
Symbolic Execution for Realizability-Checking of
Scenario-based SpeciĄcations12

Joel Greenyer3, Timo Gutjahr4

Abstract: Scenario-based speciĄcation with the Scenario Modeling Language (SML) is an intuitive
approach for formally specifying the behavior of reactive systems. SML is close to how humans conceive
and communicate requirements, yet SML is executable and simulation and formal realizability checking
can Ąnd speciĄcation Ćaws early. The realizability checking complexity is, however, exponential in
the number of scenarios and variables. Therefore algorithms relying on explicit-state exploration
do not scale and, especially when speciĄcations have message parameters and variables over large
domains, fail to unfold their potential. In this paper, we present a technique for the symbolic execution
of SML speciĄcations that interprets integer message parameters and variables symbolically. It can
be used for symbolic realizability checking and interactive symbolic simulation. We implemented
the technique in ScenarioTools. Evaluation shows drastic performance improvements over the
explicit-state approach for a range of examples. Moreover, symbolic checking produces more concise
counter examples, which eases the comprehension of speciĄcation Ćaws.

Keywords: Reactive Systems; Scenario-Based Modeling; Realizability Checking; Symbolic Execution

Many software-intensive systems, especially cyber-physical systems, consist of reactive
components that interact with each other and the environment in order to realize complex
and often safety-critical functionality. Scenario-based modeling with Live Sequence Charts

(LSCs) [HM03], and a textual variant, the Scenario Modeling Language (SML), is an
intuitive, yet formal approach for specifying the behavior of such systems. SML extends
LSCs with concepts for specifying environment assumptions and dynamic topologies [Gr17].

LSC/SML speciĄcations are executable via the play-out algorithm [HM03], and can be
analyzed via simulation. Violations encountered during simulation runs hint at possible
speciĄcation Ćaws. Simulation alone, however, cannot prove the absence of Ćaws. For this
purpose, there exist methods for proving the realizability of LSC/SML speciĄcations [BH05,
MS12], i.e., checking whether there exist an implementation of the speciĄcation or not, due
to contradicting requirements or other inconsistencies.

1 This is an extended abstract of [GG17]
2 Funded by the German Israeli Foundation for Research and Development (GIF), grant No. 1258, and the

Deutsche Forschungsgemeinschaft (DFG), project EffiSynth.
3 Leibniz Universität Hannover, Software Engineering Group, Welfengarten 1, 30167 Hannover, Germany,

greenyer@inf.uni-hannover.de
4 Zühlke Engineering GmbH, Podbielskistraße 333, 30659 Hannover, Germany Timo.Gutjahr@zuehlke.com

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 145

https://creativecommons.org/licenses/by-nc/3.0/
greenyer@inf.uni-hannover.de
Timo.Gutjahr@zuehlke.com
https://creativecommons.org/licenses/by-nc/3.0/


These approaches, however, usually do not scale well, since they rely on an exploration of the
state space induced by the speciĄcation, which can be exponential in the number of scenarios
and variables in the speciĄcation. Approaches relying on BDD-based algorithms [MS12]
only support basic scenario-based language concepts, since the mapping of elaborate
scenario language concepts to lower-level formalisms and tools is very diicult.

We therefore investigated how to extend the existing play-out algorithms with symbolic

execution [Ki76]. Symbolic execution, known from program analysis, executes a program
with symbolic values as inputs; it can deduce for which constraints on these inputs it is
possible to arrive at a particular part of a program that is of interest, e.g., the violation of
an assertion. In the case of symbolic play-out, environment event parameters and initial
component state attributes are interpreted symbolically. The particular challenge, compared
to the symbolic execution of sequential programs, is twofold: (1) during a symbolic play-out
execution, inputs occur repeatedly, and (2) in an execution state, multiple scenarios can be
active and formulate conditions over message parameter and variable values. One step in
symbolic play-out could thus result in branching into as many paths as required to cover all
possible combinations of branchings implied by each active scenario.

We formalized symbolic play-out, and implemented it within ScenarioTools, which we
combined with Z3 for constraint solving. We experimented with diferent strategies to match
symbolic execution states, which is required for systematically exploring execution paths.
The evaluation shows that symbolic play-out can drastically improve realizability checking
performance for speciĄcations with message parameters and variables over large domains.

References
[BH05] Bontemps, Yves; Heymans, Patrick: From Live Sequence Charts to State Machines and

Back: A Guided Tour. IEEE Transactions on Software Engineering, 31(12):999Ű1014, 2005.

[GG17] Greenyer, Joel; Gutjahr, Timo: Symbolic Execution for Realizability-Checking of Scenario-
Based SpeciĄcations. In: 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS). volume 00, pp. 312Ű322, Sept. 2017.

[Gr17] Greenyer, Joel; Gritzner, Daniel; Gutjahr, Timo; König, Florian; Glade, Nils; Marron, Assaf;
Katz, Guy: ScenarioTools Ű A tool suite for the scenario-based modeling and analysis of
reactive systems. Science of Computer Programming, 149(Supplement C):15 Ű 27, 2017.
Special Issue on MODELSŠ16.

[HM03] Harel, D.; Marelly, R.: Come, LetŠs Play: Scenario-Based Programming Using LSCs and
the Play-Engine. Springer, 2003.

[Ki76] King, James C.: Symbolic execution and program testing. Communications of the ACM,
19(7):385Ű394, 1976.

[MS12] Maoz, Shahar; SaŠar, Yaniv: Assume-Guarantee Scenarios: Semantics and Synthesis. In
(France, R. B.; Kazmeier, J.; Breu, R.; Atkinson, C., eds): Model Driven Engineering
Languages and Systems - 15th International Conference, MODELS 2012. Proceedings.
volume 7590 of Lecture Notes in Computer Science. Springer, pp. 335Ű351, 2012.

146 Joel Greenyer, Timo Gutjahr


