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Abstract: Security for the mostly constrained devices forming the IoT is an active field of research.
In this paper, we propose two CoAP Options, HMAC1/HMAC2 and Crypt1/Crypt2 complementing
our previous work on Lightweight Capability Based Access Control (LCap). This results in a
lightweight, flexible, and complete solution for application layer security for CoAP nodes with
severely limited memory. In our evaluation, we show that a pure software implementation without
cryptographic hardware acceleration is feasible for practical use on highly constrained IoT devices.
Due to mostly idiomatic use of cryptography, existing security analyses apply to our proposal. Our
security framework was designed with ample focus on reducing the complexity of the system, which
allows lean implementations and simplifies security reviews. This makes LCap based security a good
fit for security in the IoT.

1 Introduction

An ever increasing number of daily objects are equipped with a microcontroller and network
connectivity to form SmartX environments. The architecture of the Internet of Things (IoT),
in which any given IoT node can communicate with any other, is highly promising for such
smart environmentsȷ This ubiquitous availability paves the way for spontaneous cooperation
between any willing IoT nodes and allows for emergent systems to be formed. The other side
of the coin is that the risk of abuse of IoT nodes is capital. In order to exploit the potential
of this architecture while controlling the risk, efforts on providing security and privacy for
the IoT are being made in both academia and industry [TB19]. In this paper, a complete
application layer security stack is proposed to join this effort.

The remainder of this paper is structured as followsȷ Promising work on application layer
security for IoT nodes is presented in Section 2. In Section « we propose the HMAC1/HMAC2
and the Crypt1/Crypt2 CoAP Options to provide integrity, authenticity, data freshness, and
confidentiality for messages send using CoAP [SHB1»]. These options are complementary
to our previously proposed solution for access control, LCap [BG18], and combined provide
a complete security framework for CoAP nodes. The impact the use of our proposed security
framework has on response time and required CPU instruction is evaluated in Section ». In
Section 5, a security evaluation is performed. Finally, a conclusion is drawn in Section 6.
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2 Related Work

In the following, the most promising work on access layer information security targeting
IoT nodes of class C2 (using RFC 7228 [BEK1»] terminology) and is presented below.

2.1 OAuth

The IETF working group Authentication and Authorization for Constrained Environments
(ACE) is strongly engaged in work on information security for IoT devices. One approach to
access control is the adaption of OAuth for the IoT [Se20]. For this, efficient encodings of
OAuth entities such as the CBOR Web Token [Jo18] to encode claims are used. Claeys et
al. used these building blocks to employ OAuth 1.0a on IoT nodes [CRT18]. They were
able to implement core components of their proposal on a class C2 device (using RFC
7228 [BEK1»] terminology). However, without a complete implementation the feasibility
of their proposal cannot be conclusively verified. In addition, applicability to the more
constrained classes C1 and C0 IoT nodes is crucial for an access control solution for the
IoT. So far, it remains unclear whether OAuth is lightweight enough to be run on the more
constrained IoT nodes below class C2.

2.2 Object Security for Constrained RESTful Environments (OSCORE)

Object Security for Constrained RESTful Environments (OSCORE) [Se19] implements
application layer security for CoAP relying on CBOR Object Signing and Encryption
(COSE) [Sc17]. It primarily targets CoAP nodes communicating over proxies with either
CoAP or CoAP-mappable HTTP endpoints. In this context secure communication channels
on the transport layer have to terminate at the proxy to enable it to perform required
modification of the forwarded messages, such as the conversion between CoAP and HTTP.
OSCORE moves the actual request and response into the payload using Concise Binary
Object Representation (CBOR) for serialization and COSE for security. Only header fields
and options required for conformance with CoAP/HTTP or required to be accessible by
proxies are additionally exposed in the message carrying an OSCORE request/response.
For access control, OSCORE relies on supplementary approaches such as OAuth.

2.3 Capability Based Access Control

The basic idea of Capability Based Access Control (CBAC) is the separation of the decision
on and the enforcement of access. It puts the client in charge of proactively obtaining an
unforgeable capability token that proves access rights. The authority issuing this token is
thus deciding on the access. A server receiving a capability token is only enforcing this
decision by verifying the validity, authenticity, integrity, and genuineness of the token.
The basic idea was first introduced by Saltzer et al. [SS75] in the context of processes
requesting access to resources managed by an operating system. Mahalle et al. [Ma12]
proposed transferring this approach as described above to network communication. Chen et
al. [CGH16] proposed using a CoAP Option to embed the capability token in the request.

12«8 Marian Buschsieweke, Mesut Güneş



2.4 Delegated CoAP Authentication and Authorization Framework (DCAF)

Gerdes et al. [GBB15] proposed to let constrained servers and clients delegate authorization
to a Server Authorization Manager (SAM) and a Client Authorization Manager (CAM),
respectively. In the Delegated CoAP Authentication and Authorization Framework (DCAF),
an access ticket is issued to the client once the authorization managers agree on granting
access. Exactly like a capability token, this ticket proves granted access to a requested
resource. But in addition, DCAF delegates key negotiation to the authorization managers,
so that a DTLS channel will be established using this pre-shared key. Thus, DCAF provides
a full security stack with access control being implemented on the application layer, and
integrity, authenticity and confidentiality on the transport layer.

2.5 Lightweight Capability Based Access Control (LCap)

Buschsieweke and Güneş introduced the Lightweight Capability Based Access Control
(LCap) [BG17; BG18], a lightweight, scalable and flexible access control for IoT nodes.
Unlike other approaches for CBAC, LCap relies solely on symmetric cryptography. In
LCap, individual keys are exchanged between CoAP servers and Token Authorities. These
keys are used to sign LCap Tokens using a classic HMAC scheme. In addition, every LCap
Token contains an individual Token Key that is encrypted using the keys shared with the
Token Authorities. This zero round trip key exchange of the Token Key allows the use of
symmetric cryptography while the number of pre-shared keys a CoAP server needs to store
remain constant with growing number of authorized CoAP clients; and can be as low as
one. CoAP clients have to provide a valid LCap Token in order to access a resource. As
proof of possession of the LCap Token, a client proves knowledge of the plain text of the
Token Key, whose cipher text is embedded in the LCap Token. The server can decrypt the
embedded encrypted Token Key using the keys exchanged with the issuing Token Authority.
LCap additionally provides authenticity and integrity by using the Token Key to attach an
HMAC protecting the CoAP request. Replay attacks are prevented and data freshness is
enforced by adding a slow ticking time stamp, the LCap Epochȷ Within the validity of an
LCap Epoch CoAP’s duplicate detection will reject replays as duplicates. LCap uses CoAP
Options nested within the LCap Option to encode additional side conditions that need to be
met in order to gain access. These Suboptions can be marked as critical and elective in the
same manner as CoAP Options, so that new side conditions can be defined in a backward
compatible manner.

3 LCap Based Application Layer Security

LCap by itself implements access control and additionally provides authenticity, integrity,
and data freshness for the request. This paper introduces two additional groups of CoAP
Optionsȷ The HMAC Options and the Payload Encryption Options. The former provides
the same security guarantees for the response, the latter enables confidentiality (for both
requests and responses).
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Name # Type Description

Time1 1 uint2 Timestamp the HMAC was calculated
Key ID 9 uint3 ID of key used in the HMAC
Algo 11 uint3 ID of the HMAC algorithm used

1. This Suboption is not used for HMAC Options in negotiation mode.
2. Unix time stamp.
«. Value is 0 if Suboption is missing.

Tab. 1ȷ List of Suboptions used in HMAC1 and HMAC2 Options

0 1 2 « » 5 6 7 8 9 10 11 12 1« 1» 15 16 17 18 19 20 21 22 2« 2» 25 26 27 28 29 «0 «1

Suboptions (variable Size) 0xff

HMAC («2 Byte)

. . .

Fig. 1ȷ Format of the HMAC1/HMAC2 Option when carrying an HMAC

3.1 Integrity and Authenticity Protection

The HMAC Options use a simple HMAC-Scheme [KBC97] to protect the integrity and
authenticity of the message carrying them. Similar to the terminology in the CoAP Block-
Wise Transfer [BS16], the HMAC2 Option always refers to the response and the HMAC1
Option refers to the request. The HMAC1 Option is incompatible with the use of LCap in
requests and is intended as a lightweight alternative to LCap in scenarios access control is
not needed. The HMAC2 Option complements the use of LCap by protecting the response.

An HMAC2 Option in a response or an HMAC1 Option in a request is referred to as an
HMAC Option in HMAC mode. In this mode, HMAC Options contain an HMAC value
to protect the integrity of the IP address and port of both sender and receiver, as well
as the whole content of the CoAP message. The cryptographic parameters used for the
calculation of the HMAC and the time stamp when the message was created are given using
the Suboptions in Fig. 1. These Suboptions use the CoAP Option Format [SHB1»], but are
stored within the data section of a regular CoAP Option. The encoding of an HMAC Option
in HMAC mode is depicted in Tab. 1.

An HMAC2 Option in a request or an HMAC1 Option in a response is referred to as an
HMAC Option in negotiation mode. As this name implies, these options are used to negotiate
cryptographic parameters of the HMAC, rather than carrying an HMAC. The negotiation
mode is particularly useful if the server (or client) defaults to a cryptographic hash algorithm
not supported by the client (or server). For obvious reasons, neither the Time Suboption nor
an HMAC value is added when the HMAC Options are used for negotiation.

The BLAKE2s-256 [Au1»] cryptographic hash function is referred to with ID 0 as Algo.
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0 1 2 « » 5 6 7

M CA HA

(a) Format of an HMAC-Option sized 1 B

0 1 2 « » 5 6 7 8 9 10 11 12 1« 1» 15

M CA HA Key Pad

(b) Format of an HMAC-Option sized 2 B

0 1 2 « » 5 6 7 8 9 10 11 12 1« 1» 15 16 17 18 19 20 21 22 2«

M CA HA Key Pad

(c) Format of an HMAC-Option sized 3 B

M Mode ID, specifies the block cipher mode of operation
CA Cipher ID, specifies the block cipher algorithm to use
HA Hash ID, specifies the cryptographic hash to use to generate the initialization vector (IV)
Key Key ID, specifies the key to use for encryption (defaults to zero)
Pad Padding, specifies the number of padding bytes added to the input (defaults to zero)

Fig. 2ȷ Formats of the Crypt1/Crypt2 Option depending on the size of the CoAP Option

Alg. 1: Algorithm used to derive the IV

Data: shared key as key, message as msg, LCap Epoch or HMAC time stamp as nonce
Result: derived IV
return cryptoash(key, nonce, msg.token, msg.message_id)

A value of 0 in the Key ID is only allowed in the HMAC2 Option and refers to the same
key used to protect the integrity of the request. In case the request used an LCap Token, the
Token Key is referred to with Key ID 0.

3.2 Confidentiality of the Payload

Payload Encryption of CoAP messages is provided by the Crypt1 and Crypt2 Options. The
naming convention is the same as used for the HMAC Optionsȷ Crypt1 always refers to the
request and Crypt2 to the response. Again, both CoAP Options are allowed for both request
and response.

A Crypt1 Option in a request or a Crypt2 Option in a response is referred to as Crypt Option
in encryption mode. In this mode, the option specifies the cryptographic parameters used for
encrypting the payload of the CoAP message. The encoding of Crypt1 and Crypt2 Options
is depicted in Fig. 2.

A Crypt1 Option in a response or a Crypt2 Option in a request is referred to as Crypt Option
in negotiation mode. Again, these are used to indicate the preferred configuration to the
communication partner. The format of the Crypt Option in encryption mode as shown in
Fig. 2 is also used in negotiation mode. However, the padding is always set to zero during
negotiation.

Using Payload Encryption implies the use of either the LCap Option or the HMAC1/HMAC2.
The motivation for this is on the one hand that there is practically no use case for
confidentiality without integrity and authenticity. On the other hand, this allows reusing the
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Fig. «ȷ Benchmark for different security settings when using AES-128 as block cipher, BLAKE2s-256
as cryptographic hash function, and CFB as mode of operation

replay protection of the LCap Option or the HMAC Options to compute IVs, rather than
increasing the size of CoAP messages by explicitly transferring it. The cryptographic hash
function specified using Hash ID is used to compute the IV as shown in Alg. 1. The result
is truncated as needed for the selected block cipher.

A Cipher ID of 0 refers to AES-128, a Mode ID of 0 specifies cipher feedback (CFB) as
mode of operation, and a Key ID of 0 refers to the same key that was used in the HMAC
Option or in the LCap Token that was used to protect the integrity of the message.

4 Performance Evaluation

4.1 Benchmark Setup

A desktop class PC was used to run both the CoAP client and server, so that they could
communicate using the local network device. Thus, the communication is not affected
by network congestion and channel properties. The client sent 32 767 PUT requests to the
URI-Path /led with the payloads 1 and 0 in turns. For each of the following security
parameters benchmarks were runȷ

1. No application layer security for both request and response
2. LCap-Option in the request, HMAC2-Option in the response
«. LCap- and Crypt1-Option in the request, HMAC2- and Crypt2-Option in the response

For each configuration a benchmark was run with different combinations of the used block
cipher, the used mode of operation, and the used cryptographic hash function. The response
time was measured and the total number of required CPU instructions the server required to
handle all 32 767 requests were recorded using callgrind.

12»2 Marian Buschsieweke, Mesut Güneş



4.2 Benchmark Results

As shown in Fig. «a, the required CPU instructions increase by a factor of ≈ 11.7 when
protecting the request using the LCap-Option and the response using the HMAC2-Option.
When additionally the payload of both request and response are encrypted, the CPU
instruction increase by a factor of ≈ 14.5. The additionally required CPU instructions are
mostly spent on the cryptographic primitives, namely the used block cipher and the used
cryptographic hash function. The remaining additional CPU instructions are required to
construct and parse the additional CoAP Options as well as the verification of the LCap
attributes such as whether the token is used within its period of validity.

In Fig. «b the response time depending on the used security options is shown. These box
plots indicate that on desktop class hardware the impact caused by the use of application
layer security is completely negligible. Apparently, the response time is I/O bound for every
setting on the used hardware.

5 Security Evaluation

5.1 Attack Model

In the following, the security of the Payload Encryption and the HMAC1/HMAC2 Options
proposed in the paper are analyzed. For that it as assumed that the adversary is able to
intercept any message, record any message, and inject and alter messages at will. It is
however assumed that the adversary is unable to compromise any of the communicating
nodes and no implementation flaws are present in communicating systems, including those
leaking details on side channels. Finally, it is assumed that it is infeasible for the adversary
to break the security of the used cryptographic hash function and the used block cipher.

This attack model, thus, rules out the increasingly relevant attack vector of side channel
attacks as well as any attack on the used cryptographic primitives. The reason for this
is that side channel attacks inherently target a specific implementation rather than the
actual specification this paper presents. Hence, these attacks are out of scope of this paper.
Similarly, the security of cryptographic building blocks is out of scope of this paper. Instead
we refer to the plethora of cryptanalysis published for the widely used block ciphers and
cryptographic hash functions.

5.2 Security Evaluation of the Payload Encryption

In Fig. »a an attack tree is shown that analyzes potential attacks on the confidentiality of the
payload when using Payload Encryption. As Payload Encryption, with the exception of how
the IV is obtained, is an idiomatic use of symmetric encryption, plenty of existing security
analysis is present. Thus, most attack vectors apply to symmetric cryptography in general
and are excluded from the adversary abilities in Section 5.1 as out of scope. The major
difference to textbook use of symmetric cryptography is the computation of the IV, rather
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Goal of adversary Not allowed in attack model Impossible / Infeasible Possible / Feasible

Reveal
(parts of)
payload

OR

Compromise
system

Side channel
attack

Decrypt
payload

Guess
plain text

OR

Obtain
key

Break block
cipher

Stream cipher
& reused key

AND

CTR/OFB/...
is used

Reuse
IV

OR

Break security
of crypt. hash

Same input
to crypt. hash

OR

Verify specific plain text
matches cipher text

Detect repeated use
of same plain text

AND

Predict
IV

Chosen plain
text attack

OR

Calculate IV

AND

Predict
Message ID

Predict
Message Token

Predict
Nonce

OR

ECB is
used

(a) Attack tree for Payload Encryption

Alter
message

undetected

OR

Calculate
HMAC

Alter message without
change of HMAC

Compromise
system

OR

Obtain
key

Length extension
attack

Break security
of crypt. hash

Break collision
resistance

Forge
message

OR

Replay legitimate
message

OR

Update
time stamp

Mess with receivers
system timer

Break data
freshness

AND

Intercept
original message

(b) Attack tree for HMAC1/HMAC2 Options

Fig. »ȷ Attack trees analyzing attack vectors on the Payload Encryption and HMAC1/HMAC2 Options
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than choosing it randomly (using a high entropy source of randomness) and transferring it
explicitly. With the use of ECB as block cipher mode of operation in Payload Encryption
being forbidden, all remaining attack vectors listed in »a depend on either the same IV to be
generated more than once or being predictable by the adversary. Predicting the IV requires
predicting the cryptographic hash of the concatenation of the key, the “Nonce” (either the
Epoch of the LCap Option or the time stamp of the HMAC-Option used together with the
Payload Encryption), the Message Token, and the Message ID. With the exception of the
key, all parts of the input are easy to predict by an adversary. Assuming enough bits in the
key are unknown to the adversary, it still is infeasible for the adversary to predict the hash
due to the security guarantees of the cryptographic hash function.

As CoAP relies on the Message ID for duplicate detection, the same Message ID cannot be
reused for the duration the communication partner is expecting duplicates. By the time the
same Message ID can be reused again, the “Nonce” (the LCap Epoch or the HMAC) time
stamp is different. Thus, the IV of different messages is never calculated using the same
input. The chance of a cryptographic hash function with a high collision resistance yielding
the same hash value again for these distinct input values is therefore close enough to zero,
that it becomes infeasible for an adversary to count on this.

5.3 Security Evaluation of the HMAC1/HMAC2 Options

Possible attacks on the message integrity, authenticity or data freshness are analyzed in the
attack tree in Fig. »b. The HMAC Option relies on idiomatic use of a cryptographic hash
function that relies on the classic HMAC [KBC97] construct to prevent length extension
attacks, so that e.g. the SHA-256 hash function can securely be used. The addition of a time
stamp that is also covered by the HMAC, a receiver of a message protected by an HMAC
Option is able to determine and enforce the freshness of the received data.

6 Conclusion

In this paper we have complemented our existing work on LCap, a lightweight implementation
of Capability Based Access Control (CBAC) that additionally provides integrity, authenticity
and data freshness for CoAP requestsȷ We introduced the HMAC2 Option to extend the
same security to CoAP responses and proposed the Crypt1 / Crypt2 Option to provide
confidentiality by encrypting the payload of CoAP messages. As both constructs are
idiomatically applying symmetric cryptography to protect CoAP messages, preexisting
security analyses mostly apply to the introduced Payload Encryption and HMAC2 Option.
Hence, the security implications and best practises are well understood. In addition, we
provide a novel scheme to securely compute the initialization vector (IV) used for the
Payload Encryption, which frees communication partners of explicitly sending IVs. Our
performance evaluation shows that pure software implementations without cryptographic
accelerators perform well, making it suitable for use in highly constrained IoT devices. In
combination, LCap, HMAC2, and Payload Encryption form a complete application layer
security framework for constrained CoAP nodes.
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