Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2015

Building A State-Of-The-Art Model Checker

Sebastian Wolff!

Abstract: Verification is the activity of proving a software artefact correct with respect to its specifi-
cation. In this paper we focus on the algorithmic approach to verification. Therefore, we present how
one can build a state-of-the-art model checker for recursive integer programs. Since those programs
are present in different environments, many techniques evolved. Inspired by the driver verification
with Microsoft’s SLAM toolkit, we show how to integrate some of the available techniques into a
single tool. One of those techniques is predicate abstraction. It allows us to handle one of today’s core
problems of model checking, namely a infinite data domain which is introduced by integer variables.
Moreover, we integrate a reachability analysis to check the abstraction for correctness. This analysis
uses procedure summaries to cope with recursive programs and potentially infinite call stacks. To
complete our tool we also integrate a refinement for the abstraction based on Craig interpolation.
Altogether, this stack of state-of-the-art techniques allows us to perform a CEGAR loop.

Keywords: Verification, Model Checking, Recursive Programs, Infinite Data Domain.

1 Introduction

Verification is a discipline of computer science which is dedicated to prove software arte-
facts correct. The question for correct software systems is important as those systems are
widespread and deployed in a variety of electronic devices. Among those devices are lots
of safety-critical ones, like controller units in cars and aircraft. Quite naturally, we want
those systems to operate properly, that is, they should precisely meet their specification.
As testing is expensive and not capable of proving correctness, we want to establish tech-
niques that are able to automatically prove systems correct.

Model Checking is an algorithmic verification technique which meets our requirements
from above. As it has been around for over 30 years, a lot of different approaches and
procedures have been developed for a broad spectrum of systems and software. In this
paper, we focus on the class of recursive programs with integer variables.

Recursive integer programs are, however, challenging as they are complex in two dimen-
sions. On the one hand, they feature unbounded-depth recursion. On the other hand, they
allow the usage of integer variables which have a potentially infinite domain. Even when
restricting integers to 64 bit, as in modern processors, the search space is too big to be
explored entirely [HeO4]. One widespread approach to tackle those challenges is the so
called Counter-Example Guided Abstraction Refinement (CEGAR) loop [Cl00] depicted
in Figure 1. The main idea is to discard unimportant aspects yielding a smaller abstract
system. This abstract system is then steadily analysed and refined until it may be proven

! Technische Universitit Kaiserslautern, s_wolff09 @cs.uni-kl.de

1817

Sebastian Wolff

correct or incorrect. Unfortunately, termination of the CEGAR approach is not guaranteed
due to recursive programs with integer variables being Turing complete [Mi67].

)
/ Program P /

no Extract counter- yes -
Refine A w.r.t. to T’
example T
Abstraction A of P
yes no

Fig. 1: The CEGAR loop.

A promising approach for generating a smaller system is Predicate Abstraction. Its work-
ing principle is to use a set of predicates to describe a subset of a system’s behaviours.
It provides multiple benefits for a model checker. Firstly, if conducted properly, it allows
reasoning about the original program via the abstraction [JM09]. Secondly, the abstraction
has a boolean, hence finite, data domain tackling one dimension of complexity.

The remaining dimension of complexity is introduced by recursion. To address this chal-
lenge, we employ a technique called procedure summaries. This approach computes the
impact of calling a procedure on a system’s state. By combining this technique with a
reachability analysis, we are able to check finite systems, like our abstractions, for correct-
ness.

Inspired by the Microsoft SLAM toolkit for static driver analysis, we implemented the
CEGAR loop in our tool RocketScience”. Our contribution is to present how to integrate
available state-of-the-art techniques into a functioning model checker. Therefore, we go
along an execution of our tool. The input to our tool is a recursive integer program P as
described in Section 2. Then, a boolean abstraction B(P) of the input program is gen-
erated via the predicate abstraction from Section 3. This new boolean program B(P) is
checked for correctness. Therefore, the program is translated into a control flow graph and
a reachability analysis with procedure summaries is conducted as presented in Section 4.
As a result of the reachability analysis, the program may be proven correct. If this is not the
case, a counter-example T is generated and checked for validity according to the procedure
from Section 5. If T reveals to be valid, P is shown to be incorrect. Otherwise, refinement,
which is described in Section 6, is issued to remove the spurious counter-example from
the abstraction. This completes the CEGAR loop and the procedure is repeated.

2 Recursive Programs

In the following, we give the definition of a simple programming language, which is in-
spired by curly braces languages, mainly C. For a formal definition consider Listing 1.
The main features are recursive function calls, variables local to functions, global vari-
ables and integer variables with an unlimited domain. For the sake of simplicity, functions

2 The source code is available at: https://github.com/Wolff09/RocketScience

1818

Building A State-Of-The-Art Model Checker

Program ::= VarDef* FunDefx*
VarDef ::= [int | bool] VarName ;

FunDef ::= void FunName () { VarDef* Statementx* }

Statement ::= if (BoolExpr) { Statementx* }
| if (BoolExpr) { Statement* } else { Statement* }
| while (BoolExpr) { Statement* }
| FunName () ;

| VarName [, VarNamel* = Expr [, Exprl* ;

|

|

assert (BoolExpr) ;
; // skip
Expr BoolExpr | IntExpr | VarName | Literal
Literal = true | false | <integer>
BoolExpr = IntExpr [> | < | >= | <= | == | !=] IntExpr
| BoolExpr [&& | |1] BoolExpr
| BoolExpr ? BoolExpr : BoolExpr
| ! BoolExpr
IntExpr = IntExpr [+ | - | * | /] IntExpr
| - IntExpr

List. 1: Language definition.

do not feature formal parameters and return values. This is no limitation to the express-
ibility of our language because communication between caller and callee can be handled
via global variables. To that end, the caller writes the actual parameters to global variables
and the callee copies them into local variables. Return values can be handled in the same
way.

For the rest of the paper we assume that programs satisfy the following constrains: (a) ex-
pressions and statements are properly typed, (b) no global variable is shadowed by a lo-
cal variable, (c) no variable appears more than once on the left hand side of an assign-
ment, (d) the first statement of a function initializes all local variables, and (e) there is a
main function which additionally initializes the global variables. These assumptions can
be checked easily as they are of a static kind>.

A boolean program is a regular program which is restricted to variables and literals of
type bool. Additionally, boolean programs support assume statements which coincide
with assert statements beside the fact that they never fail, i.e. simply block the control
flow when their condition evaluates to false. Furthermore, we allow boolean programs
to be non-deterministic by adding the literal unknown. These two additions to boolean
programs compared to ordinary integer programs come in handy during the abstraction
described in the next section.

3 Abstracting Integer Programs

A crucial part of model checking infinite state systems is an abstraction of the original
integer program into a boolean program. A well-known approach is predicate abstraction
[GS97, IMO09]. It divides the infinite state space of the integer program into finitely many
equivalence classes. These classes are characterized by a set of predicates which are asser-
tions about the states of the integer program.

3 Since our language is statically typed even (a) can be checked statically.

1819

Sebastian Wolff

In the following, an abstraction procedure is described which is due to Ball et al. [BaO1].
The input to the abstraction is an integer program P and a set of predicates Preds. Each
predicate p € Preds is a first order logic formula and comes with a scope. This scope
is either global or a function. Naturally, global predicates may only range over global
variables of P, whereas local predicates may additionally range over local variables of the
corresponding function.

The output of the abstraction procedure is a boolean program, denoted by B(P), which
has a boolean variable x, for every predicate p € Preds. The abstraction B(P) imitates
the behaviour of P by updating its boolean variables in such a way that they capture how
executing a statement from P changes the truth of the predicates. Therefore, the original
control flow is preserved and assignments to x,,, p € Preds, replace the statements from P.
An example abstraction can be found in Listing 2.

// program ExP // abstraction B(ExP) w.r.t. {p, q}
int x; int p;
int y; int q;
void main() { void main() {
x, y =5, 13; P, 9 = true, true;
swap () ; swap () ;
assert(x > y); if (unknown) { assume(!p || !'q); }
} else { assume(true); assert(false); }
}
void swap () {
X = x + y; void swap () {
y =x - Yy; p = !p && q 7 false
X =x - y; : unknown; // actl
} q = p & q 7 false
: unknown; // act2
// predicates (global) P = p & q 7?7 true
p = x <= 5; : unknown; // act3
q =y > 13; }

List. 2: Example program and its abstraction.

Weakest Preconditions Central to the abstraction are weakest preconditions. The weak-
est precondition wp(s, @), for some statement s and some first order formula ¢, is the
weakest predicate the truth of which before s entails the truth of ¢ after s. The weakest
precondition for an assignment x = e is thereby defined as wp(x = e, @) = @[x — ¢] where
@[x — e] equals ¢ with every occurrence of x replaced with e.

We also define a strengthening F (@) of . It is the weakest formula implying ¢ and rang-
ing over the set {x, : p € Preds}. Furthermore, a weakening G(¢) will be useful and is
defined by G(¢) = —F(—¢). We employ both those notions as they take formulas rang-
ing over predicates and produce formulas ranging over the corresponding variables from
the abstract program. The intuition behind this is an abstraction from formulas from the
integer program to formulas in the abstract program. These basic building blocks of our ab-
straction procedure are effectively computable and an optimized implementation is given
in [BaO1].

1820

Building A State-Of-The-Art Model Checker

Conditionals Given an if (¢){...}else{...} construct from program P, we know at

the beginning of the then-branch that ¢ holds. Thus, in the abstract program, we want the

then-branch to be executed only if the abstraction does not imply —c. Remember that we al-

ready introduced this notion with G(c) and hence come up with the following rule [Ba01].
if (unknown) {

if (c¢) { assume (G(c));

abstraction T
—_— } else {
assume (G('c));

} else {
}
}
Note here, that we introduce a non-deterministic choice which is guarded with assume
statements. We utilize the non-determinism as both G(c) and G(—c¢) might hold in the
abstract program [Ba0O1]. Additionally, this construct allows to explore both branches in
the following reachability analysis. The same approach applies to while loops as follows.

while (unknown) {

while (c) { assume (G(c));

abstraction
4

} }

assume (G('c));

Assignments Consider an assignment x = e in P. This statement may influence the truth
of a whole range of predicates, namely those containing x. So the abstraction of the as-
signment is an assignment again which captures the impact of x = e on all predicates.
Therefore, consider a predicate p; which is modelled by the boolean variable b;. Then, by
definition, p; is frue after x = e if wp(x = e, p;) can be shown to evaluate to frue under
every possible assignment to the free variables. That is, b; = true is a valid assignment if
F(wp(x = e, p;)) holds. Analogously, b; = false is valid if F (wp(x = e,—p;)) holds. How-
ever, the predicates might be to weak to prove any assignment valid. Naturally, we assign
b; = unknown in such a case.

According to [Ba01], there is always at most one valid assignment to b. By exploiting this
fact, one can come up with the following rule [Ba01].
bl, ..., bn =

F(wp(x=e,pl)) ? true
abstraction : F(wp(x=e,!pl)) 7 false : unknown,

F(wp(x=e,pn)) ? true
: F(wp(x=e,!pn)) 7 false : unknown;

Asserts Anassert(c) is supposed to have no effect if the boolean condition ¢ evaluates
to true and should fail otherwise. Hence, we handle this statement in the same way as an
if. We come up with the following rule.

if (c) {

translation // skip

assert(c); +————> } else {
assert (false);

}

if (unknown) {
assume (G(c));
abstraction } else {
assume (G(!c));
assert (false);

1821

Sebastian Wolff

Note here, that we introduced an assert(false) to identify an assertion error in the
abstract program. The abstraction, however, is not recursively continued for the newly
introduced assertion.

Calls Function calls are simply copied to the abstraction since they have neither formal
parameters nor return values. As functions communicate via global variables, the commu-
nication can be observed via global predicates and tracked throughout the entire program.
Hence, our approach is sufficient for handling simple function calls.

4 Checking Boolean Programs

The next step in the CEGAR loop, after abstracting the input program, is to check the
abstraction for correctness. That is, in our context, to check whether there is an execution
of the abstracted program which raises an assertion error. According to our abstraction
procedure, assertions in the original program are translated into an if construct where only
the failing branch contains an assert (false). Thus, we only need to check whether any
assert statement is reachable. If so, the abstraction is considered incorrect.

The above reachability problem can be solved algorithmically on a graph rather than di-
rectly on the program code level. To that end, we first introduce a translation from code to
control flow graph and then conduct a reachability analysis on the resulting graph. Note
that, although the data domain is finite due to the previous abstraction, the reachability
analysis still needs to tackle the challenge of arbitrary large call stacks and possibly non-
terminating recursion.

Control Flow Graphs A control flow graph G is a finite directed graph G = (S,V,T,C)
with a set of nodes S, a set of boolean variables V, a set of edges T and another dedicated
set of edges C which are used for function calls only. The set of variables is split into local
and global variables, i.e V = Locals® Globals. T-edges additionally come with a guard
and a set of actions. The guard is a first order logic formula and an action has the form
x = e withx € V and a boolean term e denoting the new value of x. For a T-edge from s to
s" with guard g and actions x; = ey, ...,x, = e, we write

A configuration is a tuple ¢f = (s,val) with state s € S and val : V — {true, false,} being
a valuation to the variables in V. The valuation val may map some variables to * denoting
an arbitrary truth value. If such a mapping exists we call the valuation partial and complete
otherwise. The evaluation of a formula ¢ based on a valuation val is denoted by ||@||,q-
Consider some transition s MT s' and some configuration ¢f = (s,val). The
transition can be taken by c¢f if g is enabled, i.e. if ||g||,s; = true. The result of taking the
transition is a new configuration ¢f’ = (s/,val') with

vl () = {||e,»|m,, if x € fxr,eo0 %)

val(x), otherwise.

1822

Building A State-Of-The-Art Model Checker

From Boolean Programs to Control Flow Graphs Next, we present the translation
procedure. Therefore, consider a boolean program B(P) and an empty control flow graph
G which is extended as we process B(P) and used as output of our procedure.

Firstly, we generate a skeleton for every function from B(P). That is, for every function we
add two nodes to G: an entry and an exit node both of which are unique. Those skeletons
are required to translate recursion properly since a function might invoke itself or another
function which has not been (completely) translated yet. Given some function f, we may
reference those nodes as f.entry and f.exit, respectively. Secondly, we add a dedicated error
node which we use to identify assertion errors. Lastly, we add sufficiently many variables
to G such that every variable x from B(P) can be mapped to a variable xg € V. Hence, an
expression e from B(P) can be translated by simply replacing every variable x occurring
in e with its corresponding graph variable xg.

With this basic structure set up, the actual translation of the function bodies from B(P)
is straight forward and skipped for brevity. The only statement that needs some special
treatment is the function call. A call to function f in B(P) introduces two new nodes in G
— the call node and the return node. Additionally, we add a C edge between the call node
and fentry as depicted in Figure 3. Using the dedicated call transition relation C allows
us to differentiate between sequences of statements and function calls when performing a
reachability analysis. This will ultimately allow us to restore local variables in unbounded-
depth recursion during the later reachability analysis.

Reachability Analysis with Procedure Summaries Given the control flow graph G
resulting from a translation of a boolean program B(P), it remains to conduct a reachability
analysis to check whether an assertion error might occur. By construction, we simply need
to check whether the dedicated error state is reachable in G.

For finite transition systems, the set of reachable configurations can be effectively com-
puted as a fixed point to the equation x = xU postr (x) [Sc04]. This approach is, however,
insufficient for our purpose as the post image does not handle local variables properly.
Naturally, a function call should not alter the local variables. But if we would simply com-
pute post images for the call transitions, we could not restore local variables for returning
recursive calls*. Hence, we apply a technique called procedure summaries [BROO]. Tt ba-
sically executes a separate sub-analysis and as a result augments the control flow graph
with an additional 7-edge which summarises the effect of the function call on the global
variables. For an example procedure summary consider Figure 2.

Example path of configurations (states omitted) through the Resulting summary edge:
abstract version of swap () from Listing 2:
] pelAngel/
P adl, P act2, p=1 act3, P callmTrelum
g—1 qg—1 q—0 qg—0

Fig. 2: Procedure summary example.

4 Memorizing the local variables of the call site is not possible as the stack of recursive functions might grow
beyond all bounds and our control flow graph is required to be finite.

1823

Sebastian Wolff

Fig. 3: Call scenario.

A formal description is in order. Therefore, consider a configuration c¢f, = (call,valp) with
respect to Figure 3. Furthermore, assume that val is complete. Then, compute the post im-
age of cf|, relative to the call transition relation C and quantify out all local variables. This
gives a new (partial) configuration cf; = (fentry,valy), with val|(g) = valy(g) for global
variables g and val; (1) = « for local variables /. Next, conduct a reachability analysis rel-
ative to 7', as described above, yielding a set of reachable configurations CF. If there is
some ¢f € CF with ¢f = (feexit,val), we can add a summary edge to G describing the effect

of f to the global variables. Hence, we augment 7 by adding the edge call gA/Z)T return
with
g= N xvaly(x) and a={x=|x|lya : x € Globals}.
x€Globals

Additionally, we might need to recursively invoke this procedure when a new call site is
found, i.e. if there is some c¢f € CF where the state of ¢f describes some function’s call
block and no summary has been computed yet. However, when recursively descenting,
one must prevent repetitions. That is, when computing the summary for cf, no sub analysis
must be issued for ¢f (again). This is because a reoccurring configuration in the recursive
call stack resembles a non-terminating function call in the program. Hence, no summary
is computed for such a call. Furthermore, this guarantees termination of our procedure.

Our overall approach for model checking boolean programs simply interleaves both above
techniques exhaustively. That is, we compute the fixed point for x = x U postr(x), con-
duct procedure summaries for all call sites, and repeat this until the set of configurations
saturates. Lastly, it remains to check membership of the error state.

5 Counter-Example Traces

Applying the procedure described in the previous section might reveal that the abstract
boolean program B(P) can run into an assertion error by showing that the dedicated error
state of the control flow graph associated with B(P) is reachable. In that case, we have to
check if the malicious behaviour is also present in the original integer program P. There-
fore, we have to compute a so called counter-example trace and check whether this trace
is valid. A counter-example trace is thereby a sequence of statements from P which ul-
timately runs into an assertion error. Intuitively, it is a linearisation of P which does not
contain control structures like if and while statements. Lastly, checking the validity of the
trace means to check whether or not it is a valid execution of P. If so, P is proven incorrect.
Otherwise the abstraction B(P) is too imprecise as it allows malicious — so called spurious
— behaviours which are not present in P.

Generating Traces In the following we give a description of a method for generating a
counter-example trace based on the reachability analysis from Section 4. Therefore, con-
sider the control flow graph G corresponding to B(P) and the set of reachable configu-
rations CF which results from the above mentioned analysis. A counter-example trace is
basically a lifting of a path through G to a sequence of statements from P. Hence, we first

1824

Building A State-Of-The-Art Model Checker

need to compute a path through G. Therefore, consider some configurations cfy and cf,,. A
path from cf; to cf,, through G consisting only of configurations from CF can be found by
a wavefront-like approach. We iteratively compute the sets step;, of configurations which
can reach cf,, in exactly k steps. Those sets can be defined recursively with stepy = {cf, }
and stepy_ | = prep ¢ (step,) N CF. This sequence of sets is extended until eventually some
set step,, contains cfy. Then, a path from cf, to cf, through G is given by @ = 7y ... 7, with

o = ¢fy and Tir1 = pickone(posty () Nstep,_;_)
where pickone chooses some arbitrary complete configuration from a given set>.

Given such a path 7 we can lift it to a sequence of statements from B(P) by simply back-
tracking the translation process from Section 4. From the resulting sequence, we can gen-
erate the desired counter-example trace by, again, backtracking the abstraction process
from Section 3.

Since the computed path may contain summary edges the resulting trace can contain func-
tion calls. As a last step, we flatten the trace from above and replace every function call
£f(O); with £ ; 74, return; where 7y, is a recursively computed flat trace for f. Fi-
nally note, when recursively descending one must not use a summary edge twice as this
indicates non-termination (cf. Section 4). Listing 3 continues the example from above and
gives an example trace.

// trace for B(ExP) // sub-trace for swap ()
x, y =5, 13; swap () ;

swap () ; X =X +y;

// failing assert y =% -7;

assume (! (x > y)); x =x - y;

assert (false); return;

List. 3: Spurious counter-example trace.

Validating Traces Given a flattened counter-example trace T we want to check whether
the original program P is actually able to execute statements in that particular order. This is
the case if {true}t{ false} is no valid Hoare triple [Le05]. The validity of this Hoare triple
can be checked by computing either the strongest postcondition of 7 relative to true or
the weakest precondition of 7 relative to false. We choose to use the weakest precondition
as it does not introduce quantifiers and tends to produce a smaller formula [He04, Le05].
That is, it remains to compute the weakest precondition wp(t, false) according to the rules
from Figure 4 and check whether it is equal to frue.

wp(T1372,9) = wp(T1,wp(%2, @) wp(assert(c), @) =@ Nc
wp(x = e,0) = Pl >] wplassume(c),p) = 9V ~c
Wp(X]...Xp=€]...€n,0) = Q[x] — €],...,% > €]

wp(f(),9) = @ where every local variable is prefixed with some symbol

wp(return, @) = ¢ where one prefix is removed from every local variable

Fig. 4: Rules of the weakest precondition calculus, adapted from [Le05].

5 When using a symbolic encoding, e.g. BDDs [Sc04], multiple configurations might be “merged”. Thus, 7 could
represent multiple paths with identical length if one would skip pickone in the definition of 7 ;.

1825

Sebastian Wolff

6 Abstraction Refinement

The abstraction needs refinement when a spurious counter-example trace T from Section 5
was found. To proceed checking the original program, the abstraction needs refinement
such that 7 will not be produced as counter-example trace again.

An initial idea for refinement would add all formulas that where computed as weakest pre-
conditions during the spuriosity check from Section 5. This, however, cannot be handled
by our abstraction procedure as the weakest preconditions introduce copies of local vari-
ables. Hence, we need to generate new predicates that are well-scoped and well-typed. To
that end, we apply the technique proposed by Henzinger et al. [He04] which is based on
Craig interpolation. A Craig interpolant [Cr57] for a pair (¢, ™) is a formula y with
(@) ¢~ = v, (b) 1 Ay is unsatisfiable, and (c) ¥ does only contain variables common
to @~ and @t .

The refinement is conducted in three steps. First, a constraint trace® © is generated. The
constraint trace ¥ is generated from 7 by giving every intermediate run-time value a name.
That is, a variable x is replaced with a symbolic constant (x,k) which denotes the k-th
value of x. The formal rules for generating a constraint trace are given in Figure 5. The
procedure requires a function /ast which maps variables to integers indicating the last write
to a variable. This function is updated during the procedure to keep track of assignments
and the most recent values of variables. Additionally, we utilize a function upd; which
replaces all variables x with a symbolic constant (x, f(x)).

Statement s Constraint Trace relative to (s, f)
81582 (s'ss", ")
with

(s, f) = constraint trace relative to (Sy, f)
(s”,f") = constraint trace relative to (S, f')

X=e; ((x,k)zupdf(e), f[ka})
with k = f(x)
X]...Xp=2¢€1...6n; (<X1,k1> e (xn,kn> = Mpdf(el) .- ~“Pdf(en)7 f/)
with
ki = f(x;)
f/ :f[)q — kl,...,xn — kn]
assert(c); (assert(updy(c)), f)
f0s (%, f")
T; with
return; (¥, f') = constraint trace relative to (7, f)

yas f(x), ifxisalocal variable
| f/(x), otherwise.

Fig. 5: Rules for generating a constraint trace, adapted from [He04].

6 Such constraint traces where already introduced in [BR02], but the proposed refinement suffers from a similar
problem as the naive approach based on weakest preconditions. So called symbolic constants are contained in
the newly computed predicates which cannot be handled by our abstraction procedure.

1826

Building A State-Of-The-Art Model Checker

Secondly, an interpolant for every intermediate position in ¥ is computed. That is, we

compute the interpolants y1,. .., ¥, where n is the number of statements in ¥ and ; is the
interpolant for the pair (¢, , ¢;") with
i—1 n
o = /\ 9l 9" = N\dll
j=0 j=i

where ¥ [k] is the k-th statement in . Lastly, we post-process those interpolants by replac-
ing every symbolic constant (x,k) with its corresponding variable x and extend the set of
predicates with every atomic predicate contained in the post-processed interpolants. The
newly added predicates are obviously well-typed and, as they originate from interpolants,
are also well-scoped [He04]. The latter is due to the fact that an interpolant contains only
symbols common to ¢~ and @™, i.e. symbols that are ”in scope” in @~ and ¢*.

7 Conclusion and Future Work

In this paper we presented an integration of state-of-the-art techniques for model checking
sequential recursive integer programs. To handle the infinite state space caused by inte-
ger variables and recursion, we implemented the CEGAR loop. We instantiated this loop
with predicate abstraction to construct boolean programs which feature a finite data do-
main. To check those boolean programs, which still allowed recursion, we showed how
to conduct a reachability analysis with procedure summaries. Here, we skipped some de-
tails of our actual implementation which uses binary decision diagrams (BDDs) [Sc04],
an efficient data structure for handling boolean functions, to encode the generated con-
trol flow graphs. This representation allowed us to implement a variation of the procedure
summaries. Instead of handling a single configuration at a time, our tool is able to com-
pute a precise relation for multiple configurations at once. With the reachability analysis at
hand, we were able to show the correctness of a program or to extract a counter-example.
This counter-example was then checked for validity with weakest preconditions. A valid
counter-example immediately proved the program incorrect, while a spurious one issued
refinement. The refinement was conducted on the basis of Craig interpolation and enriched
the abstraction with new predicates.

As our model checker was developed during a masters project, we did simplify and skip
some parts. First of all, we did no exhaustive benchmarking and performance analysis. This
is considered to be future work. During such an activity bottlenecks of our implementation
might be identified which one could try to cure. Currently, we believe that our checker
is mostly busy computing the abstraction whereas the remaining parts seem to take only
a minor part of the computation time. One promising approach addressing this potential
bottleneck is the so called parsimonious abstraction from [He04].

A further aspect, which is considered future work, too, is an improved language featuring
more powerful functions. To that end, one could introduce formal parameters and (multi-
ple) return values. There are already results for abstraction and refinement procedures for
those kind of functions available in [BaOl, He04]. We believe that more powerful func-
tions could reduce the size of programs and thus the size of the generated control flow
graphs. This reduction could then lead to performance improvements.

1827

Sebastian Wolff

Another area of further improvement is the counter-example generation. Currently, counter-
example paths are computed by a simple breadth-first search in the k-step reachability sets.
Here, state-of-the-art approaches, like proposed in [C195], might improve our checker.

References

[BaO1]

[BROO]

[BRO2]

[C195]

[C100]

[Cr57]

[GS97]

[He04]

[JM09]

[Le05]

[Mi67]

[Sc04]

Ball, Thomas; Majumdar, Rupak; Millstein, Todd D.; Rajamani, Sriram K.: Automatic
Predicate Abstraction of C Programs. In (Burke, Michael; Soffa, Mary Lou, eds): Pro-
ceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, USA, June 20-22, 2001. ACM, pp. 203-213,
2001.

Ball, Thomas; Rajamani, Sriram K.: Bebop: A Symbolic Model Checker for Boolean Pro-
grams. In (Havelund, Klaus; Penix, John; Visser, Willem, eds): SPIN Model Checking and
Software Verification, 7th International SPIN Workshop, Stanford, CA, USA, August 30
- September 1, 2000, Proceedings. volume 1885 of Lecture Notes in Computer Science.
Springer, pp. 113-130, 2000.

Ball, Thomas; Rajamani, Sriram K.: Generating Abstract Explanations of Spurious Coun-
terexamples in C Programs. Technical Report MSR-TR-2002-09, Microsoft Research, Jan-
uary 2002.

Clarke, Edmund M.; Grumberg, Orna; McMillan, Kenneth L.; Zhao, Xudong: Efficient
Generation of Counterexamples and Witnesses in Symbolic Model Checking. In: DAC. pp.
427-432, 1995.

Clarke, Edmund M.; Grumberg, Orna; Jha, Somesh; Lu, Yuan; Veith, Helmut:
Counterexample-Guided Abstraction Refinement. In (Emerson, E. Allen; Sistla, A. Prasad,
eds): Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL,
USA, July 15-19, 2000, Proceedings. volume 1855 of Lecture Notes in Computer Science.
Springer, pp. 154-169, 2000.

Craig, William: Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem. J.
Symb. Log., 22(3):250-268, 1957.

Graf, Susanne; Saidi, Hassen: Construction of Abstract State Graphs with PVS. In (Grum-
berg, Orna, ed.): Computer Aided Verification, 9th International Conference, CAV *97,
Haifa, Israel, June 22-25, 1997, Proceedings. volume 1254 of Lecture Notes in Computer
Science. Springer, pp. 72-83, 1997.

Henzinger, Thomas A.; Jhala, Ranjit; Majumdar, Rupak; McMillan, Kenneth L.: Abstrac-
tions from proofs. In (Jones, Neil D.; Leroy, Xavier, eds): Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, January 14-16, 2004. ACM, pp. 232-244, 2004.

Jhala, Ranjit; Majumdar, Rupak: Software model checking. ACM Comput. Surv., 41(4),
2009.

Leino, K. Rustan M.: Efficient weakest preconditions. Inf. Process. Lett., 93(6):281-288,
2005.

Minsky, Marvin L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

Schneider, Klaus: Verification of Reactive Systems: Formal Methods and Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2004.

1828

