
FRANz: Fast reconstruction of wild pedigrees

Markus Riester1, Peter F. Stadler1,2,3,4, Konstantin Klemm1

1Bioinformatics Group, Department of Computer Science,
and Interdisciplinary Center for Bioinformatics,
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Abstract: We present a software package for fast pedigree reconstruction in natural
populations using co-dominant genomic markers such as microsatellites and SNPs. If
available, the algorithm makes use of prior information such as known relationships
(sub-pedigrees) or the age and sex of individuals. Statistical confidence is estimated by
a simulation of the sampling process. The accuracy of the algorithm is demonstrated
for simulated data as well as an empirical data set with known pedigree. The parentage
inference is robust even in the presence of genotyping errors.

1 Introduction

The reconstruction of genealogical relationships among diploid species has been an ac-
tive field of research for more than three decades. A well-developed statistical theory of
paternity inference has been published in series of articles by E.A. Thompson, see e.g.
[Tho76]. The study of parentage in natural populations was the topic of the pioneering
papers by T.R. Meagher [MT86] and T.C. Marshall [MSKP98] and is recently reviewed in
[Blo03, JA03, Pem08]. The pedigree structure of a sample of individuals is important for a
wide range of ecological, evolutionary and forensic studies. Applications include geneal-
ogy reconstruction (e.g. for wine grape cultivars [VG06]), the estimation of heritabilities
in the wild [TH00], and victim identification [LMX06].

In order to reconstruct the pedigree of a sample, the parents of each individual in the
sample need to be determined. If one has a large amount of genomic data, the task of
identifying first degree relationships, i.e., parent-offspring and full-sibs relations, is trivial.
Unfortunately, many datasets in natural populations do not contain enough information
to unambiguously determine the parents. Another problem is that datasets often contain
only a subset of a population. Thus, one or both parents of an observed individual may be
missing from the dataset. Furthermore, many datasets are not free of errors.

Most programs support only datasets comprising one or two generations. The approach
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to partial pedigree reconstruction in one generation datasets are sibship algorithms. Here,
genotype data is used to infer full-sib and half-sib relationships [TH02, Wan04, BWSD+07].
The parentage inference programs for two generations typically take an offspring list, if
known their mothers, and a list of candidate parents or fathers as input and generate the
possible parent combinations [KTM07, HRB06]. Much less attention has been given to
multi-generation pedigrees in which the offspring and candidate parent sets are not neces-
sarily non-overlapping. This is the case for example in the absence of age data. Then the
ordering of genotypes into generations is not known a priori and has to be estimated from
the genotype data only. Thus, at difference with parentage inference programs, the general
case treated here does not admit all possible parentage combinations as valid pedigrees.
The task is therefore to find the parentage combinations that define the maximum likeli-
hood pedigree. If the number of possible pedigrees is too large too enumerate, heuristics
are necessary. So far, a flexible software package has not been available that allows the
incorporation of prior information in addition to the genotypes and that is robust in the
case of errors. It is the purpose of this contribution to fill this gap.

2 Definitions

A pedigree P = (V, A) is an acyclic digraph with vertex set V and arc set A. For an
arc (ui, v) we say that v is a child of ui and ui is a parent of v. The set of (putative)
parents of v is denoted by N+(v) ⊆ V ; it may have cardinality 2 {ui, uj}, 1 {ui}, or
0 ∅. In the latter case, v is called a founder. In selfing species, ui = uj is allowed and
P is a multigraph. The set of all valid parent combinations of v is denoted by H (v).
Again we include the cases that none or only one of the parents are present in V . Note that
H (v) ⊂ V × V ∪ V ∪ {∅}. The Mendelian laws of inheritance and prior information
such as sex, age and known mothers restrict H (v).

For each individual, we have to choose one parent combination N+(v) ∈ H (v). Not all
such combinations of parents are possible, because this may introduce directed cycles into
the pedigree. T denotes the set of all valid pedigrees.

For a given individual i, we denote an observed single-locus genotype by gi and its multi-
locus genotype by Gi.

3 Background

Consider a triplet of individuals (A, B, C) with single locus genotypes gA, gB and gC . In
likelihood-based paternity analyses, one compares the likelihood of the hypothesis (H1)
that the three individuals are offspring, mother and father, with the likelihood of the alter-
native hypothesis (H2) that the three individuals are unrelated. This comparison is usually

169



expressed as a log-ratio, the parent-pair LOD score (e.g. [MT86]):

LOD(gA, gB , gC) = log
P (gA, gB , gC |H1)

P (gA, gB , gC |H2)
= log

T (gA|gB , gC) · P (gB) · P (gC)

P (gA) · P (gB) · P (gC)

The likelihood of (H2) is the probability of observing the three genotypes when randomly
drawn from a population in Hardy-Weinberg equilibrium. For diploid heterozygotes, the
probability of a genotype with the alleles a1 and a2 and with the allele frequencies p

and q is P (a1, a2) = 2pq; for homozygotes, we have P (a1, a1) = p2. The Mendelian
transmission probability is denoted by T (·). Variations of this equation can be derived
for the cases where only one parent is sampled (single-parent LOD scores) and for triples
where the relationship of two individuals A and B, typically mother and offspring, is
known [MT86, KTM07].

For each pair of individuals, we can calculate the probability that the two have a partic-
ular relationship R: unrelated U, parent-offspring PO, full-sib FS, half-sib HS, etc. The
usual way of calculating the likelihoods P (gA.gB |R) uses the so-called IBD (identical by
descent) coefficients k0, k1 and k2. Alleles are identical by descent if they are identical
and are segregated from a recent common ancestor. A child, for example, shares with each
parent exactly one allele that is identical by descent (k1 = 1); monozygotic twins share
two (k2 = 1) whereas unrelated individuals share no alleles (k0 = 1) identical by descent.
Given the allele frequencies, the probabilities that the genotype pair gA.gB shares 0, 1 or 2
alleles identical by descent, P0, P1 and P2, are then calculated and are inserted in the final
IBD likelihood formula (see [Blo03] for details):

P (gA.gB |R) = k0P0 + k1P1 + k2P2 (k0 + k1 + k2 = 1)

For unlinked loci, which we assume in the following, the logarithms of the IBD relation-
ship likelihoods and the LOD scores are additive over the loci.

Even high quality datasets contain errors where at least one allele at a given locus does
not match with what we expect from the Mendelian laws. Thus it is unwise to exclude a
parent immediately when observing such a mismatch. There are many reasons for such
mismatches, see [BBBE+04] for a review. Genotyping errors occur when the genotype
determined by molecular analysis does not correspond to the real genotype. For instance,
a common type of genotyping error in microsatellite datasets are null alleles, which are
often the result of a mutation in the primer annealing site. Somatic mutations form another
source of mismatches.

The model implemented here defines an error to be the replacement of the true genotype
at a particular locus in an individual with a random genotype. This leads to a modification
of the expressions for the LOD score, see [KTM07], and to corresponding modifications
in the IBD likelihood calculations, see [BW98] for details.
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4 Methods

4.1 Simulation of the sampling process

To estimate the power of the marker suite, our software performs several standard tests
and calculations. This alone, however, will not be sufficient to estimate the accuracy of
the pedigree reconstruction. A simulation of the sampling process is therefore necessary.
Given the population allele frequencies and the expected typing error rate, which are ei-
ther estimated using the sample itself or provided by the user, we generate individuals
with known relationships to determine various distributions. To assess the degree of con-
fidence of the parent-offspring arcs in P , we follow [MSKP98] in using ΔLOD as test
statistic. ΔLOD is the difference of the LOD scores between the two most likely parent
combinations (or fathers).

Another important characteristic is the distribution of the number of mismatching loci
given the expected error rate for pairs (parent-offspring versus unrelated) as well for triples
(offspring, mother and father versus offspring, mother and unrelated male). This knowl-
edge allows us to significantly speed up the algorithm, because we know when likelihood
calculations can be terminated. We can furthermore omit the O(n3) triple calculation for
pairs with more mismatches than maximally expected for a triple. These parameters are
also important because too many allowed mismatches may lead to a high number of false
positive parent-offspring arcs.

Full-sibs can be distinguished from parent-offspring pairs based on the log-likelihood dif-
ferences Δpo = log P (Gi.Gj |FS) − log P (Gi.Gj |PO) . The distribution of Δpo is gen-
erated for full-sib pairs and for parent-offspring pairs. We later only consider pairs that
exceed a critical value of Δpo as full-sib candidates. If the intersection of their candidate
parents includes at least one parent pair, we finally define this pair as full-sibs. If not,
then the pair could still be a full-sib pair, but with unsampled parents. In this case, this
pair could also be a half-sib pair, so we use the distribution of the log-likelihood differ-
ences Δhs = log P (Gi.Gj |FS)−log P (Gi.Gj |HS) to distinguish full-sibs from half-sibs.
The values of Δhs are generated for full-sib and half-sib pairs. Now, full-sib candidates
without a common parent pair that exceed a critical value of Δhs, are defined as full-sibs.

4.2 Calculation of the possible parent-offspring arcs

For every individual v, we calculate the LOD scores with all candidate parents ui, individ-
uals we cannot exclude a priori as parents, for example because of their age. We discard
pairs (ui, v) or triples (ui, uj , v) with negative multilocus LOD scores from our further
analyses. Hence, for every pair of individuals with positive single-parent LOD score,
(ui, ?) is included in the set of valid parent combinations H (v), just as well (ui, uj) for
every triple with positive parent-pair LOD score. Unless we know that at least one parent
of v is sampled, we include the empty parent pair (?, ?) in H (v).

We also calculate the posterior probability of each parentage in H (v) relative to all pos-
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sible parentages including the ones with unsampled candidates parents [NMCP01]. Our
implementation provides the functionality to filter parentages below a certain probability.

The parentage likelihood calculation is the most important step in the pedigree recon-
struction procedure as these likelihoods define the set of all possible arcs in the pedigree.
However, as described in detail by Meagher and Thompson [TM87], if we cannot exclude
two full-sibs, vi and vj , as parent and offspring, they in general give a higher likelihood
than do true parents. Thus, for highly probable full-sibs, a reasonable strategy is to use
only the intersection of the candidate parents: H (vi) = H (vj) = H (vi)∩H (vj). The
critical values of Δpo and Δhs that a full-sib pair must exceed should be high enough to
prevent false positives, which may result in an exclusion of the true parents in the next
step, the pedigree reconstruction.

4.3 Pedigree Reconstruction

The likelihood of a pedigree P is computed as the probability of the genotypes given this
pedigree. So the goal is to find the pedigree which maximizes the log-likelihood:

max
P∈T

L(P) =

NI�
i=1

log P (Gi|N
+(vi))

Here, P (·) is the probability of observing the multilocus genotype Gi given the parents
N+(vi). For founders (N+ = ∅), log P (·) equals the denominator of the multilocus
LOD score. This is equivalent to the assumption that all founders are unrelated. For
the offspring, these probabilities are the multilocus Mendelian transition probabilities in
the error model. So for vertices where |N+| = 1, log P (·) is the single-parent, when
|N+| = 2 the parent-pair LOD enumerator.

For each individual, we now sort the possible parent combinations by their probability.
The maximal possible score is simply the sum of all most likely parent combinations. Our
greedy algorithm works by selecting one vertex v and then adding the arcs corresponding
to the most likely parent combination N+ ∈ H (v). If the arcs introduce a directed cycle
in P , we try the second most likely parent combination and so on. If no parent-offspring
relationships are known, this algorithm produces a valid pedigree, because the ‘empty’
parent combination (v is a founder) is always in H (v), which can never introduce a cycle.
We proceed until all vertices are added.

For vertices with known parents, every parent combination adds at least one arc. A simple
strategy is now to start with vertices where |H (v)| = 1. Unless the “known” parent-
offspring relationships are wrong, this introduces no directed cycles. Then we proceed
with the remaining vertices with known parents. If this succeeds, we add the remaining
vertices without known parents as described above. If not, or if the final score is not the
maximal score, we use Simulated Annealing [KGV83] for the pedigree reconstruction as
described in [Alm03].

172



Figure 1: Reconstructed penaeus monodon pedigree. Without (top) and with (below) full-sib calcu-
lation. The assumed typing error rate is 0.01.

5 Results

Black Tiger Shrimp Penaeus monodon. Our first dataset is a microsatellite dataset of
the black tiger shrimp Penaeus monodon [JBMW06]. The true pedigree is known from di-
rect observation. The dataset consists of 13 families with a total number of 85 individuals
(of which 59 offspring), genotyped at seven highly polymorphic loci. For ten individuals,
alleles are missing at one locus. The error rate is very low, with only one observed mis-
match. Figure 1 are the best pedigrees with and without full-sib heuristic (4.2) and shows
that large full-sib groups greatly enhance the performance of our algorithm. The accuracy
of the complete pedigree without full-sib heuristic is 87.4% in comparison to 99.58% with
this heuristic. A recent publication [BWSD+07] listed an accuracy rate of several sibling
reconstruction methods ranging from 67.8 to 77.97 percent on the same dataset.

Simulated Data. We use the statistics of the German population [Off07] to calculate the
probabilities of death, (multiple) birth and marriage at a given age for males and females.
As initial population we generate 100 unrelated individuals. For the genotypes, we use the
allele frequencies of 64 human microsatellites [JBCS+00]. In every year, we let all indi-
viduals die, mate or marry according the corresponding probabilities. As mating partners
or husbands, we only allow unrelated individuals. Married couples only mate with each
other. We stop when the desired number of individuals is reached. In order to simulate
typing errors, we replace the true allele with a random one. Null alleles are simulated in
heterozygote genotypes by replacing the null allele with the other allele (ai.an becomes
ai.ai). Homozygote genotypes are marked as missing, i.e., an.an becomes ?.?.

We analyzed the accuracy of our algorithm with different subsets of the simulated data,
see Figure 2. If the accuracy is not 100%, then either the algorithm failed to find the
maximum likelihood pedigree or there exists a valid pedigree that has a higher likelihood
than the true one. Without exceptions, our optimization algorithm found a pedigree with
at least the log-likelihood of the true pedigree (data not shown).

Age data is clearly the most informative prior knowledge. Known mothers and the sex
of the individuals are getting less informative the more genomic data is available. This
is because mothers are sampled like all individuals with a rate of 0.5 and sex requires
candidate parent pairs. So for example, they do not help in difficult cases where the true
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Figure 2: (Left) The accuracy of the reconstructed pedigrees is plotted as a function of the number
of loci. The values are the median accuracy of ten randomly generated pedigrees of size 1000,
reconstructed with different combinations of available prior knowledge. The error bars indicate the
first and third quartile. The dataset has a sampling rate of 0.5 (1000 of 2000 individuals sampled)
and has an overall typing error rate of 0.01. In addition, the first locus comprises one null allele
(pn = 0.05). The pedigree depth ranges from 5 to 9.
(Right) The sensitivity and specificity of the sibling calculation plotted again as a function of the
number of loci.

parents are unsampled but a close relative (e.g. aunt or uncle) is sampled.

We also evaluated the performance of our full-sib heuristic directly. As we use this heuris-
tic to reduce the pedigree space, we require a very small false positive rate. The sensitivity
and specificity is plotted in Figure 2 (right). The critical values for this heuristic are the
same in all cases, which explains that the observed sensitivity and specificity is quite inde-
pendent of prior knowledge. However, as more non-siblings are tested without age data,
one has to expect more false positives. Note that the second requirement, full-sibs must
have common parents (4.1), gets also more significant the more genomic data is available.
Hence, if age data is available or with larger amounts of genomic data, less conservative
significance levels should be chosen.

6 Discussion

We have presented a fast algorithm for the pedigree reconstruction problem. The pub-
licly available implementation is written in the C programming language and is platform-
independent. It can be obtained under the GPL1. The genealogy of datasets with thousands
of individuals is typically reconstructed in a few minutes. Due to the space constraints of

1http://www.bioinf.uni-leipzig.de/Software/FRANz/

174



this paper, we can only describe the core functionality of the software. Our implementation
is flexible in incorporating additional data like age, sex, sampling locations, sub-pedigrees
and allele frequencies. This was suggested in [Alm03] but not previously implemented in
a publicly available software package. The reconstruction of large and deep pedigrees is
highly accurate with only 15-20 polymorphic microsatellite loci (twice as many when age
data are not available).

In [Alm03], some remaining challenges in the pedigree reconstruction problem were listed.
These are the assumption that founders are unrelated, a better estimation of allele frequen-
cies, linkage, support for typing errors or mutation, and estimation of the error of the
reconstruction procedure. FRANz makes significant progress in the latter two tasks by
combining the simulation procedure and the error model described in [KTM07] with the
Simulated Annealing algorithm.

The error model was criticized in the literature because of its simplicity. Other programs
explicitly model special kinds of errors, for example null alleles [Wan04, WCK06]. At
typical error rates of 1%, however, the number of mismatching loci is low and a detailed
modeling seems provide little benefit. More complex error models may be necessary for
data with higher error rates, however.

Extensions of the LOD scores for linked loci when the linkage phase is known are pro-
posed in [DRE88]. If the linkage phase and recombination rates are known with high
accuracy, the incorporation of this prior information can significantly enhance the perfor-
mance of the parentage assignments [DRE88]. However, in most cases the linkage phase
is unknown and has to be estimated jointly. Loose linkage of a small fraction of mark-
ers should not seriously bias multilocus likelihood calculations [Mea91]. Tightly linked
loci in contrast, such as neighboring SNPs, can be combined and treated as one single
pseudolocus.

The pedigree likelihood function (4.3) is appealing because of its property being additive
over the individuals. This allows very efficient construction algorithms and requires no
prior information about the pedigree structure. However, if the genomic signal is low,
the likelihood function will fail to construct the correct pedigree, especially when single-
parents are considered. This is because the expected number of false positive single-parent
arcs becomes large. Age data significantly reduces this effect. The same is true for our
full-sib heuristic (4.2) in particular when large full-sib groups and both of their parents
are sampled. Priors about the pedigree structure (the expected inbreeding rates, number
of offspring, etc.) might further improve the performance. Information of this kind is
oftentimes unknown a priori, however. In fact, these are parameters that one typically
would like to infer from the reconstructed pedigrees.

Our incorporation of full-sib probabilities is a reaction to the concern expressed in [MT86]
that non-excluded full-sibs of the offspring have on average a higher LOD score than the
true father. To keep the pedigree likelihood function simple and efficient to calculate,
we use only highly significant full-sibs to reduce the pedigree space. It seems possible
to include more siblings than just the highly significant ones into the pedigree likelihood
calculation without the risk of excluding the true parents. Since such “local” factors in the
pedigree likelihood are also not very computationally intensive, we plan to explore this
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avenue in future work.

Traditional parentage inference methods such as the one described in this paper have been
criticized lately [HRB06]. Pedigrees are used to estimate parameters. If the genomic
signal is not strong enough, many different pedigrees will have similar likelihood scores.
Using only the best pedigree will thus introduce a bias. In [HRB06], it has been proposed
to estimate the parameters of interest jointly with the pedigree. This, however, requires
that the population’s mating behaviour fits the implemented model. FRANz outputs all
possible parent combinations, not only the ones of the maximum likelihood pedigree, as a
starting point to investigate such a bias [DRE88, NMCP01].
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