
Preserving Recomputability of Results from Big Data
Transformation Workflows

Matthias Kricke 1, Martin Grimmer 1, Michael Schmeißer 2

Matthias Kricke, Martin Grimmer und Michael Schmeißer

Abstract: The ability to recompute results from raw data at any time is important for data-driven
companies to ensure data stability and to selectively incorporate new data into an already delivered
data product. When external systems are used or data changes over time this becomes even more
challenging. In this paper, we propose a system architecture which ensures recomputability of
results from big data transformation workflows on internal and external systems by using distributed
key-value data stores.

Keywords: BigData, recomputability, bitemporality, time-to-consistency

1 Introduction

For data-driven organizations, the possibility to selectively incorporate new data into
an already calculated data product (like a chart, report or recommendation, etc.) can be
required. Hence, the option to recompute information from their raw data is needed, even
if this data comes from several external systems. It is obvious that temporal features are
necessary for this kind of recomputability. In the past, a lot of research has been done on
temporal databases[OS95]. Temporal features have also been incorporated in the SQL:2011
standard[KM12]. Problems like concurrency control[GR92] have been solved for modern,
distributed systems of e.g. Microsoft[Dr15], Google[Co13] and SAP[Le13]. However,
those systems either can’t be used on-premises or have high licensing costs. In addition,
recomputability of data products in big data systems with dependencies to external systems
has not been addressed in recent research.

However, this is a problem which mgm technology partners GmbH has been asked to
solve for a customer. The recomputability of data products enables mgm’s customer to
reconstruct earlier data versions, reports and analysis results to compare them with newer
ones. Moreover, it is now possible to incorporate data changes only from specific external
systems. To deal with the requirements of low license costs and an on-premises system,
mgm’s customer has decided to use a scalable and distributed key-value data store like

1 Universität Leipzig, Fakultät für Mathematik und Informatik, Institut für Informatik, Augustusplatz 10, 04109
Leipzig, {kricke, grimmer}@informatik.uni-leipzig.de

2 mgm technology partners GmbH, Neumarkt 2, 04109 Leipzig, michael.schmeisser@mgm-tp.com

B. Mitschang et al. (Hrsg.): BTW 2017 – Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 227



Apache Accumulo3, Apache HBase4 or Apache Cassandra5. Nonetheless, those stores do
not offer a proper solution for recomputability.

In this paper, we present ELSA (ExternaL System Adaptor), a big data system architecture
which ensures recomputability of data products with dependencies to external systems
by using a variant of the concept of bitemporality[JSS94]. We show an efficient way to
recompute data products even in scenarios where the external systems aren’t versioned.

Customer specific application details are confidential, yet we will provide simple examples
to follow our explanations in the next sections.

2 Requirements

Mgm’s customer wants a cost efficient system which is capable of handling external systems
from either other company departments or companies as data sources. There is a strong
requirement for distributed data transformation processes[RD00]. Those processes are
incorporating data from external systems. This leads to the demand to relieve the external
systems from high-frequent distributed requests. A solution has to be linearly scalable
with low to none license costs and must support many simultaneous, distributed data
transformation processes. In addition, it has to be able to selectively incorporate new data
into an already calculated data product by recomputing it. Hence, all records are immutable
and each version of a record has to be stored. On the one hand, a high volume of external
data is sent to the system. On the other hand, the system has to store all versions of this
data, which leads to a data base increasing by several terabytes a month.

As mentioned before, recomputability can be ensured by versioning the data.

Definition 1 (Versioning)
A record is versioned if each of its occurred states is accessible with the corresponding
timestamp. A system is versioned if each of its records is versioned.

Reality shows that full versioning in external systems is nothing that can be relied on.
Furthermore, it is possible that external systems do not meet the latency or throughput
requirements of the distributed data transformation process. Therefore, the system has to
ensure scalability, recomputability, high throughput and low latency itself which leads to
the necessity of a suitable big data system architecture.

3 External System Adaptor

To deal with the requirements stated in Section 2 a decoupling of external systems and
the data transformation process is necessary. The External System Adaptor (ELSA) is the
3 https://accumulo.apache.org/
4 https://hbase.apache.org/
5 https://cassandra.apache.org/

228 Matthias Kricke, Martin Grimmer, Michael Schmeißer



external system 1

external system 2
ELSA

data transformation
process

data
product…

external system n

Fig. 1: Decoupling of external systems and the data transformation process with ELSA.

junction shown in Figure 1, which fulfills all requirements. However, some demands to an
external system are inevitable. Every external system used in the data transformation process
needs a defined interface which provides a change history on their data. Furthermore, each
change needs to be well defined as operation as stated in Definition 2.

Definition 2 (External key-value Operations)
There are insert and delete operations. An insert operation is defined as a tuple

insert = (k, te,v).

Where k is the key, te is the event timestamp and v is the value of the external record.

The delete operation is defined as a tuple

delete = (k, te)

which invalidates every record with an event timestamp lower or equal to te.

Assuming an external system inserted the tuples t1 = (a,1,v), t2 = (a,2,v0) and t3 =
(a,4,v00), a delete operation defined as delete = (a,3) would remove t1 and t2 in the
external system and retain t3. However, to preserve recomputability, in ELSA data is not
deleted but invalidated.

To fulfill the aforementioned requirements ELSA consists of:

• the ELSA Store, which is replacing the external systems functionality by providing a
queryable data history and

• the ELSA Data Synchronization, which is used for keeping the ELSA Store synchro-
nized with the external systems.

Hence, distributed data transformation processes are now using the ELSA Store instead
of the external systems, which removes the logic of handling external systems from them.
Moreover, the ELSA Data Synchronization highly reduces the throughput and latency
requirements for an external system since data is only read once by it. Since those require-
ments now has to be handled by the store it is an internal, distributed, scalable, multi-version
key-value data store. To ensure recomputability, records in the store are immutable and
never overwritten or deleted. In addition the store is underlying a strict back up process to
avoid data loss.

Preserving Recomputability of Results from Big Data Transformation Workflows 229



3.1 ELSA Get Requests and Bitemporality

Assuming that ELSA is using the timestamp an external system provides, for storing and
querying data, a significant problem for consistency and production arises. There is always
a delay between the time when an event happens and when it is visible in an external system.
This time further increases when ELSA gets the change history. An external system may
only send unregular updates to ELSA. In that case two get requests for the same record
with the same timestamps may lead to different results.

For example a car sends its current GPS position to its manufacturer at 9:00 a.m., who is
sending the position to ELSA at 9:30 a.m.. At 9:15 a.m. a get request to ELSA wants to
know the last position of the car five minutes ago (9:10 a.m.). The request will return no
results. If the request for the last car position at 9:10 a.m. is send again at 9:45 a.m. the
result would be the stored value. Hence, the result of the same request is inconsistent and
thus not recomputable.

To ensure recomputability, get request result consistency is necessary. For achieving this
the concept of bitemporality, as stated in Definition 3, is used.

Definition 3 (Bitemporality)
A data record is bitemporal if it has two decoupled timestamps which distinguish between
the event time te and the ingest time ti.

Be q(kq, tE , tI) = r a get request to the ELSA Store, where kq is the key to be queried. tE is
the maximum event timestamp and tI the maximum ingest timestamp. The resulting r is an
ELSA Record or empty, as defined in Definition 4.

Definition 4 (ELSA Record)
An ELSA record r is created from an external key-value operation, see Definition 2, and
defined as r = (k, ti,o, te,v). Where k is the key of an external key-value operation and ti
is the time the key-value operation was ingested into ELSA. The type of the operation is
given in o and could either be insert or delete. The event timestamp te is derived from the
insert or delete operation. The value v is set for an insert operation or empty for a delete
operation.

Let Rq be a set of ELSA records for a certain external system

• whose keys are equal to kq

• whose ingest times are smaller than tI

• whose event times are smaller than tE

The ELSA get request takes the record r with the maximum event time of Rq. If operation o
of r is delete, the get has no result. Otherwise the ELSA record r is the result of the get
request.

230 Matthias Kricke, Martin Grimmer, Michael Schmeißer



Regarding the car manufacturer example, tE is set to 9:00 a.m. and tI is set to 9:30 a.m..
The ELSA get request has to use both timestamps to identify the correct value which will
make the both aforementioned queries two distinct queries. While the first request is using
a maximum ingest timestamp of 9:15 a.m. the second one is using 9:45 a.m.. Thus the first
get will return no results while the second will return a GPS location.

A more complex example which contains delete operations is shown in Figure 2.

time

ingest timeevent time

insert i1 delete insert i3

get q1

max ingest timemax event time

get q2

insert i2

get q3

Fig. 2: All data versions of a record with different ingest and event times with several get requests.

During get q1 the event time of insert i2 is matching the query but the queries maximum
ingest time is not. Hence, the result of query q1 is the record inserted by insert i1. For
request q2 the event times of the delete and insert i3 are too large and they are filtered
although the ingest time requirements where met. This leads to the record of insert i2 as
result for the query. In the case of q3 the result is i3 since it has the largest event timestamp
and the ingest time requirements are met.

3.2 ELSA Data Synchronization & Store

external system 1 ELSA

data
transformation

process

data
product

ELSA 
store

queue 1

external system 2

…

external system n

queue 2

…

queue n

write
process

external system 1 ELSA

data
transformation

process

data
product

ELSA 
store

external system 2

…

external system n

ELSA Data 
Synchronization

Fig. 3: The ELSA dataflow.

Figure 3 shows a more detailed view of ELSA. The ELSA Data Synchronization subscribes
to all changes done in the external systems and writes them into a queue. This queue is
a replicated queue which is able to handle peaks. An entry in the queue is an external
key-value operation specified in Definition 2. A write process pulls the external key-value
operation from the queue and transforms it into an ELSA record as defined in Definition 4,
which is written into the ELSA Store.

Preserving Recomputability of Results from Big Data Transformation Workflows 231



The ELSA Store is a Big Table[Ch08] like persistent, distributed, scalable, multi-version
key-value data store. It is able to handle massive, parallel requests from data transformation
processes. Furthermore it is target of backup processes to ensures that no data is lost and
recomputability stays intact even in the case of a system failure.

4 Implementation

ELSA was brought into production by mgm and its customer. In this section some of
the pitfalls will be described and solved. For a better understanding those pitfalls will be
described on specific technologies. Therefore the following explanations will be done by
assuming that the software for distributed computing is Apache Hadoop6 and the distributed
database is Apache Accumulo which stores its data into the Hadoop Distributed File System
(HDFS).

4.1 Time-to-Consistency

In databases there is a small delay between the ingest time given by the store and the moment
the value is written. To write a record a database has to determine the ingest timestamp
e.g. by using the system clock, and only then it is able to finally write it. This problem
even increases in distributed databases because of network latency and communication for
replication and distribution. This may lead to the situation where data with a certain ingest
time ti is written at a later time ty, which breaks the recomputability.

The time-to-consistency tcon defines an upper bound for how long it may take from the
determination of the ingest timestamp of a record till the record is written. A system
fulfills the time-to-consistency if its writing processes at minimum use the current time
tnow as ingest timestamp. Furthermore read operations may only choose a maximum ingest
timestamp tI for their read requests which is at most tnow� tcon.

The concept of time-to-consistency is applied to all read operations in ELSA. An example
value for tcon could be:

tcon = write timeout · (write retries+1)

In an Apache Hadoop environment with configured write timeout of 30 seconds and a
maximum of 3 write retries tcon = 120s.

4.2 Schema and Server-Site-Iterator

Table 1 shows the ELSA schema of record r for the distributed and sorted key-value data
store Apache Accumulo.
6 https://hadoop.apache.org/

232 Matthias Kricke, Martin Grimmer, Michael Schmeißer



Record Row-Key Column Family Column Qualifier Version Value
r k External Store te ti operation & v

r1 x ext1 5 10 insert & v1
r2 x ext1 10 30 delete
r3 x ext1 12 20 insert & v2
r4 x ext1 35 40 insert & v3

Tab. 1: Example ELSA Store table instance.

The row-key is the key k of an ELSA record r. The data of external systems is stored in the
same Apache Accumulo table but distinguished by the column family. However, by using
locality groups, only data for a given external system is considered during a get request. The
column qualifier contains the event time of r and the version is set by Apache Accumulo
and resembles ti. Operation and value of r are encoded into the value field.

When a request is send to Apache Accumulo, by default it returns the latest value of a
record. Since ELSA is using a bitemporal approach for the get requests (see Section 3.2)
this is not feasible. Therefore, the version iterator had to be removed and the problem has
been solved by using custom server-site iterators. This is possible since an iterator processes
all records of the same key in ascending order by column family and column qualifier and
in descending order by version. Even in the case that data is inserted out-of-order, like it is
shown in Table 1 the algorithm returns the correct result.

For a given get request q = (k, tI , tE) and store ext the server-side iterator iterates the records
R with row-key equal to k and column family equal to ext.

Algorithm 1: Costum Server-Side Iterator Algorithm
result NULL;
foreach r 2 R do

if r.te > q.tE then
if result.o = insert then return result;
else return NULL;

if r.ti > q.tI then
continue with next r;

else
result r;

return result;

The following examples are describing the Algorithm 1 used by the server-site iterator on
Table 1. For a request q1 = (x,15,35) the iterator is undergoing the following steps:

1. evaluate r1: 5 < 15^10 < 35! result = r1

2. evaluate r2: 10 < 15^30 < 35! result = r2

Preserving Recomputability of Results from Big Data Transformation Workflows 233



3. evaluate r3: 12 < 15^20 < 35! result = r3

4. evaluate r4: 35� 15^ result.o = insert! return result = r3

For example request q2 = (x,11,40) the iterator is undergoing the following steps:

1. evaluate r1: 5 < 11^10 < 40! result = r1

2. evaluate r2: 10 < 11^30 < 40! result = r2

3. evaluate r3: 12� 11^ result.o = delete! return NULL

During the last example request q3 = (x,15,15) the iterator is undergoing the following
steps:

1. evaluate r1: 5 < 15^10 < 15! result = r1

2. evaluate r2: 10 < 15^30� 15! continue

3. evaluate r3: 12 < 15^20� 15! continue

4. evaluate r4: 35� 15^ result.o = insert! return result = r1

5 Conclusion & Future Work

We have defined the ELSA architecture which can reliably recompute data products even
when data changes or external systems are used. We have managed this by keeping all
versions of the data in a bitemporal and consistent way. In the former system the used
state of the database was not configurable and depended on the time a get request was sent.
Which led to unrecomputable results. In an ELSA get request the used state of the system is
configurable and defined by the ingest timestamp. Therefore, the ELSA get request allows
flexible recomputations of data transformation processes.

Besides recomputability, the architecture has several other benefits. It is lineary scalable,
has a low latency and can handle massive parallel requests by using distributed technologies
like Apache Hadoop and Apache Accumulo. Furthermore, temporary connection issues
regarding the external systems are hidden from the data transformation process. Hence, we
can even execute data transformation processes while an external system is not accessible.
In addition, there is no possibility of overwhelming the external system with distributed
queries from the data transformation processes.

Some data transformation processes of mgm’s customer contain manual interactions of
business experts. In this case, automated data transformation processes which are recomput-
ing data products are blocked by this manual interactions. To make this case non-blocking
and recomputable, we would like to enhance ELSA by a manual action registry. In this
case, manual interactions are done using rich tooling and are required to result in a data
transformation process themselves. One can design a system which automatically applies

234 Matthias Kricke, Martin Grimmer, Michael Schmeißer



those manual interactions while recomputing a data product. To bring this even further, we
plan to investigate whether it is possible to reuse those manual interactions in other data
transformation processes.

Additional future work may consider the version of the software used by data transformation
processes since old versions may no longer be available to recompute results. We believe this
is quite challenging since used framework versions, the runtime environment and hardware
may change significantly. However, it might be possible by the use of recomputable
virtualized environments.

6 Acknowledgements

This work was partly funded by the German Federal Ministry of Education and Research
within the project Competence Center for Scalable Data Services and Solutions (ScaDS)
Dresden/Leipzig (BMBF 01IS14014B) and Explicit Privacy-Preserving Host Intrusion
Detection System EXPLOIDS (BMBF 16KIS0522K).

References
[Ch08] Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh, Wilson C; Wallach, Deborah A;

Burrows, Mike; Chandra, Tushar; Fikes, Andrew; Gruber, Robert E: Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):4, 2008.

[Co13] Corbett, James C; Dean, Jeffrey; Epstein, Michael; Fikes, Andrew; Frost, Christopher; Fur-
man, Jeffrey John; Ghemawat, Sanjay; Gubarev, Andrey; Heiser, Christopher; Hochschild,
Peter et al.: Spanner: Google’s globally distributed database. ACM Transactions on Com-
puter Systems (TOCS), 31(3):8, 2013.

[Dr15] Dragojević, Aleksandar; Narayanan, Dushyanth; Nightingale, Edmund B; Renzelmann,
Matthew; Shamis, Alex; Badam, Anirudh; Castro, Miguel: No compromises: distributed
transactions with consistency, availability, and performance. In: Proceedings of the 25th
Symposium on Operating Systems Principles. ACM, pp. 54–70, 2015.

[GR92] Gray, Jim; Reuter, Andreas: Transaction processing: concepts and techniques. Elsevier,
1992.

[JSS94] Jensen, Christian S; Soo, Michael D; Snodgrass, Richard T: Unifying temporal data models
via a conceptual model. Information Systems, 19(7):513–547, 1994.

[KM12] Kulkarni, Krishna; Michels, Jan-Eike: Temporal Features in SQL:2011. SIGMOD Rec.,
41(3):34–43, October 2012.

[Le13] Lee, Juchang; Muehle, Michael; May, Norman; Faerber, Franz; Sikka, Vishal; Plattner,
Hasso; Krueger, Jens; Grund, Martin: High-Performance Transaction Processing in SAP
HANA. IEEE Data Eng. Bull., 36(2):28–33, 2013.

[OS95] Ozsoyoglu, Gultekin; Snodgrass, Richard T: Temporal and real-time databases: A survey.
IEEE Transactions on Knowledge and Data Engineering, 7(4):513–532, 1995.

[RD00] Rahm, Erhard; Do, Hong Hai: Data Cleaning: Problems and Current Approaches. 2000.

Preserving Recomputability of Results from Big Data Transformation Workflows 235


