
Counterfactual Explanations for Models of Code

Jürgen Cito 1, Işıl Dillig 2, Vĳayaraghavan Murali3, and Satish Chandra4

Abstract: Machine learning (ML) models play an increasingly prevalent role in many software
engineering tasks. However, it can be difficult for developers to understand why the model came to a
certain conclusion and how to act upon the model’s prediction. Motivated by this problem, this talk
explores counterfactual explanations for models of source code. Such counterfactual explanations
constitute minimal changes to the source code under which the model “changes its mind". We integrate
counterfactual explanation generation to models of source code in a real-world setting at Meta. We
describe considerations that impact both the ability to find realistic and plausible counterfactual
explanations, as well as the usefulness of such explanations to the developers that use the model. In a
series of experiments, we investigate the efficacy of our approach on three different Large Language
Models (LLMs) operating over source code.

Our original publication of the study has been presented at the International Conference on Software
Engineering in the Software Engineering in Practice Track (ICSE-SEIP 2022).

Keywords: machine learning, explanations, source code models

1 Study Overview and Results Summary

Machine learning models, especially large language models, have become integral in various
code-related tasks such as bug detection, auto-completion, and type inference. However, the
adoption of these learning-based code analysis methods introduces challenges concerning
unknown soundness and completeness characteristics. These models often exhibit high
false positive rates, impeding trust from end users, notably software engineers who leverage
these models in their development workflow. We introduce counterfactual explanations
as a black-box explainability method within Meta for source code models. Our technique
facilitates debugging for ML engineers and also offers individual prediction explanations
crucial during the software development workflow (e.g., during code review) for software
engineers who use these models.

Our counterfactual explanation approach introduces heuristic-driven methods to identify
minimal perturbations in the source code input—specifically, within our performance
prediction models. In contrast to existing work on robustness and adversarial examples for
machine learning models, we introduce semantics-altering instead of semantics-preserving
perturbations. By pinpointing mutations that flip model predictions, our technique highlights
areas where the model derives its signal, empowering users to reason about prediction

1 TU Wien, Vienna, Austria, juergen.cito@tuwien.ac.at, https://orcid.org/0000-0001-8619-1271
2 UT Austin, Austin, TX, USA, isil@cs.utexas.edu, https://orcid.org/0000-0001-8006-1230
3 Meta, Menlo Park, CA, USA, vĳaymurali@meta.com
4 Google, Mountain View, CA, USA, schandra@acm.org

cba doi:10.18420/sw2024_27

R. Rabiser, M. Wimmer, I. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 91

https://orcid.org/0000-0001-8619-1271
https://orcid.org/0000-0001-8006-1230
mailto:juergen.cito@tuwien.ac.at
https://orcid.org/0000-0001-8619-1271
https://orcid.org/0000-0001-8619-1271
mailto:isil@cs.utexas.edu
https://orcid.org/0000-0001-8006-1230
https://orcid.org/0000-0001-8006-1230
mailto:vijaymurali@meta.com
mailto:schandra@acm.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_27


correctness. The comparison between the original source code (i.e., the input to the model)
and the perturbed version serves as a contrastive explanation, facilitating deeper insights
into model behavior and aiding in the validation of predictions. We experimentally evaluate
our approach guided by the following research questions:

RQ1: How often do users find counterfactual explanations for models of code helpful?
We conduct a formative study with 3 software engineers and research scientists from different
stakeholder teams within Meta. We randomly sample 30 instances from the validation
dataset used during training of these models. For each instance, we produce counterfactual
explanations using our approach. We then ask the participants whether they found the
explanation to be useful to understand the prediction. Our study participants found the
explanations useful or very useful in 83.3% (25/30) of cases. Very useful explanations made
up 30% (9/30) of cases. They only found 16.6% (5/30) of the explanations not useful (or
were indifferent about them). When analyzing these cases together with rationales given
by the participants, we found that this mostly had to do with explanations that introduced
irrational perturbations.

RQ2: How do users utilize counterfactual explanations to discern between true-positive
and false-positive predictions in models of code? We also ask the study participants
to assess whether they think prediction is a true-positive or false-positive. They follow a
think-aloud protocol in which they are encouraged to verbalize their thought process such
that we can capture the rationale of their decision. We qualitatively analyze their responses
and report on their experience with utilizing explanations. Our study participants were able
to accurately determine the underlying ground truth in 86.6% (26/30) of cases. We noticed a
distinction in how participants came to the conclusion on how to interpret their explanation.
In true-positive instances, participants noted that the explanation guided them to parts of
the code that were aligned with their mental model. More specifically, the explanation
reinforced their hypothesis that had been induced through the prediction. (One participant
did note that while this line of reasoning seems sound, it could be prone to confirmation
bias.) In false-positive instances, participants noted that the strongest signal not to trust the
prediction was the level of unreasonableness of the explanation. If the explanation pointed
to irrelevant parts of the input or introduced an irrational perturbation, it was a sign that the
prediction could probably not be trusted.

RQ3: Are counterfactual explanations for models of code aligned with human rationales
provided by domain experts? We perform a case study based on an internal dataset where a
team of domain experts for a taint propagation detection task had provided human rationales
for code changes that we compare to our generated counterfactual explanations. We randomly
sample a set of 30 inputs and filter out instances where we cannot find counterfactual
explanations perturbing at most 5 tokens. We are eventually left with 11 instances for our
analysis. Since our research questions involve human assessment of the counterfactual
explanations, we use up to 5 explanations per input regardless of the number of explanations
generated. Around 90% (10/11) of the instance explanations (at least one of the top 5
offered) aligned with the human rationale.

92 Jürgen Cito et al.


