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Using FALCES against bias in automated decisions by
integrating fairness in dynamic model ensembles
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Abstract: As regularly reported in the media, automated classifications and decisions based on
machine learning models can cause unfair treatment of certain groups of a general population.
Classically, the machine learning models are designed to make highly accurate decisions in general.
When one machine learning model is not sufficient to define the possibly complex boundary between
classes, multiple “specialized” models are used within a model ensemble to further boost accuracy. In
particular, dynamic model ensembles pick the most accurate model for each query object, by applying
the model that performed best on similar data. Given the labeled data on which models are trained,
it is not surprising that any bias possibly present in the data will reflect in the classifiers using the
models. To mitigate this, recent work has proposed fair model ensembles, that instead of focusing
(solely) on accuracy also optimize global fairness, which is quantified using bias metrics. However,
such global fairness that globally minimizes bias may exhibit imbalances in different regions of the
data, e.g., caused by some local bias maxima leading to local unfairness. In this paper, we propose
to bridge the gap between dynamic model ensembles and fair model ensembles and investigate the
problem of devising locally fair and accurate dynamic model ensembles, which ultimately optimize
for equal opportunity of similar subjects. Our evaluation shows that our approach outperforms the
state-of-the-art for different types and degrees of bias present in training data in terms of both local
and global fairness, while reaching comparable accuracy.
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1 Introduction

In decision support systems (DSS), machine learning models are frequently used to make
recommendations or even decisions. While these unquestionably simplify many processes
and tasks arising in modern life, critical situations arise in automatic classification scenarios
such as credit scoring, or predictive policing applications. There, critical DSS automatically
assign people to classes that have the possibility to deeply affect their lives in a positive or
negative way. Recent real-life examples where the use of such DSS had to be revoked due to
underlying biased classifiers include an algorithm that determined A-Level grades of British
students who were unable to take their exams due to COVID-19 regulations [Co20]. Based
on the teachers’ assessment of the student’s performance and the school’s performance in
subjects, each student was assigned A-Level grades. Using these features, about 40% of
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(a) Decision boundary for a classifier using a single
model (solid line) and a model ensemble (dotted line).

male female
positive class 13 11
negative class 12 14

(b) Training data statistics.

Approach False positives False negatives
Single model 7 4

Model ensemble 0 9

(c) Model performance statistics. Accuracy of single
model reaches 0.78, model ensemble reaches 0.82.

Fig. 1: Example binary classification scenario deciding about employee raises.

British students received lower grades than recommended by their teachers, as the model
indirectly favored students from private schools and wealthy areas. After a public outcry,
the algorithmic decisions were revoked and replaced by the teachers’ assessments. Another
example is a recruitment tool developed by Amazon [Da18]. The tool was supposed to
automatically assign scores to job applicants based on their application to support making
hiring decisions. However, it exhibited discrimination against women, a problem that could
not be resolved, leading to the project being discarded after several years of investment.

Classification tasks performed by DSS are, by themselves, not trivial to solve. For instance,
consider Figure 1, which summarizes a simple classification problem when deciding on
employee salary raises. We visualize the training data in Figure 1a, where we place similar
employees close to each other and use different shapes to distinguish male (circle) and
female (triangle) employees. The goal of the trained classifier is to divide in two classes,
which we distinguish by color: employees in blue have a positive outcome and get a raise,
while employees labeled in red are associated to the negative class (no raise). Opting for a
simple classifier, let us assume we obtain the decision border shown as solid black line in
Figure 1a. It classifies all employees below the line into category “blue” and all persons
above the line into category “red”. Using this simple classifier, a number of people are
assigned to the wrong class (see Figure 1c). We see that the simple classifier yields an
accuracy of 0.78, computed as the fraction of correctly classified points vs all data points.
To obtain a classifier that more faithfully reflects the complex decision boundary in our
example and thus improves accuracy, we can resort to model ensembles. There, different
(simple) models are trained and then combined, e.g., to reach a classifier with the decision
border shown as a dashed line in Figure 1a. This allows us to improve the accuracy from
0.78 to 0.82 in our example.

While the above example illustrates one means to boost the accuracy of classifiers, it leaves
aside any consideration of fairness. The term fairness is often used in the literature to refer
to non-discrimination. In the introductory examples, we see that not all students or job
applicants were treated equally and some discrimination was unintentionally introduced
to the classifiers. Such unfair behavior is commonly linked to some bias. There are many
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(a) Decision boundary for a fair model ensemble that combines
classifiers for male (left) and female employees (right) and
illustration of a locally unfair situation (circle).

Approach Accuracy Fairness
Single model 0.78 0.76
Model ensemble 0.82 0.66
Fair model ensemble 0.78 0.81

(b) Model performance statistics.

Fig. 2: Example binary classification scenario deciding about employee raises (Figure 1 continued).

different kinds of bias that can be introduced through the data or human decisions. For
instance, while it may seem reasonable to consider student’s past performance as a feature,
e.g., on mock-exams to assign a final grade, wealthy students who benefit from regular
tutoring may be at an advantage over students that learn for exams on their own. In case of
automatic resume analysis, having a training dataset with CVs predominantly from male
applicants possibly causes models that favor terms more commonly used by men than
women while penalizing terms associated to women. Returning to our fictional example,
based on the numbers reported in Figure 1b, we see that the training data is reasonably
balanced in terms of men and women being assigned a positive or negative label, which
is a good starting point. To assess the classifiers in terms of fairness, we can use one
of many available bias metrics. The American Title VII of the Civil Rights Act of 1964
prohibits employment discrimination and, for example, states that there is discrimination
when the probability of a woman getting a positive outcome divided by the probability of
a man getting a positive outcome is less than 0.8. In the case of the single classifier and
model ensemble, the value is 0.76 and 0.66 respectively (see Figure 2b) and thus below the
threshold. So using these classifiers would be against the law in the US.

With metrics quantifying bias being available, recent approaches have considered these
to prevent bias. In particular, Dwork et al. [Dw18] have introduced fair model ensembles.
Given a pre-defined set of sensitive groups (e.g., women), their approach learns classifiers
dedicated to these groups and then calculates the best combination of classifiers according
to a metric that combines both fairness and accuracy. By training classifiers specialized to
different groups, the approach can better capture different patterns exhibited by different
groups. Optimizing for both fairness and accuracy compromises between fair treatment
of the different groups and model performance. Figure 2 illustrates the effect of using the
method for fair model ensembles in our example. It combines two classifiers, for which
we show the decision borders: one trained for male employees (left hand side) and one
for women (right hand side). Instead of a fairness of 0.66, the positive classification of
negatively labeled women by the dedicated classifier raises fairness to 0.81 and therefore (at
least according to American law) no longer exhibits discrimination.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 157
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While the approach illustrated above comes closer to the goal of treating members of
different predefined groups (e.g., male, female) equally, it does so from a global perspective.
Thus, localized inequalities remain. For instance, looking again at Figure 2a, while the goal
of non-discrimination between women and men is met, the subregion within the depicted
circle exhibits local unfairness. As a reminder, we have placed persons in the 2-dimensional
representation close to each other when they have similar features, e.g., all persons in
the circled region may have similar age and number of sick days. Clearly, despite similar
features, women in this region are significantly less likely to get a raise than men. This
corresponds to a local bias. The approach presented in this paper aims at solving this issue.

The fact that optimization goals are only fulfilled globally and not locally is not a peculiarity
of fairness. Dynamic model ensembles tackle this problem when optimizing accuracy.
Intuitively, a model or model ensemble is dynamically selected for each new decision based
on model performance in similar situations. This paper uses a similar rationale to optimize
the overall local fairness of a model ensemble by combining ideas of both fair model
ensembles and dynamic model ensembles. More precisely, our contributions are as follows:

• We present a framework for addressing the novel problem of mitigating locally unfair
decisions. In an offline phase, it trains a diverse set of models to get accurate and
fair models for different groups. In an online phase, it dynamically selects the model
ensemble best suited for the different groups when focusing on group members similar
to the subject to be classified. This combines ideas previously devised for (static) fair
model ensembles and dynamic model ensembles specialized on accuracy.

• We present FALCES, which implements our framework using several algorithms. It
comes in different variants, depending on whether the training data is further spilt
before training classifiers or if trained classifiers are further pruned based on an initial
assessment of their global combined performance in terms of fairness and accuracy.
It also relies on a novel metric for a combined quantification of fairness and accuracy.

• We implement our algorithm variants and evaluate them on both synthetic and real
data. Our results show that while we cannot fully eliminate bias, FALCES outperforms
the state-of-the-art in both global group fairness and local group fairness, the latter
quantified using a newly defined metric for local fairness. At the same time, our
solution does not jeopardizse accuracy.

The remainder of this paper is structured as follows. Section 2 reviews related work. We
present our framework in Section 3 and discuss algorithms implementing the framework in
Section 4. Our implementation and experimental evaluation are presented in Section 5. The
paper concludes with a summary and outlook on future research in Section 6.
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2 Related work

Our proposed solution builds on previous work on model ensembles and fairness in machine
learning, in particular fair model ensembles and dynamic model ensembles.

2.1 Model ensembles

The idea of model ensembles is to train multiple models and select or combine the best
of these models [Po06]. Hereby, the optimization goal typically is the improvement of the
accuracy of predictions [SHX19, DSM19, Zh19]. Combining the outputs of several models
has proven to be preferable compared to single-model systems. By combining the results of
several models, model ensembles can, for example, reduce the risk of choosing a model that
performs poorly, which reduces the overall risk of a bad decision, or overcome complex
decision borders that may not be able to be implemented by a chosen model because they lie
outside the functional space of the model. The same rationale underlies fair model ensembles
(discussed further below), which set an additional optimization focus on increasing fairness.

2.2 Fairness in machine learning

As already described in the introduction, the term fairness in machine learning commonly
refers to the fact that models must not discriminate against people because of bias(es). Based
on various laws, social definitions and understood meanings, different measures to quantify
fairness have been defined [KC09, PRT08, Žl17]. They can be broadly classified into two
categories. A group of metrics for individual fairness (or equality or equality of treatment)
focuses on providing equal treatment to equal people [FSV16]. However, we will focus on
the second notion of fairness: group fairness. It is also known as equality of outcome or
equity. Here, groups with different preconditions are treated differently, so that in the end
everyone, despite their differences, has the same opportunities. This is intended to overcome
social inequalities and offer equal opportunity to different groups [FSV16].

Based on these fairness metrics, methods have been developed which allow the development
of individual fair models using fair data, new machine learning algorithms, or techniques
for modifying existing models [KC09, PRT08, Ga19].

2.3 Fair model ensembles

While there is now a visible body of research on measuring fairness and learning single
fair models, only few works leverage multiple models in order to achieve fairness, thereby
bringing the advantages of using model ensembles to the the realm of improving fairness.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 159
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Calders and Verwer [CV10] create fair naive Bayes model ensembles. To this end, they split
the dataset according to the favored and discriminated groups and learn a naive Bayes model
on each subset with the intention to classify independently of a given sensitive attribute. An
overall naive Bayes model chooses the decision of either model depending on the group
of incoming data tuples to be classified. While this approach yields fairer models, it is
specialized to and does not extend beyond naive Bayes models.

Dwork et al. [Dw18] combine multiple machine learning classifiers to improve group
fairness. They provide different versions of their algorithm, where the models are either
learned on the different subgroups as in [CV10] or on larger data subsets in order to prevent
accuracy loss. Their approach uses a joint loss metric that optimizes for both accuracy and
fairness in order to assess which model should be used for which group of the dataset. While
this approach does consider both accuracy and fairness at group level using any type of
classifier, it may suffer from local unfairness.

2.4 Dynamic model ensembles

Dynamic classifier selection [CSC18] selects one classifier during runtime for each new
sample which has to be classified. This is based on the rationale of model ensembles that
not every classifier is an expert in all local regions of the feature space. Usually, for each
new sample the local region is first identified, for example using k-nearest-neighbors (kNN).
Then, the quality of available classifiers is determined and the best one(s) are selected.
Dynamic ensemble selection is similar, it merely selects ensembles instead of classifiers.
One example is the Dynamic Classifier Selection by Local Accuracy (DCS-LA) algorithm
by Woods et al. [WKB97]. First, it uses kNN to identify the local region. Then, local
accuracy of classifiers is evaluated as percentage of correctly classified samples in the local
region. Alternatively, it uses local class accuracy, which is the accuracy of classifiers in the
local regions with respect to the class the classifiers assign to the new sample. Only the
most accurate classifier is then used to classify the unknown sample.

3 Framework for fair and dynamic model ensembles

As motivated in the introduction, our goal is to combine the benefits of fair model ensembles
on the one hand and dynamic model ensembles on the other hand to devise a solution
that resolves not only global bias among different groups, but also local bias, while not
compromising overall accuracy. The rationale is that, while it is typically possible to define
groups that should be treated fairly (and that are often defined by law), it is quite challenging
to fully anticipate variations (sub-groups) within these groups that indirectly cause local
bias. Techniques to counter local bias can potentially help in reaching equal opportunity
among groups with similar features or similar trajectory. In this section, we first formalize
our problem statement to counter locally unfair decisions. We then present a framework
where we combine the ideas of fair and dynamic model ensembles to solve this problem.

160 Nico Lässig, Sarah Oppold, Melanie Herschel



7

3.1 Locally unfair decisions

As illustrated in Figure 2a, the problem with locally unjust decisions is that while existing
solutions (reviewed in Section 2) are optimized to make globally fair and accurate decisions,
there are still local regions where data points of different groups are treated unfairly. To
address this problem, the decision should be optimized so that the optimal (i.e. fair and
accurate) decision can be made at a local level. Our emphasis in this paper is on group
fairness, i.e., equal opportunities between groups.

Formally, we consider as given a labeled data set D, a similarity metric s, a positive integer k,
an optimization metric af combining fairness and accuracy, and a set of machine learning
models (classifiers) M for the same classification task. Furthermore, D can be partitioned
into groups G, for which equal opportunity is relevant. We further assume a new test
sample t that belongs to one of the groups G. Then, we define our goal of locally fair and
accurate classification as a classification task that classifies t using a model m ∈ M with the
best performance according to the af metric in the local region of D around t. This local
region includes the k items in D most similar to t according to s.

3.2 Framework

To address the problem defined above, we combine the rationales underlying both fair and
dynamic model ensembles described in Section 2 into a new framework for fair and dynamic
model ensembles. The main components of this framework are visualized in Figure 3. We
distinguish between an offline phase (bottom part), where suited model ensembles are
trained and selected, and an online phase (upper part), where a previously unseen test
sample t is classified by dynamically selecting the model ensemble most appropriate for t.

Offline phase. The first step of the offline phase, named model training, is a step common
to model ensemble approaches. Here, using training data taken from the labeled dataset D,
a diverse set of classifiers is trained. Given that we target both fair and accurate decisions,
model training can benefit from using different subsets of data based on the different
groups G present in D, which has for instance been proposed for fair model ensembles
(see Section 2). We denote the set of classifiers resulting from model training considering
different groups G as M = {(m1,g1), (m2,g2), . . . , (mn,gn)}, where each mi is a model and
gi identifies the group it is trained for. Among these classifiers, not all may be suited to
make both fair and accurate decisions. Also, too many classifiers to be considered during
the online phase (further discussed below) can be computationally prohibitive. Therefore,
during model pruning, the framework assesses all model combinations or ensembles
possible with the classifiers in M that use exactly one classifier per group gi . Assessment is
done with respect to the global performance metric af that considers both accuracy and
fairness. Only the best classifier combinations are retained after model pruning, resulting in
MC = {[((m11,g1) . . . , (m1n,gn)], . . . , [((me1,g1) . . . , (men,gn)]}, a set of model ensembles
(in square brackets) s.t. for each ensemble, gi , gj when i , j and n = |G |.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 161



8 Nico Lässig, Sarah Oppold, Melanie Herschel

Fig. 3: Framework for locally fair classifications by combining fair and dynamic model ensembles

Online phase. When a new test sample t is to be classified, the framework determines the
local region t belongs to as part of local region determination. To this end, it performs
a kNN search of t on each gi , where gi is a group in G = {gi, . . . ,gn}. The framework
specifically selects an equal number of members similar to t of each group, to have a locally
balanced data region with respect to the different groups. Then, for this particular region,
dynamic ensemble selection assesses which ensemble E ∈ MC achieves the best local
performance with respect to af . Intuitively, this dynamically selects the optimal model
ensemble comprising a dedicated model for each group for the region most relevant to
t. With this approach, our framework combines previous techniques separately devised
for fair and dynamic model ensembles. The identification of the locally best model is
performed according to dynamic model ensemble techniques using fair model ensemble
metrics. Therefore the classifiers are tested on the local region of the test sample using an
af metric. Finally, the best classifier mct such that (mct,gt ) ∈ E and gt corresponds to the
group t belongs to is used in the final step of locally fair classification to classify t.

4 Algorithms implementing the framework

Section 3 discussed the general framework that we propose for locally fair and accurate
classifications. There are a variety of techniques from both fair and dynamic model ensemble
research, which can be applied or extended to implement its components. In the following,
we discuss the algorithms we consider to implement the framework that stand behind our
FALCES system (standing for Fair and Accurate Local Classifications using EnsembleS).
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4.1 Model training

As mentioned before, the set of classifiers should be diverse in order to benefit from
combining them to model ensembles. To this end, we vary both the set of machine learning
techniques used to train classifiers as well as the data from D that is considered for training.

In principle, any machine learning technique suited for classification tasks can be considered
as candidate technique. In our evaluation, we will resort to simple techniques, e.g., decision
trees, logistic regression, or nonlinear support vector machines.

Concerning the data, following previous research on fair model ensembles [Dw18, CV10],
we consider splitting the input dataset D on pre-defined sub-datasets that correspond to the
different groups for which we aim to achieve group fairness (e.g., we divide by sex (male,
female) and race (white, others) in our experiments which creates four subgroups). This
effectively partitions D into G = {g1, . . . ,gn}, assuming n distinct groups. Then, models
are trained separately for the different partitions. Different training datasets not only have
the advantage of learning different models that exhibit their strengths in certain areas of the
feature space. Indeed, as shown in Calders et al [CV10], the label does not depend directly
on the sensitive group. In addition, complex decision borders between the two groups,
which originate from different behavioral patterns, can be better modeled, thus increasing
accuracy [Dw18].

As a result, similar to [Dw18, CV10], we obtain classifiers that are “specialized” on some
group. More precisely, in this variant, we obtain M = {(m1,g1), . . . , (mk,gn)} where each
(mi,gj) associates a classifier mi to a group gj . For any two (mi,gj), (mi

′ ,gj′ ), it holds that
mi , mi

′ , and gj,gj′ ∈ G, but it is possible that gj = gj′ .

Example 1. As a simple example, consider we spilt a sample dataset following the gender
of employees, which results in a group for each gender, e.g., gF for female employees and
gM for male employees. Assuming m1,m2,m3 are trained on gM and m4,m5,m6 on gF , we
obtain M = {(m1,gM ), (m2,gM ), (m3,gM ), (m4,gF ), (m5,gF ), (m6,gF )}.
On the downside, splitting the data as described above can lead to a too small dataset to train
on, which often results in loss of accuracy for the classifiers. Hence, we further consider the
option of training models on the complete dataset D rather than on individual partitions of
G. In this setting, we have M = {(m1,gD), . . . (mn,gD)}, where gD = D.

To distinguish the two variants for implementing model training described above in FALCES,
we will append a suffix SBT (for Split Before Training) for the first option, while absence of
this suffix indicates training is performed on the full training data set.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 163
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4.2 Model pruning

In the offline phase, the number of classifiers can already be reduced based on their global
performance in order to improve the efficiency of the online phase later. Indeed, the less
classifiers need to be considered in the online phase, the faster the classification of a new
test item is. As we shall see in the evaluation (Section 5.4), this has only little impact on
making locally fair and accurate decisions, while runtime may improve significantly.

To assess the performance of a model when considering both accuracy and fairness, we
rely on a metric that combines these two dimensions, denoted as af . To the best of our
knowledge, the state-of-the art metric that accounts for both accuracy and fairness is the
metric proposed by Dwork et al. [Dw18] for fair model ensembles, defined as follows.

L̂ =
λ

|D |
∑
ti ∈D
|yi − zi |

︸               ︷︷               ︸
Inaccuracy

+
1 − λ
|D |

∑
g j ∈G

��������
∑
ti ∈D:
gti=g j

zi − 1
|G |

∑
ti ∈D

zi

��������︸                                       ︷︷                                       ︸
Unfairness

(1)

Here, the number of tuples in a labeled dataset D is denoted as |D|, each tuple ti ∈ D has
an actual and predicted label denoted as yi and zi respectively, |G | represents the number
of different groups in G, gti ∈ G represents the group a tuple ti belongs to, and 0 ≤ λ ≤ 1
balances the relative weight of the accuracy and the fairness part of the equation. Intuitively,
in the first part of the metric, accuracy is measured by comparing the predicted and actual
label for each data tuple (also known as L1 loss). The second part of the metric determines
the fairness of the classifier combination that associates a classifier to each group. It sums
up the difference between the sum of predicted values of each group and the overall sum of
labels divided by number of groups. Note that for both sides, higher values actually mean a
poorer performance, we thus qualify them as inaccuracy and unfairness.

This metric combines both accuracy and fairness, however, the fairness-part is sensitive to
differences in the relative size of groups. Assume for instance there is a larger group gL and
a smaller group gS with equal sum of zi , i.e. equal number of positively classified tuples.
Indeed, the metric considers the situation to be fair among these two groups (unfairness-part
drops to 0), even though the probability that a member of gL is assigned a positive label
is smaller than the probability of a member of gS being assigned a positive label. While
this may well serve minorities that are considered protected groups and are thus indirectly
favored by being part of the smaller group, it does not accurately reflect equal opportunity.

We propose a variation of af that modifies the fairness-related part of Equation 1 to also
consider the number of tuples |gj | in a group gj ∈ G. This results in the following metric.
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L̂new =
λ

|D |
∑
ti ∈D
|yi − zi | + 1 − λ

|G |
∑
g j ∈G

��������
∑
ti ∈D:
gti=g j

zi
|gj | −

1
|D|

∑
ti ∈D

zi

��������
(2)

While the accuracy part still determines L1 loss, the fairness part has slightly changed. For
each group, its mean value is set in relation to its group size and compared to the overall
mean value of positive predicted labels. These are then again summed up and divided by
the number of groups to allow for an arbitrary number of groups.

Using the metric proposed in Equation 2, model pruning aims at retaining only a “good”
selection of ensembles formed by models of M obtained during model training. Given that
we are using model ensembles, this evaluation of model quality is performed by considering
all possible combinations of classifiers in M when choosing one classifier per group, and
keeping only the best ones. In our implementation, we keep ensembles up to a predefined
rank. Another possibility would be to use a threshold for the maximally acceptable af score.

Example 2. Continuing our previous example, given that we have three classifiers dedicated
to gF and gM , respectively, we have a total of 9 combinations to test using af . Let us assume
that the top-2 ensembles according to af are (m1,m4), (m2,m5). Assuming FALCES is config-
ured to the top-2 combinations, we obtain MC = {[(m1,gM ), (m4,gF )], [(m2,gM ), (m5,gF )]}.

Similarly to model pruning, we consider running FALCES with or without model pruning
enabled. When active, we append PFA to the algorithm name.

4.3 Local region determination

Moving on to the online phase, the task is to classify a new tuple t in a locally accurate and
fair manner. Our framework defines locality relying on a similarity measure s and considers
retrieving the k most similar tuples to t in D.

One way to determine the k most similar tuples are kNN algorithms [Bh10]. FALCES uses
the kd-tree nearest neighbor approach [Be75] because it is simple and efficient. This method
creates a k-dimensional tree that can be precomputed during the offline phase in which
the tuples from D are arranged and stored according to the dimensions. During the online
phase, when the tuple t is to be classified, the tree can then be searched in O(log |D|) time.

While searching for the nearest neighbors, we need a similarity metric to identify tuples
similar to t. To compare two tuples t1 = (x1, ..., xn) and t2 = (y1, ...yn), FALCES uses
the Minkowski-Distance md(t1, t2) =

(∑n
i=1 |xi − yi |p

) 1
p . It is a generalization of both the

Manhattan distance (p=1) and the Euclidean distance (p=2) and has already proven useful
for similar problems such as K-Means algorithms [SYR13].

Using FALCES against bias in automated decisions by integrating fairness in dynamic
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Using this distance measure, we identify the nearest neighbors of t. However, it must be
ensured at this step already that the af metric used in the next step of FALCES receives
the necessary information to calculate group fairness. For this, it needs to receive tuples
from all groups to be able to produce meaningful results. Therefore, in FALCES, the kNN
algorithm is applied to each group separately, which results in |G | trees and |G | ∗ k nearest
neighbors for |G | groups.

4.4 Dynamic ensemble selection

Based on the |G | ∗ k tuples defining the local region for a given test sample t, dynamic
ensemble selection identifies the ensemble E = [(mc1,g1), . . . , (mcp ,gp)] ∈ MC that
achieves the best local performance. To this end, FALCES follows previous research on
dynamic model ensembles [WKB97] and combines these techniques with the af metric.
More precisely, using as input MC, we evaluate all model combinations based on af when
they classify the |G | ∗ k nearest neighbors of t. The combination E with the lowest af -score
is retained.

Example 3. Assume we want to classify a male employee t that is thus considered to be
part of gM . Assuming k = 20, kNN retrieves the 20 male and 20 female samples in D most
similar to t. The two combinations possible with the classifiers retained after model pruning
(see Example 2), i.e., [(m1,gM ), (m4,gF )] and [(m2,gM ), (m5,gF )], are evaluated using the
af metric and focusing on the 40 samples of D that form the local region. In our example,
let this result in E = [(m1,gM ), (m4,gF )] as this combination reaches the lowest score.

Note that through previous model pruning during the offline phase, the above example
needed only to consider 2 instead of 25 classifier combinations. In addition to reducing the
number of comparisons, we further reduce the complexity of an individual combination
assessment, because the computation of classification predictions for all sets of classifiers
and all local |G | ∗ k tuples can be quite time consuming. That is, FALCES precomputes all
classification predictions for all tuples in D using all models in M. This allows dynamic
ensemble selection to simply look up the necessary predictions instead of repeatedly
computing them by applying the classifier for each test sample during the online phase.

4.5 Locally fair classification

Finally, the classifier of the previously identified model ensemble E that achieved best local
performance with respect to the af metric and that is associated to the same group as t is
used to classify t.

Example 4. Continuing our running example with E = [(m1,gM ), (m4,gF )], m1 is finally
used to classify t, because t belongs to gM . Considering a different t ′ of group gM may
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result in a different local region, where for instance E = [(m2,gM ), (m5,gF )] performs
better, resulting in the use of m2 instead.

5 Evaluation

We have implemented the algorithms discussed in Section 4 and present their evaluation in
this section. We first describe our experimental setup. We then present and discuss results
on combined accuracy and fairness, differences observed for the two af metrics, as well as
runtime results on the online phase.

5.1 Experimental setup

This section summarizes which different algorithm variants and baseline solutions we
compare in our evaluation. We further discuss datasets and metrics we use for benchmarking.

Compared algorithms. We have presented different variants of FALCES, depending on
whether or not the training data is split before training and whether or not model pruning
is applied. In addition, we compare to the state-of-the-art algorithms. More precisely, we
consider the algorithms summarized in Table 1. For the different FALCES variants as well
as DCS-LA, which also relies on kNN search, we set k = 15.

Datasets and ML models. We use both synthetic and real benchmark data in our evaluation.

We developed a synthetic data generator in order to control different types and degrees of
bias in order to study how the different algorithms are affected by these. It generates labeled
data for two groups and a binary classification task and allows to control (i) the group

Algorithm Description
FALCES Our baseline algorithm without splitting before training and without model pruning.
FALCES-SBT This variant of FALCES splits the dataset for training but does not apply model pruning.
FALCES-PFA In this variant, model pruning is applied on models trained over the complete training dataset.
FALCES-SBT-PFA The offline phase performs model pruning on models that have been trained on sub-sets of the

training dataset, which has been split according to considered groups.
DCS-LA [WKB97] A baseline algorithm for dynamic model ensembles that optimizes accuracy, which we extended

for FALCES.
Decouple [Dw18] State-of-the-art algorithm for fair model ensembles, when models are trained using the full

training dataset.
Decouple-SBT [Dw18] Variant of Decouple that trains models on a previously split training dataset.

Tab. 1: Overview of the algorithms compared in our evaluation
Bias type Parameter settings

Group balance 0.1, 0.2, 0.3, 0.4, 0.5
Social bias 0, 0.1, 0.2, 0.3, 0.4, 0.5

Implicit bias 0, 0.1, 0.2, 0.3, 0.4, 0.5

Tab. 2: Different configurations for synthetic data, default values in bold

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 167
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balance, (ii) the degree of social bias, and (iii) implicit bias. Group balance describes the
percentage group g1 represents in the full dataset (g2 implicitly making up the remainder of
the dataset), which can be very unbalanced (e.g., only 10% of the training data belongs to
g1) or perfectly balanced at 50%. Social bias refers to bias directly related to the protected
attribute defining a group (e.g., gender in our example), reflected by different probabilities
for a positive label in the different groups (e.g., women have a lower probability for a
positive label than men). Such bias is sometimes also called historical bias, because it
reflects direct discrimination of a group in a dataset that commonly labels data based on
historical decisions. In our experiments, a social bias of 0 means probabilities are equal
for both groups (no discrimination), 0.1 if the probability for g1 differs by 0.1, and so on.
Implicit bias is present in a dataset when, even though groups are not directly discriminated,
their label depends on an unfavorable attribute value that occurs more frequently in the
protected group, i.e., that is correlated to the protected group. Note that both examples from
the press mentioned in the introduction are likely linked to such indirect bias. Similarly to
social bias, we vary indirect bias from 0 (none) in increments of 0.1. The generated data in
all cases consists of approximately 13,000 tuples. Table 2 summarizes the configurations
we used for testing. When not mentioned otherwise, the values are set to the default values
highlighted in bold.

We chose the Adult Data Set [DG19], a census income dataset with data from 1994, which
is a commonly used dataset in multiple machine learning experiments. This dataset consists
of approximately 49,000 tuples and contains various variables, including a binary salary
value of yearly income with the threshold of 50K$, which is our label in the experiments.
We chose the attribute “sex” with values “male” and “female” as a sensitive attribute, as
well as a combination of the attribute “sex” with the attribute “race” with values “white”
and “others”, where we grouped together all other races, because all other races make up
≈ 10% of the dataset.

Each dataset (synthetic and real) is split randomly such that 50% of the dataset serve as
training data for model training, 35% for validation to determine emsembles, and 15% for
testing the quality of predictions in the online phase.

To get a diverse set of classifiers, we train five different classifiers on our datasets: (i) Decision
Tree, (ii) Logistic Regression, (iii) Softmax Regression, (iv) Linear Support Vector Machine,
and (v) Nonlinear Support Vector Machine. Given that we have two groups, this results in
ten classifiers when we split before training, and five when training on the full dataset.

Metrics. Given that we aim for a good compromise of accuracy and fairness, we use
metrics to assess the different algorithms in these two dimensions. We use the well known
accuracy-metric commonly used to evaluate machine learning techniques. For fairness,
we distinguish between global and local fairness. To study global fairness, we use the
“unfairness part” of the metric given by Equation 2 (setting λ = 0), to which we refer to as
global bias (lower values are better). To measure local bias, we define a local region bias
metric, which we call local region discrimination (LRD):
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LRD =
1

|G | · |D|
∑
ti ∈D

∑
g j ∈G

������
1
k

∑
zl ∈Rti ,gj

zl − 1
k |G |

∑
gm ∈G

∑
zl ∈Rti ,gm

zl

������ (3)

where Rti ,g j is the local data region of ti comprising the kNN of ti in group gj . In this metric
the probability of a positive predicted label of each group in the local region is measured
against the average probability of a positive predicted label amongst all points in the local
region. In this way, the metric reflects the average local fairness.

Using the experimental setup described in this section, we now discuss results we obtained.

5.2 Comparative evaluation in terms of accuracy and fairness

We first present results we obtained when using different algorithms on our synthetic dataset
in terms of accuracy, global bias, and local bias.

As a first baseline, we start with a “clean” dataset with no social or implicit bias, and see
if changes in group balance have an impact on our three metrics. Essentially, we expect
only a marginal effect on accuracy and a low global and local bias, because the input data is
a priori unbiased. This is confirmed by the results depicted in Figure 4. Note that instead
of plotting absolute accuracy for all methods, we plot the deviation algorithms have in
accuracy from the accuracy reached by DCS-LA, reported as percentage points. DCS-LA
is not considering bias and optimizes solely for accuracy, which is between 0.76 and 0.79
for DCS-LA over the whole range of considered group balance. The ordinate reporting
percentage points, a deviation of -1 means that an algorithm reaches for instance 0.77 instead
of 0.78 reached by DCS-LA.

In Figure 4, we observe that all algorithms perform similarly, i.e., for all algorithms, there
is some very small fluctuation in accuracy and global bias remains low. For local bias,
while being generally low as well, we observe that it steadily increases with increasing
imbalance, reaching a relative increase of up to 64% from the balanced case (0.5) to the
highest imbalance (at 0.1, where only 10% of the dataset concern one group).

Next, we perform the same analysis again, but this time with an additional social bias of
0.3 introduced to g1. The results are summarized in Figure 5. With the introduction of
social bias, we observe that deviations in accuracy become more pronounced, in particular
for the two variants of the Decouple algorithm. Least affected in terms of accuracy is
FALCES-SBT-PFA, actually having comparable or better accuracy than DCS-LA. For
both local and global bias, we see that all FALCES variants consistently outperform both
Decouple variants and DCS-LA. Also, compared to the previous experiment without social
bias, the field has overall shifted upwards. This shows that we cannot fully counter bias
originally present in the dataset, but FALCES is best in reducing it while maintaining high
accuracy.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
model ensembles 169
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We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(c) Local bias

Fig. 4: Results on synthetic data with varying group balance, no social bias, and no implicit bias.

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 

Ac
cu

ra
cy

 d
ev

ia
tio

n 
fro

m
 D

C
S-

LA
 (i

n 
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s 
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(c) Local bias

Fig. 5: Results on synthetic data with varying group balance, 0.3 social bias, and no implicit bias.

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 

Ac
cu

ra
cy

 d
ev

ia
tio

n 
fro

m
 D

CS
-L

A 
(in

 
pe

rc
an

ta
ge

 p
in

ts
)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

0

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA

G
lo

ba
l b

ia
s

0

10

20

30

40

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Lo
ca

l b
ia

s 
(L

RD
)

0

10

20

30

Fraction of |g1| with respect to |D| with 0.3 social bias
0,1 0,2 0,3 0,4 0,5

Decouple
Decouple-SBT
FALCES
FALCES-SBT
FALCES-PFA
FALCES-SBT-PFA
DCS-LA

Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(c) Local bias

Fig. 6: Results on synthetic data with varying social bias, group balance of 0.5, and no implicit bias.

Our next analysis focuses on the impact different degrees of social bias have on the overall
performance, assuming balanced groups without additional implicit bias. Figure 6 reports
our results. For accuracy, we observe that all methods fluctuate, but the degradation in
accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more
robust to social bias than the state-of-the-art Decouple variants, the PFA variants generally
being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear
upward trend is visible with increasing social bias, showing that the more bias in the input
data, the more bias the ensemble generates. However, the gradient of our approaches is less
steep and consistently below the baseline methods. This means that the more social bias in
the data, the more effective our approaches are in countering the bias to optimize (local)
group fairness compared to the state-of-the-art. FALCES-SBT is best in terms of global
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We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(a) Accuracy deviation from DCS-LA

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(b) Global bias

We start with a “clean” dataset with no social or implicit bias, and see if group imbalance has an impact of our three metrics. We expect marginal effect on accuracy and low 
global and local bias. This is confirmed by the experiments. All algorithms perform similarly. While being generally low, we observe that the local bias steadily increases with the 
increasing imbalance, reaching a relative increase of up to 64%. 
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We perform the same analysis when g1 presents a social bias of 0.3 - not sure if we need to show up to 0.9 or keep it to 0.5 for consistency. The main conclusions remain 
the same. With the introduction of this bias, we see that deviations in accuracy become more pronounced, in particular for the decouple algorithm. Least affected is FALCES-
SBT-PFA in terms of accuracy, actually having comparable or better accuracy than DCS-LA. For both local and global bias, we see that all our methods consistently 
outperform both Decouple variants and DCS-LA. But the field has overall shifted upwards compared to bias free data. Essentially, this shows that we cannot fully counter the 
bias originally present in the dataset, but our methods are best in reducing it while maintaining high accuracy. Over the range of group imbalance, we do not observe any 
clear trend here. 
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Our next analysis focuses on the impact different degrees of social bias have on the overall performance, assuming balanced groups to begin with (balance = 0.5). On 
accuracy, we observe that all methods fluctuate, but the degradation in accuracy (typically less than 2 percentage points) is tolerable. Our approaches are more robust to 
social bias than the state-of-the-art decouple variants, the PFA variants generally being closest to the accuracy reached by DCS-LA. For both local and global bias, a clear 
upward trend is visible with increasing social bias, showing that the more bias in the input data, the more bias the ensemble generates. However, the gradient of our 
approaches is less steep and consistently below the baseline methods. This means that the more social bias in the data, the more effective our approach is compared to the 
others in coutering the bias to optimize (loca) group fairness.  FALCES-SBT is best in terms of global and local bias, but FALCES-SBT-PFA similar performance so good 
compromise in datasets with mainly social bias.  
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We perform a similar analysis for implicit bias in the source data, again assuming a balance of groups (balance = 0.5). We see that this type of bias impacts all metrics more 
than the previously considered bias (social bias). As before, in terms of variations in accuracy, these are strongest for Decouple variants, whereas the PFA variants of our 
algorithm outperform FALCES and FALCES-SBT. However, looking at both local and global bias, methods including SBT spike at high implicit bias of 0.5, while FALCES-SBT 
otherwise performs best, as in previous experiments. REASON FOR THIS??? Nevertheless, in general, our methods outperform the state of the art for a wide range of 
implicit bias configurations. 
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As a conclusion, we see that our methods improve on the state of the art by offering a better accuracy-fairness compromise than the state of the art Decouple approach 
(considering global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable. Our methods are also the most robust to different types and degrees 
of bias (we studied group imbalance, social bias, and implicit bias). An added benefit is that our methods inherently consider local fairness as well, and our evaluation of local 
fairness shows that the classifications performed using our algorithms get us closer to equal opportunity for different predefined groups. 

1

(c) Local bias

Fig. 7: Results on synthetic data with varying implicit bias, group balance of 0.5, and no social bias.

and local bias, but FALCES-SBT-PFA has similar performance and thus presents a good
compromise in datasets with mainly social bias.

We perform a similar analysis for implicit bias in the source data, again assuming a balance
of groups (balance = 0.5) and setting social bias to 0. Figure 7 visualizes the results of
this set of experiments. Our first observation is that implicit bias impacts all metrics more
than the previously considered social bias. As before, in terms of variations in accuracy,
these are strongest for the Decouple variants, whereas the PFA variants of our algorithm
outperform FALCES and FALCES-SBT. However, looking at both local and global bias, our
algorithms without model pruning typically perform better than their counterpart with PFA.
The reason for this is that model pruning during the offline phase can prune classifiers that
would, during the online phase, be better compared to those retained after model pruning.
Nevertheless, in general, our methods outperform the state of the art for a wide range of
implicit bias configurations.

We validate our findings on artificial data on the real-world dataset as well. Given that it
includes two sensitive attributes (sex and race), we study accuracy, global bias, and local
bias when just one attribute is used to form groups (resulting in two groups) and when two
attributes are used (resulting in 4 groups). Figure 8 shows results for global and local bias.
Results on accuracy confirm that all algorithms perform similarly, it consistently ranges
between 0.790 (Decouple) and 0.799 (DCS-LA). As before, we observe that FALCES
variants typically are comparable or outperform the three baseline algorithms, both in terms
of global and local fairness. With the increasing number of sensitive attributes, we observe
that the bias increases for all methods.

In conclusion, we see that our methods improve on the state of the art by offering a better
accuracy-fairness compromise than the state of the art Decouple approach (considering
global fairness) and the difference in accuracy compared to DCS-LA is typically tolerable.
Our methods are also the most robust to different types and degrees of bias (we studied
group balance, social bias, and implicit bias). An added benefit is that our methods
inherently consider local fairness as well, and our evaluation of local fairness shows that
the classifications performed using our algorithms get us closer to equal opportunity for
different predefined groups.

Using FALCES against bias in automated decisions by integrating fairness in dynamic
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Local bias for different algorithms when varying group balance (0.3 social bias) WITH OLD METRIC

Algorithm 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
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Global bias for different algorithms when varying group balance (0.3 social bias) AND OUR NEW METRIC
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Fig. 10: Global bias for varying group balance, 0.3
social bias, and using alternative af -metrics
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Fig. 11: Local bias for varying group balance, 0.3
social bias, and alternative af -metrics

5.3 Impact of different accuracy-fairness metrics

Section 4.2 has discussed two alternative metrics for af , used both during model pruning in
the offline phase and dynamic classifier selection in the online phase. All experiments so far
have used our extended metric (Equation 2). The next series of experiments investigates
how the two options potentially impact the result. We refer to the state-of-the-art metric of
Equation 1 as SOA, while our extended metric is labeled NEW. As a reminder, our extension
aims at countering the effect on fairness in presence of unbalanced groups. Therefore, we
focus our study on evaluating both the global and local bias for different configurations of
group balance. As before, accuracy is comparable across all approaches, whether we use
SOA or NEW. Figure 10 reports our results on global bias, whereas Figure 11 focuses on
local bias. For better readability, we omit the results of Decouple-SBT and DCS-LA, their
relative performance to the other approaches being analogous to our previous discussion.

For both global bias and local bias, we see that FALCES variants without model pruning
(dotted lines) are comparable when using SOA or NEW. The effect of using a different
metric only becomes apparent when model pruning is active. Overall, we see that NEW
closes the “bias gap” between FALCES variants with model pruning (solid lines) and
those without. This allows our methods to consistently exhibit low bias, especially in
comparison to state-of-the-art algorithms like Decouple. This behavior can be explained by
the fact the af is used by model pruning where group imbalance can cause the pruning of
otherwise good classifier combinations. Note that the use of af during the online-phase is
not sensitive to the choice of the two metrics, because it ensures class balance in the local
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region by selecting k members of each group to form a region. Consequently, FALCES and
FALCES-SBT are not significantly affected by the choice of metric.

5.4 Runtime evaluation

We also evaluate the efficiency of our approach in its online phase. In particular, we study
the effect of model pruning in the offline phase on the online performance. To this end,
we run the four variants of FALCES and measure the average runtime to perform online
classification for all tuples for which we want a prediction. We report results in Figure 9 on
our real-world dataset, on which we can vary the number of groups (either 2 or 4), given
two sensitive attributes. In any configuration, we see that model pruning during the offline
phase improves the average runtime to classify a test tuple during the online phase. While
this improvement is moderate when limiting to two groups, the difference increases as the
number of groups increases. This can be explained based on the fact that for two groups and
five models trained per group, we have 25 combinations to consider during the online phase
when none are previously pruned. This exponentially increases with the number of groups,
e.g., for 4 groups, 54 combinations need to be tested. Combined with the performance
in terms of accuracy and fairness (see Section 5.2), FALCES-SBT-PFA is the method of
choice when the number of groups increases.

6 Conclusion

This paper studied the novel problem of making locally fair and accurate classifications
to foster equal opportunity decisions. We have presented a general framework to address
the problem, as well as FALCES, an implementation of the framework that combines
and extends techniques of dynamic model ensembles and fair model ensembles. Our
experimental evaluation demonstrated that FALCES generally outperforms the state of the
art when it comes to balancing accuracy and fairness for several types and degrees of bias
present in the training dataset. Possible avenues for future research include methods that
diversify the set of trained models in a controlled way or dynamic and adaptive setting of
the parameter k of the kNN search, depending on the density of the data region.
Acknowledgements. Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
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