
Verification of Forbidden Behavior in EPCs

Carlo Simon Jan Mendling
Universität Koblenz-Landau WU Vienna

simon@uni-koblenz.de jan.mendling@wu-wien.ac.at

Abstract: Event-driven process chains (EPCs) are frequently used as a modeling lan-
guage for the representation of business processes. As such, business analysts are
familiar with using EPC models in the context of business process management. Up to
now, there is no verification technique available that allows business analysts to express
forbidden behavior in an intuitive manner. In this paper, we discuss the specification of
such forbidden behavior with the aid of EPCs and demonstrate the verification of this
behavior against models of the desired behavior, also formulated as EPC diagrams.
For this purpose, a novel approach to join EPC models and to interpret the result is
discussed. It is based on a transformation of both EPC models to Module nets, a spe-
cific kind of Petri nets, and the application of verification methods already defined for
this net class. The findings are illustrated with a running example that picks up an EPC
process model from the SAP reference model.

1 Introduction

Event-driven Process Chains (EPCs) [KNS92] are frequently used as a process modeling
language for specifying business requirements on a conceptual level. EPCs’ popularity
stems from a more descriptive representation of control flow in comparison to Petri nets
[SL05]. Furthermore, extensive tool support as well as their integration with the con-
ceptual enterprise modeling framework of ARIS [Sch00] has proliferated a wide-spread
application in industry process modeling projects. EPCs can be regarded as a de facto
standard for process reference modeling, at least in the German speaking countries. Some
of these reference models such as an extensive model for the resale industry [BS96] and
the SAP reference model for version 4.6 of R/3 [KM94, KT98] are documented in books
and are accessible for academia and industry projects.

Beside their popularity, there has been an ongoing debate on formalization of EPCs, espe-
cially the non-locality of join connectors. Most authors define transformation semantics
to Petri nets or EPC-specific transition systems. For an overview and a recent contribution
see [Kin04, MNN05b]. Due to the ongoing debate on precise semantics, there have been
only a few contributions on formal analysis of EPCs (see e.g. [DA04, DAW05]). Yet, such
analysis is of paramount importance when certain business requirements for a specific
EPC business process model have to be verified. We have observed that business analysts
not only think in terms of normative behavior of a process, but frequently express forbid-
den behavior. In this context, we address two challenges in this paper: first, we define a

233

concept for business analysts to specify forbidden behavior by the help of EPCs, because
EPCs are a business process modeling language with whom they are familiar. Second, we
describe a methodology for the verification of forbidden behavior against a normative EPC
business process model.

The paper is structured as follows. Section 2 presents a motivating example. We use a
real-world EPC business process model taken from the SAP reference model to illustrate
the verification challenge. Section 3 gives an overview on Module nets and how to use
the join operator for Module nets for our verification goal. In Section 4, we specify a
mapping from EPCs to Module nets, a specific class of Petri nets, and discuss how the
merge operator of Module nets can be applied to verify forbidden behavior in EPCs. We
then apply the merge operator to the example EPC and the forbidden behavior EPC to
illustrate the verification approach. Section 5 relates our contribution to other work on
process model verification with a focus on EPCs. Finally, Section 6 concludes the paper
and gives an outlook on future research.

2 Motivating Example

EPCs are frequently used to specify business requirements on a conceptual level. That is
also the case for the Period-End Closing Process for Periodic Product Cost Controlling
given in Figure 1 (left). It is the second part of a real-life EPC process model taken from
the SAP reference model [KT98]. The process is defined within the Period-End Closing
(Controlling) directory of the Revenue and Cost Controlling part of the SAP reference
model. It includes 15 events, 14 functions, and seven connectors. Each function included
in the figure is further specified by linked EPC models. We use the example process to
illustrate the problem of specifying and verifying forbidden behavior of EPC business
process models.

Consider the Period-End Closing Process to be implemented within an enterprise called
Exemplum AG. The process starts with the calculation of the actual prices based on historic
sales data of the period. After that the periodic variance is calculated. This is used both for
settlement and for cost analysis. Figure 1 (left) captures the implementation of the process
with settlement and analysis being performed in concurrency in order to minimize cycle
time. The process terminates when all final events occurred.1

Based on some unexpected periodic-end closing results in the last period, the management
of Exemplum AG is wondering whether settlement activities possibly occur before the
analysis has been performed and declare this behavior as forbidden. Furthermore, man-
agement charges the head of the controlling department to verify whether the forbidden
behavior is allowed by the current implementation of the process. In the following, we
will speak in particular of a specification when referring to the formal representation of
the process requirements, and of implementation when referring to the behavior of the
process that is actually in place and captured by the process model.

1This matches implicit termination semantics of EPC end events [MNN05a].

234

Measures taken based
on variances

❄
F5

Product cost analysis in
product cost by period

❄

Product cost
analysis required

❄

∧
......
............

..
......
......✲

F3

Cost object
summarization

❄

✛

F4

Summarization
hierarchy

❄

∧
......
............

..
......
......

❄

Data collection
completed

❄
F2

Data collection
product drilldown

❄

Product cost
analysis required

❄

∧
......
............

..
......
......

❄
F1 Periodic variance

calculation

❄

First part of
completed

Product cost
collector settled

Cost object
hierarchy settled

❄ ❄

F6

Settlement of product
cost collector

F7

Settlement of cost
object hierarchy

❄ ❄

∧
......
............

..
......
......

❄

Product costs are
to be settled

❄

Product costs are
to be settled

❄
∧

......
............

..
......
......

❄F6

Settlement of product
cost collector

❄
Product cost

collector settled

✲

❄ F7

Settlement of cost
object hierarchy

❄
Cost object

hierarchy settled

✛∧
......
............

..
......
......

❄
F5

Product cost analysis in
product cost by period

❄
Measures taken based

on variances

Figure 1: (Left) EPC for Period-End Closing: Periodic Product Cost Controlling taken from the SAP
Reference Model [KT98] (Lower right) Specification of forbidden behavior as EPC

235

For such a business scenario as outlined above, it is important that business analysts are
allowed to specify forbidden behavior in a representation with whom they are familiar.
The head of controlling defines a process fragment that captures the forbidden behavior as
an EPC: after the start event, the settlement activities are executed followed by the analysis
activities. Figure 1 (lower right) gives this forbidden behavior as an EPC. Please note that
the specification of such forbidden behavior does not require any modification or extension
neither to EPC syntax nor semantics. The aim of the subsequent sections is to consider
the implemented EPC process and the forbidden behavior both specified as an EPC as
input to an analysis technique that allows a respective verification. The Semantic Process
Language (SPL) and Module nets build the foundation of our proposed technique.

3 Theoretical Foundation

The Semantic Process Language (SPL) introduced in [Sim05] is a formal language to
specify wanted and forbidden behavior. Such specifications can then be verified against a
respective implementation with the aid of (binary) operands provided by SPL. Since the
SPL semantics are defined via Petri nets, respective verification techniques can also be
applied to other process modeling approaches with comparable concepts. We apply them
to the EPC example of Section 2.

Modules are the words or formulas of SPL. They define sets of processes. In a process,
actions occur or are prohibited in a sequential order. Modules, moreover, support the
definition of alternative, concurrent and iterated behavior. The semantics of modules are
defined via their Petri net implementations. For this, canonical building rules take modules
as input and generate Module nets as output. Specific firing sequences of these nets (their
processes) are then interpreted as processes of the implemented modules. Figure 2 shows
the relationship between the concepts.

................................
........
.........

.
........
.........

.

.........
........
...

......... Sequence over
elementary processes

................................
........
.........

.
........
.........

.

.........
........
...

.........

Sequential processes

................................
........
.........

.
........
.........

.

.........
........
...

......... Non-sequential
modules

................................
........
.........

.
........
.........

.

.........
........
...

......... Processes in
Module nets

................................
........
.........

.
........
.........

.

.........
........
...

.........

Module nets. ... ✲

implemented
by

✲✛

corresponding
concepts

❄

via Module nets
interpreted by

.

.........

.........

.........

.........

.........

.........

.........

.........

........

❄

interpreted
by

.

............
............

............
............

............
............

............
............

..........

✠

interpreted
by

.

............
............

............
............

............
............

............
............

..........

❘

interpreted
by

Figure 2: Relationship between the concepts of the paper

Within Module nets, the firing of an explicit start transition with empty preset marks the
236

beginning of each process. Its termination is indicated by the firing of an explicit goal
transition with empty postset which reproduces the empty initial marking. In a process,
start and goal transition are only allowed to occur exactly once. All other transitions are
associated to sets of actions. The firing of these transitions is interpreted as the occurrence
or prohibition of these related actions.

Module nets are closely related to Workflow nets where an initial start marking is trans-
formed into a specific goal marking which implicitly means the reproduction of the empty
initial marking in the remaining of the net. Also here, the firing of the remaining transi-
tions is interpreted as the occurrence of actions within a workflow. Prohibition of actions
is no intended operation of Workflow nets.

For proving process properties within modules, the and-operator is of central importance
which is implemented by joining the participating Module nets. Hereby, equally named
transitions are merged into a single one. Moreover, the concurrent occurrence and prohi-
bition of actions symbolized by two transitions is prevented with the aid of conflict places
between them. For technical details refer to [Sim06]. The resulting net, in principle,
specifies the intersection of the process sets of the participating modules (or Module nets,
respectively). It can therefore be used for proving wanted and forbidden behavior. We will
concentrate on forbidden behavior in the following.

Assume, MI is a module describing an implemented business process and MF is a module
specifying forbidden behavior, i.e. processes that should not occur in the implementation
MI . Now module MI!MF is defined (in principle) as the intersection of the processes
of MI and MF and is calculated by joining the module net representations of these two
modules. If the result does not contain any process (i.e. no firing sequence exists which
reproduces the empty initial marking by firing start and goal transition exactly once), then
the implementation MI fulfills the specification MF . Otherwise, if there exist processes
in MI!MF , then MI must include processes which are specified by MF as unwanted. In
this case, the implemented business process described by MI must be changed.

In order to apply this idea also to EPCs, we firstly must transform a given EPC into a
Module net. Although this is partially possible as demonstrated in [SD04], such a trans-
formation has some restrictions:

• Due to the non-local interpretation of some EPC elements (especially of the or-
connector), the elements of an EPC cannot simply be mapped into Petri net elements
in general.

• While places in Petri nets only have an intrinsic meaning for the model, events
within EPCs have a meaning which is related to the modeled domain. These con-
cepts are therefore in principle hardly transformed into each other. For details see
e.g. [DA04, MNN05b].

Independently from these general considerations, we can transform structural aspects of
EPCs into Module net concepts, i.e. we do not resolve the semantics of event inscriptions
in the Petri net transformation. Nonetheless, a meaningful interpretation of the transfor-
mation result is possible as the example shows.

237

4 Verification Process and its Application to the Example

In order to verify the EPC example of Figure 1 (left) against the specification of the forbid-
den behavior depicted as an EPC in Figure 1 (lower right), we must transform both EPCs
into Module nets first. As mentioned in the previous section, our transformation only takes
the EPC structure as input and does not interpret the meaning of the events. Moreover, our
transformation benefits from the absence of an or-connector in the considered example
which allows us to do the transformation element by element.

EPC of the
implemented

workflow
✲

Module net of
the implemented

workflow ❥

EPC of the
specified

forbidden behavior
✲

Module net of
the specified

forbidden behavior

✯

◃▹: Join of
the models

✲ Interpretation
of the result

Figure 3: Phases of the verification approach

After this transformation, we take the Module net representations of the EPCs and join
them. The resulting net, then, must not allow the execution of any process without con-
tradicting the specification of the forbidden behavior. Depending on the result, we draw
our conclusions concerning our considered EPC models. Figure 3 shows the phases of our
approach in a diagram.

start
❄

........
........

..
........
........

❄
F1

❄
........

........
..

........
........

❄
F2

❄
........

........
..

........
........

❄
F3

❄
........

........
..

........
........

✲

❄
........

........
..

........
........

❄
F4

❄
........

........
..

........
........

✛F5

❄
........

........
..

........
........

✲

❄
........

........
..

........
........

❄
F6

❄
........

........
..

........
........

❄

❄
........

........
..

........
........

❄
F7

❄
........

........
..

........
........

✛goal

start

❄
........

........
..

........
........

❄
F6

❄
........

........
..

........
........

✲

❄
........

........
..

........
........

❄
F7

❄
........

........
..

........
........

✛F5

❄
........

........
..

........
........

❄
goal

Figure 4: Module net transformation of the implemented workflow and the specification of the
forbidden behavior

238

Figure 4 (on the previous page) shows the Module net transformation of the EPCs of
Figure 1 in a single diagram. While in the net of the implemented workflow (left) functions
F6 and F7 occur concurrently to the remaining functions except F1, in the specification
(right) function F5 must occur afterwards.

Figure 5 shows the join of both Module nets where redundant and implicit places have been
left away. Since there exist firing sequences which reproduce the empty initial marking
by firing start and goal once (for example ⟨start, F1, F2, F3, F6, F4, F7, F5, goal⟩),
we can conclude on the following: the (structure of the) EPC model of the implemented
workflow does not rule out that the settlement occurs before the final product cost analysis
has been conducted. Consequently, the implemented workflow must be changed in order
to fulfill the new management policy.

start
❄

........
........

..
........
........

❄
F1

❄
........

........
..

........
........

❄
F2

❄
........

........
..

........
........

❄
F3

❄
........

........
..

........
........

✲

❄
........

........
..

........
........

❄
F4

❄
........

........
..

........
........

✛
F5

❄
........

........
..

........
........

❄
........

........
..

........
........

❄
F6

❄
........

........
..

........
........ ✲

❄
........

........
..

........
........

❄
F7

❄
........

........
..

........
........✛

goal

Figure 5: Join of implemented workflow and specified forbidden behavior

5 Related Work

Mappings to Petri nets (like those discussed in [Kin04]) play an important role for the
application of formal analysis techniques for EPCs. Some work is especially dedicated to
verification of EPCs. Dehnert presents an approach for the derivation of sound Workflow
nets from EPCs. The original EPC specification is refined in a stepwise manner based on
the relax-soundness and robustness criteria of the underlying Workflow net [DA04]. A
Workflow net is relaxed-sound if every transition participates in a proper case. It is weaker
than soundness [Aal98] that requires each reachable state to always lead to a proper ter-
minatation of the process. With techniques known from controller synthesis it is possible
to restrict relaxed sound Workflow nets to sound behavior [Deh03]. Van Dongen et al.
define an approach for the interactive verification of EPCs based on reduction rules and

239

a mapping to Petri Nets [DAW05]. The idea is to cut off structured blocks of EPCs and
map the remaining model to Petri nets. The user is then asked to interactively eliminate
undesirable execution paths. This technique is applied for the analysis of parts of the SAP
reference model. Mendling et al. present a transformation of yEPCs to YAWL which is
also applicable for standard EPCs [MNN05a, MMN06]. This transformation allows for-
mal analysis with analysis tools such as WofYAWL [VAH05]. All these three approaches
have in common that they consider only the EPC implementation as input for the analysis.
Our work presented in this paper takes an EPC implementation and an EPC specification
of forbidden behavior as input for a verification approach based on Module nets. This
approach is unique as it covers verification of forbidden behavior in EPCs.

A more general line of related research is dedicated to the verification of dynamic systems
in automatic control. It is, however, only partially applicable to the EPC models. In
dynamic control, research aims to precisely specify systems with the aid of Petri nets
[ZV99]. Hereby, controller and the system to be controlled are either defined separately
from each other [Sim01], or the controller is synthesized from the system’s specification
and a given set of forbidden state which the system may never reach [RW87b, RW87a].
Synthesis and verification can then be generalized to the question whether specific states
or state sequences (in terms of markings and follower markings) may be reached. Model
checking techniques based on temporal logic help to solve this question [Bra91, Sch02].
However, they all demand expertise on formal specification languages, how to use formal
model checking algorithms, and how to interpret the results.

Process algebras are used little for business processes modeling since they do not properly
support visualization [Bas03, p. 382] typically required by business analysts. Moreover, it
is not clear whether they are expressive enough to describe all kinds of business process
problems [Aal05] - although workflow patterns could be defined in [PW05].

The findings on soundness of Workflow nets (already mentioned above) are only partially
transferrable to EPCs. Since they are not suggested as an execution language for workflow
management systems (due to a non-local interpretation of the models [Kin04]), other more
process oriented properties like the once discussed in Section 2 are of major importance.

6 Conclusion

This paper presents a novel approach for the verification of forbidden behavior in EPCs.
Based on a running example of a process model from the SAP reference model, we pre-
sented a mapping to Module nets for this purpose. Furthermore, we demonstrated how
the join operator of Module nets can be used to verify forbidden behavior of an EPC. The
presented approach supports the modeling of both: normative business processes as they
are defined in an EPC business process model and specifications of undesired behavior. In
opposite to model checking or process algebra, a single representation (in this case EPCs)
is used. The presented transformation into Module nets could be conducted by a tool
automatically and without confronting a user with these intermediary results.

A weakness of the presented approach is the transformation of the EPC models into Mod-
ule nets since it does not interpret the intention of event inscriptions used within the EPC

240

model - experience shows that this typically requires dedicated domain knowledge. Con-
sequently, forbidden behavior might be prohibited by these events although the EPC struc-
ture would allow it. Since our approach recognizes only the structural possibility of forbid-
den behavior, it is more restrictive than necessary. We, however, assume that controlling
the control flow in EPCs over events instead of structural operands is an indicator that
restructuring the process is useful. Our future work on specification and verification of
forbidden behavior with EPCs will be on immediately applying our method to the original
EPC models. A particular challenge will be the definition of a join for or-connectors.

References

[Aal98] W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 1998.

[Aal05] W. M. P. van der Aalst. Pi calculus versus Petri nets: Let us eat ”humble pie” rather
than further inflate the ”Pi hype”. BPTrends, 3(5):1–11, 2005.

[Bas03] T. Basten. Verifying Petri net Models using Process algebra. In C. Girault and R. Valk,
editors, Petri nets for Systems Engineering, chapter 16.5. Springer, Berlin, 2003.

[Bra91] J. C. Bradfield. Proving Temporal Properties of Petri Nets. In Advances in Petri Nets,
LNCS 524, 1991.

[BS96] J. Becker and R. Schütte, editors. Handelsinformationssysteme. Verlag Moderne Indus-
trie, Landsberg/Lech, 1996.

[DA04] J. Dehnert and W. M. P. van der Aalst. Bridging The Gap Between Business Models
And Workflow Specifications. Int. J. Cooperative Inf. Syst., 13(3):289–332, 2004.

[DAW05] B. F. van Dongen, W. M. P. van der Aalst and H. M. W.Verbeek. Verification of EPCs:
Using Reduction Rules and Petri Nets. In O. Pastor and J. F. Cunha, editors, Proc. Ad-
vanced Information Systems Engineering (CAiSE), LNCS 3520, pages 372–386, Porto,
Portugal, June 13-17, 2005. Springer.

[Deh03] J. Dehnert. A Methodology for Workflow Modeling - From business process modeling
towards sound workflow specification. PhD thesis, TU Berlin, 2003.

[Kin04] E. Kindler. On the semantics of EPCs: A Framework for Resolving the vicious circle. In
J. Desel, B. Pernici and M. Weske, editors, Proc. Business Process Management (BPM
2004), LNCS 3080, pages 82–97, Potsdam, Germany, 2004. Springer.

[KM94] G. Keller and S. Meinhardt. SAP R/3 Analyzer. Walldorf, 1994. cited after [Sch96].

[KNS92] G. Keller, M. Nüttgens and A.-W. Scheer. Semantische Prozeßmodellierung auf der
Basis Ereignisgesteuerter Prozeßketten (EPK). Technical Report 89, Universität des
Saarlandes, Institut für Wirtschaftsinformatik, Saarbrücken, 1992.

[KT98] G. Keller and T. Teufel. SAP(R) R/3 Process Oriented Implementation: Iterative Pro-
cess Prototyping. Addison-Wesley, 1998.

[MMN06] J. Mendling, M. Moser and G. Neumann. Transformation of yEPC Business Process
Models to YAWL. In Proc. ACM Symp. on Applied Computing (SAC). ACM, 2006.

241

[MNN05a] J. Mendling, G. Neumann and M. Nüttgens. Yet Another Event-Driven Process Chain.
In W. M. P. van der Aalst, B. Benatallah, F. Casati and F. Curbera, editors, Proc. Busi-
ness Process Management (BPM 2005), LNCS 3649, pages 428–433, Nancy, France,
Sep. 5-8, 2005. Springer.

[MNN05b] J. Mendling, G. Neumann and M. Nüttgens. Yet Another Event-driven Process Chain
- Modeling Workflow Patterns with yEPCs. Enterprise Modelling and Information
Systems Architectures - an International Journal, 1(1):3–13, October 2005.

[PW05] F. Puhlmann and M. Weske. Using the π-Calculus for Formalizing Workflow Patterns.
In W. M. P. van der Aalst, B. Benatallah, F. Casati and F. Curbera, editors, Business Pro-
cess Management (BPM 2005), LNCS 3649, 153-168, Nancy, France, 2005. Springer.

[RW87a] P. J. Ramadge and W. M. Wonham. Modular Feedback Logic for Discrete Event Sys-
tems. SIAM Journal of Control and Optimization, 25(5):1202–1218, 1987.

[RW87b] P. J. Ramadge and W. M. Wonham. Supervisory Control of a Class of Discrete Event
Processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[Sch96] A.-W. Scheer. Modellunterstützung für das kosten-orientierte Geschäfsprozessmanage-
ment. In C. Berkau and P. Hirschmann, editors, Kostenorientiertes Geschäftsprozess-
management, pages 3–25. Vahlen, München, 1996.

[Sch00] A.-W. Scheer. ARIS - Business Process Frameworks. Springer, Berlin3rd ed. 2000.

[Sch02] K. Schmidt. Explicit State Space Verification. Habilitationsschrift, Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Dec 2002.

[SD04] C. Simon and J. Dehnert. From Business Process Fragments to Workflow Definitions.
In F. Feltz, A. Oberweis and B. Otjacques, editors, EMISA 2004 - Informationssysteme
im E-Business und E-Government, LNI P-56, pages 95–106, Luxemburg, 2004.

[Sim01] C. Simon. Developing Software Controllers with Petri Nets and a Logic of Actions. In
IEEE Int. Conference on Robotics and Automation, ICRA 2001, Seoul, Korea, 2001.

[Sim05] C. Simon. Incremental Development of Business Process Models. In EMISA 2005,
Development Methods for Information Systems and their Application, Klagenfurt, 2005.
222-235.

[Sim06] C. Simon. Integration of Planning and Production Processes. In Mathmod 2006, Special
Session: Petrinets, Wien, Österreich, 2006.

[SL05] K. Sarshar and P. Loos. Comparing the Control-Flow of EPC and Petri Net from
tha End-User Perspective. In W. M. P. Aalst, van der, B. Benatallah, F. Casati and
F. Curbera, editors, Proc. Business Process Management (BPM 2005), LNCS 3649,
pages 434–439, Nancy, France, Sep. 5-8, 2005. Springer.

[VAH05] H. M. W. Verbeek, W. M. P. van der Aalst and A. H. M. ter Hofstede. Verifying Work-
flows with Cancellation Regions and OR-joins: An Approach Based on Invariants. Beta
Working Paper Series 156, Eindhoven University of Technology, http://fp.tm.tue.nl/
beta/publications/working

[ZV99] M. Zhou and K. Venkatesh. Modeling, Simulation, and Control of Flexible Manufac-
turing Systems - A Petri net Approach, volume 6 of Intelligent Control and Intelligent
Automation. World Scientific, Singapore, New Jersey, 1999.

242

