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Abstract: Post-genomic data analysis represents a new challenge to link and
interpret the vast amount of raw data obtained with transcriptomic or proteomic
techniques in the context of metabolic pathways. We propose a new strategy with
the help of a metabolic network graph to extend PathExpress, a web-based tool to
interpret gene expression data, without being restricted to predefined pathways.
We defined the Enzyme Neighbourhood as groups of linked enzymes,
corresponding to a sub-network, to explore the metabolic network in order to
identify the most relevant sub-networks affected in gene expression experiments.

1 Introduction

With the development of transcriptomic and proteomic techniques, post-genomic data
analysis represents a new challenge for researchers to link the vast amount of raw data to
a biological context [Br06]. The interpretation of microarray data is usually performed in
two steps. The first step is the identification of genes that are differentially expressed
under two or more conditions, using different statistical methods [CC03]. In a second
step, the selected genes are compared with a background in order to find enrichment in
any functional term. Many ontological tools are now available that support the functional
interpretation of gene expression data, through the identification of significantly
enriched Gene Ontology categories [As00] among a class of genes of interest [KD05].

Additionally, with the availability of pathway databases such as the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) [KG00] or MetaCyc [Ca06], numerous
tools have been proposed to visualize and analyse microarray data in the context of
known biological networks by including metabolic or regulatory pathway information
[Pa03], [PGM04], [Th04], [Ch05], [Ml05], [Ba06], [Wu06], [GW07], [Sa07]. However,
the predefined metabolic pathways used in these methods represent an arbitrary
segmentation of metabolism.
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In contrast, other methods integrate, a priori, the knowledge of gene networks in the
analysis of gene expression data. Ideker and co-workers presented a procedure for
screening a molecular interaction network combined with a statistical measure to
identify sub-networks that show significant changes in expression [Id02]. This approach
has been included in Cytoscape to identify functional modules, i.e. highly connected
network regions with similar responses across multiple experimental conditions [Cl07].
Hanisch and co-workers proposed a co-clustering method based on a distance function
that combines information from expression data and biological networks [Ha02]. A Potts
spin algorithm was developed to cluster gene expression data by using the nearest
neighbour relations of biochemical networks [KE04]. Rapaport and co-workers extracted
gene expression patterns of neighbouring genes in the network, involving the attenuation
of high-frequency signals with respect to the graph [Ra07]. Another approach consists of
the development of techniques for the decomposition of biochemical networks into the
smallest functional units based on the network topology using the Petri net theory
[Sc02], [SHK06]. It has been shown by Schwartz and co-workers that elementary modes
represent true functional units of metabolism and can be used to reveal transcriptional
activity [Sc07]. However, these methods are limited by the combinatorial explosion of
computing elementary modes in large networks.

We recently presented a web-based tool called PathExpress [GW07] to interpret gene
expression results from microarray experiments in the context of biological pathways,
available at http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress/. PathExpress has been
developed to identify the most relevant pathways or sub-pathways associated with a
subset of genes, e.g., differentially expressed. It is based on a directed graph to model
enzymatic reactions, derived from the publicly available KEGG Ligand database of
chemical compounds and reactions in biological pathways [GNT98], [Go02]. Two types
of nodes are used to represent compounds and reactions that can be mediated by one or
more enzymes. To take into account how reactions are linked in pathway, sub-pathways
are defined as a chain of reactions linked to each other by a common compound
(substrate or product). Thus, PathExpress compares a submitted list of genes to the genes
involved in annotated pathways or sub-pathways and identifies the significantly over-
represented set of enzymatic reactions in the query using a hypergeometric distribution
[Ch01]. This statistical test has been employed by many ontological tools to detect
significant enrichments of functional categories within a class of genes of interest
[Ri07].

This article presents developments in PathExpress that explore the metabolic network for
the interpretation of gene expression data. We created a graph representing the complete
metabolic network, which allows us to examine the neighbourhood of a given enzyme by
following the chain of connected reactions linked by a common compound. The Enzyme
Neighbourhood (EN) represents a group of linked enzymes corresponding to a sub-
network. The EN can then be compared to a submitted list of genes with the aim to find
ENs in which the submitted genes are significantly over-represented. In a case study, our
method was tested with gene expression data of the model legume Medicago truncatula
to compare the transcriptomes of meristematic and non-meristematic root cells [Ho08].
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2 Methods

This approach is based on a directed graph modelling enzymatic reactions as used in the
Petri net representation of biological networks [SHK06]. Two types of nodes are used to
represent compounds and reactions with reactions represented by one or more enzymes.
Directed edges, connecting these nodes, correspond to the consumption or the
production of compounds by the reaction. We first built the global metabolic network
consisting of 2,198 enzymes and 2,796 compounds involved in 3,706 reactions as
specified in the KEGG LIGAND database [GNT98], [Go02]. This database has the
advantage of providing a manually curated representation of enzymatic reactions
involved in metabolic pathways where most secondary metabolites (very common and
highly connected compounds such as water, oxygen, major coenzymes and prosthetic
groups) have been removed, thus avoiding invalid metabolic connections and
unspecified pathways.

In this network, two reactions are neighbours if a metabolite exists that is the product of
one reaction and the substrate for the other. Then, we define the Enzyme Neighbourhood
(EN) of depth d for an enzyme e, as the set of enzymes that can be reached in the graph
from e by traversing a maximum of d compounds, regardless of the direction of the
edges (Fig 2.1). The EN of depth 1 for a given enzyme thus corresponds to the set of
enzymes directly connected via a compound. The EN of depth 2 includes the enzymes
involved in the EN of depth 1 plus the enzymes linked to them. As different paths can
connect two enzymes, the shortest distance is considered to define the EN. These ENs
correspond to different sub-networks of the global metabolic network.

Figure 2.1: Example of an Enzyme Neighbourhood (EN). Compounds (labelled with their KEGG
identifier and represented as ellipses) and reactions (labelled with the EC number of the enzymes
that mediates it and represented as boxes) are the nodes of the directed graph. The EN of depth
1for the enzyme ‘EC 3.2.1.86’ contains the enzymes ‘EC 3.2.1.86’, ‘EC 2.7.1.69’ and ‘EC

2.7.1.63’, whereas the EN of depth 2 contains in addition to those includes in the EN of depth 1,
the enzymes ‘EC 3.1.6.3’, ‘EC 5.1.3.3’, ‘EC 3.1.3.9’, ‘EC 2.7.1.41’ and ‘EC 3.1.3.10’.
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To identify the most relevant sub-network associated with a list of submitted enzymes,
the EN of each seed (EC number) is determined in the global network, for a given depth,
and its composite EC numbers are compared to the submitted list. For each test, a p-
value representing the probability that the intersection k of the list of enzymes of size n
belonging to the given EN, of size D, occurs per chance in the population of N enzymes
involved in the entire network, is calculated using the hypergeometric distribution
[Ch01] as described below.
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Because multiple hypothesis tests are performed, it is necessary to correct these p-values
with adjustment methods such as the conservative Bonferroni correction [Bo06], in
which the p-values are multiplied by the number of comparisons, or the less stringent
False Discovery Rate (FDR) approach [BH95], which determines the expected
proportion of false positive results among all rejected hypotheses.

The size D of the EN depends on its depth d, which has to be specified as a parameter in
the current implementation. It is typically necessary to examine several ENs with
different depths. To optimize this parameter with the size of the submitted list of
enzymes, we have computed the average number of enzymes involved in each possible
EN for a range of depths (Table 2.1). Using these results, it is possible to adjust the depth
parameter to compare groups of enzymes with sub-networks of similar size. For
example, to compare a group of 10 enzymes, a depth parameter of 1 (i.e. direct
neighbours), corresponding to an average size of 11.7 enzymes in the network, is
recommended.

Table 2.1: Average size of the Enzyme Neighbourhood according to the depth parameter

Depth Average no. of neighbours
1 11.7
2 14.5
3 21.9
4 34.0
5 51.0
6 74.2
7 105.5
8 145.1
9 193.8
10 253.5
20 995.0
30 1397.7
40 1622.1
50 1767.4
100 2106.8
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3 Application to gene expression data

We extended the web-based tool PathExpress with this method of exploring the Enzyme
Neighbourhood in order to identify the most relevant sub-networks associated with a list
of genes (e.g. differentially expressed genes).

3.1 Linking expressed enzymes with metabolic networks

One of the main constraints in methods for the functional interpretation of gene
expression data corresponds to the linkage of such data to the metabolic network, as the
number of available organisms in pathway databases is limited. To overcome this, we
use similarities between probe set sequences of supported genome arrays and protein
sequences of known EC numbers, retrieved from the Swiss-Prot database [Ba05], in
order to link probe sets to the metabolic network (Table 3.1). Blastx [Al90] is used to
find the best match (E-value ≤ 10-8) for the sequences representing each probe set
sequence (i.e. sequences derived from the most 5’ to the most 3’ probe in the public
Unigene cluster) of the genome arrays analyzed. If these entries have been annotated as
enzymes, the probe set is assigned to the corresponding EC number, extracted from its
definition line. This strategy can be applied to any set of sequences. A complete
metabolic graph representing all assignments is produced and all qualifying sub-
networks are compared with the data of a submitted genome array. High scoring Enzyme
Neighbourhoods are then presented.

Note that probe sets that cannot be assigned to EC numbers are excluded from further
analyses, and although this limits the number of usable probe sets, it also eliminates non-
enzymatic gene functions that are present in many unrelated metabolic pathways. As the
comparisons are based on enzyme composition rather than single probe set assignments,
biases that arise from a multiplicity of genes coding for the same enzyme are largely
overcome and the functional activities become apparent.

Table 3.1: Available Affymetrix genome arrays and assignment statistics

Affymetrix Genome Array (Organism) % Sequences
assigned

No. of
ECs

No. of
reactions

ATH1 Genome Array (A. thaliana) 22.7 823 1,177
E. coli Genome 2.0 Array (E. coli) 22 803 1,217
Drosophila Genome 2.0 Array (D. melanogaster) 16.4 724 1,011
Yeast Genome 2.0 Array (S. cerevisiae) 25.3 601 918
Yeast Genome 2.0 Array (S. pombe) 26.5 566 839
Medicago Genome Array (M. truncatula) 17.6 953 1,412
Soybean Genome Array (G. max) 17.2 803 1,217
Rice Genome Array (O. sativa) 17.6 923 1,363
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3.2 Microarray data analysis

Our method was applied to interpret a microarray experiment in the model legume
Medicago truncatula, comparing the gene expression of meristematic and non-
meristematic root tissues [Ho08]. The data have been deposited in NCBI’s Gene
Expression Omnibus [EDL02] and are accessible through GEO series accession number
GSE8115 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8115). Following
normalisation, differentially expressed probe sets were identified by evaluating the log2
ratio between the two conditions associated to a standard t-test [Ca00]. All probe sets
that differed by more than a two-fold difference with a t-test p ≤ 0.05 were considered to
be differentially expressed. Of the 363 transcripts over-expressed in the non-meristem,
119 could be assigned to 62 different enzymatic functions, defined by their EC number
and found in the Affymetrix Medicago Genome Array. In order to identify the most
relevant sub-networks involved in this group, we compare it, using PathExpress, to all
ENs with a depth of 6, using the hypergeometric distribution. The resulting sub-networks
were ranked by increasing p-values, representing the probability that the intersection of
the enzymes differentially expressed in the non-meristem with the given EN occurs by
chance.

The most significant EN (p-value = 1.4e-4), using the flavonone 3-dioxygenase (EC
1.14.11.9) as seed (black), is given in Figure 3.1. Of the 20 enzymatic reactions present
in the depicted sub-network, 9 occur in the submitted list of differentially expressed
enzymes (grey and black). Only 12 of the 20 reactions in this EN are part of the classical
flavonoid biosynthesis pathway as described in the KEGG database, which is consistent
with the role for the flavonoids and their derivatives in the non-meristematic root [Im07].
The remaining 8 reactions connected to this sub-network are part of different pathways
(such as propanoate metabolism or liminene and pinene degradation) and would not have
been considered by an approach restricted to predefined metabolic pathways.
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Figure 2.1: Enzyme Neighbourhood of depth 6, identified from a list of differentially expressed
genes in Medicago truncatula. For each reaction represented, the EN depth is indicated (number in
brackets). Genes encoding enzymes for all these reactions have been identified in the Affymetrix

Medicago Genome Array. The reaction coloured in black corresponds to the enzyme (EC
1.14.11.9) used to establish this EN. Greyed reactions show that at least one of the corresponding

enzymes belongs to the submitted group of enzymes. The set of reactions inside the frame
represent part of the classical flavonoid biosynthesis pathway as described in KEGG database.

4 Conclusion

The interpretation of microarray experiments represents a main challenge to characterize
biological processes. This paper presents a method to interpret results of gene expression
data in the context of metabolic pathways. Our web-based tool PathExpress, in which
metabolic pathways are modelled as directed graphs of enzymatic reactions, has been
extended to identify Enzyme Neighbourhoods (EN) with statistically significant
differential expressions. The EN of a given enzyme is defined as a connected sub-
network within the global metabolic network, built from the KEGG database. This
method is based on the same statistical approach as used for the identification of gene
enrichment in GO terms or metabolic pathways. However, the clustering method differs,
as it includes knowledge about the network of gene products without being restricted to
predefined pathways. Based on a pre-computed assignment of sequences to EC numbers
this approach can be applied to any organism or set of sequences (e.g. custom DNA
microarray, proteome array) and hence provides a useful resource for the integration of
transcriptomic and proteomic data sets.
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