.mol2 4 0 1

Table 1: Comparison of the penalties for molecules of the MMFF94 validation suite, where BALL
found bond order assignments with smaller penalty score than the assignment heuristically computed
by Antechamber.

reference ismethod
1st solution optimal

no solution

Antechamber 282 (37.05%) 282 (37.05%) 18 (2.36%)
ILP 401 (52.69%) 401 (52.69%) 4 (0.53%)
A∗ 473 (62.15%) 599 (78.71%) 4 (0.53%)

Table 2: Performance of the original Antechamber implementation, our ILP formulation and our
A∗-search algorithm on the MMFF94 validation suite. The second column denotes the number of
molecules for which the algorithms return the original bond order assignment as first solution. The
third column denotes the number of cases, where the reference bond order assignment was within
the solutions with minimal tps (if this is not the case, we need to change the objective function rather
than the optimization method to correctly address this molecule). Finally, the fourth column denotes
the number of molecules for which no solution was found.

chose to compare the computed results on the MMFF94 validation suite [Hal96]. The
MMFF94 Suite contains 761 thoroughly prepared drug like molecules that were originally
used for the validation of the Merck Molecular Force Field. We used the penalty table as
defined in Wang et al. [WWKC06]. On this data set, A* and ILP had comparable run-
times if generating single solutions only (≈220 seconds for the whole set on a standard
PC, where the majority of the time is spent in SMARTS matching).

As can be seen in Tab. 2, both of our methods are able to correctly reproduce significantly
more molecules of the MMFF94 validation suite than the original Antechamber approach
by Wang et al. In cases where the reference molecule is the only possible assignment
with minimal tps, ILP and A* both find the optimal bond order assignment, whereas
Antechamber returns non-optimal solutions in 6 cases as shown in Tab. 1.

The difference between the performance of ILP and A*-search are due to fact that the
MMFF94 validation suite contains 348 molecules with more than one optimal bond order
assignment (with respect to the penalty table of Wang et al.) and that the ILP solver
systematically prefers assignments different to the A*-search algorithm. The A*-search
always prefers lower bond orders which seems to be the more natural behaviour.
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As can also be seen in Tab. 2, the enumeration of all optimal solutions leads to a success
rate of 78.71% in reproducing the bond order assignments of the MMFF94 validation suite.

However, it should be kept in mind that in reality, bond order assignment for a single
molecule need not have a unique solution; for instance, molecules like benzene show
several resonance structures, differing only in their bond order configuration (if aromatic
bonds are ’kekulized’, i. e. replaced by a compatible pattern of single and double bonds,
as needed for most force fields).

Obviously, the quality of the penalty table, e.g., the definition of the atom classes, their
allowed valence states, and the choice of the valence state’s penalties have a significant
influence on the performance of our algorithms. As can be seen in column four of Tab. 2,
the current penalty table does not cover all molecules in the MMFF94 validation suite –
for four molecules, the required atom classes are missing. Please note that the difference
to the Antechamber bailing out rate is a result of the heuristic nature of the optimization
proposed in [WWKC06].

4 Conclusion

In this work, we have presented two exact solvers for the connectivity based bond order
assignment problem posed by Wang et al. [WWKC06]. Both methods improve consider-
ably upon earlier approximate solution schemes by guaranteeing optimality while retaining
highly efficient runtimes.

Our ILP-formulation allows for very rapid computation of an optimal bond order assign-
ment with respect to the underlying penalty tables. In our implementation, the ILP is
solved directly by the open source solver lp solve [BEN]. This approach scales well with
increasing number of atoms and bonds and should be preferred if only one optimal assign-
ment is sought. However, when computing more than one solution with the ILP solver,
runtimes greatly deteriorated.

In these cases, our A*-approach usually has much better runtime, in particular when enu-
merating all solutions – optimal and non-optimal ones sorted by their score. In addition,
the order in which solutions are returned can be easily influenced. Thus, it has the potential
to create ensembles of putative bond order assignments, opening new avenues for proba-
bilistic structure analysis. Furthermore, the A*-search algorithm is simple to implement
and independent of external solvers.

So far, only connectivity based information is scored in the search heuristic. The inclu-
sion of structural properties like bond lengths and angles might help to further distinguish
between assignments if atomic coordinates are reliable. For large molecules, the employ-
ment of more sophisticated optimization techniques as presented in [BBST09] might help
to speed up computation times.

Both approachs are fully integrated into the upcoming version of the Biochemical Algo-
rithms Library BALL (http://www.ball-project.org, [KL00]) that can be downloaded from
our homepage.
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Abstract: Genome annotation relies to a large extent on the recognition of homologs
to already known genes. The starting point for such protocols is a collection of known
sequences from one or more species, from which a model is constructed – either auto-
matically or manually – that encodes the defining features of a single gene or a gene
family. The quality of these models eventually determines the success rate of the ho-
mology search. We propose here a novel approach to model construction that not only
captures the characteristic motifs of a gene, but are also adjusts the search pattern
by including phylogenetic information. Computational tests demonstrate that this can
lead to a substantial improvement of homology search models.

Introduction

Homology search is one of the generic important tasks in bioinformatics. It is indispens-
able, e.g., for the assessment of the phylogenetic distribution of genes and gene families
and it forms the basis for detailed phylogenetic analyses in general. Homology search also
comprises the first step in gene annotation pipelines. The ever increasing influx of ge-
nomic sequence data makes reliable and automated homology search a crucial bottleneck
in many projects.

Typically, the starting point for homology search is a collection of known sequences, usu-
ally in the form of a multiple sequence alignment. Then, one or all of these “seed se-
quences” are fed into a pairwise alignment algorithm – such as blast [MM04] – and
compared to the sequence database of the target species. In many cases, e.g. for distant

Menzel et al. 211



homologs or short query sequences, the sensitivity of this approach is too low. In such
cases one can determine from the alignment the sites that share the same residues in all or
most of the seed sequences. These highly conserved sequence blocks typically comprise
the specific biological function of the gene – like binding site motifs, catalytically active
sites, or structural elements. Once identified, these blocks can be used to build a more so-
phisticated search pattern that contains the intrinsic properties of this particular gene. The
fragrep approach, for instance, represents the query as a collection of short consensus
patterns and distance constraints between them [MSS06]. Again, restricting oneself to
the consensus sequence information of the blocks may lead to a rather low sensitivity or
specificity of the search pattern. This is the case e.g. for DNA binding sites [Sto00], which
not necessarily share a common consensus sequence.

More expressive sequence models can be build with position specific scoring matrices
(PSSM), which record the relative frequencies of residues at each site. The application of
PSSMs for homology search requires more elaborate profile alignment algorithms. An ex-
ample for proteins is psi-blast [AMS+97]. For short, ungapped, PSSMs arising e.g. as
models of transcription factor binding sites, a relative scoring scheme is used [KGR+03],
which can be extended to the gapped case by means of fractional programming [MCS07].
Hidden Markov Models are a viable alternative. In many cases, the highly variable gap
sizes and the small set of seed sequences are problematic for the training procedures.
PSSM-based approaches therefore were instrumental in several recent studies on highly
variable ncRNA families such as Y RNAs [MGSS07], vault RNAs [SCH+09], and telom-
erase RNAs [XMQ+08].

While theoretically straightforward, the construction of reliable PSSMs from sequence
alignments turns out to be a quite non-trivial task. In principle, one just has to count
the frequency of the residues in the alignment columns, decide on a scheme to treat gap
characters, and possibly add pseudo-counts. In practice, however, one has to deal with
biases in the phylogenetic distribution of the seed sequences, which are often dominated by
a set of closely related model organisms. The small size of the seed set, on the other hand,
makes it undesirable to exclude a large fraction of the available data. A commonly used
remedy is to use one of several weighting schemes [VS93]. For amino acid sequences more
sophisticated methods for creating unbiased PSSMs are available, e.g. via the EasyPred
web server [Nie]. Such unbiased “centroid” PSSMs, however, still do not include all
the available phylogenetic information, in particular, they do not take into account any
knowledge on the relative phylogenetic position of the target genome among the aligned
seed sequences.

In this contribution we therefore explore the possibility to employ a maximum likelihood
(ML) approach to optimize search patterns for usage on a particular target. Our approach
is similar in spirit to the reconstruction of ancestral sequences from their extant offsprings.
Given a phylogenetic tree T , ancestral genes are “resurrected” by inferring the states for
internal nodes of T given the known sequences at the leafs. The earliest approaches were
based on the parsimony principle [Fit71]. Alternatively, maximum likelihood methods,
introduced by Felsenstein [Fel81], are in use. The latter require an explicit model of se-
quence evolution. On the other hand, they naturally provide probability distributions over
the amino acid or nucleotide alphabet for every sequence position and every internal node
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of the tree. In other words, ML provides us with PSSMs for ancestral states. Compared to
parsimony approaches, maximum likelihood methods are more accurate because branch
lengths, more detailed residue substitution models, and back-mutations are taken into ac-
count [ZJ97]. Ancestral sequence reconstruction has been proven to be a powerful tool for
testing hypotheses regarding the function of genes from extinct species, see, e.g., [Tho04].

Here, we modify this approach. Instead of focusing on the internal nodes of the tree T , we
use the same mathematical machinery to infer the most likely nucleotide sequence at an
additional leaf node in the tree — the target species for homology search.

Construction of Search Patterns

We start from a given multiple sequence alignment M with m sequences and a phyloge-
netic tree T with m + 1 leaves, representing the phylogenetic relationships and branch
lengths among the m species included in the alignment, and a single additional target
species 0. Our approach combines two ML computations. First we use M and T \ 0, the
phylogenetic tree restricted to the aligned species, to estimate for each alignment column i
a relative substitution rate µ̂i The calculation of the likelihood follows Felsenstein’s prun-
ing algorithm [Fel81]. The likelihood of a residue sk at an interior node k is obtained from
the corresponding likelihoods at the two child nodes i and j, which are separated from k
by branches of length ti and tj , respectively:

j

k

ti tj

i

Lsk
(µ) =;?

si

Psksi
(ti, µ)Lsi

(µ)
4
×

;?
sj

Psksj
(tj , µ)Lsj

(µ)
4

(1)

For each alignment column i, we numerically optimize µ̂i = argmaxµLT (µ) using
Golden Section Search [Kie53]. The likelihood of the tree T is given by the sum over
all possible states sr at the root node r: LT (µ) =

=
sr

πsLsr
(µ) where the πs are the

prior probabilities of observing letter s. The transition matrix P contains probabilities
Pxy(t, µ) = [etµQ]xy for changing from state y to state x over time t and a rate µ. The
instantaneous rate matrix Q represents a standard substitution model, such as the HKY85
[HKY85] or General Time Reversible (GTR) [Tav86] model for DNA sequences. Param-
eters for these models can be estimated from the alignment by using standard maximum
likelihood analysis software like PAML [Yan07]. We advocate that this should be done
ideally on larger data sets than the usually short query alignments themselves.

In the second step, we use the estimated values µ̂i to compute the probabilities for each
residue at the i-th position of the target sequence. To this end, we re-root the original tree
T to the target species 0 and then calculate the likelihoods Ls0(µ̂i) for T 0. From these
likelihoods at the root node of T 0, we directly obtain the residue probabilities in each
alignment column i. Finally, these are transformed into a PSSM.

Figure 1 exemplifies the difference of a PSSM inferred by the ML approach and a PSSM
obtained by counting the nucleotide frequencies in the seed alignment. In this particular
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Figure 1: Example for estimating a
PSSM. top: Target sequence in the 5’
region of the 7SK RNA of Drosophila
persimilis. middle: Maximum likeli-
hood estimated nucleotide probabilities
for D. persimilis. bottom: PSSM de-
rived from nucleotide frequencies of the
11 other Drosophila sequences.

case, the ML estimate is significantly more informative and much closer to the motif in
the target sequence.

The ML-PSSM pattern depends explicitly on the relative position of the target species in
T . If the target is in close proximity to one or more other species, then high probabili-
ties will be assigned to the residues that are present in those neighboring species. With
increasing distance to the target species, on the other hand, the probabilities will converge
to an uninformative equilibrium distribution. A column equilibrates faster, the larger the
substitution rate µ̂i. The algorithm thus tells us, which alignment columns or regions can
be expected to be informative for a particular target sequence. To this end, we compute
the Shannon information of each alignment position as

H(i) = −
?

s

fi(s) · log2 fi(s) (2)

where fi(s) is the estimated frequency of residue s at position i. The corresponding in-
formation content is I(i) = H̄ − H(i), where H̄ = −=

s f̄(s) log2 f̄(s) and f̄(s) is
the background distribution of the residues. In the simplest case, H̄ = 2 for an uniform
distribution of the four nucleotides.

Significant patterns can now be extracted by finding windows of a user-defined minimum
length that have an average information content above a certain threshold. Alignment
columns with high estimates of µ̂, on the other hand, can be excluded from the search
pattern to compensate for highly variable sites. Thus, the maximum likelihood algorithm
not only provides residue probabilities for each alignment position, but also gives infor-
mation about the conserved sites and the variation of mutation rates within one sequence.
We remark that our approach of optimizing the µ̂i is similar to the method used in the
Rate4Site program [PBM+02], which aims at identifying functional important regions
in protein surfaces.

Performance Evaluation

As test data we used a collection of genomic multiz alignments of Drosophila species
[Con07] downloaded from the UCSC Genome Browser1. Only segments covering all 12

1http://hgdownload.cse.ucsc.edu/goldenPath/dm3/multiz15way/
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D.simulans

D.sechellia

D.melanogaster

D.yakuba

D.ereecta
D.ananassae

D.pseudoobscura

D.persimilis

D.willistoni
D.mojavenis

D.virilis

D.grimshawi

0.1

Species Data set 1 Data set 2
ML Freq Δ ML Freq Δ

D. sim. 1.000 0.981 0.019 1.000 0.980 0.020
D. sec. 1.000 0.981 0.019 1.000 0.975 0.025
D. mel. 0.986 0.979 0.007 0.970 0.972 -0.002
D. yak. 0.970 0.971 -0.001 0.963 0.959 0.003
D. ere. 0.971 0.972 -0.001 0.959 0.959 0.000
D. ana. 0.896 0.885 0.011 0.841 0.842 -0.001
D. pse. 1.000 0.933 0.067 1.000 0.867 0.133
D. per. 1.000 0.928 0.072 1.000 0.865 0.135
D. wil. 0.912 0.890 0.022 0.774 0.765 0.009
D. moj. 0.912 0.882 0.030 0.838 0.772 0.066
D. vir. 0.913 0.891 0.022 0.858 0.787 0.071
D. gri. 0.877 0.864 0.013 0.824 0.759 0.065

Figure 2: left: Phylogenetic tree of the 12 Drosophila species [Con07]. right: Median match scores
of the maximum likelihood PSSMs (ML) and the frequency PSSMs (Freq) for 10 randomly selected
30nt windows from each alignment in both data sets.

drosophilid species were retained and gapped columns excluded. Set1 consists of the 56
alignment segments of D. melanogaster chromosome 4 with minimum length 500 and a
multiz score of at least 10000. The average pairwise sequence identity is 76.1%. Set2
contains 45 alignments with multiz scores between 100 and 10000 and minimum length
of 200. This set has 67.1% average sequence identity.

We removed one sequence at a time from the alignment and computed the residue prob-
abilities for this sequence with our ML approach from the 11 remaining sequences using
the phylogenetic tree in figure 2 and the HKY85 substitution model. The transition bias
parameter κ was estimated using PAML. For comparison, we computed the position fre-
quency matrix from the same 11 species. Both results were converted to a PSSM. From
each alignment we randomly selected 10 windows of different lengths. The MATCH scores
[KGR+03] of the corresponding interval of the two PSSMs against the 12th aligned se-
quence that was excluded from training were computed using pwmatch2 [TBF+07]. Then
we compared the match scores of each pair of PSSMs and used the Wilcoxon rank-sum
test to see if the maximum likelihood (ML) scores are significantly larger than the scores
from the frequency method (Freq).

Figures 3 and 4 show the MATCH scores of each pair of PSSMs for windows of length
L = 30 for Set1 and Set2 for a representative subset of the 12 drosophilid species. Over-
all, we observe that the ML matrices have significantly higher MATCH scores than the
frequency matrices for most of the target species. The difference is especially apparent
for those drosophilids that have a closely related neighbor in the phylogenetic tree, such
as D. simulans and D. sechellia or D. pseudoobscura and D. persimilis. Here the median
MATCH score improvement is up to 0.076 for D. persimilis in Set1 and 0.135 in Set2. Only
for D. ananassae and D. willistoni there is no significant difference of the scores in Set2
where both the ML and Freq PSSMs perform equally and only a slight average improve-

2http://www.bioinf.uni-leipzig.de/Software/pwmatch/
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ment of the ML PSSMs is visible in Set1. Due to the relatively large distance from all
other species, and the relatively even distribution of the species in the tree, the frequency-
based matrix scores are very similar to the ML estimate in these two cases. Generally, the
improvement of the MATCH scores is higher in Set2, which has lower sequence identity
For instance, the average score difference of both methods in D. pseudoobscura is 0.067
in Set1 and 0.133 in Set2, where the median score of the frequency method is much lower
than in Set1.

For homology search, short blocks with high information content are of particular impor-
tance, since such queries can be searched most efficiently. Thus, we extracted from both
data sets those sub-patterns containing columns with high information content at most po-
sitions. Figure 5 summarizes the MATCH scores of the ML and the frequency PSSMs for
all (non-overlapping) windows of length 20nt which have an average information content
of at least 1.8 bits in the ML matrices. For these patterns, we observe again that the ML
approach performs significantly better for most target species. For some species, only few
windows fulfilling these constraints can be found, e.g. D. ananassae (n=23) or D. willistoni
(n=27). Due to the relatively large distance to the other drosophilids, the ML algorithm as-
signs high residue probabilities only to highly conserved alignment columns. Eventually,
these probabilities are very similar to the nucleotide frequencies in the seed alignment and
the performance of ML and frequency approach becomes indistinguishable.

Due to the close phylogenetic relationship of D. simulans and D. sechellia, and D. pseu-
doobscura and D. persimilis, resp., the ML approach estimates very high nucleotide proba-
bilities for these target species Thus many windows with high average information content
can be found. Compared to the frequency PSSMs, the ML PSSMs provide a big perfor-
mance improvement in these species.

Discussion

In this contribution we presented a novel approach for constructing PSSM-like sequence
models for homology search. Unlike standard methods, our maximum likelihood method
aims at building models that are specifically adapted to a particular target species. This is
achieved by utilizing the phylogenetic information of the seed sequences and the relative
position of the target species therein.

Evaluation on genomic sequence alignments of the 12 sequenced drosophilid species
shows that the maximum likelihood method indeed provides the expected improvements.
We are able to find highly conserved sites in the alignment and make use of the sequence
information from neighboring species in the phylogenetic tree. The more proximal a
known sequence is related to the target species, the more specific the search pattern from
the maximum likelihood computation becomes, even for randomly drawn samples. If
the target species is evolutionary distant in the tree from the known taxa, the alignment
sites with high information content can be used for building the search pattern and the
specificity is better or the same compared to normal search patterns based on residue fre-
quencies.
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Figure 3: Set 1 : MATCH scores of maximum likelihood (ML) and frequency (Freq) PSSMs for
random windows of length 30nt (n = 450). P-values of “0” are smaller than machine precision.
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Figure 4: Set2 : MATCH scores for maximum likelihood (ML) and frequency (Freq) PSSMs for
random windows of length 30nt (n = 450). P-values of “0” are smaller than machine precision.
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Figure 5: Set2 : MATCH scores for the ML and frequency-based PSSMs for all non-overlapping
windows of length 20 with average information content H ≥ 1.8. In a few cases (indicated by p ∼
instead p =) the p-value estimates are approximations due to the small sample size.
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The approach proposed here is potentially useful not only for the purely sequence-based
homology search. In particular for structured RNAs it seems natural to incorporate phy-
logenetic information also into covariance models such as those utilized by SCFG-based
tools. To this end, base pair substitution models for paired alignment columns need to be
incorporated. We expect that this will be helpful in the detection of conserved structural
elements in ncRNA families as well as aiding in automatic estimation of highly probable
structure motifs in a target species. A second issue that needs to be addressed in future
work is the handling of gaps, which we excluded here for the sake of clarity. In the simplest
case, the approach of fragrep [MCS07] provides a remedy.
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