
A Topology based Approach to Categorization of

Fingerprint Images

Andreas Aabrandt1, Martin Aastrup Olsen2 and Christoph Busch3

Department of Mathematics, Technical University of Denmark1

Center for Advanced Security Research Darmstadt2,3

andreas@liegroup.net1

martin.olsen@cased.de 2

christoph.busch@igd.fraunhofer.de3

Abstract: This paper discusses the use of betti numbers to characterize fingerprint
and iris images. The goal is to automatically separate fingerprint images from non-
fingerprint images; where non-fingerprint images of special interest are biometric sam-
ples which are not fingerprints. In this regard, an image is viewed as a triangulated
point cloud and the topology associated with this construct is summarized using its
first betti number - a number that indicates the number of distinct cycles in the trian-
gulation associated to the particular image. This number is then compared against the
first betti numbers of “n” prototype images in order to perform classification (“finger-
print” vs “non-fingerprint”). The proposed method is compared against SIVV (a tool
provided by NIST). Experimental results on fingerprint and iris databases demonstrate
the potential of the scheme.

1 Introduction

Recent developments in engineering and other sciences have presented the need for new

mathematical tools in order to tackle even the simplest manual tasks like categorization

of biometric samples. The human brain can easily distuingish between an iris scan and a

fingerprint image; yet doing so for millions of images will undoubtedly take too long to be

practically possible. So a need for automatic processing of images by means of computers

is present. This area of research requires skills from many different disciplines, including

mathematics, computer science and biometrics; where computer science and biometrics

are multi-disciplinary sciences.

Classical tools in mathematical analysis, like Fourier analysis, are often the primary tools

in applying mathematics to a given problem. Unfortunately requirements of continuity

and rigid geometric properties may not always be viable. Mathematicians have recently

been more active in refining considerably more advanced tools from mathematics to suit

applicational needs. The success of these efforts show promising results in areas like

cryptography, statistical mechanics and robotics, to name a few.

The purpose of this article is to present some results indicating the use of modern math-

ematics to tackle a concrete problem, namely categorization of fingerprint images from a
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database of mixed biometric samples. Instead of using representations like Fourier trans-

forms, a fingerprint will be represented as a network in 3-dimensional Euclidean space. In

topology, a network is called a cell complex which is a generalization of a triangulation.

Once a cell complex is constructed, it no longer matters how long the edges are or if the

cell complex is deformed into another geometric shape, provided edges cannot be crossed.

This means that the analysis will be the same if a given cell complex is equivalent to a trian-

gulation of a cube or if it is equivalent to a triangulation of a sphere. More so the choice of

triangulation is not important, e.g. using 18 or 36 triangles to cover a torus would yield the

same topology. Topology is sometimes referred to as rubber geometry because it studies

properties which persist throughout continuous deformation of objects; such deformations

are called homeomorphisms, which are continuous mappings of topological spaces with

continuous inverses. Metrics are obviously sensitive to such deformations and therefore

a metric is a geometric property. In topology it is not important how far two points are

from each other, what matters is how they are connected. In relation to biometric samples,

the main idea is to construct an information network, a cell complex, which accurately

captures features unique to the particular type of biometric sample, e.g. iris or fingerprint.

1.1 Related work

In 2009 Libert et al. published a detailed validation metric for fingerprint images us-

ing Fourier analysis [LGO09]. The peak height of a specially derived power spectrum

was found as the most significant classifier based on their analysis on multiple datasets.

Moreover applying a windowing function, specifically the blackman window function, the

accuracy of the Spectral Image Validation and Verification (SIVV) method was greatly im-

proved, see [LGO09]. The authors illustrated results by thresholding on the peak height.

In 2010 an analysis was conducted which is somewhat similar to the usage of the method

proposed here, see [SLL10].

The method SIVV, in its current implementation in NIST Biometric Image Software [NIST-

NBIS-2012], was used in this work as baseline algorithm to benchmark our own method.

2 Fundamentals of topology and homology

One of the most challenging aspects of the method proposed here is that the mathemati-

cal machinary for conducting such an analysis requires knowledge of algebraic topology,

specifically homology theory. These topics in mathematics are considered modern topics

which means they employ advanced algebraic methods developed as late as the second

half of the twentieth century. It is therefore recommended that the interested reader seek

information from one of the numerous textbooks on the subject. It is recommended that

the reader start with the article [Ghr08].

The way the method presented here differentiates from the usual methods in applying

mathematics is that instead of considering a function which maps some domain to some
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range, say the discrete Fourier transform; a sequence of functions Hn are to be consid-

ered. These functions work on both spaces and maps since they induce a structure on

the maps between two spaces. As an example consider the graph in figure 1. Denote the

triangulation by X.

v1

v2v3

ac

b

Figure 1: Example triangulation with three edges and three vertices.

Let C1(X) be a vector space spanned by the edges {a, b, c} and C0(X) the vector space

spanned by the vertices {v1, v2, v3}. Assume that the coefficients in the two vector spaces

are real numbers. Let the map

f : C1(X) → C0(X)

be one which sends edges of the graph to their vertices. In general homology theories there

are analog maps for sending surfaces to edges etc. but in the current context, where we

only study graphs, it will suffice to only consider the map f . The homology group H1(X)
consists of 1-dimensional loops in X. Homology ensures that loops in spaces commute,

e.g. it does not matter if one traverses paths abc−1 or b−1a−1c, i.e.

abc−1 = b−1a−1c,

where the inverse notation means traversing a path in the opposite direction of the arrows

in the graph. The elements in the kernel ker f of the map f are called cycles. The idea of

homology is to count distinct cycles regardless of starting point or direction taken. In the

above example both starting point and direction of the two traversals are different, yet the

cycle is the same. For a finite graph like X the first homology group is given by

H1(X) = ker f = {x ∈ C1(X) | f(x) = 0}.

A certain number is associated to each of the groups Hn(X). It is called the n’th betti

number and it is given by the rank of the n’th homology group,

βn = rankHn(X).

This number is equal to the number of distinct n-dimensional “holes” in the space. For the

example above, the betti numbers are β0 = 1, β1 = 1 and βn = 0 for n ≥ 2.

In relation to biometric samples, the betti number of special interest is β1. It is important to

note that a homology theory ensures that topological distinct spaces produce algebraically

distinct homology groups, in particular the set of all betti numbers are not the same for

topological distinct spaces.
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It should be clear that empirical data is not ideal, i.e. there will be some variation in

the observations made. In relation to fingerprints and the methodology proposed here, this

means that two biometric samples will most likely produce two distinct topological spaces,

even though the samples are acquired from the same source. As will be observed in a later

section, the variation in the population will typically be centered around a mean.

Since graphs are our primary focus of investigation (1-dimensional cell complexes) a much

simpler way of calculating homology can be used as opposed to the cases where surfaces

and the higher dimensional analogs are taken into account. First of all only one map is of

particular interest, namely the one sending edges to its corresponding boundary vertices.

This is exactly what we illustrated in the above example, yet the actual map is somewhat

unclear at this point. It happens that we can construct this linear map in such a way that the

transformation matrix become explicit. One definition of f could be to use the orientation

of the edges, e.g. define the boundary of an edge by a linear combination of the vertices of

the edge with the sign of the individual terms depending on orientation. Define the starting

vertex to have a negative coefficient and the ending vertex to have a positive coefficient.

Figure 2 illustrates the idea.

− +

Figure 2: Definition of boundary map.

With this definition the edges in X are mapped to their boundary by

f(a) = v2 − v1,

f(b) = v3 − v2,

f(c) = v3 − v1.

The map f can then be described by a matrix F given by

F =





−1 1 0
0 −1 1

−1 0 1



 ,

The kernel ker f of the map f is the null space of the matrix F. It is a subspace of C1(X)
and the dimension of this subspace is the betti number β1 of the graph in figure 1, i.e.

β1 = dimker f = 1.

We now state a simple relation without proof, which gives us a very easy way to compute

the betti number β1 of a finite graph, e.g. a 1-dimensional triangulation of a point cloud in

3-dimensional Euclidean space. For a graph it holds that

β1 = 1 + dimC1(X)− dimC0(X)

= 1 + (number of edges) − (number of vertices).

Finding the higher betti numbers in higher dimensional cell complexes requires more ad-

vanced constructions from homology theory.
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2.1 Application to biometric samples

Consider each grayscale image as a point cloud in R
3, one point per pixel, i.e. the first two

coordinates is the position of the pixel and the third coordinate is the grayscale intensity.

A special way of constructing a triangulation of a point cloud called a Witness complex

will be used, see [dSC04]. In loose terms, it limits the number of vertices and edges

in a triangulation by choosing the vertices according to distances to other vertices in a

point cloud. It is a cell complex where a small number of points from the point cloud are

choosen as vertices and edges are then constructed iteratively according to a set of criterias

as described in [dSC04].

Once the triangulation is constructed, the betti numbers are calculated using homology

and the metric will be constructed. For simplicity a weighted Euclidean metric is chosen.

Initially only two types of images are used, e.g. fingerprint or non-fingerprint. The non-

fingerprint database will be either face samples or iris scan samples.

Assume that a vector is given consisting of n numbers acquired from a sample of finger-

print images, each the 1st betti number of a fingerprint; one for each image in the sample.

Denote this vector by v and let the variance of v be denoted by σ2. Given an image, it is

possible to calculate the corresponding 1st betti number β1. Let x denote the vector where

each element is equal to this betti number for a given image.

Then for a fixed training set v, a metric can be constructed by

D(β1) = D(β1;x, v) =
1

σ

(

n
∑

i=1

(xi − vi)
2

)1/2

. (1)

For the topological method presented here, the metric in equation 1 is used. For every

image and corresponding 1st betti number β1, calculate two numbers: 1) the distance

Df (β1) to a sample set of fingerprints. 2) the distance Dg(β1) to the sample set of non-

fingerprints.

Now in order to be able to control the error rates of the overall analysis, a few simple

functions are introduced. The two functions are

F1(s, β1) = sDg(β1) and F2(s, β1) = (1− s)Df (β1) , s ∈ [0; 1].

Given a value of s, let F1 ≥ F2 determine a false match increase by 1. Otherwise a false

non match increase of 1. The proportion of the number of false matches (resp. false non

matches) with respect to the number of non-fingerprints (resp. fingerprints) is the corre-

sponding error rate. The value of s can be determined experimentally and thus depends on

the choice of training sets. The variable s is used to calculate the ROC curve in the section

presenting the results.

This method shall be thought of as a way to coarsely characterize a biometric sample or

rather a point cloud.
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3 Results

The results presented here will highlight both strengths and weaknesses of the method

derived from topology which will be denoted TOP and the already known method SIVV.

Some of the most interesting results are found when considering mixed biometric databases,

i.e. databases where both fingerprints, iris and other biometric samples are contained. In

order to see how the constructed metrics work on such databases when categorizing joint

data sets with various fingerprint databases a DET curve is determined and the equal error

rate EER is calculated.

Portions of the research in this article use the database CASIA-FingerprintV5 and CASIA-

IrisV4 collected by the Chinese Academy of Sciences’ Institute of Automation (CASIA),

see [oSIoAC]. A fingerprint database acquired by Association BioSecure is used and re-

ferred to here simply as Biosecure. Also used is the MCYT database involving fingerprints

which was collected in a project conducted in 2003, see [OGFAS+03].

All calculations are carried out on a computer running Linux (kernel 3.3.2-1) with a Quad-

core (3.10 GHz each) Intel Xeon E3-1225 processor and 4 GB memory. The software used

for computation are Javaplex version 4.0 and the SIVVUtility package which is part of

NIST Biometric Image Software version 4.0.1. All algorithms were run in parallel on three

of the cores due to the large number of images needed to be processed. User interfaces

have been rewritten in order to control output formats for both software packages.

3.1 General observations

There are a number of general observations to be made. The classifier used in this section

is the 1st betti number. Considering the betti number of fingerprint images yield a bell

shaped curve when approximating to the histogram in the figure below. A similar yet

skewed result is found for non-fingerprints. The databases used to produce figure 3 are the

CASIA-Fingerprint and CASIA-Iris databases.
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Figure 3: Histogram of the 1st betti numbers of CASIA fingerprint and iris images

These bell curve shapes, although one is skewed, may be a product of the method by which

the betti numbers are calculated.

3.2 Mixed biometric (iris vs. fingerprint) database

In this section an analysis of the method is done using the iris database CASIA-IrisV4, see

[oSIoAC]. The fingerprint databases are analyzed separately and the results are highlighted

in a table in the end of this section. To illustrate the difference in the betti numbers a couple

of examples are shown. The fingerprint is taken from the public database FVC2000Db2,

see [MMC+02], and the iris is the one from one of the authors. Note that this is meant

merely as an example. The iris images used in the experiment are non-segmented ocular

images.
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(a) 1st betti number 57 (b) 1st betti number 2

Figure 4: Examples of 1st betti numbers of some images via witness complexes.

The examples in figure 4 indicate the difference of the betti numbers for the two types of

biometric samples.
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Figure 5: fingerprint vs. iris database: EER(TOP) = 2.7%, EER(SIVV)=9.0%.

Comparing with the SIVV method it becomes clear that the topological approach performs

better for fingerprints vs. iris databases. The most interesting aspect of considering mixed

biometric databases is that when Fourier analysis seem to produce misleading features;

coarse topological features tend to correctly partition the database into biometric types.

The following table illustrates how the equal error rate varies between fingerprint databases

for the two methods.
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Database SIVV Topological method Summary

MCYT dp 12.9% 0.2% Largest observed difference be-

tween methods.

Biosecure 6.2% 1.9% Smallest absolute difference.

CASIA 9.0% 2.7% Medium difference between meth-

ods.

The results clearly suggests that using the TOP-method will produce much better results

when categorizing fingerprints and iris scans. The most extreme case is the MCYT dp

database. It is the database with best performance using the topological approach and

the worst performance when using SIVV. An interesting observation has been made; the

choice of fingerprint reference database, also called training set, does not produce a signif-

icant change in the results. So one may choose a subset from either MCYT dp, Biosecure

or CASIA-fingerprintV5 as a sample reference to a fingerprint database. The following

table illustrates the observed equal error rates when utilizing various training sets.

Training set

MCYT dp Biosecure CASIA

Database

MCYT dp 0.2% 0.2% 0.2%

Biosecure 1.9% 1.9% 1.9%

CASIA 2.7% 2.7% 2.7%

At least from a statistical point of view it seems that the TOP-method is invariant of fin-

gerprint reference database chosen. That is the equal error rate remains the same under

different training sets. The table only illustrates this observation for the combinations

of the three databases, MCYT dp, Biosecure and CASIA. One should be very careful

before making any inference based on these preliminary observations. Note that the non-

fingerprint image training set is not varied in this experiment.

3.3 Mixed biometric (face vs. fingerprint) database

A similar analysis as the one from the previous section will be carried out. The non-

fingerprints in this section consists of facial images from the CASIA-FaceV5 database.

Database SIVV Topological method Summary

MCYT dp 5.0% 1.0% Largest observed difference be-

tween methods.

Biosecure 2.5% 3.0% Smallest absolute difference.

CASIA 3.7% 4.1% Medium difference between meth-

ods.

It is observed that SIVV performs slightly better for both CASIA fingerprints and Biose-

cure databases. A significant difference is observed when comparing with the MCYT

database. In this particular case the method TOP performs better than SIVV. The results
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shown here simply states that the TOP method does not yield better results than SIVV

for all biometric samples when categorizing. In complete analogy with the study of iris

vs. fingerprint, the equal error rates can be seen to be robust with respect to the choice of

fingerprint training set.

Training set

MCYT dp Biosecure CASIA

Database

MCYT dp 1.0% 1.0% 1.0%

Biosecure 3.1% 3.0% 3.1%

CASIA 4.2% 4.2% 4.1%

For the databases used in this study, it can be concluded that the variances imposed by

changing the training set for the fingerprint database is not significant.

4 Discussion and conclusions

It has been shown that, given an image, homology of a specially constructed triangulation

of the image, viewed as a point cloud will enable the separation of fingerprint images

from other biometric samples, in particular when categorizing iris scans and fingerprints.

For the iris scans the topological approach seems to perform better than the SIVV method.

When categorizing fingerprints and face samples the method SIVV seem to perform better,

if only slightly, for the databases Biosecure and CASIA-FingerprintV5. For the database

MCYT the method TOP seem to perform significantly better. The result indicate that the

acquisition of samples in the MCYT database or some form of processing of the images

may cause this significant decrease in equal error rate. Moreover it is observed that the

opposite holds for the SIVV method, where a significant increase in equal error rate is

observed for the MCYT database compared against both iris and face databases. Our

method seem to be invariant with respect to the choice of fingerprint training set.

The method of constructing the triangulation from a biometric sample, in this case a finger-

print image, can be improved. The general construction could be to consider particularly

important landmarks in the fingerprint as vertices in the triangulation. Edges should then

be assigned between two vertices in such a way that certain information about the sample

specific to the landmarks yield a denser network, e.g. more information is retained in the

triangulation, which in turn should indicate a higher quality. This latter part is an extensive

work in progress, requiring many simulations to be run and much statistics to be collected.

It is possible that the method TOP can be extended to categorize the types of fingerprints

as well, e.g. identify whorl or arch structures.

Another possible extension of this study would be to study the same source under varying

conditions, e.g. time, pressure variation and humidity conditions. This would give us an

indication of the ability of the method to identify individual samples as being from cap-

tured from the same source. The relation to well-known image features and the importance

of these are still unclear at this point, this being yet another interesting topic to study next.
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