
Programming language for unified computing with classical

and quantum bits

Gergely Gălfi1, Tamăs Kozsik2, Zoltăn Zimborăs«

Abstract: As the capabilities of quantum computers - regarding the numbers of physical qubits,
the number of consequtive coherence-keeping steps, or the noise of the gates - are continuously
improving, so they enable the implementation of complex algorithms, including ones which combine
classical and quantum-enabled steps. Such computations will need control and data shared between
the two worlds (quantum and classical), and for improving code quality by eliminating redundancies
they may also need a form of classical/quantum polymorphism. This paper proposes a high-level
programming language, Qubla to support this type of polymorphism, allowing not only genericity, but
also mixed classical and quantum arithmetics. In this language, arithmetical and logical operations
can be performed on data formed of both classical bits and qubits. The current implementation of the
language works as a interpreter/compiler hybridȷ all the classical steps of the program are executed
consecutively and together with them the quantum steps are added as building blocks to a quantum
logic definition over qubits.

1 Introduction

Many of the quantum algorithms have steps which are quantized version of some common

classical procedures. Typical example is Shor’s algorithm[Sh9»], where to prepare the

incoming state of the QFT, controlled modular multiplications of a quantum and classical

integers are employed. These steps are usually considered as trivial, in the sense that they

require “only” the reimplementation of classical logical circuits with quantum gates. On the

other hand, with the increasing number of logical qubits this originally straightforward task

of quantum circuit design is becoming far too complex to effectively done manually. This

was our main motivation for developing a programming language which allows users to

specify their algorithms through constructions similar to the ones in the classical procedural

programming languages. Also we wanted to make it transparent as much as possible

whether in a given algorithm, classical or quantum bits are used. Certainly there are other

programming languages which provide this type of transparency, e.g. Silq[Bi19]. However,

we had some specific needs which made us to develop a compiler from scratch instead of

using or tweaking an existing one. It is best to compare our language with Silq to shed light

on our drivers during the development processȷ

1 ELTE Eötvös Lorănd University, Budapest, Hungary, galfi@inf.elte.hu, 0000-0002-6568-877X
2 ELTE Eötvös Lorănd University, Budapest, Hungary, kto@inf.elte.hu, 0000-0003-4484-9172
« Wigner Research Centre for Physics, Budapest, Hungary , zimboras.zoltan@wigner.hu, 0000-0002-2184-526X

cba doi:10.18420/inf2022_93

D. Demmler, D. Krupka, H. Federrath. (Hrsg.): INFORMATIK 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 1101

mailto:galfi@inf.elte.hu
mailto:kto@inf.elte.hu
mailto:zimboras.zoltan@wigner.hu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2022_93


• There are simulation methods or other numerical analysis tasks around quantum

computing which require to pass multiple times through the chain of unitary trans-

formations making up the quantum logic itself. In these cases it is more effective

to calculate all the transformations in advance. That’s why we needed a system

which does not simulate or directly run the quantum steps on a physical hardvare

during compilation time - as Silq does -, but rather builds up the quantum logic as

a whole. It was our definite intention to separate the task of building up the logical

structure of a quantum circuit based on a specified algorithm and the task of running

that quantum circuit either on a real hardware or on a simulator. As our framework

focuses on the former task, the main final product of our compiler is a quantum logic

definition, so it was also practical to create it as a library and not a command-line tool.

Further on we will refer to this framework as Qubla[22]. Our choice of environment

for implementing it was Python, as it gives many opportunity to feed the resulting

quantum logics into the very extensive QC ecosystem in Python.

• Also we wanted to focus our attention on transformations which are boolean or - from

classical logical engineering standpoint - could be described by truth tables. There

are theorems which ensure that any boolean function could be built up from some

universal gates (e.g. NAND-gates), but even with a more practical or ergonomical

approach, it is common to define these functions as a sequence of some custom few-bit

boolean operations. So one of our goal was to get even the most basic operations as

addition, multiplication, division, etc. defined by a sequence of truth table operations,

and making these operations partially or entirelly quantized by substituting qubits in

place of classical bits appropriately. Turning a classical boolean transformation into a

quantum one requires to fulfill some mathematical constraints (like the unitarity of the

operation), but we’ve seen this “housekeeping” as a task should be done automatically

by the compiler and wanted to create the framework as transparent as possible for

this classical-quantum transformation.

• Having the truth table transformations as a separate entity group - and not seeing them

as just some general unitary transformations - helps us on one hand to produce a more

optimized quantum logic (regarding the number of qubits and steps). On the other

hand it could also help the physical implementation of these transformationsȷ Solovay-

Kitaev theorem[Ki97] only ensures the existence of an approximate implementation

for general unitary transformations however keeping in eyesight that these are boolean

ones it is guaranteed that they could be generated exactly by a finite number of

elementary operations.

Summarily, we wanted to develop a framework which can process the source code in a

hybrid mannerȷ should the users operate with classical quantities (bits, fixed length words

or integers), then the instructions are executed on the spot. However, when a user-defined

function encounters a qubit-based quantity, it adds a new steps to the quantum logic definition.

In the typical case of mixed-type arguments, it is up to the compiler to do in advance as

many precomputations as possible, and add only the minium necessary qubit-operations to

1102



the quantum logic definition. So, the final result after processing the source code is the usual

output of the classical steps (e.g. lines printed on the console), but additionally a quantum

logic definition is generated.

2 Object types

To understand how Qubla works as a unified classical-quantum language, it is worth taking

a look at first some of the available data types. Qubla is a dynamically typed language.

Converting object to a given type is easy, could be done with applying the desired type as a

single-argument function. For example, int(x) will convert object x to an int, provided by

the original type of int(x) allows that.

2.1 Integer type

Similar to other programming languages, Qubla uses an integer type. Our intention was

to avoid any bit number constraint in this language, so the integer type is arbitray-length.

To avoid the quirks of indefinite length quantum objects, integer type don’t have quantum

version, for that purpose the fixed length word type should be used.

2.2 Bit and qubit type

The most important atomic data types of the language are the bit and qubit types. The bits

are the usual binary values, the two distinct values could be accessed by bit(0) and bit(1).

The quantum counterpart of bit objects are the qbit objects. These are representing the

qubits of the quantum computer. Technically a qbit object contains only a reference to a

certain qubit, e.g. qbit[5] is a reference to the fifth qubit of the quantum computer. As it is

clear from this definition, the compiler - apart from the initialization - doesn’t keep track of

the time evolution of qubits as we consider it a task for a simulator or for a real hardware

implementation. However, the compiler guarantees that when referenced multiple times, the

qubits wouldn’t change their values. This may sounds too restrictive, however this condition

is the quantum correspondent of the classical principle that for example bit(1) ought to

have the same meaning while the program is running. We say that a qubit is invariable

under a series of quantum steps, if in the case these steps applied on any pure canonical

base state, then the density matrix of the qubit doesn’t change.

2.3 Word types

To handle more complex (semi)quantum integer-like numbers, Qubla provides fixed length

word types, specifically word and uword. Both of them refers to a finite list of bits and

1103



qubits, and the only difference between the two is how certain functions - e.g. the “less than”

function - handle themȷ uword is an unsigned integer, word should be considered as a two’s

complement signed value. Managing of word objects are relatively easy in Qubla, even when

it is a mix of classical bits and qubits. For example, uword{[bit,bit,qbit,qbit]}(13)

will result in a word object similar to uword{[1,0,qbit[4],qbit[5]]} (actual indexing

of qubits depends on the preceding part of the source code and also on the state of the

compiler), where qbit[4] and qbit[5] are newly allocated (not used before) qubits and

both of them are initialized to the state |1〉.

3 Quantum logic steps

The following building blocks are employed by Qublaȷ

• Initialization steps As the name suggests, this type of step is responsible for setting

one or more qubits to a given quantum state.

• Truth table steps These are special permutation transformations where the mapping

of the canonical basis states could be defined through the usual truth tables. Certainly

not every truth table leads to a permutation, and henceforth a unitary transformation

(e.g. the two bit AND operation). However, it is guaranteed by the Qubla compiler,

that for any truth table, with arbitrary inputs and outputs, it will be extended by the

inclusion of input qubits into the output till unitarity is achieved required by any

reversible computing model[To80].

• Copy steps Qubla also guarantees the invariability of qubits in the sense of 2.2. To

achieve that goal it duplicates the input qubits certainly only in the classical sense, as

could be done by a CNOT gate with the controlled input set to zero. So copy steps

would well fit into the group of general truth table transformations, however during

reduction phase some of these copy steps are to be removed, and it is easier to find

them if they are already belong to their own group.

4 Test case

Despite this use case doesn’t have any practical usage in Quantum Computing (it’s output

could be simply found out), it was able to drive the Qubla framework through all it’s

compilation and reduction steps in a non-trivial way, so giving it an end-to-end testing.

Additionally it is a good example on how easily a complex quantum logic could be defined

in Qubla. In this text case we define a quantum logic to calculate all the possible products

of two «-bit unsigned word (practically the numbers 0-7). The actual Qubla-code which

defines this logic is the followingȷ

H = {0: 1/sqrt(2), 1: 1/sqrt(2)};

1104



n = 3;

arrqbx = alloc(n); arrqby = alloc(n);

for(i : seq(n)){

arrqbx[i] = qstate(H)[0];

arrqby[i] = qstate(H)[0];

}

x = uword{n}(arrqbx); y = uword{n}(arrqby);

z = x*y;

output(z);

For variables x and y we create 2x« qubits, all being in equal superposition (so all

possible input numbers has equal probability). The statement z = x*y calculates the 6-bit

arithmetic product of these inputs. The ultimate line output(z) makes it sure that the qubits

corresponding to z and all other steps leading up to it will not be removed in the reduction

phase. After compiling and reducing the quantum logic, we ended up in a 21-qubit system.

This is well within the capability of a simple state vector simulation. So after simulating this

system and then calculating the probabilities of the possible values of z, we were able to

compare it with the theoretically predictable distribution (the distribution of the product of

two numbers between 0 and 7, picked in an uniformly random way). Having an exact match

give us a strong evidence that each individual steps in our Qubla framework work correctly.

4.0.1 Acknowledgements

This project has received funding from the Ministry of Innovation and Technology and the

National Research, Development and Innovation Office within the Quantum Information

National Laboratory of Hungary and through grant No. FK1«5220.

References

[22] Qubla source code, 2022, urlȷ http://absimp.org/qubla.

[Bi19] Bichsel, B.; Baader, M.; Gehr, T.; Vechev, M.ȷ Silqȷ A High-level Quantum

Programming Language, Sept. 2019, urlȷ http://silq.ethz.ch/, visited onȷ

09/22/2019.

[Ki97] Kitaev, A. Y.ȷ Quantum computationsȷ algorithms and error correction. Russian

Mathematical Surveys 52/6, pp. 1191–12»9, Dec. 1997, urlȷ https://doi.org/

10.1070/rm1997v052n06abeh002155.

[Sh9»] Shor, P. W.ȷ Algorithms for Quantum Computationȷ Discrete Logarithms and

Factoring, 199».

[To80] Toffoli, T.ȷ Reversible computing. International Colloquium on Automata, Lan-

guages, and Programming/, pp. 6«2–6»», 1980.

1105

http://absimp.org/qubla
http://silq.ethz.ch/
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155

