
Impossibility Results on Fair Exchange

Benoı̂t Garbinato Ian Rickebusch

Université de Lausanne
CH-1015 Lausanne, Switzerland

{benoit.garbinato, ian.rickebusch}@unil.ch

Abstract: The contribution of this paper is threefold. First, we propose a novel spec-
ification of the fair exchange problem that clearly separates safety and liveness. This
specification assumes a synchronous model where processes communicate by message
passing and might behave maliciously. In this model, we prove a first impossibility re-
lated to the notion of trust, stating that no solution to fair exchange exists in the absence
of an identified process that every process can trust a priori. Finally, we derive an en-
riched model where processes are divided into trusted and untrusted processes, and we
show that an additional assumption is still necessary to solve fair exchange. Intuitively,
this result expresses a condition on the connectivity of correct but untrusted processes
with respect to trusted processes. We also revisit existing fair exchange solutions de-
scribed in the literature, in the light of our enriched model, and show that our second
impossibility result applies to them.

1 Introduction

In our modern daily lives, the notions of fair exchange and trust are ubiquitous: everyday,
without even noticing, we participate in numerous commercial exchanges, which we ex-
pect to be fair (and most actually are). A key enabler to make all these exchanges occur is
the notion of trust. In the physical world, this trust is supported by the identification and
the implicit reputation of tangible exchange partners. In the digital world, on the contrary,
fair exchange is a surprisingly difficult problem. This can be explained by the lack of trust
that characterizes the digital realm. Yet, fair exchange is a fundamental problem that has
lately regained interest [AGGV05]. This is partly due to the advent of m-business as a
natural evolution of e-business, i.e., extending the possibilities of e-business through the
use of mobile devices, e.g., cellular phones.. When it comes to solve fair exchange in
such semi-open environments, i.e., where all parties are not necessarily identified a priori,
carefully modeling and analyzing trust relationships between processes is a key issue.

Most successful e-business solutions today are following a classical client/server archi-
tecture (centralized). This implies that current e-business solutions somehow fail to take
full advantage of the Internet’s underlying protocols, which were designed to support fully
decentralized approaches.1 For example, current e-business solutions do not provide a

1The ARPANET project aimed at building a network with no single point of failure, in order to survive a
nuclear strike.

507

favorable environment for electronic exchanges in the absence of some centralized and
trusted server, i.e., they fail to support peer-to-peer only settings. On the other hand,
the emergence of mobile devices and ad hoc networks, which often have to operate in a
disconnected manner with respect to the Internet, is forcing us to reconsider the current
e-business architectures. In that respect, in a companion paper [GR06], we advocate that
fair exchange is a key building block when it comes to support peer-to-peer m-business
interactions at the middleware level, and we propose such a middleware.

Research on Fair Exchange. Various specifications of the fair exchange problem have
been proposed, with slightly different sets of properties [AGGV05, ASW00, Ate99, FR97,
Mic03, PG99, RRN05]. Among these properties, fairness is the most difficult to capture
and where these specifications tend to differ [RRN05, MGK02]. Most specifications are
actually meaningful for exchanges involving only two processes, i.e., they are impossible
to satisfy in models allowing more than one Byzantine process. In [AGGV05] for instance,
fairness requires that if any correct process does not obtain its item, then no process ob-
tains any items from any other process, which is clearly unsustainable in the presence of
two or more Byzantine processes. Indeed, one cannot prevent two Byzantine processes
from privately exchanging their items. Our specification of fair exchange, on the contrary,
considers the general case where more than two processes might be involved.

Most solutions to fair exchange rely on some kind of Trusted Third Party (TTP). A TTP is
a process directly accessible to all processes. Fairness is thus trivially ensured by having
processes sending their items to the TTP, which then forwards the items, if the terms of the
exchange are fulfilled [BP90]. A TTP brings synchronism and control over terms of the ex-
change in order to ensure fairness but constitutes a bottleneck and a single point of failure.
For this reason, various optimistic algorithm have been proposed that only involve the TTP
when something goes wrong [ASW00, Mic03, BP90, BWW00]. Other approaches aim at
relaxing the assumption made on its trustworthiness. In [FR97] for instance, Franklin and
Reiter propose a solution using a semi-trusted third party that can misbehave on its own but
does not conspire with either of the two participant processes. Departing from the tradi-
tional TTP-based approach, some authors proposed solutions based on fully decentralized
tamperproof modules [AGGV05, GR06]. Both these solutions assume a network topology
where the modules are embedded in their respective processes and cannot communicate
directly with one another, however they differ in the power given to the tamperproof mod-
ules.

Impossibility Results. Besides proposing a specification or a solution, some authors
also discuss the difficulty of fair exchange and propose impossibility results in various
models. Oddly enough, it is difficult to find published work on impossibility of fair ex-
change other than technical reports. Mostly, impossibility results on fair exchange have
to be inferred from other impossibilities on problems somehow related to fair exchange,
which is far from being straightforward. In [PG99], fair exchange is measured against
consensus, and an impossibility result on fair exchange in asynchronous models is shown
by comparison with the FLP impossibility [FLP85]. In [EY80], fair exchange is shown to
be impossible to solve deterministically in an asynchronous system with no Trusted Third
Party (TTP). In another feasibility study [KGM95], complex exchanges are broken into

508

sub-exchanges – each relying on a different TTP – and represented as a graph. Reduction
rules are then applied to the graph in order to demonstrate the feasibility of the exchange.
This method also makes it possible to illustrate how closely exchange feasibility relies
on trust. Another attempt to study what is inherently possible and impossible in safe ex-
change is proposed in [SW02], using game-theoretic solution concepts. However, the basic
exchange model considered in this study only involves two parties, plus a Trusted Third
Party. In this paper, we present an impossibility result stating that fair exchange cannot be
solved in a synchronous model in the absence of some identified process that every other
process can trust a priori. We then present another impossibility result in the context of a
model with trusted processes.

Contributions and Roadmap. In Sect. 2, we present a general distributed system model
with Byzantine failures and we give a fine-grained specification of fair exchange. We also
prove that there is no solution to the problem in that model without a notion of trust.
In Sect. 3, we modify our model to obtain an enriched model, which can be used as a
framework to describe and compare solutions to the fair exchange problem.2 In this model,
we derive necessary conditions for the solvability of the problem. Finally, Sect. 4 revisits
existing solutions in the light of our enriched model and points out the common essence
of these solutions, while Sect. 5 concludes this paper by giving hints about ongoing and
future work.

2 Fair Exchange in the Absence of Trust

We consider a distributed system consisting of a set Π of n processes, Π = {p1, . . . , pn}.
Processes are interconnected by some communication network and communicate by mes-
sage passing. The system is synchronous: it exhibits synchronous computation and syn-
chronous communication, i.e, there exists upper bounds on processing and communication
delays. To help our reasoning, we also assume the existence of some global real time clock,
whose tick range, noted T , is the set of natural numbers.3

Regarding the network topology, we merely assume that processes of Π form a connected
graph. Links are reliable bidirectional communication channels, i.e., if both the sender
and the receiver are correct, any message inserted in the channel is eventually delivered
by the receiver, i.e., after some finite amount of time (termination property). A reliable
channel also ensures that no message is delivered if it was not previously sent (no creation
property).

Executions and Failure Patterns. We define the execution of algorithm A as a sequence
of steps executed by processes of Π. In each step, a process has the opportunity to atom-
ically perform all three following actions: (1) send a message, (2) receive a message and

2As discussed in [GR06], our enriched model can be implemented in practice via dedicated tamperproof
chips, already available on the market today.

3This global clock is virtual in the sense that processes do not have access to it.

509

(3) update its local state.4 Based on this definition, a Byzantine process is one that deviates
from A in any sort of way, so a Byzantine process is Byzantine against a specific algo-
rithm A. It is a known result that Byzantine failures can only be defined with respect to
some algorithm [DGG05]. A Byzantine failure pattern f is then defined as a function of T
to 2Π where f(t) denotes a set of Byzantine processes that have deviated from A through
time t. In a way, a failure pattern f can be seen as a projection of all process failures
during some execution of A. Once a process starts misbehaving, it cannot return to being
considered correct, i.e., f(t) ⊆ f(t+1). We also define F as the set of all possible failure
patterns of A, so f ∈ F .5

Let Byz(f) =

t∈T f(t) and Cor(f) = Π − Byz(f) denote respectively the set of
Byzantine processes in f and the set of correct processes in f . We define the set Fb of
all failure patterns where no more than b processes are Byzantine. More formally, Fb is
the largest subset of F such that, for any failure pattern f ∈ Fb, |Byz(f)| ≤ b, with
0 ≤ b ≤ n:

Fb = {f ∈ F : |Byz(f)| ≤ b} with 0 ≤ b ≤ n .

Note that b is bounded by n, the number of processes in Π. From this definition, we know
that b is the maximum number of Byzantine processes in any failure pattern of Fb and that
Fn = F . Finally, we define the set F∼

f of all failure patterns producing the same set of
Byzantine processes than f . More formally, given some failure pattern f , F∼

f is the largest
subset of F such that, for any failure pattern f � of F∼

f , Byz(f �) = Byz(f):

F∼
f = {f � ∈ F : Byz(f �) = Byz(f)} .

2.1 The Fair Exchange Problem

The fair exchange problem consists in a group of processes trying to exchange digital items
in a fair manner. The difficulty of the problem resides in achieving fairness. Intuitively
fairness means that, if one process obtains the desired digital item, then all processes
involved in the exchange should also obtain their desired digital item. The assumption is
made that each process knows both the set Π of processes participating in the fair exchange
and the terms of the exchange. The terms of the exchange are defined by a set D of item
descriptions, D = {d1, . . . , dn}, and a set Ω of pairs of processes (pi, pj). Description
di is the description of the item expected by process pi. Furthermore di is unique, so if
i 4= j, then di 4= dj . A pair (pi, pj) defines the receiver pj of the item offered by pi.
Elements of Ω are defined such that pj is the image of pi through a bijective map (or
permutation) of Π, with i 4= j. Finally, let M denote the set of digital items mi actually
offered by process pi during an execution of fair exchange, M = {m1, . . . ,mn}. Note
that, accordingly, for each description in D there does not necessarily exist a corresponding
item in M , since M includes items that might have been offered by Byzantine processes.

4At each step, the process can of course choose to skip any of these actions, e.g., if it has nothing to send.
5This way of modeling executions and failures is fairly classical [DGG05, CT96].

510

Fair Exchange as Service. Fair exchange can be seen as a service allowing processes
to exchange digital items in a fair manner. Each process offers an item in exchange for
a counterpart of which it has the description. The exchange is concluded when every
process releases the desired counterpart or the abort item ϕ, meaning that the exchange
has aborted. To achieve this, the service offers the two primitives described below.

offer(mi, pj) – Enables the process pi to initiate its participation in the exchange
with processes of Π by offering item mi to pj , in exchange for the item matching
description di, with di and Π known a priori.

release(x) – Informs the process that the exchange completed and works as a call-
back. Process pi receives item x, which is either the item matching di or the abort
item ϕ.

Note that, at the end of an exchange, we say that pi releases an item, meaning that the
service calls back the release operation of pi. This convention is similar to the one used
for classical deliver primitives, e.g., in reliable broadcast [HT93].

Fair Exchange Properties. We now specify the formal properties of the fair exchange
problem. While several other specifications exist in the literature [AGGV05, AV03, PG99],
our specification differs in that it separates safety and liveness via fine-grained properties.
Such elemental properties then allow us to better reason on the impossibility to solve fair
exchange in various models.

Validity. If a correct process pi releases an item x, then either x ∈ M and x matches di,
or x is the abort item ϕ.

Uniqueness. No correct process releases more than once.

Non-triviality. If all processes are correct, no process releases the abort item ϕ.

Termination. Every correct process eventually releases an item.

Integrity. No process pj releases an item mi, with process pi correct, if mi matches
description dk of some correct process pk, with pk 4= pj .

Fairness. If any process pi releases an item mj matching description di, with pi or pj

correct, then every correct process pk releases an item matching description dk.

Among these six properties, the last two, integrity and fairness, are specific to the problem
of fair exchange and define precisely the possible outcomes of fair exchange algorithms.
Other specifications of fair exchange usually rely on a single property to capture the notion
of fairness [AGGV05, ASW00, PG99]. However we argue that if those specifications are
suitable for cases where n = 2, they are impossible to satisfy in models allowing more
than one Byzantine process. In [AGGV05], for example, the fairness property requires
that if any correct process does not obtain its item, then no process obtains any items from
any other process. This is clearly unsustainable in the presence of two or more Byzantine

511

processes because one cannot prevent two Byzantine processes from conspiring in order
for one of them to obtain the item of the second one. A simple but flawed fix would be to
modify the definition as follows: if any correct process does not obtain its item, then no
process obtains any items from any correct process. If it first seems correct, this definition
of fairness now allows a correct process to obtain the item of a Byzantine process, even if
other correct processes do not obtain anything.

Coming back to our specification, integrity ensures that no process obtains an item offered
by a correct process and matching the description of a correct process. Notice that this does
not prevent a Byzantine process from illicitly obtaining the item destined to or offered by
some other Byzantine process, since such a behavior cannot be prevented and does not
prejudice any correct process. Then, fairness guarantees that if any process obtains its
desired item offered by some other process, with at least one of them being correct, then
every correct process also obtains its desired item. In other words this property prevents
a Byzantine process from taking advantage of a correct process but does not protect other
Byzantine processes. More trivially, it also ensures that no correct process takes advantage
of any process.

2.2 Impossibility Result

In [EY80], fair exchange is proved to have no solution in an asynchronous model prone to
Byzantine failures. In the following, we show that the exchange problem has no determin-
istic solution even in the context of a perfectly synchronous model, if no complementary
trust hypothesis is made. This is the subject of Theorem 1 hereafter.

In order to prove this, we define the notion of trusted process as a process that is known
to be correct a priori by all other processes. In our model, no such assumption is made
about any process of Π, so each process is potentially correct or Byzantine. Now, for
sake of simplicity and without loss of generality, we assume that an item is indivisible,
i.e., it cannot be sent in pieces. Note that this assumption does not reduce the scope of
the impossibility, since allowing an item to be broken into pieces, e.g., using techniques
from [Sha79], would result in facing the same fair exchange problem for sending the last
piece of item. For the same reason, we assume the item is not encrypted, since having to
later exchange the keys in a fair manner in order for the processes to decipher the items
would again let us face the same fair exchange problem.

Theorem 1 In the context of a synchronous model with Byzantine failures, there is no
deterministic solution to the fair exchange problem, if there is no trusted process, even in
the presence of only a single Byzantine process.

Proof. The proof is by contradiction.
Assume that some algorithm A solves fair exchange and that there are no trusted process.
Consider an execution E of A in which all processes are correct. From the non-triviality,
termination and validity properties of FE, in E, every process releases its desired item,
and in particular, some process pi releases item mj , with mj matching description di and

512

(pj , pi) ∈ Ω, and some process pk releases item mi, with mi matching description dk

and (pi, pk) ∈ Ω. Now since no process can be trusted and Byzantine processes cannot be
detected, in any execution, no process other than pi and pk may hold item mi. So we know
that in a previous step of E, pk receives mi from pi. We now consider the two following
cases: either (a) pi sends mi after receiving mj or (b) pi sends mi before receiving mj .

Case (a): Since there is no trusted process, if pi sends mi after receiving mj , we can
derive an execution E�, similar to E, in which pi is Byzantine and deviates from A
after receiving mj by omitting to send mi and by releasing mj . Since no process is
trusted, in E�, no process other than pi holds mi. So from the no creation property
of reliable channels, pk never receives and thus never releases mi. To satisfy the
validity and termination properties, in E�, pk releases ϕ but thus violates fairness.
So, in E, pi does not send mi after receiving mj . Furthermore, this is true for every
process, so from the definition of Ω and by circular reasoning, in E, all items are
sent at the same time. This now leaves us with case (b).

Case (b): We know that, in E, pi sends mi before receiving mj and that all items are sent
at the same time. Now, since there is no trusted process, we can derive an execu-
tion E��, similar to E, in which pj is Byzantine and deviates from A by omitting to
send mj . Since all items are sent at the same time, pj receives and releases some
item mx matching dj . Since no process is trusted, in E��, no process other than pj

holds mj . So from the no creation property of reliable channels, pi never receives
and thus never releases mj . To satisfy the validity and termination properties, in E��,
pi releases ϕ but thus violates fairness. So finally, Algorithm A does not solve fair
exchange. A contradiction. +>

3 Fair Exchange in the Presence of Trust

As described in Sect. 2, we consider a distributed system consisting of a set Π of n pro-
cesses, Π = {p1, . . . , pn}. Processes of Π are also called participants. We complete our
model with a set Π� of n trusted processes, Π� = {p�1, . . . , p�n}, i.e., a trusted process
is known a priori to be correct by all other processes. Processes of Π� are called trustees
or trusted processes. Note that, hereafter, to avoid confusion, the term process will only
be used to describe participants, unless clearly mentioned otherwise. Furthermore, each
trustee p�i is matched in a one-to-one relationship with the corresponding participant pi

and is directly connected to it. Π+ is then the set of all 2n participants and trustees, i.e.,
Π+ = Π∪Π�. As illustrated in Fig. 1, processes and trustees are interconnected by a com-
munication network and no additional assumption is made about the network topology,
other than the fact that it is a connected graph. Participants are process actually taking
part in the exchange by offering and demanding items, and they may exhibit Byzantine
behaviors. Trustees on the contrary are trusted processes that have no direct interest in the
exchange. Intuitively, the role of a trustee is to decide when it is appropriate to provide its
matched participant with its expected item.

As we shall see in Sect. 4, this model allows to describe and compare various solutions

513

1 1

22

3

3

44

5 5

Processes

Trustees

(a) TTP-based topology.

2 4

3

3

42

1 5 51

Processes

Trustees

(b) Guardian angels topology.

Figure 1: Examples of valid topologies as defined in our model.

proposed in the literature. Simpler topologies, using less trustees and hence some of them
matched with more than one participant, can easily be transformed to fit our model. Indeed,
any trustee matched with several participants can be represented by a cluster of as many
trustees, fully interconnected, and with each trustee matched with one participant. For
example, in the case of the Trusted Third Party (TTP), the TTP can be transformed into a
cluster of n fully interconnected trustees.

3.1 Impossibility Result in the New Model

In Sect. 2.2, we have shown that without some notion of trust, one cannot solve fair ex-
change. On the other hand, we know that a cluster of trustees acting as a TTP yields a
solution. However, depending on the network topology, the presence of trustees is not
sufficient. In the following, we show that in the context of the enriched model, a necessary
condition to solve fair exchange is to have every correct participant reliably connected to
a majority of trustees. This is the subject of Theorem 2 given hereafter and which relies
on Lemma 1.

Beforehand, we need to define the notion of reliable path as follows. Let pi and pj be
two correct processes of Π+ (either processes or trustees). We say that pi and pj are
connected through a reliable path, if there exists at least one path between pi and pj such
that, either pi and pj are directly connected or pi is directly connected to a correct process
pk ∈ Π+ and there exists a reliable path between pk and pj . Furthermore, given a process
pi ∈ Π (participants) and a failure pattern f ∈ F , we define Cf

pi
as the largest subset of Π�

(trustees) such that any trustee p�j of Cf
pi

is connected through a reliable path to pi. Finally,
we define the reachable majority condition as the condition under which, for any correct
process pi ∈ Π and any failure pattern f ∈ Fb, |Cf

pi
| > n

2 , even in the presence of up
to b Byzantine processes. Intuitively, this means that, even in the worst case scenario, pi

is connected through a reliable path to a majority of trustees, i.e., %n
2 + 1&. Note that the

reachable majority condition is a connectivity condition that translates into a maximum

514

number of Byzantine processes that a certain model of network topology is capable of
sustaining. This point is further illustrated in Sect. 4.

Lemma 1 If an algorithm A solves fair exchange with up to b Byzantine processes, then
for any failure pattern f ∈ Fb, there exists an execution associated with a failure pattern
f � ∈ F∼

f such that every process of Cor(f �) releases its expected item.

Proof. Consider an execution E of A in which all processes are correct, from the non-
triviality, termination and validity properties, in E every process releases its correct item.
Now consider any failure pattern f ∈ Fb. From E, we derive an execution E� associated
with a failure pattern f � ∈ F∼

f , i.e., Byz(f �) = Byz(f), such that, in E�, every process
of Byz(f �) deviates from A just before releasing its item, e.g., by crashing. Since E� is
indistinguishable from E for all correct processes, every process in Cor(f �) releases its
correct item.

Theorem 2 In the context of a synchronous model with trustees and Byzantine failures,
there is no deterministic solution to the fair exchange problem, if the reachable majority
condition is not satisfied, even in the presence of a single Byzantine process, i.e., b = 1.

Proof. The proof is by contradiction.
Assume that some algorithm A solves fair exchange and that the reachable majority con-
dition is not satisfied, i.e., there is some correct process pi ∈ Π and some failure pat-
tern f ∈ Fb for which |Cf

pi
| ≤ n

2 , even for b = 1. From Lemma 1, we know that there
exists an execution E� associated to a failure pattern f � ∈ F∼

f , such that every process in
Cor(f �) releases its expected item. Hence, in E�, pi receives its expected item, e.g., mj ,
from its trustee p�i. We now have to consider the two following cases: (a) the transmission
of mj from p�i to pi depends on the reception by p�i of some message x sent by some trustee
p�j ∈ Π�−Cf

pi
, and (b) the transmission of mj from p�i to pi is independent of the reception

by p�i of any message sent by any trustee p�j ∈ Π� − Cf
pi

.6

Case (a): We can derive an execution E��, similar to E�, where message x is blocked by
some Byzantine process along the unreliable path between p�i and p�j , as well as
any following messages. Since E�� is indistinguishable from E� for any process
unreliably connected to p�i, i.e., processes associated with trustees of Π� − Cf

pi
,

these processes thus release their expected item in E��. However, in E��, p�i never
receives x. Since the transmission of mj depends on the reception of x, p�i never
sends mj to pi. To satisfy the validity and termination properties, pi releases ϕ but
thus violates fairness. This leaves us with case (b).

Case (b): We can derive an execution E���, similar to E�, in which some Byzantine pro-
cess pk fails to send the expected item to some trustee p�j ∈ Π�−Cf

pi
, with pj correct

and (pk, pj) ∈ Ω. Since the transmission of mj from p�i to pi is independent from
the reception of any message sent by any trustee of Π�−Cf

pi
(included p�j), for p�i and

6Note that by definition, Cf
pi

= Cf �
pi

, for any failure f and f � such that f � ∈ F∼
f .

515

pi, executions E��� and E� are indistinguishable. So, in E���, pi releases its expected
item. However, since p�j never receives the expected item of pj , neither does pj .
To satisfy the validity and termination properties, pj eventually releases ϕ but thus
violates fairness. So algorithm A does not solve fair exchange. A contradiction. +>

4 Revisiting Existing Solutions

Trusted Third Party (TTP). Several algorithms described in the literature rely on the
TTP paradigm. The simplest TTP-based algorithm consists in having processes send there
items to a centralized trustee, the TTP. The TTP verifies that the terms of the exchange are
respected and, if this is the case, forwards the items. These TTP-based solutions naturally
fit in our enriched model. Our model uses n trustees compared to a unique one in TTP-
based solutions. Mapping the TTP model to our model is done by having all n trustees
jointly play the role of the TTP by forming a cluster of fully interconnected trustees. The
network topology of this solution is such that each process is directly connected to one
distinct trustee of the cluster. It is then fairly obvious that the TTP topology is so secure
that the reachable majority condition is satisfied for any number of Byzantine processes.
Figure 1(a) shows an example of the TTP topology with five processes.

Guardian Angels. In [AGGV05, AV03], guardian angels are defined as tamperproof
security devices that are considered correct. Processes are fully interconnected by a com-
munication network with bidirectional reliable channels. There are n guardian angels but
each of them is only connected to one process. In other words, each process can directly
communicate with its assigned security device but needs to go through some untrusted
process to communicate with other security device. Intuitively, in order to solve fair ex-
change, each item is encrypted and sent to the security device of the corresponding pro-
cess, i.e., the process expecting the item. Security devices then enter a synchronization
protocol, which upon success enables the devices to send the items to the processes. The
assumption is made that the security devices are able to check the validity of the items
and to encrypt messages. In a model with no upper bound on the number of Byzan-
tine processes, the solution given solves fair exchange with a certain probability. The
authors of [AGGV05, AV03] also show that, even in a synchronous model with security
devices, no deterministic algorithm solves fair exchange without an honest majority, i.e.,
without b < n

2 .

The guardian angels approach fits our enriched model by having each of the n trustees rep-
resent one distinct security device. The network topology being symmetric, we can limit
our reasoning to one process. Theorem 2 tells us that if any process p is not connected
through a trusted path to a majority of trustees, there is no solution to the problem. Since
each trustee is behind a distinct process, which is potentially Byzantine, there must be a
majority of correct processes. From Theorem 2, we can then say that the guardian angels
approach cannot deterministically solve fair exchange, if there is not a majority of correct
processes. As one could expect, this result concurs with the result found in [AGGV05].

516

Nonetheless, a very interesting feature of the approach proposed in [AGGV05] lies in its
ability to gracefully degrade its quality of service from deterministic fairness to proba-
bilistic fairness. Figure 1(b) shows an example of the guardian angels topology with five
processes.

Fair Exchange in the Pervaho Middleware. In [GR06], we propose a modular algo-
rithm solving fair exchange in the context of the Pervaho middleware [EGH05]. This
solution follows the same topology as with guardian angels. This algorithm relies on the
use of two key building blocks: a tamperproof secure box module and a module solving
the well-known Byzantine agreement problem. The secure boxes are not connected di-
rectly with each other and they are only needed in key steps of the algorithm, contrary
to the guardian angels approach. Since the network topology is identical to the Guardian
angels topology, our enriched model yields the same results in both cases.

5 Concluding Remarks

In this paper, we proposed a formal description of the fair exchange problem which clearly
separates liveness and safety, thanks to fine-grained properties. We proved that fair ex-
change cannot be solved in a synchronous model with Byzantine failures without at least
one identified correct process. Based on this result, and by enriching our previous model
with identified correct processes (trustees), we defined a generic model for describing a
wide range of solutions to the fair exchange problem. We then gave a necessary condition
for solving fair exchange in this model. Intuitively, this condition states that each correct
process must be reliably connected to a majority of trustees.

Acknowledgements This research is partly funded by the Swiss National Science Foun-
dation, in the context of Project number 200021-104488.

References

[AGGV05] G. Avoine, F. Gärtner, R. Guerraoui, and M. Vukolic. Gracefully Degrading Fair Ex-
change with Security Modules (Extended Abstract). In In Proceedings of the 5th Euro-
pean Dependable Computing Conference - EDCC 2005, 2005.

[ASW00] N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Signatures.
IEEE Journal on Selected Area in Communications, 18:593–610, 2000.

[Ate99] G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures. In
CCS ’99: Proceedings of the 6th ACM conference on Computer and communications
security, pages 138–146, New York, NY, USA, 1999. ACM Press.

[AV03] G. Avoine and S. Vaudenay. Fair Exchange with Guardian Angels. Technical report,
Swiss Federal Institute of Technology (EPFL), 2003.

517

[BP90] H. Bürk and A. Pfitzmann. Value Exchange Systems Enabling Security and Unobserv-
ability. Computers & Security, 9(9):715–721, 1990.

[BWW00] B. Baum-Waidner and M. Waidner. Round-Optimal and Abuse Free Optimistic Multi-
party Contract Signing. In Automata, Languages and Programming, number 1853 in
Lecture Notes in Computer Science (LNCS), pages 524–535. Springer, 2000.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[DGG05] A. Doudou, B. Garbinato, and R. Guerraoui. Dependable Computing Systems:
Paradigms, Performance Issues, and Applications, chapter Tolerating Arbitrary Fail-
ures with State Machine Replication, pages 27–56. Wiley, 2005.

[EGH05] P. Eugster, B. Garbinato, and A. Holzer. Location-based Publish/Subscribe. In Proceed-
ings of the 4th IEEE International Symposium on Network Computing and Applications
(IEEE NCA05), Cambridge (MA), July 2005.

[EY80] S. Even and Y. Yacobi. Relations Among Public Key Signature Systems. Technical
report, Technion - Israel Institute of Technology, 1980.

[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. J. ACM, 32:374–382, April 1985.

[FR97] M.K. Franklin and M.K. Reiter. Fair exchange with a semi-trusted third party (extended
abstract). In CCS ’97: Proceedings of the 4th ACM conference on Computer and com-
munications security, pages 1–5, New York, NY, USA, 1997. ACM Press.

[GR06] B. Garbinato and I. Rickebusch. A Modular Solution to Fair Exchange for Peer-to-Peer
Middleware. Technical Report DOP-20060410, University of Lausanne, DOP Lab,
2006.

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. pages
97–145, 1993.

[KGM95] S. Ketchpel and H. Garcı́a-Molina. Making Trust Explicit in Distributed Commerce
Transactions. In Proceedings of the International Conference on Distributed Computing
Systems, 1995.

[MGK02] O. Markowitch, D. Gollmann, and S. Kremer. On Fairness in Exchange Protocols. In
Proceedings of the 5th International Conference Information Security and Cryptology
(ICISC 2002), volume 2587 of Lecture Notes in Computer Science, pages 451–464.
Springer, November 2002.

[Mic03] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In PODC
’03: Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 12–19, New York, NY, USA, 2003. ACM Press.

[PG99] H. Pagnia and F. Gärtner. On the Impossibility of Fair Exchange without a Trusted
Third Party. Technical report, Swiss Federal Institute of Technology (EPFL), 1999.

[RRN05] I. Ray, I. Ray, and N. Natarajan. An anonymous and failure resilient fair-exchange
e-commerce protocol. Decision Support Systems, 39(3):267–292, 2005.

[Sha79] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[SW02] T. Sandholm and X. Wang. (Im)possibility of safe exchange mechanism design. In
Eighteenth national conference on Artificial intelligence, pages 338–344, Menlo Park,
CA, USA, 2002. American Association for Artificial Intelligence.

518

