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Abstract: Today, smartphones are widely used and they already have a growing mar-
ket share of more than 70% according to recent studies. These devices often contain
sensitive data like contacts, pictures, or even passwords that can easily be accessed by
an attacker if the phone is not locked. Since they are mobile and used as everyday
gadgets, they are susceptible to get lost or stolen. Hence, access control mechanisms
such as user authentication are required to prevent the data from being accessed by an
attacker. However, commonly used authentication mechanisms like PINs, passwords,
and Android Unlock Patterns suffer from the same weakness: they are all vulnerable
against different kinds of attacks, most notably shoulder-surfing. A promising strat-
egy to prevent shoulder-surfing is to only enter a derivation of the secret during the
authentication phase.

In this paper, we present a novel authentication mechanism based on the concept
of graphical neighbors to hamper shoulder-surfing attacks. Results of a usability eval-
uation with 100 participants show that our implementation called GRAPHNEIGHBORS

is applicable in comparison to commonly used authentication mechanisms.

1 Introduction

Smartphones are among the most popular gadgets available on the market today. Accord-

ing to recent studies, their popularity is expected to grow even more in the near future.

Since smartphones are not only used for calling but also for taking pictures, sending text

messages, surfing the web, or online banking, they contain a lot of sensitive and private

data like contact information, personal messages, or even passwords. Due to their mo-

bility, they are carried around by users and consequently, they are an interesting target

for attackers, who can easily access all sensitive data if the smartphone is not locked.

Hence, smartphones offer different authentication mechanisms like passwords, PINs, or

Android Unlock Patterns. Since passwords and PINs are cumbersome to enter into the

device, alternative solutions are needed. Several studies showed that visual information

like pictures are easier to recall than textual information [SCH70] and thus Android Un-



lock Patterns seem to be the solution. However, it also has been shown that the entropy

of user-chosen Android Unlock Patterns is rather low [UDWH13]. In the same way, all

three methods suffer from the same weakness: they are vulnerable against shoulder-surfing

attacks [TOH06]. In this paper, we present a concept and an implementation of GRAPH-

NEIGHBORS, that counters plain shoulder-surfing attacks while serving usability as well.

Ethical Considerations

As part of our work, we asked 100 people to authenticate using the developed prototypes.

All users were informed before participating that they were to take part in a scientific study

and that their data was used to analyze the properties of an authentication system. All data

collected during our study was used in an anonymized way so that there is no link between

collected data and individual participants. Our institute does not fall under the jurisdiction

of an IRB or similar ethics committee.

Paper Outline

The rest of this paper is structured as follows. In Section 2, we discuss related work in

particular on shoulder-surfing resilient user authentication. We explain our approach in

detail and discuss our prototype implementation in Section 3. In Section 4, we present the

results of a user survey with 100 participants with focus on the usability of GRAPHNEIGH-

BORS. We introduce four attacker scenarios and argue how GRAPHNEIGHBORS performs

in contrast to legacy authentication approaches like PIN, password, and Android Unlock

Patterns in Section 5. Finally, we conclude this paper in Section 6 with a discussion of the

results and potential future research questions.

2 Related Work

In recent years, a lot of work has been published about user authentication on mobile

devices but only a few aims at hampering shoulder-surfing attacks.

Tan et al. proposed a spy-resistant keyboard that should allow for more secure password

entry on public touch screens [TKC05]. Their keyboard is composed of 42 character tiles,

two inter-actor tiles, a feedback text box, a backspace button, and an enter button. Each

tile randomly contains a lower letter, an upper letter, and a digit or a symbol. Instead of

having a fixed shift state, each tile has a random assigned shift state defined by a red line

under one of the three characters. By pressing one of the inter-actor tiles, the user can

change the shift state of all tiles simultaneously. Having located the correct character as

well as the appropriate shift state, he has to drag an inter-actor tile on the character tile

to select it. While dragging to the correct tile, all shift states disappear. Balzarotti et al.

showed that this schema can easily be broken by a single shoulder-surfing session since
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the password is always entered in clear [BCV08]. GRAPHNEIGHBORS improves on this

since the login session can be observed several times without revealing the secret.

Roth et al. presented a PIN entry method to mitigate shoulder surfing [RRF04]. On a

keypad, they colored the numbers into black and white groups and the user has to select

the group his PIN’s digit is part of in a round-based fashion. A shoulder surfer would only

obtain a subset of the potential PIN, but she could reconstruct the PIN with an intersection

analysis if she would be able to watch the entry process several times. In contrast to our

approach, the authors assume that the attacker’s resources are bounded by the cognitive

capabilities of a human. Again, this only holds if the attacker is not allowed to take notes

or record the authentication procedure, for example with a (smartphone) camera [BCV08,

MVG+11]. Otherwise, she could intersect the chosen subsets to obtain the secret PIN

within a few rounds. GRAPHNEIGHBORS resists such attacks.

S3PAS is a system implemented by Zhao and Li to prevent shoulder-surfing attacks [ZL07].

Here the secret is a list of three characters where each item forms a virtual and invisible

triangle in a 10 × 10 grid of characters. To authenticate, the user has to touch inside the

triangle in a row-based fashion. Again, this scheme is not secure against sophisticated

shoulder-surfing attacks where the attacker records a few sessions [BCV08, MVG+11].

By intersecting the possible password candidates she can afterwards obtain the secret.

3 Methodology and Implementation

Currently, Android offers four mechanisms to unlock a smartphone. The most secure

in terms of theoretical password space but also least usable method are passwords. The

user can choose an arbitrary string containing digits (0-9), letters (a-zA-Z), and special

characters (e. g., !,?,;,:) to form a login secret on a hardware or a software keyboard. There

is only one constraint: The login secret has to contain at least 4 characters and at most

16. Although this results in a total password space of about 2107, most users do not want

to utilize such a cumbersome approach since entering a secret on a softkeyboard is error-

prone due to small buttons and also takes some time.

The PIN login mechanism is a special case of the aforementioned passwords. Here, the

user has a limited character set of only digits with at least 4 and at most 16 digits that leads

to approximately 253 different secrets. Since the buttons to enter the secret are much larger

in comparison to the softkeyboard used for entering password, this authentication method

is faster and less error-prone.

The third alternative are Android Unlock Patterns, a simplified variant of the Pass-Go

scheme [TA08] to increase usability and to adapt for the small screens found on typical

devices running Android. It uses nine points arranged in a 3× 3 grid and the user needs to

select a path through these points according to the following rules:

1. At least four points must be chosen,

2. no point can be used twice,
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3. only straight lines are allowed, and

4. one cannot jump over points not visited before.

Since the authentication can be performed very quickly, this method is a powerful replace-

ment for password and PIN. However, all three mechanisms suffer from the very same

weakness: they are susceptible to shoulder-surfing attacks. Besides this, Aviv et al. have

shown that the secret can often be obtained by an attacker through analyzing the oily

residue left by the user’s touch [AGM+10] (so called smudge attacks).

The last authentication mechanism is Android’s Face Login. To make use of this approach,

the user has to take a picture of his face and afterwards look into the camera in order to

authenticate. On the one hand, this leads to resistance against classic shoulder-surfing

since the secret cannot be easily eavesdropped by an attacker. On the other hand, it has

been shown that an attacker only needs a picture of the smartphone’s owner to authenticate.

A countermeasure has been implemented in Android 4.1 where the user has to blink in

order to login. Albeit, we found that even this can easily be fooled by using two pictures

(one with open eyes and another one with closed eyes).

In summary, Face Login is not secure against simple picture attacks whereas password,

PIN, and Android Unlock Patterns suffer from shoulder-surfing attacks. Thus there is a

need for an authentication method that solves these shortcomings. Multiple extensions

for the PIN system have been proposed in recent years [DLFBH09, DLHH10, DLWD07,

BOKK11, RRF04] that attempt to hamper shoulder-surfing. While recalling visual infor-

mation like pictures is easier than recalling passwords or PINs [SCH70, BCVO12, Chi08],

there are only a few approaches that make use of graphical secrets that cover this attack

vector [FCB10].

We propose GRAPHNEIGHBORS, a graphical authentication mechanism that fixes these

drawbacks. To evaluate different settings, we develop three approaches as prototypes that

we describe in the following. We show that plain shoulder-surfing attacks do not reveal

the login secret and additionally that smudge attacks are useless against our scheme. Like

other authentication mechanisms, GRAPHNEIGHBORS utilizes different figures as secrets.

We denote this set of figures as F. Additionally, GRAPHNEIGHBORS uses a set of colors

C as well as a set of optional positions P. The user’s secret is based on figures having

each figure fi 2 F being concatenated with a user chosen color ci 2 C and a user chosen

position pi 2 P. The position refers to the selection the user has to choose when authen-

ticating. In contrast to most existing graphical logins, the user does not select his secret

directly to authenticate. Instead, he chooses the figure besides his partial secret to prevent

shoulder-surfing attacks. The previously selected position is the key to decide which of

the neighbors to choose. Therefore, a four-digit user’s secret S = (s1, s2, s3, s4) can be

described as the following ordered set:

(f1 ◦ c1 ◦ p1, f2 ◦ c2 ◦ p2, f3 ◦ c3 ◦ p3, f4 ◦ c4 ◦ p4)

with si = fi ◦ ci ◦ pi. Note that ◦ denotes the concatenation operator. To configure the

login, the user has to choose a secret S beforehand.

As a first approach, we choose six different geometric figures (circle ©, square #,

triangle△, rhombus ♦, pentagon !, and star⋆), four different colors (blue,
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Figure 1: View for approach A and B. The user has to choose at least four objects as secret. In
contrast to approach B, approach A additionally uses directions as secret for each object.

green, yellow, and red), and five different locations (above, right, below, left,

and none). The login view for this approach can be seen in Figure 1 presenting a matrix

of 6 × 4 figures randomly located. The authentication process is round-based: For each

round, the user has to find the figure that matches his chosen secret regarding shape and

color and select the figure corresponding to his position selection beside the located figure.

If fi ◦ ci is located at the upper left edge of the screen and the previously chosen position

pi is left, he has to choose the most right figure in the same row. If pi is above, the user has

to select the bottommost figure in the same column. Other cases match accordingly. Like

for other methods that have a user defined secret’s length, the user has to press a button

after having inserted the full secret S.

To give a concrete example, we explain the authentication process based on Figure 1. Let

the first partial secret be f1 ◦ c1 ◦p1 with f1 = ©, c1 = red, and p1 = below. Given the

aforementioned figure, the user has to select the blue ! since this figure is right below

the red circle. Let the second partial secret be f2 ◦ c2 ◦ p2 with f2 = #, c2 = blue, and

p2 = left. For the second round, the user has to select the red triangle since the square
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Figure 2: View for approach C. The user has to choose at least four objects as secret. Additionally,
directions for each object must be chosen.

is the leftmost figure in the last row.

Our second approach is very similar to the first one: We also choose six different geo-

metric figures and four colors, but the user cannot choose different locations on his own.

Thus, the automatic selection for this property is none. Since we omit the neighbor op-

tion, this method is not secure against shoulder-surfing attacks. By offering this approach,

we intended to evaluate whether more difficult approaches like approach A are usable in

comparison to omitting this feature.

Our final approach differs from the first and second one by the number of figures and the

number of colors (c. f. Figure 2). We implemented twelve different figures (circle ©,

star⋆, square#, hexagon", upward directed isosceles triangle△, cloud✛,

pentagon !, lightning✚, rhombus ♦, cross , left downward directed isosce-

les triangle , and right upward directs isosceles triangle ) with five different

locations as in approach A, but used only a single color. We considered this approach

since we wanted to find out whether the concept of neighbors works with only one color

but more figures. On a smartphone, these figures can easily be taken from the user’s

gallery since there is no need to colorize them. Note that this is only feasible for approach

C since some pictures might be indistinguishable when being colored as needed for the

approaches A and B. For our prototype, we used geometric figures due to the easy com-

parability. Pictures instead of figures might be more familiar for the smartphone’s owner,

but less comparable for a study.

We implemented all three approaches as prototypes in a tool called GRAPHNEIGHBORS

for the Android operating system. A summary of the method’s properties can be found in

Table 1. In the next section, we evaluate and discuss the usability of them.
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Table 1: Comparison of the properties of different approaches.

Figures Colors Neighbors Displayed Objects

Approach A 6 4 5 24
Approach B 6 4 1 24
Approach C 12 1 5 12

4 Usability Evaluation

To evaluate GRAPHNEIGHBORS, we conducted a user study with 100 participants. In

the beginning, we explained the GRAPHNEIGHBORS to each participant face to face and

answered upcoming questions. We further asked them to select and remember a secret for

each approach individually. After five minutes, we requested each participant to login with

the previously chosen secrets having three tries for each approach. Finally, we asked them

to fill out a questionnaire.

We learned that 74% of all participants where able to authenticate using approach A within

three attempts. 86% of all participants could login when using approach B while 96%
could authenticate by means of approach C. Table 2 outlines details about successful logins

and the number of attempts participants needed to authenticate. By intersecting the sets

of successful participants we discovered that 68% could authenticate using each single

approach and that almost all subjects (98%) could authenticate using at least one of the

approaches.

We further asked our participants to compare all three approaches of GRAPHNEIGHBORS

with common login methods and name the method where they could remember the secret

best. 27% stated that they could remember secrets for approach C best, while 25% could

remember PINs best. 18% liked passwords most followed by 15% preferring Android

Unlock Patterns. Approach A was chosen by only 11% and approach B by only 4%.

Note that approach C performs better than all legacy authentication methods while being

secure against simple shoulder-surfing attacks (c. f. Section Security Evaluation).

We also asked which authentication method they would prefer as default for their smart-

phone. 34% gave approach C as preferred method followed by PIN with 19% and ap-

proach A as well as other mechanisms with 14% each. Passwords achieved 10% while

approach B got 5% and Android Unlock Patterns 4%.

Table 2: Number of attempts to successfully login for 100 participants.

Approach A Approach B Approach C

1st try 42 59 94
2nd try 28 25 2
3rd try 4 2 -

Σ 74 86 96
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5 Security Evaluation

In this section, we introduce four attacker scenarios and argue how GRAPHNEIGHBORS

performs in contrast to legacy authentication approaches like PIN, password, and Android

Unlock Pattern. We concentrate on the average case since worst or best case scenarios do

not point out reality.

The first attack we discuss is guessing the secret without knowing the secret’s length.

Since
∑

n

i=4
bi is the password space for passwords with at least 4 and at most n charac-

ters having a basis of b different characters, we need on average
∑

n

i=4
b
i

2
tries to reveal a

password. Given that, we get
∑

16

i=4
95

i

2
≈ 1.09 × 2104 as concrete number. Transferred

to the PIN authentication, we obtain
∑

16

i=4
10

i

2
≈ 1.23 × 252 for b = {0, . . . , 9}. For An-

droid Unlock Patterns an exact number cannot be given in a closed equation since login

patterns have a lot of restrictions, e. g., points cannot be used twice and not every path is

allowed. Considering all restrictions, we nearly get 400.000 possible patterns. Therefore,

we need on average 200.000 ≈ 1.53× 217 tries to expose the login secret. Comparing this

to approach A of GRAPHNEIGHBORS, we have a base of 6×4 = 24 different object/color

combinations. Although we additionally can choose five different directions, this does not

change the security of this approach because all possible objects are already element of

these 24 objects. Hence, we obtain
∑

16

i=4
24

i

2
≈ 1.34 × 272 as average count of attacks

to guess the secret. For approach B, we get the very same number since we do not need

to take the number of neighbors into account. This differs for approach C where we have

only 12 different objects. Given this, we get
∑

16

i=4
12

i

2
≈ 1.40× 256 as average number of

attacks to guess the secret.

As second attack, we consider guessing the secret with knowledge of it’s length. For our

analysis, we assume a secret’s length of four. Taking a look at passwords, we obtain 954 ≈
1.21 × 226 different possibilities. Therefore, an attacker needs approximately 225 tries to

expose the secret. For four digit PINs, we get 10
4

2
≈ 1.22 × 212 possibilities. Android

Unlock Patterns containing exactly four points only offer less than 9×8×7×6

2
≈ 1.47× 210

since the first point can be chosen arbitrarily but further points depend on the previously

chosen ones. Calculating this for GRAPHNEIGHBORS, we obtain 24
4

2
≈ 1.27 × 217 for

approach A and B, while we need on average 12
4

4
≈ 1.27 × 214 tries to get the secret for

approach C.

The third attack is guessing the user’s secret after shoulder-surfing. When considering

password, PIN, and Android Unlock Patterns, we conclude that all these approaches can

easily be broken by conducting shoulder-surfing once. An attacker having observed the

login procedure knows the secret and can unlock the smartphone afterwards. Since ap-

proach B of GRAPHNEIGHBORS does not make use of the neighbor option, this method

can also be attacked by simple shoulder-surfing. However, approach A and C make use

of the neighbor option and are therefore secure against single shoulder-surfing attacks

since the attacker does not attain the secret. Albeit, they are not resilient against sophis-

ticated shoulder-surfing attacks because an attacker conducting multiple shoulder-surfing

sessions can perform an intersection attack to obtain the secret in the end. To do so, the
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attacker captures the user’s inputs including the possible neighbors and creates a list of

password candidates. Having four rounds and five possibilities per round, the list consists

of 54 = 625 candidates. Due to the randomization of the figures on the touchscreen, each

login session offers other candidates. By collecting and intersecting multiple candidate

sets, the attacker can eventually obtain the secret.

Finally, we consider smudge attacks [AGM+10]. In this context, the oily residue on the

smartphone’s touchscreen is analyzed to obtain the login secret. Here, an attacker can in-

spect the touchscreen after the user has tapped or wiped on the touchscreen to enter the

secret. The Android pattern login is most vulnerable against this attack vector. Since the

user has to slide his finger to enter the secret, residues form a path on the touchscreen.

This path has exactly two designated points: on the one hand the start point and on the

other hand the end point. Start and end point can be interchanged but this only leads to

two possible secrets. Having five tries to authenticate using this method, we can consider

that plain login patterns are highly vulnerable. By looking at password and PIN, attack-

ers can see where a user has touched the touchscreen. Therefore, they know the touched

position but have no information about the order of touches. For a secret with four dif-

ferent characters (numbers or letters) we get 4! = 24 possible secrets leading to 1.5 × 23

tries on average. Since all approaches of GRAPHNEIGHBORS show the geometric figures

randomly arranged, smudge attacks do not lead to any hint of the secret.

Limitations

While being more secure against shoulder-surfing attacks than PIN, password, and An-

droid Unlock Patterns, GRAPHNEIGHBORS also has at least one limitation. Since the

number of selectable neighbors is limited, observing the authentication reveals a hint of

the login secret. By intersecting the possible password candidates, this can lead in the long

run to the secret password. This attack can only be mitigated by changing the password on

a regular basis. Nevertheless, GRAPHNEIGHBORS hampers shoulder-surfing attacks since

even a sophisticated shoulder-surfing attack performed once does not lead to the login

secret.

6 Conclusion and Future Work

In this paper, we introduced a novel graphical authentication method that makes use of

neighbors to achieve resistance against plain shoulder-surfing attacks. We implemented

three different approaches as a prototype for the Android OS. In a usability evaluation, we

asked 100 people to choose secrets for each approach and verified that almost all partic-

ipants (98%) where able to remember the secret after a short period of time of at least

one approach. In a succeeding survey we found that 34% preferred using our proposed

neighbor option with 12 different figures but without additional colors. Our security eval-

uation shows that graphical neighbors improve the security against shoulder-surfing on the
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one hand and smudge attacks on the other compared to commonly used authentication

methods.

In future work, we plan to focus on a large-scale and long-term evaluation to verify that

people can remember not only figures, but also positions over a long period of time.
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